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Abstract A new first-order integer-valued moving average, INMA(1pdel based
on the negative binomial thinning operation defined by Ristial. [21] is proposed
and characterized. It is shown that this model has negaiiaal (NB) marginal
distribution when the innovations follow a NB distributiamd therefore it can be
used in situations where the data present overdispersitditidnally, this model is
extended to the bivariate context. The Generalized Metliddomnents (GMM) is
used to estimate the unknown parameters of the proposedsratbthe results of
a simulation study that intends to investigate the perforreaof the method show
that, in general, the estimates are consistent and synunEinally, the proposed
model is fitted to a real dataset and the quality of the adjestns evaluated.
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1 Introduction

In the last decades there has been a growing interest inistudpn-negative
integer-valued time series and, in particular, time sefepunts. This kind of data
is characterized by low counts, asymmetric distributi@nsess of zeros, overdis-
persion, etc, precluding Gaussian approximations andnieguifferent modelling
strategies. A comprehensive account of models for coumptiogesses can be found
in [27] and references therein. One of the approaches tarcmwhsnodels for time
series of counts considers a random operation called tigncoupled with inno-
vations following discrete distributions and constituties family of integer-valued
autoregressive and moving average, INARMA. These modets been extensively
studied in the literature, especially with regard to integegued autoregressive mod-
els (see [22]). On the other hand, integer-valued movingaaee (INMA) mod-
els have attracted less attention, mainly because liketitzased inference is not
straightforward in this context, since the conditionatilition functions are not
easily obtained.

The INMA(q) models satisfy the following recursion

X =Poot & +Prot &1+ +Pqot &—q, t € Z, 1)

where the innovation procesés }, is an independent and identically distributed
(i.i.d.) process with support oig, finite meany, > 0 and variances? > 0;
Bo, B, ---, Bg € [0,1], Byq # O (in generalBy = 1) and "ot” denotes the binomial

thinning operator (proposed by [23]), definedfsX = § &(B), where{&(B)}
iZ1

is a collection of i.i.d. Bernoulli counting random variablwith parameteg, in-
dependent oX. The sequencdé;(B) : i € N} is designated by counting series
and B o X|X ~ Bi(X,a). The subscript in the operatofo’ emphasizes the fact
that the thinning operations are performed at each tinfde thinning operations
Bjot&—j, j=1,...,q0 may be considered independent as in [1] and [18] or not
as in [3], giving rise to four different models that can be eahtbed into a single
family of INMA(qg) models, [26]. Under the assumption of Poisson innovations
{&} ~PoA/(1+ B1)), the INMA(L) process is R@ ), [18]. Using an alternative
parametrization, [1] proved that ife;} has a Poisson distribution with mean
then{X } has Poisson distribution with paramefgl + 31). The resulting process
is time reversible in the sense th@Xy,..., Xk} has the same joint distribution as
{X,..., %} for all k > 2. Recently, the INMA models based on the binomial thin-
ning operation as defined in (1), have been extended to wicedNMA models,
[31], INMA models with structural changes, [28] and Poissombined INMAQ)
models, [29]. Additionally, the INMA processes have beepliagdl in the reinsur-
ance context, namely on discrete risk models (see [5, 6,7,GB).

Several modifications of the binomial thinning operatoréh@een proposed in
order to make the models more flexible, allowing more valitgtin the processes
and consequently different properties. The case wheredteting series are i.i.d.
random variables with geometric distribution was analysgf1], and referred to
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as the negative binomial (NB) thinning operator. Thus, tigethinning operator is
defined as

X
prx =3 alp), 2)

where 8 € [0,1] and the counting seriefw ()} is a sequence of i.i.d. random
variables with geometric distribution with parame*éﬁ, i.e., with probability mass

function of the formP(w (B) = k) = ﬁ, k>0.

