
Modelling overdispersion with integer-valued
moving average processes∗

Maria Eduarda Silva and Isabel Silva and Cristina Torres

Abstract A new first-order integer-valued moving average, INMA(1), model based
on the negative binomial thinning operation defined by Ristić et al. [21] is proposed
and characterized. It is shown that this model has negative binomial (NB) marginal
distribution when the innovations follow a NB distributionand therefore it can be
used in situations where the data present overdispersion. Additionally, this model is
extended to the bivariate context. The Generalized Method of Moments (GMM) is
used to estimate the unknown parameters of the proposed models and the results of
a simulation study that intends to investigate the performance of the method show
that, in general, the estimates are consistent and symmetric. Finally, the proposed
model is fitted to a real dataset and the quality of the adjustment is evaluated.
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1 Introduction

In the last decades there has been a growing interest in studying non-negative
integer-valued time series and, in particular, time seriesof counts. This kind of data
is characterized by low counts, asymmetric distributions,excess of zeros, overdis-
persion, etc, precluding Gaussian approximations and requiring different modelling
strategies. A comprehensive account of models for countingprocesses can be found
in [27] and references therein. One of the approaches to construct models for time
series of counts considers a random operation called thinning coupled with inno-
vations following discrete distributions and constitutesthe family of integer-valued
autoregressive and moving average, INARMA. These models have been extensively
studied in the literature, especially with regard to integer-valued autoregressive mod-
els (see [22]). On the other hand, integer-valued moving average (INMA) mod-
els have attracted less attention, mainly because likelihood-based inference is not
straightforward in this context, since the conditional distribution functions are not
easily obtained.

The INMA(q) models satisfy the following recursion

Xt = β0◦t εt +β1◦t εt−1+ · · ·+βq ◦t εt−q, t ∈ Z, (1)

where the innovation process,{εt}, is an independent and identically distributed
(i.i.d.) process with support onN0, finite meanµε > 0 and varianceσ2

ε > 0;
β0,β1, . . . , βq ∈ [0,1], βq 6= 0 (in generalβ0 = 1) and ”◦t ” denotes the binomial

thinning operator (proposed by [23]), defined asβ ◦X =
X
∑

i=1
ξi(β ), where{ξi(β )}

is a collection of i.i.d. Bernoulli counting random variables with parameterβ , in-
dependent ofX . The sequence{ξi(β ) : i ∈ N} is designated by counting series
and β ◦ X |X ∼ Bi(X ,α). The subscriptt in the operator′◦′ emphasizes the fact
that the thinning operations are performed at each timet. The thinning operations
β j ◦t εt− j, j = 1, . . . ,q may be considered independent as in [1] and [18] or not
as in [3], giving rise to four different models that can be embedded into a single
family of INMA( q) models, [26]. Under the assumption of Poisson innovations,
{εt} ∼ Po(λ/(1+β1)), the INMA(1) process is Po(λ ), [18]. Using an alternative
parametrization, [1] proved that if{εt} has a Poisson distribution with meanλ ,
then{Xt} has Poisson distribution with parameterλ (1+β1). The resulting process
is time reversible in the sense that{X1, . . . ,Xk} has the same joint distribution as
{Xk, . . . ,X1} for all k ≥ 2. Recently, the INMA models based on the binomial thin-
ning operation as defined in (1), have been extended to threshold INMA models,
[31], INMA models with structural changes, [28] and Poissoncombined INMA(q)
models, [29]. Additionally, the INMA processes have been applied in the reinsur-
ance context, namely on discrete risk models (see [5, 6, 10, 17, 30]).

Several modifications of the binomial thinning operator have been proposed in
order to make the models more flexible, allowing more variability in the processes
and consequently different properties. The case where the counting series are i.i.d.
random variables with geometric distribution was analysedby [21], and referred to
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as the negative binomial (NB) thinning operator. Thus, the NB thinning operator is
defined as

β ∗X =
X

∑
i=1

ωi(β ), (2)

whereβ ∈ [0,1[ and the counting series{ωi(β )} is a sequence of i.i.d. random
variables with geometric distribution with parameterβ

1+β , i.e., with probability mass

function of the formP(ωi(β ) = k) = β k

(1+β )k+1 , k ≥ 0.

