
PROGRAMMING FOR YOUNG CHILDREN USING TANGIBLE TILES
AND CAMERA-ENABLED HANDHELD DEVICES

A. Cardoso1, A. Sousa2, H. Ferreira2

1FEUP (PORTUGAL)
2INESC TEC + FEUP (PORTUGAL)

Abstract
Schools are trying to teach programming at an earlier age, but there are some difficulties, namely the
cost of having enough computer stations for the kids. We present the tangible system Tactode for
young students to learn to program in the classroom, using handheld camera devices. The system
was tested with a small focus group of students between 10 and 12 years old, that were asked to draw
a regular polygon using the Scratch cat. All students completed the required task although some
required help. Both students and teachers reported that they thoroughly enjoyed the experience and
would like to repeat. In questionaries following the activities, the students declared that they found the
language easy to use, with only 14% deeming it somewhat difficult. We consider these early results
encouraging as well as informative for future developments.

Keywords: Programming, Programming Teaching, Programming Learning, Technology, Technologies
for Education, Technology in the Classroom.

1 INTRODUCTION

Teaching children to program has several advantages, even more so due to the ubiquity of technology.
For example, Chetty [1] found evidence that learning to program at an earlier age leads to future
interest in Computer Science. Also, has Resnick et. al [2] pointed out, learning to program expands
what children can do with a computer, the range of what they can learn and their problem solving and
design capabilities.

Schools have recognized the need and early age programming has entered educational curricula.
However, there are some difficulties. Mainly the insufficient availability of technology, as many schools
do not have enough computers for all students to use for long periods or in several classes. We
consider it more likely for schools to adopt (less expensive) tablets and for the students to be early
adopters of smartphones that can be used for education in the classroom.

Inexpensive devices are typically small screen, no keyboard, handheld devices. Using common
computer tools for programming in such devices is awkward and frustrating. A large number of visual
solutions exist but are hard to manipulate in small screens, are not very flexible and many do not
produce generic code, usable elsewhere outside the programming environment.

Besides some well known block based programming languages aimed at children (such as Scratch
[6]), there has been increasing evidence supporting the use of tangible languages in the classroom for
younger students. Hort et al. [7] present two tangible programming languages as well as the practical
advantages of this approach, with initial studies revealing that children between the ages of 6 and 7
were capable of designing chains of actions, with some even finding bugs. In a subsequent study [8],
the authors conducted a museum experiment, where the visitors classified the tangible and graphical
interfaces as equally easy to use, but were significantly more likely to interact and collaborate with the
tangible interface. In [9] Horn et al. propose a hybrid approach between tangible and graphical
interfaces in which teachers and students chose the best fit for each situation, given that both have
strengths and limitations. Sapounidis et al. [10] conducted a formal study with 109 children between
the ages of 6 and 12, where they compared the same programming language with two different
interfaces: tangible and graphical. The results showed that children using the tangible interface made
less errors, were more likely to effectively debug their errors and, in the case of the younger children,
needed less time to accomplish robot programming tasks. Also, when interacting freely, the older
children were more engaged, designed programs with higher complexity and used a wider variety of

commands, with the tangible interface.

Unfortunately, the usage of tangible languages is (a) rare, (b) frequently expensive, because they
usually rely on electronic components, or (c) limited in terms of capabilities. When it comes to finding a
multipurpose tangible language that could be used with different paradigms and robots, our literature
review revealed fruitless.

In this work, we propose Tactcode, a programming system based on tangible tiles, similar to puzzle
pieces, that can be assembled in a very open and flexible manner in order to create programs that can
be exported to different platforms. Given their physical nature, the tiles are adequate for team
cooperation and do not require a dedicated computer. They have also been conceptually designed to
support different paradigms of programming, as well as different approaches for different age ranges.
Additionally, Tactcode reuses the same tiles to target different platforms and robots already available
on the market.

To avoid the usage of expensive electronics, we rely on a simple photography of the assembled tiles,
that can be taken with a common smartphone. Our software then automatically recognises the tiles
and compiles the final program targeting the desired platform. Depending on the platform itself, all
computing power can be undertaken by the same smartphone or tablet used for the photograph, and
shared along the classroom.

Although Tactcode is currently a proof of concept, the existing implementation already supports a few
different target platforms, and provides several working examples. This allowed us to conduct
preliminary, quasi-controlled experiments, in order to assess our original hypothesis by measuring
their reactions, and simultaneously provide us feedback for future developments. We can conclude
that the students overall enjoyed working with the system, and managed to successfully complete the
assignments we gave them. We thus believe to have sufficient evidence that our approach can
eventually address some (if not most) of the aforementioned difficulties of teaching programming in
early education.