In this work, a first-order INMA model with NB marginal, derat by INMA-
NB(1), based on the NB thinning operator is proposed andrdpgaties are stud-
ied. One of the advantages of this model is that the abilitiyandle overdipersed
datasets.

Often, the collected time series are multivariate in theseghat there are counts
of several events observed over time and the counts at eaelptint are correlated.
While research on univariate time series of counts contitmgsow, the literature
on bivariate and also multivariate time series models fontdata is less developed.
This might be explained by the fact that classical inferénceultivariate count data
models has proven to be analytically as well as computdtiomery demanding. In
the last 20 years, some interesting attempts have been raad®bt of them do not
arise in the context of thinning-based processes. The fieshat to develop multi-
variate INMA models came from [4], who proposed a Bivaridd&IA(1) model for
guest nights in hotels and cottages. Another model was peapby [19] which ex-
tends the univariate INMA model of [18]. Recently, [15, 18] proposed stationary
and non-stationary BINMA models based on the binomial timgroperation and
where the innovation series follow the bivariate Poissatrithiution under time-
varying moment assumptions and constant cross-corretatind used generalized
quasi-likelihood estimation method.

In this work, the INMA-NB(1) model is extended to the bivdeaase, with the
cross-correlation generated through a bivariate negativemial-type Il (BNB,)
process.

The remainder of this work is organized as follows. The INM&{(1) model
is defined and its properties are established in Section @n,Tin Section 3, this
model is extended to the bivariate case and its charadieriza presented. Param-
eter estimation is accomplished by Generalized Method afnktas (GMM), and
the finite sample behaviour of GMM are examined using MontddQaethods in
Section 4. Furthermore, the proposed model is applied lalataset in Section 5.
Finally, Section 6 concludes the paper.
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2 First-Order Negative Binomial INteger-Valued Moving
Aver age M odel

Let {X},t € Z, be a sequence of non-negative integer-valued random \esiab
Then{X} is called a first-order negative binomial integer-valued/ing average,
INMA-NB(1), model if it satisfies the equation

X{:&‘FB*&_]_, teZ7 (3)

wheref3 €]0,1[; ™' is the NB thinning operator defined by (2) ang:} is a se-
quence of i.i.d. non-negative random variables followiniyB distribution, & ~

NB (K,ﬁ) , with E[&] = kB, Varl&] = kB(1+ B) and probability generating

function (pgf) given byG¢(s) = T (see [12]). Note that, conditioned on

1
(1-B(s-1
&1, B+ &_1is NB distributed, i.e.f* & _1|&_1 ~ NB (&4, ﬁ) )

Proposition 1. Let Gx (s) and G¢(s) denote the pgf of the random variables {X; }
and {& }, respectively. Then the pgf of the INMA-NB(1) model is given by

Gx (s) = G¢(s)Ge (1_[3(15_ 1)) - (1— (B+1132)(S— 1))K

and therefore {X;} ~ NB (K

)
Y 1+B(1+B) ) -

Proof. Letz= & 1| 1~ NB (st_l, ﬁ) , then it is possible to writ€,(s) =

(%) " Thus, it can be written that
&
Gx(8) = E[s***% 1] = Go(9E[E["% 1[a1]] = Gel9E [ (phgy) " ]

= G¢(s) Ge (175%371)) - (173(;1)% [1,[3(17;571),1)}

|

henceX ~ NB(k, (B + B2?)).
Using a different parametrization of the NB distributioreds[12] for details),

consideringk =k, B+ B% =P, andp= 5 = 71+B<11+ﬁ>’q —1-p= 1%1({%),

then it is possible to write thag ~ NB (K L

> 1+B(1+B)

By using the properties of the NB thinning operator given amima 3 of [21],
namely B« X] = BE[X] and E(8 * X)? = B2E(X?) + B(1+ B)E(X), and station-
arity of the process, it can be easily proven that the firsd-ssetond-order moments
of INMA-NB(1) model defined in3) are given by
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EX] = kB(1+B);
variX] = kB(1+B)(1+B(1+B)); @)
i (K) = COVX_yX,) = {gﬁ 1+8) k=1

Note that the index of dispersion of the procéXs} defined in (3) is given by

2
9 - 1+ B+ B2 > 1 and thus this model is appropriate for overdispersed data.
Motivated by this fact, the INMA-NB(1) model is extended hetbivariate case in
the next section.