In this work, a first-order INMA model with NB marginal, denoted by INMA-
NB(1), based on the NB thinning operator is proposed and its properties are stud-
ied. One of the advantages of this model is that the ability tohandle overdipersed
datasets.

Often, the collected time series are multivariate in the sense that there are counts
of several events observed over time and the counts at each time point are correlated.
While research on univariate time series of counts continuesto grow, the literature
on bivariate and also multivariate time series models for count data is less developed.
This might be explained by the fact that classical inferencein multivariate count data
models has proven to be analytically as well as computationally very demanding. In
the last 20 years, some interesting attempts have been made but most of them do not
arise in the context of thinning-based processes. The first attempt to develop multi-
variate INMA models came from [4], who proposed a Bivariate INMA(1) model for
guest nights in hotels and cottages. Another model was proposed by [19] which ex-
tends the univariate INMA model of [18]. Recently, [15, 16, 24] proposed stationary
and non-stationary BINMA models based on the binomial thinning operation and
where the innovation series follow the bivariate Poisson distribution under time-
varying moment assumptions and constant cross-correlations and used generalized
quasi-likelihood estimation method.

In this work, the INMA-NB(1) model is extended to the bivariate case, with the
cross-correlation generated through a bivariate negativebinomial-type II (BNBII )
process.

The remainder of this work is organized as follows. The INMA-NB(1) model
is defined and its properties are established in Section 2. Then, in Section 3, this
model is extended to the bivariate case and its characterization is presented. Param-
eter estimation is accomplished by Generalized Method of Moments (GMM), and
the finite sample behaviour of GMM are examined using Monte Carlo methods in
Section 4. Furthermore, the proposed model is applied to real dataset in Section 5.
Finally, Section 6 concludes the paper.
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2 First-Order Negative Binomial INteger-Valued Moving
Average Model

Let {Xt}, t ∈ Z, be a sequence of non-negative integer-valued random variables.
Then{Xt} is called a first-order negative binomial integer-valued moving average,
INMA-NB(1), model if it satisfies the equation

Xt = εt +β ∗ εt−1, t ∈ Z, (3)

whereβ ∈ ]0,1[; ’*’ is the NB thinning operator defined by (2) and{εt} is a se-
quence of i.i.d. non-negative random variables following aNB distribution,εt ∼

NB
(

κ , 1
1+β

)

, with E[εt ] = κβ , Var[εt ] = κβ (1+ β ) and probability generating

function (pgf) given byGε(s) = 1
(1−β (s−1))κ (see [12]). Note that, conditioned on

εt−1, β ∗ εt−1 is NB distributed, i.e.,β ∗ εt−1|εt−1 ∼ NB
(

εt−1,
1

1+β

)

.

Proposition 1. Let GX (s) and Gε(s) denote the pgf of the random variables {Xt}
and {εt}, respectively. Then the pgf of the INMA-NB(1) model is given by

GX (s) = Gε(s)Gε

(

1
1−β (s−1)

)

=

(

1
1− (β +β 2)(s−1)

)κ

and therefore {Xt} ∼ NB
(

κ , 1
1+β (1+β )

)

.

Proof. Let z = β ∗ εt−1|εt−1 ∼ NB
(

εt−1,
1

1+β

)

, then it is possible to writeGz(s) =
(

1
1−β (s−1)

)εt−1
. Thus, it can be written that

GX (s) = E[sεt+β∗εt−1] = Gε(s)E
[

E
[

sβ∗εt−1|εt−1
]]

= Gε(s)E
[(

1
1−β (s−1)

)εt−1
]

= Gε(s) Gε

(

1
1−β (s−1)

)

= 1
(1−β (s−1))κ

1
[

1−β
(

1
1−β (s−1)−1

)]κ

=
(

1
1−(β+β 2)(s−1)

)κ
,

hence,Xt ∼ NB(κ ,(β +β 2)).
Using a different parametrization of the NB distribution (see [12] for details),

consideringκ = k, β + β 2 = P, and p = 1
1+P = 1

1+β (1+β ) ,q = 1− p = β (1+β )
1+β (1+β ) ,

then it is possible to write thatXt ∼ NB
(

κ , 1
1+β (1+β )

)

.

