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Multidimensional time series are observed in the most varied fields of applica-
tion. Principal Component Analysis (PCA) can be used to reduce dimensional-
ity. However, formal inference procedures based on principal components rely
on the independence (and multivariate normality) of the observations, a condi-
tion that is violated for time series data. In this work, we describe a frequency
domain version of PCA proposed by Brillinger [1] that takes into account the
correlation in time. Illustration with real data is presented.
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The multidimensional temporal (and spatio-temporal) series are observed in the most var-
ied fields of application and are characterized by the correlation structure induced by the
sequential order of observations. Let X; be a p—dimensional time series. The process is
said to be stationary if E[X;] and E[X;X},,] exist and don’t depend of time ¢. The p x p
autocovariance function is given by

[yo(h) = BX X, ] — EXGIE[XG ).

If 3, T'yz(h) < oo then the spectral density matrix of X; is given by

+oo
foz(w) = > Tup(h)exp(2mihw).
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Therefore, the autocovariance function and the spectral density are Fourier transform pairs
and therefore contain the same information. As a consequence, there are two approaches
(not necessarily mutually exclusive) to analyse time series data. The time domain approach
considers the lagged relationships as most important while in the frequency (or spectral)
domain, the periodic information is the most important.

In some multidimensional contexts, the number of observations per series exceeds the total
number of time series, so it is of great importance to reduce the dimensionality of the
data, extracting the most important information and eliminating noise and redundant
correlations. By doing this, graphic representation and subsequent statistical analysis of
the dataset are facilitated.

o1



XXVI Meeting of the Portuguese Association of Classification and Data Analysis, Viseu, 11-13 April 2019

One very popular method for dimensionality reduction is Principal Component Analysis,
which allows us to obtain a new set of variables, called Principal Components (PC), that are
uncorrelated and ordered so that the first few retain most of the variation presented in the
dataset (Jolliffe [2]). In some fields of application, PCA not only reduces the dimensionality
of the dataset but also allows for reasonable interpretations of the retained PC.

As referred by Jolliffe [2], most of the inference procedures to be performed for PC are
based on independence as well as on multivariate normality of the data, condition that are
not satisfied for time series data. Several techniques have been proposed to overcome this
issue.

One of the developed methodologies is the so called dynamic PCA, proposed by Brillinger
[1] for multivariate time series assuming that the underlying process is stationary. As
referred by Shumway and Stoffer [3], it can be considered as a PCA in the frequency domain
where classical PCA is performed at each frequency, providing a set of principal components
series which are uncorrelated at all time lags, thus allowing inferential procedures.
Formally, dynamic PCA approximates a p vector valued time series X; by a set of k
uncorrelated time series Y; such that Y; is the best approximation of X; in mean squared
error sense. While the classical (’static’) PCA are linear combinations of the original data,
the dynamic PC are linear combinations of past, present and future observations.

Note that classical PCA works with a covariance (or correlation) matrix, but in the time
series context we can consider (auto)covariance between variables observed at the same time
(given in the matrix I',,(0)) but also between variables at different times (given by the
matrices I',, (k) for k # 0). Therefore, given the equivalence between the autocovariance
and the spectral density functions, it is natural to consider PCA in the frequency domain.
The objective of this work is to describe the Dynamic Principal Component Analysis,
discussing its strengths and weaknesses and addressing some implementation issues. In
addition, the results of the application of this technique to real datasets are exhibited and
compared with classical PCA and MSSA (where the original series is decomposed in a
small number of independent and interpretable components that can be thought as trend,
oscillatory components and a structureless noise).
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