3 Bivariate INMA Models Based on the NB Thinning Operator

It is well known that the generalization of discrete digfitibns to a multivariate
context is neither straightforward nor unique leading tdtivariate distributions
with different properties. Here, the Bivariate Negative®&hnial distribution is con-
structed based on the compound correlated bivariate Ro@istysibution proposed
by [7] and designated by Bivariate Negative Binomial-typ€BNB ) distribu-
tion (see [7, 14] for details). Lef;,Y>, Yo andA denote random variables such that
YA =A ~PaBA),i =120 are mutually independent. /f is Gamma then the
joint (unconditional) distribution oK1 = Y1 + Yo andX; = Y2+ Yp has pgf given by

q v

Gx (s1,%2) (1_ 015~ o p33152> (5)
el/(91+ 92+60+B)7 i=12

wherep; = andg=1—(p1+pz2+p3) =B/ (61 +
6o/ (61+62+60+P), i=3

62+ 6o+ B). DenoteX = (Xg,X2) ~ BNBy| (p1, p2, P3, V).

Now, let {X;} = {(X1t,X2t)}.t € Z, be a non-negative integer-valued bivariate
random variable. ThefiX;} is a first-order Bivariate INteger-valued Moving Aver-
age model, referred as BINMA-BNB(1, 1), if satisfies the following equations

X1t = €1t + Pr* E1-1, ©6)
Xot = &2t + Po* €211,

whereB; €]0,1],j = 1,2; * is the NB thinning operator given in (2) and the in-
novation procesge;} = {(€1t,&21)},t € Z, is an i.i.d. sequence of bivariate ran-
dom variables that follows a BN distribution with parameterspy, p2, p3,v)

)\1 — /\2 and — #
Mtdtor T T Nidtort P T i At otT
V,T,A1,A2 > 0 andg € [0,min(A1,A2)].

wherep; = , with
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As referred by [7, 14], the marginal distribution ef; is univariate NB, i.e.,
gjt~NB (v7 W , | = 1,2, with expected value and variance given by (for
i =1,2) Elgjs] = (Aj + @) 7 and Vafej ] = (A + @)% + (A J+(p)1a respectively,
and covariance defined as Qav;, &2¢) = (A1 + @) (A2 + (p) + 1.

It can be proved (for details see [25]) that the first- and sdeorder moments of
the BINMA-BNB; (1,1) model are given by (foj = 1,2)

E[Xji] = (1+ﬁ1)( J‘HP)%
Var[Xi] = (1+B7)(Aj + 9)* % + (2B7 +B,+1)( j+q;)¥;
o () — CoMXy1 1 X,0) {g A +9)% (Ai+9)F+1) ::i
B (0) = Cov(Xae, Xor) = (14 Babe) (M + @)+ @) 5 +9Y); (D)
VX (1) = Cov(Xyt, Xot-1) = B1 (/\1+(0)()\2+(p)7+(p7
Vo (1) = Cov(Xat—1,X2t) = B2 (A1 + @) (A2 + @) 1 + @7
iy %o (K) = sz,xl(k) =0, ifk>1
Additionally, the joint pgf ofX; = {(X1t,X21)} is given by
Gx () = Ge(5)G ( ! 4 )
T -t o)1) T (e + @) (- 1) )

whereGe (s) = Gg,  ¢,,)(S1,52). Then,Gx(s) can be written by

6x(9) = [1- (42) -1 - (*2) (-1~ s~ D(e-1)]

x 1= (2) (ol 1) — (%)
(vt —1) — ¢ (b — 1) »

)

Furthermore, it can be proven (by contradiction) that tliet jdistribution of the
BINMA-BNB || (1,1) model it is not BNB; (details in [25]).