By using the properties of the NB thinning operator given in Lemma 3 of [21],
namely E[β ∗X ] = βE[X ] and E(β ∗X)2 = β 2E(X2)+β (1+β )E(X), and station-
arity of the process, it can be easily proven that the first- and second-order moments
of INMA-NB(1) model defined in(3) are given by
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E[Xt ] = κβ (1+β );
Var[Xt ] = κβ (1+β )(1+β (1+β ));

γXt (k) = Cov(Xt−k,Xt) =

{

κβ 2(1+β ) , k = 1,
0 , k > 1.

(4)

Note that the index of dispersion of the process{Xt} defined in (3) is given by
σ2

µ
= 1+ β + β 2 > 1 and thus this model is appropriate for overdispersed data.

Motivated by this fact, the INMA-NB(1) model is extended to the bivariate case in
the next section.

3 Bivariate INMA Models Based on the NB Thinning Operator

It is well known that the generalization of discrete distributions to a multivariate
context is neither straightforward nor unique leading to multivariate distributions
with different properties. Here, the Bivariate Negative Binomial distribution is con-
structed based on the compound correlated bivariate Poisson distribution proposed
by [7] and designated by Bivariate Negative Binomial-type II (BNBII ) distribu-
tion (see [7, 14] for details). LetY1,Y2,Y0 andΛ denote random variables such that
Yi|Λ = λ ∼ Po(θiλ ), i = 1,2,0 are mutually independent. IfΛ is Gamma then the
joint (unconditional) distribution ofX1 = Y1+Y0 andX2 = Y2+Y0 has pgf given by

GXXX (s1,s2) =

(

q
1− p1s1− p2s2− p3s1s2

)ν
(5)

wherepi =







θi/(θ1+θ2+θ0+β ), i = 1,2

θ0/(θ1+θ2+θ0+β ), i = 3
andq= 1−(p1+ p2+ p3)= β/(θ1+

θ2+θ0+β ). DenoteX = (X1,X2)∼ BNBII (p1, p2, p3,ν).
Now, let {Xt} = {(X1,t ,X2,t)}, t ∈ Z, be a non-negative integer-valued bivariate

random variable. Then{Xt} is a first-order Bivariate INteger-valued Moving Aver-
age model, referred as BINMA-BNBII (1,1), if satisfies the following equations

{

X1,t = ε1,t +β1∗ ε1,t−1,
X2,t = ε2,t +β2∗ ε2,t−1,

(6)

whereβ j ∈ ]0,1[, j = 1,2; ’*’ is the NB thinning operator given in (2) and the in-
novation process{εεε t} = {(ε1,t ,ε2,t)}, t ∈ Z, is an i.i.d. sequence of bivariate ran-
dom variables that follows a BNBII distribution with parameters(p1, p2, p3,ν)

wherep1 =
λ1

λ1+λ2+φ + τ
, p2 =

λ2

λ1+λ2+φ + τ
andp3 =

φ
λ1+λ2+φ + τ

, with

ν ,τ ,λ1,λ2 > 0 andφ ∈ [0,min(λ1,λ2)[.
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As referred by [7, 14], the marginal distribution ofε j,t is univariate NB, i.e.,

ε j,t ∼ NB
(

ν , τ
(λ j+φ)+τ

)