T
X (7r—uz+rp><sf1> -

2
(oF

The index of dispersion of the BINMA-BNB(1,1) model is given byu—’_ =
i

Ai+ L .
] (p' Therefore, as for the univariate case, this model

1+Bj+pB7 > 1, with B =
is appropriate when overdispersion occurs.
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4 Parameter Estimation and Monte Carlo Simulation Results

In this section, the estimation of the parameters is diglissd the small sample
properties are illustrated through the results of a smalhtdc&arlo experiment.

4.1 Generalized Method of Moments

Itis well known that likelihood-based procedures are usitela in MA models, with
exception of the Poisson INMA(1) model based on binomiatritig operation,
where the conditional distribution(X;|X;_1) of both the Poisson INAR(1) and the
Poisson INMA(1) models are of the same form (see [18])). Asrred by [24], in
the INMA context, the full or conditional likelihood dengitunction is arduous and
renders considerable computational difficulties. Therefthe Generalized Method
of Moment (GMM) methodology based on first- and second-ondements of the
process is considered. The GMM estimator was firstly intceduby [9] into the
econometric literature and, since then, has been widelljeabin several fields.
Suppose we have an observed samfile= {X :t=1,...,n} from which we
want to estimate an unknowqx 1 parameter vectd with true value8y and con-
sider a vectoiT, = Ty(Xp) of k > g summary statistics with expectatiar(8) =
E[Tn] (wherea(0) are the theoretical counterparts) under the model. Thelkamica
moment condition is defined by[l(8;Xn)] = 0, wherehn(8;Xn) = Th — a(0)
is a continuouk x 1 vector function o, and Bh,(0;X,)] exists and is finite for
all t and@. In practice, the moment condition is replaced by its sampldagous

12 . A . .
o Zhn(e;X{) =0, and an estimatof can be obtained as the solution of the last
t=

equation.

Note that wherk = g, we obtain the Method of Moments (MM) estimator and
we say tha# is just-identified. The Generalized Method of Moments eatanis
obtained wherk > g and then we say thd is over-identified. Then, the GMM
estimator of is given by

6, =arg min{hn(8; Xn)" Wo hn(8; Xn)}

where[-]" denotes transpose aid, is ak x k is any symmetric and positive definite
weight matrix that may depend on the data but that convery@sabability to a
positive definite matrixv.

The GMM estimator thus defined is asymptotically consisteee [8, 9, 11]
for additional details). The covariance matrix of the GMMimstor 8, converges

~1, -1 N
o C= (M(Go)) }I(M’(Bo)) , where 5 = H'(80)W,SW/H(80), M(8) =
H/(8)WH(8), H(8) is the limiting matrix of the partial derivatives &f, and S

is the limiting covariance matrix df,,. The smallest attainable asymptotic variance
is obtained whew, = S™1.
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Remark 1. Note that, in general, is not possible to find an analytichltgm for the
minimization of the quadratic forrh,(8,Xn)'Wnhn(0,X,,) and we have to resort
to numerical procedures. In order to obtain an efficient GMdiineator we can
reformulate the GMM criterium as

Qn(6,Xn) = hn(8,Xn) Wn(6) hn(8,Xn), (8)

where the weight matrix, which depends on the parameteabténed via plug-in
or empirical estimation as the covariance matribhgfand minimize this quadratic
form with respect td@. This procedure is called theontinuously updated GMM
estimator.

4.2 Monte Carlo Results

To illustrate the estimation procedure and to analyse thallssample properties
of the (continuously updated) GMM estimators for the parameters of the proposed
models, the results of a simulation study are presenteds, 5200 independent
replicates of time series of length= 200, 500 and 1000 are generated from each of
the models. The mean estimate and the standard error oftiheatss are obtained
from the 5000 replications.

The minimization of (8) is performed by the function optim, which accom-
plished a general-purpose optimization based on NeldexdVeuasi-Newton and
conjugate-gradient algorithms and includes an option éartonstrained optimiza-
tion [20].

INMA-NB(1) model:

For the univariate model proposed in Section 2, the indepriréplicates generated
from the INMA-NB(1) process (3) with two parametefs= (k, 3). There are three
summary statistics related with the first- and second-araenents: mean, variance
and autocovariance at lag 1, defined in (4).

The initial values for GMM estimation are obtained from thethod of mo-
ments, namely = @, andk = =~ wherex is the sample meas? is

B(1+B)(1+B+B?)
the sample variance arjg(1) is the sample autocovariance in lag 1. The minimiza-
tion of (8) is performed numerically and subject@e=]0,1[, k > O, for parameters
with valuesk € {3.0,5.0} andf3 € {0.2,0.4,0.6,0.8}.

The mean estimates and standard errors from the 5000 resliaege given in Ta-
ble 4.2. The sample mean and standard errors decrease asipie size increases,
indicating that the distribution of the estimators is cetesit and symmetric. The
results show that, in general,is overestimated whil@ is underestimated.
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Table 1 Sample mean and standard errors (in brackets) of the estimatdseféNMA-NB(1)
models.

n 6= (k,B) K B 6=(k,B) Kk B
200 4,957 0.185 7.338 0.190
(5.185) (0.086) (5.883) (0.083)
500  (3,0.2) 3.566 0.193 (5,0.2) 5.769 0.195
(1.847)  (0.058) (2.565)  (0.054)
1000 3.248 0.196 5.382 0.196
(0.878) (0.041) (1.428) (0.039)
200 3.561 0.382 5.812 0.386
(1.716) (0.103) (2.487) (0.100)
500  (3,0.4) 3.195 0.392 (5,0.4) 5.297 0.393
(0.720) (0.066) (1.162) (0.063)
1000 3.091 0.396 5.151 0.396
(0.483) (0.047) (0.763) (0.045)
200 3.305 0.581 5.469 0.582
(0.952) (0.111) (1.479) (0.105)
500  (3,0.6) 3.122 0.592 (5, 0.6) 5.181 0.593
(0.525) (0.072) (0.842) (0.069)
1000 3.058 0.596 5.085 0.597
(0.359) (0.052) (0.570) (0.049)
200 3.331 0.756 5.519 0.760
(0.699) (0.106) (1.123) (0.101)
500  (3,0.8) 3.124 0.783 (5,0.8) 5.183 0.786
(0.409) (0.072) (0.648) (0.068)
1000 3.054 0.793 5.071 0.795
(0.290) (0.053) (0.467) (0.051)

BINMA-BNB || (1,1) model:

For the BINMA-BNB); (1,1) model there are five parameters of inter@st=
(A1,A2,0,v,T) and nine summary statistics concerning with the first- arndrsa-
order moments: mean, variance, autocovariance at lag laftr series and the
cross-covariance atlag 1, 0 and -1, refer to equation 7eShemethod of moments
yields (highly) non-linear equations and often non adrbissstimates, the starting
values for the minimization of (8) are given arbitrarily By = (A1,A2,@,v,T) =
(1,1,0.5,1,2), satisfying the constraints in the parametgfs> 0, for j =1,2,¢p ¢
[0,min(A1,A2)[ andv, T > 0. Two models were generated with the set of parameters
given by @ = (1.0,1.0,0.3,1.0,2.0) and @ = (0.6,0.9,0.4,1.0,2.0), respectively.
The mean estimates and corresponding standard errorsvane igi Table 2. For
both set of parameters, the estimates are generally biagiedtandard errors that
decrease as the sample size increases. Note that the aigriiory suggests that
it is preferable to include as many summary statistics asiplesto maximize que
information extracted from the data, and therefore the GMWtingator is always
over-identified, since the number of parameters is less thamumber of sum-
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mary statistics. However, this redundant information megdlto deterioration in
the GMM performance, in particular, with the highly coriteld sample moments re-
sulting in a badly conditioned weighting matrix [2]. Thusrther analysis is needed

concerning the estimation of the BINMA-BNR1, 1) model.