, j = 1,2, with expected value and variance given by (for

j = 1,2) E[ε j,t ] = (λ j +φ) ν
τ and Var[ε j,t ] = (λ j +φ)2 ν

τ2 +(λ j +φ) ν
τ , respectively,

and covariance defined as Cov(ε1,t ,ε2,t) = (λ1+φ)(λ2+φ) ν
τ2 +φ ν

τ .
It can be proved (for details see [25]) that the first- and second-order moments of

the BINMA-BNBII (1,1) model are given by (forj = 1,2)

E[X j,t ] = (1+β j)(λ j +φ) ν
τ ;

Var[X j,t ] = (1+β 2
j )(λ j +φ)2 ν

τ2 +(2β 2
j +β j +1)(λ j +φ) ν

τ ;

γX j(k) = Cov(X j,t−k,X j,t) =

{

β j(λ j +φ) ν
τ
(

(λ j +φ) 1
τ +1

)

, k = 1,
0 , k > 1;

γX1,X2(0) = Cov(X1,t ,X2,t) = (1+β1β2)
(

(λ1+φ)(λ2+φ) ν
τ2 +φ ν

τ

)

;

γX1,X2(1) = Cov(X1,t ,X2,t−1) = β1

(

(λ1+φ)(λ2+φ) ν
τ2 +φ ν

τ

)

;

γX2,X1(1) = Cov(X1,t−1,X2,t) = β2

(

(λ1+φ)(λ2+φ) ν
τ2 +φ ν

τ

)

;

γX1,X2(k) = γX2,X1
(k) = 0, if k > 1.

(7)

Additionally, the joint pgf ofXt = {(X1,t ,X2,t)} is given by

GX(s) = Gεεε(s)Gεεε

(

τ
τ − (λ1+φ)(s1−1)

,
τ

τ − (λ2+φ)(s2−1)

)

,

whereGεεε(s) = G(ε1,t ,ε2,t )(s1,s2). Then,GX(s) can be written by

GX(sss) =
[

1−
(

λ1+φ
τ

)

(s1−1)−
(

λ2+φ
τ

)

(s2−1)− φ
τ (s1−1)(s2−1)

]−ν
×

×
[

1−
(

λ1+φ
τ

)(

τ
τ−(λ1+φ)(s1−1) −1

)

−
(

λ2+φ
τ

)

×

×
(

τ
τ−(λ2+φ)(s2−1) −1

)

− φ
τ

(

τ
τ−(λ1+φ)(s1−1) −1

)

×

×
(

τ
τ−(λ2+φ)(s2−1) −1

)]−ν
.

Furthermore, it can be proven (by contradiction) that the joint distribution of the
BINMA-BNB II (1,1) model it is not BNBII (details in [25]).

The index of dispersion of the BINMA-BNBII (1,1) model is given by
σ2

j

µ j
=

1+β j +β 2
j > 1, with β j =

λ j +φ
τ

. Therefore, as for the univariate case, this model

is appropriate when overdispersion occurs.
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4 Parameter Estimation and Monte Carlo Simulation Results

In this section, the estimation of the parameters is discussed and the small sample
properties are illustrated through the results of a small Monte Carlo experiment.

4.1 Generalized Method of Moments

It is well known that likelihood-based procedures are unfeasible in MA models, with
exception of the Poisson INMA(1) model based on binomial thinning operation,
where the conditional distributionf (Xt |Xt−1) of both the Poisson INAR(1) and the
Poisson INMA(1) models are of the same form (see [18])). As referred by [24], in
the INMA context, the full or conditional likelihood density function is arduous and
renders considerable computational difficulties. Therefore, the Generalized Method
of Moment (GMM) methodology based on first- and second-ordermoments of the
process is considered. The GMM estimator was firstly introduced by [9] into the
econometric literature and, since then, has been widely applied in several fields.

Suppose we have an observed sampleXn = {Xt : t = 1, . . . ,n} from which we
want to estimate an unknownq×1 parameter vectorθθθ with true valueθθθ 0 and con-
sider a vectorTn = Tn(Xn) of k ≥ q summary statistics with expectationααα(θθθ) =
E[Tn] (whereααα(θθθ) are the theoretical counterparts) under the model. The so called
moment condition is defined by E[hn(θθθ ;Xn)] = 0, wherehn(θθθ ;Xn) = Tn −ααα(θθθ)
is a continuousk×1 vector function ofθθθ , and E[hn(θθθ ;Xn)] exists and is finite for
all t andθθθ . In practice, the moment condition is replaced by its sample analogous
1
n

n

∑
t=1

hn(θθθ ;Xt) = 0, and an estimator̂θθθ can be obtained as the solution of the last

equation.
Note that whenk = q, we obtain the Method of Moments (MM) estimator and

we say thatθθθ is just-identified. The Generalized Method of Moments estimator is
obtained whenk > q and then we say thatθθθ is over-identified. Then, the GMM
estimator ofθθθ is given by

θ̂θθ n = argmin
θθθ

{

hn(θθθ ;Xn)
′ Wn hn(θθθ ;Xn)

}

,

where[·]′ denotes transpose andWn is ak×k is any symmetric and positive definite
weight matrix that may depend on the data but that converges in probability to a
positive definite matrixW.

The GMM estimator thus defined is asymptotically consistent(see [8, 9, 11]
for additional details). The covariance matrix of the GMM estimatorθ̂θθ n converges

to C =
(

M(θθθ 0)
)−1

Σ̃ΣΣ
(

M′(θθθ 0)
)−1

, where Σ̃ΣΣ = H′(θθθ 0)WnSW′
nH(θθθ 0), M(θθθ) =

H′(θθθ)WH(θθθ), H(θθθ) is the limiting matrix of the partial derivatives ofhn and S
is the limiting covariance matrix ofhn. The smallest attainable asymptotic variance
is obtained whenWn = S−1.
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Remark 1. Note that, in general, is not possible to find an analytical solution for the
minimization of the quadratic formhn(θθθ ,Xn)

′Wnhn(θθθ ,Xn) and we have to resort
to numerical procedures. In order to obtain an efficient GMM estimator we can
reformulate the GMM criterium as

Qn(θθθ ,Xn) = hn(θθθ ,Xn)
′ Wn(θθθ) hn(θθθ ,Xn), (8)

where the weight matrix, which depends on the parameters, isobtained via plug-in
or empirical estimation as the covariance matrix ofhn and minimize this quadratic
form with respect toθθθ . This procedure is called thecontinuously updated GMM
estimator.

4.2 Monte Carlo Results

To illustrate the estimation procedure and to analyse the small sample properties
of the (continuously updated) GMM estimators for the parameters of the proposed
models, the results of a simulation study are presented. Thus, 5000 independent
replicates of time series of lengthn = 200,500 and 1000 are generated from each of
the models. The mean estimate and the standard error of the estimates are obtained
from the 5000 replications.

The minimization of (8) is performed by theR function optim, which accom-
plished a general-purpose optimization based on Nelder-Mead, quasi-Newton and
conjugate-gradient algorithms and includes an option for box-constrained optimiza-
tion [20].

INMA-NB(1) model:

For the univariate model proposed in Section 2, the independent replicates generated
from the INMA-NB(1) process (3) with two parameters,θθθ = (κ ,β ). There are three
summary statistics related with the first- and second-ordermoments: mean, variance
and autocovariance at lag 1, defined in (4).

The initial values for GMM estimation are obtained from the method of mo-
ments, namelŷβ = γ̂x(1)

x , andκ̂ = ŝ2

β̂ (1+β̂ )(1+β̂+β̂ 2)
wherex is the sample mean, ˆs2 is

the sample variance and̂γx(1) is the sample autocovariance in lag 1. The minimiza-
tion of (8) is performed numerically and subject toβ ∈]0,1[, κ > 0, for parameters
with valuesκ ∈ {3.0,5.0} andβ ∈ {0.2,0.4,0.6,0.8}.