Table 2 Mean and standard errors (in brackets) of the estimates for tN&B{BNB | (1,1)

model.

M

0= (A1,A2,0,v,1) n Ao [0}
200 0.930 0.943 0.313 1.220 2.236
(0.216) (0.241) (0.227) (0.332) (0.280)
(1.0,1.0,0.3,1.0,2.0) 500 1.008 1.010 0.329 1.088 2.195
B1=B>=0.65 (0.144) (0.159) (0.184) (0.168) (0.159)
1000 1.043 1.044 0.326 1.047 2.177
(0.103) (0.113) (0.136) (0.112) (0.114)
200 0.751 1.055 0.370 1.065 2.354
(0.193) (0.257) (0.210) (0.342) (0.298)
(0.6,0.9,0.4,1.0,2.0) 500 0.786 1.105 0.417 0.942 2.303
B1=0.5; B, =0.65 (0.134) (0.166) (0.167) (0.158) (0.137)
1000 0.803 1.127 0.426 0.908 2.282
(0.102) (0.120) (0.132) (0.109) (0.103)

5 Real Data lllustration

In this section, a dataset is used to illustrate the unitarn@odel and methods de-
veloped previously. To assess the fit the model, a range ghdgic and validation
tools based on parametric resampling are used.

Consider a dataset concerning the number of Sex Offencesteen the 21st
police car beat in Pittsburgh (Pennsylvania, USA), during ononth. The data
consist ofn = 144 observations, from January of 1990 to December of 2084 (s
Figure 1). The dataset is available from the Forecastingciries site http://www.
forecastingprinciples.com/index.php/crimedata. Fropnediminary analysis of the
sample mean and variance of the data, Table 3, it is possiliericlude that the
data seem to be overdispersed. Furthermore, the valueg shthple autocorrela-
tion function (ACF) in Figure 1, which are nearly zero aftee fag 1, suggest that
a first-order model is appropriate to this data set. These lid been studied pre-
viously by [21] who fitted an autoregressive model. Howegensidering that it
is expected that the sex offenders stay a limited time in yiséesn and that these
individuals can come and go several times during their lifees in the system, a
moving average model, INMA-NB(1) may provide a good fit.
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Fig. 1 Time series (left panel) and autocorrelation function (rjgdatel) of the monthly number of
Sex Offences, from 1990 to 2001, registered in Pittsburgh.

Table 3 Sample measures for the sex offences data set.

Mean Variance ACF(1)
Sample 0.590 1.027 0.235
INMA-NB(1) 0.588 1.011 0.282
NGINAR(1) [21] 0.587 0.932 0.165

The obtained GMM estimates afle= (k, 3) = (0.485,0.816) with standard er-
rors given by (0.162, 0.329), respectively (starting vdtie= (k,3) = (1.13,0.41)
given by the method of moments).

The parametric bootstrap (see [13] for details) is used sesssthe adequacy of
the model to represent specific features of interest of tkeg dathis case the auto-
correlation function. The fitted model is used to generat@50nivariate) time se-
ries samples, all with the same number of observations asitjieal data set, which
are then used to construct an empirical distribution forAG&. Figure 2 represents
the acceptance envelope computed from the 2.5% and 97.5@tilgeaf the em-
pirical distribution for the ACF. It is clear that the modejresents adequately the
autocorrelation. Furthermore, Table 3 indicates that tiedfiNMA-NB(1) model
is competitive model when compared with the NGINAR(1) mdidedd to this data
set by [21], specially in what concerns to the autocorretatiinction.