The mean estimates and standard errors from the 5000 replicates are given in Ta-
ble 4.2. The sample mean and standard errors decrease as the sample size increases,
indicating that the distribution of the estimators is consistent and symmetric. The
results show that, in general,κ̂ is overestimated whilêβ is underestimated.
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Table 1 Sample mean and standard errors (in brackets) of the estimates for the INMA-NB(1)
models.

n θθθ = (κ ,β ) κ̂ β̂ θθθ = (κ ,β ) κ̂ β̂

200 4.957 0.185 7.338 0.190
(5.185) (0.086) (5.883) (0.083)

500 (3, 0.2) 3.566 0.193 (5, 0.2) 5.769 0.195
(1.847) (0.058) (2.565) (0.054)

1000 3.248 0.196 5.382 0.196
(0.878) (0.041) (1.428) (0.039)

200 3.561 0.382 5.812 0.386
(1.716) (0.103) (2.487) (0.100)

500 (3, 0.4) 3.195 0.392 (5, 0.4) 5.297 0.393
(0.720) (0.066) (1.162) (0.063)

1000 3.091 0.396 5.151 0.396
(0.483) (0.047) (0.763) (0.045)

200 3.305 0.581 5.469 0.582
(0.952) (0.111) (1.479) (0.105)

500 (3, 0.6) 3.122 0.592 (5, 0.6) 5.181 0.593
(0.525) (0.072) (0.842) (0.069)

1000 3.058 0.596 5.085 0.597
(0.359) (0.052) (0.570) (0.049)

200 3.331 0.756 5.519 0.760
(0.699) (0.106) (1.123) (0.101)

500 (3, 0.8) 3.124 0.783 (5, 0.8) 5.183 0.786
(0.409) (0.072) (0.648) (0.068)

1000 3.054 0.793 5.071 0.795
(0.290) (0.053) (0.467) (0.051)

BINMA-BNB II (1,1) model:

For the BINMA-BNBII (1,1) model there are five parameters of interestθθθ =
(λ1,λ2,φ ,ν ,τ) and nine summary statistics concerning with the first- and second-
order moments: mean, variance, autocovariance at lag 1 for each series and the
cross-covariance at lag 1, 0 and -1, refer to equation 7. Since the method of moments
yields (highly) non-linear equations and often non admissible estimates, the starting
values for the minimization of (8) are given arbitrarily byθθθ ∗ = (λ1,λ2,φ ,ν ,τ) =
(1,1,0.5,1,2), satisfying the constraints in the parametersλ j > 0, for j = 1,2,φ ∈
[0,min(λ1,λ2)[ andν ,τ > 0. Two models were generated with the set of parameters
given byθθθ = (1.0,1.0,0.3,1.0,2.0) andθθθ = (0.6,0.9,0.4,1.0,2.0), respectively.
The mean estimates and corresponding standard errors are given in Table 2. For
both set of parameters, the estimates are generally biased with standard errors that
decrease as the sample size increases. Note that the asymptotic theory suggests that
it is preferable to include as many summary statistics as possible to maximize que
information extracted from the data, and therefore the GMM estimator is always
over-identified, since the number of parameters is less thanthe number of sum-
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mary statistics. However, this redundant information may lead to deterioration in
the GMM performance, in particular, with the highly correlated sample moments re-
sulting in a badly conditioned weighting matrix [2]. Thus, further analysis is needed
concerning the estimation of the BINMA-BNBII (1,1) model.

Table 2 Mean and standard errors (in brackets) of the estimates for the BINMA-BNBII (1,1)
model.