6 Final Remarks

Modelling overdispersed time series of counts is a releissue and several au-
toregressive type models have been proposed in the literdtlowever, often a
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Fig. 2 Acceptance envelope for the autocorrelation functiontiergex offences data set.

moving average model may be more adequate for the data undiyses and, so
far, the literature is lacking MA models appropriate for mlispersed time series of
counts. This work contributes to closing this gap with nestfarder integer-valued
moving average univariate and bivariate models based oNBh&hinning opera-
tion. The univariate process with NB arrivals presents a Nigimal distribution.
However, in the case of bivariate model with bivariate NBawations the joint dis-
tribution is not the bivariate NB. Nevertheless, this bigt model can still account
for overdispersion. For estimation purposes, the GMM issagred and the finite-
sample behaviour is analysed through a simulation study.prbposed univariate
model is fruitfully applied to a real dataset. Further sasddf high-order INMA-NB
models will be reported elsewhere.

Acknowledgements This research was supported by the Portuguese national fuadamgy for
science, research and technology (FCT), within the Centé&dsearch and Development in Math-
ematics and Applications (CIDMA), project UID/MAT/04106/29.

References

1. Al-Osh, M. A., Alzaid, A. A.: Integer-valued moving avera@®MA) process. Statist. Papers
29, 281-300 (1988) 10.1007/BF02924535

2. Andersen, T., Sgrensen, B.: GMM Estimation of a Stochastictilitpfaviodel: A Monte
Carlo Study. J. Bus. Econ. Stat. 14, 328-352 (1996) doi:1G/2392446

3. Branras, K., Hall, A.: Estimation in integer-valued moving average ei®dAppl. Stoch.
Models Bus. Ind. 17, 277-291 (2001) doi: 10.1002/asmb.445

4. Branrgs, K., Hellstom, J., Nordstim, J.: A new approach to modelling and forecasting
monthly guest nights in hotels. Int. J. Forecast. 18, 19-30 (20@2) 10.1016/S0169-
2070(01)00104-2

5. Cossette H., Marceau E., Maume-Deschamps V.: Discrete-time ridklmbased on time
series for count random variables. ASTIN Bulletin: The Jouwfathe IAA 40, 123-150



Modelling overdispersion with integer-valued moving averpgEesse's 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

(2010) doi: 10.2143/AST.40.1.2049221

. Cossette H., Marceau E., Toureille F.: Risk models based on tirmes $er count random

variables. Ins.: Mathematics Econ. 48, 19-28 (2011) doi: G4 nsmatheco.2010.08.007

. Edwards, C. B., Gurland, J.: A class of distributions appleadb accidents. J. Am. Stat.

Assoc. 56, 503-517 (1961) doi: 10.1080/01621459.1961.164B0

. Greene, W. H. Econometric Analysis. Prentice Hall, Upped&eRiver, N.J. (2000)
. Hansen, L. P.: Large sample properties of generalized methndroents estimators. Econo-

metrica 50, 1029-1054 (1982) doi: 10.2307/1912775

Hu X., Zhang L., Sun W.: Risk model based on the first-ordegartealued moving average
process with compound Poisson distributed innovations. ScartdaAd). 2018, 412—-425
(2018) doi: 10.1080/03461238.2017.1371067

Jesus, J., Chandler, R. E.: Estimating functions and the dieedrenethod of moments. In-
terface Focus 1, 871-885 (2011) doi: 10.1098/rsfs.2011.0057

Johnson, N. L., Kemp, A. W,, Kotz, S.: Univariate discreteritistions. John Wiley & Sons,
New Jersey (2005)

Jung, R. C., McCabe, B. P. M., Tremayne, A. R.: Model vallisteéind diagnostics. In: Davis,
R. A, Holan, S. H., Lund, R., Ravishanker, N. (eds.) HandbobRiscrete-Valued Time
Series, pp. 189-218. Chapman & Hall/CRC Press (2015)

Kocherlakota, S., Kocherlakota, K.: Bivariate discrdigtributions. Markel Dekker, New
York (1992)

Mamode Khan, N., Sunecher, Y., Jowaheer, V.: Analyzind~tHEBINMA Time Series Pro-
cess Using a Robust GQL Approach. J. Time Ser. Econom. 9 (2016)@&B15/jtse-2015-
0019

Mamode Khan, N., Sunecher, Y., Jowaheer, V.: Inferentithaus for an unconstrained non-
stationary BINMA time series process with Poisson innovations,at. $heory Pract. 11,
76-106 (2017) doi: 10.1080/15598608.2016.1258600

Ma, D., Wang, D., Cheng, J.: Bidimensional discrete-time risklef®based on bivariate
claim count time series. J. Inequal. Appl. 2015: 105, (2015)1®i1186/s13660-015-0618-3
McKenzie, E.: Some ARMA models for dependent sequencesis$®ocounts. Adv. Appl.
Probab. 20, 822-835 (1988) doi: 10.2307/1427362

Quoreshi, A. M. M. S.: Bivariate time series modeling of finahcount data. Commun. Stat.
- Theor. M. 35, 1343-1358 (2006) doi: 10.1080/0361092060689

R Development Core Team: R: A Language and Environment &isStal Computing, R
Foundation for Statistical Computing (2008) (url =http:/Amn\R-project.org)

Ristt, M. M., Bakouch, H. S., Nagtj A. S.: A new geometric first-order integer-valued
autoregressive (NGINAR (1)) process. J. Stat. Plan. Inferen8g 2818-2226 (2009) doi:
10.1016/j.jspi.2008.10.007

Scotto, M. G., Wei3, C. H., Gouveia, S. Thinning-based nsoda the analy-
sis of integer-valued time series: a review. Stat. Model. 15,-698 (2015) doi:
10.1177/1471082X15584701

Steutel, F. W., Van Harn, K.: Discrete analogues of setbdgosability and stability. Ann.
Probab. 7, 893—-899 (1979) doi: 10.1214/aop/1176994950

Sunecher, Y., Mamode Khan, N., Jowaheer, V.: Estimatingahenpeters of a BINMA Pois-
son Model for a non-stationary bivariate time series. Commun. Statul. Comput. 46,
6803-6827 (2016) doi: 10.1080/03610918.2016.1212068

Torres, C.: Contributions to the analysis of multivariaterd data. PhD Thesis, Universidade
do Porto, Portugal (2016)

Wei3, C. H.: Serial dependence and regression of PoissonM¥ARodels. J. Stat. Plan.
Inference 138, 2975-2990 (2008) doi: 10.1016/}.jspi.20D.D09

Weil3, C. H.: An Introduction to Discrete-Valued Time Seritohn Wiley & Sons, Inc., Chich-
ester (2018)

Yu, K., Zou, H., Shi, D.: Integer-valued moving average gisdvith structural changes.
Math. probl. eng. 2014, Article ID 231592, 5 pages (2014) #0i1155/2014/231592

Yu, K., Zou, H.: The Combined Poisson INMf}(Models for Time Series of Counts. J. Appl.
Math. 2015, Article ID 457842, 7 pages (2015) doi: 10.11858457842



14 Maria Eduarda Silva and Isabel Silva and Cristina Torres

30. Zhang L., Hu X., Duan B.: Optimal reinsurance under adjustroeefficient measure in a
discrete risk model based on Poisson MA(1) process. Scand. Actuats].455-467 (2015)

doi: 10.1080/03461238.2013.849615
31. Zou, H., Yu, K.: First order threshold integer-valued mgwerage processes, Dynam. Cont.

Dis. Ser. B 21, 197-205 (2014)