θθθ = (λ1,λ2,φ ,ν ,τ) n λ̂1 λ̂2 φ̂ ν̂ τ̂

200 0.930 0.943 0.313 1.220 2.236
(0.216) (0.241) (0.227) (0.332) (0.280)

(1.0,1.0,0.3,1.0,2.0) 500 1.008 1.010 0.329 1.088 2.195
β1 = β2 = 0.65 (0.144) (0.159) (0.184) (0.168) (0.159)

1000 1.043 1.044 0.326 1.047 2.177
(0.103) (0.113) (0.136) (0.112) (0.114)

200 0.751 1.055 0.370 1.065 2.354
(0.193) (0.257) (0.210) (0.342) (0.298)

(0.6,0.9,0.4,1.0,2.0) 500 0.786 1.105 0.417 0.942 2.303
β1 = 0.5; β2 = 0.65 (0.134) (0.166) (0.167) (0.158) (0.137)

1000 0.803 1.127 0.426 0.908 2.282
(0.102) (0.120) (0.132) (0.109) (0.103)

5 Real Data Illustration

In this section, a dataset is used to illustrate the univariate model and methods de-
veloped previously. To assess the fit the model, a range of diagnostic and validation
tools based on parametric resampling are used.

Consider a dataset concerning the number of Sex Offences reported in the 21st
police car beat in Pittsburgh (Pennsylvania, USA), during one month. The data
consist ofn = 144 observations, from January of 1990 to December of 2001 (see
Figure 1). The dataset is available from the Forecasting Principles site http://www.
forecastingprinciples.com/index.php/crimedata. From apreliminary analysis of the
sample mean and variance of the data, Table 3, it is possible to conclude that the
data seem to be overdispersed. Furthermore, the values of the sample autocorrela-
tion function (ACF) in Figure 1, which are nearly zero after the lag 1, suggest that
a first-order model is appropriate to this data set. These data has been studied pre-
viously by [21] who fitted an autoregressive model. However,considering that it
is expected that the sex offenders stay a limited time in the system and that these
individuals can come and go several times during their life times in the system, a
moving average model, INMA-NB(1) may provide a good fit.
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Fig. 1 Time series (left panel) and autocorrelation function (rightpanel) of the monthly number of
Sex Offences, from 1990 to 2001, registered in Pittsburgh.

Table 3 Sample measures for the sex offences data set.

Mean Variance ACF(1)

Sample 0.590 1.027 0.235
INMA-NB(1) 0.588 1.011 0.282
NGINAR(1) [21] 0.587 0.932 0.165

The obtained GMM estimates areθ̂̂θ̂θ = (κ̂, β̂ ) = (0.485,0.816) with standard er-
rors given by (0.162, 0.329), respectively (starting valueθθθ ∗ = (κ ,β ) = (1.13,0.41)
given by the method of moments).

The parametric bootstrap (see [13] for details) is used to assess the adequacy of
the model to represent specific features of interest of the data, in this case the auto-
correlation function. The fitted model is used to generate 5000 (univariate) time se-
ries samples, all with the same number of observations as theoriginal data set, which
are then used to construct an empirical distribution for theACF. Figure 2 represents
the acceptance envelope computed from the 2.5% and 97.5% quantiles of the em-
pirical distribution for the ACF. It is clear that the model represents adequately the
autocorrelation. Furthermore, Table 3 indicates that the fitted INMA-NB(1) model
is competitive model when compared with the NGINAR(1) modelfitted to this data
set by [21], specially in what concerns to the autocorrelation function.

6 Final Remarks

Modelling overdispersed time series of counts is a relevantissue and several au-
toregressive type models have been proposed in the literature. However, often a
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Fig. 2 Acceptance envelope for the autocorrelation function for the sex offences data set.

moving average model may be more adequate for the data under analysis and, so
far, the literature is lacking MA models appropriate for overdispersed time series of
counts. This work contributes to closing this gap with new first-order integer-valued
moving average univariate and bivariate models based on theNB thinning opera-
tion. The univariate process with NB arrivals presents a NB marginal distribution.
However, in the case of bivariate model with bivariate NB innovations the joint dis-
tribution is not the bivariate NB. Nevertheless, this bivariate model can still account
for overdispersion. For estimation purposes, the GMM is considered and the finite-
sample behaviour is analysed through a simulation study. The proposed univariate
model is fruitfully applied to a real dataset. Further studies of high-order INMA-NB
models will be reported elsewhere.
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