2 THE TACTODE PROGRAMMING SYSTEM

Tactode has two main components: a set of puzzle like tiles, each containing an instruction for the
robot; and a mobile application that is used to capture the assembled tiles through a photograph and
translate them into executable code that is then sent to the destination platform.

As the example in Fig. 1 shows, each tile has three elements: a title that sums what the tile does, an
image that illustrates it, and an Aruco [7] tag that allows the tile to be recognized in the photograph.

Figure 1. The Tactode tile instructing the Scratch cat to use the pen to write.

The mobile application has a very simple interface. In addition to the settings and the previous
programs database, there is a main tab dedicated to capturing (through photograph) and exporting
new programs. If the program is successfully captured and it contains no errors, then the students are
able to export it. In contrast, when programming errors are detected, they are reported by highlighting
the corresponding tile in the picture and showing an error message.

The settings allow the user to choose between getting the picture from camera or from a file and also
to specify the robot or platform to be used. Currently, three robots, namely Cozmo, Ozobot Evo and
Robobo [8] are supported, plus Scratch and Python as the non-robotic platforms. In terms of
computing platforms, the application works on Android, iOS, macOS and Windows.

In the background, the application uses a compiler to translate the pictures into executable code. This
compiler is divided into three components. The first component uses the Aruco JavaScript library to
detect and organize the tags according to their relative position. The second component generates an
abstract syntax tree of the code and is also responsible for detecting errors. The third component is
the code generator, and it heavily depends on the output platform, since each robot/system has its

own language.

3 METHODOLOGY

In preparation for the experiments, a guide for the teachers was created, detailing the process of
drawing a regular polygon with the Scratch cat. The guide contains a small introduction to
programming, focusing on block based programming and on how it significantly simplifies learning.
Both the languages Scratch and Tactode are presented, although only the blocks pertaining to the task
at hand are detailed. There is also an explanation about regular polygons and their internal and
external angles. After these introductory sections, the process of programming the solution in both
languages is described in constructive steps.

The choice of the regular polygon activity was based on its appeal, its simplicity, the connection to
mathematics and the programming concepts involved, namely loop blocks. Also, Scratch was selected
because it allows for some comparison with our language.

The experiment was conducted with 14 students between the ages of 10 and 12. The students where
organized into groups of 2 or 3 elements and the objective of the experiment was introduced by their
teacher. They where told about the Tactode tiles and application, the Scratch environment, that they
would use, and about a strategy for drawing regular polygons. Then, they proceeded to their task of
trying to assemble the tiles in order to make the Scratch cat draw a polygon as it walks.

Figure 2. Code for drawing a regular polygon in Tactode.

Fig. 2 shows the final code for drawing a regular polygon, but the students where given the task in
smaller steps. First, organize the tiles to make the cat draw a square, without using any repeat block.

Second, understand that for polygons with more sides the task becomes tiresome and the code very
long, thus the need for repeat blocks. Third, place the same number in front of repeat and after the
divide sign, change this number a few times to obtain different polygons. Fourth, use the question/
answer tool to make a general program where the user decides how many sides (lados in Portuguese)
the polygon should have.

During our test, the students were divided into two different types of groups. The first group used the
Tactode system, while the second used the Scratch system directly. The students then traded places,
so that they could test the alternative. There was also some time devoted to free exploration.

4 RESULTS

The total experiment lasted nearly 2 hours, including material distribution, explanations, group
activities and questionaries.

All the students completed the basic steps of the required tasks, although some groups required more
assistance, especially in the first steps. The final step was not completed by several groups, but this
was mainly due to the teacher deeming it too difficult without trying. Figs. 3 and 4 show the students
taking a photograph of the completed code and then executing it with Scratch.

Figure 3. Students capturing the code.

In enquiries following the activities, students were asked 5 multiple choice questions. Tables 1 and 2
show the results.

Table 1. Questionnaire results, first part

Question 1 2 3 4 5
Did you understand the
objective of the activity?
(1 - nothing, 5 - completely)

- - - 4 10

Did you find the Tactode
language easy to use?
(1 - very hard, 5 - very easy)

- - 3 6 5

Did you find the Tactode
application easy to use?
(1 - very hard, 5 - very easy)

- - - 10 4

Table 2. Questionnaire results, second part

Question Tactode Scratch
Which language did you find easier? 5 9
Which language did you prefer to use? 5 9

Figure 4. Scratch cat drawing a regular polygon.

Observing the students while they were performing their tasks, there seemed to be more focus in the
groups using Tactode, while the other groups experimented more with different commands and
objectives.

5 CONCLUSIONS

Given the number of students, our experiment is not statistically relevant. But that was not our goal
with this test, we simply wanted to see if the current implementation is working, if the students manage
to use it with minimal help and what future developments are more important. In those aims, we were
successful. Particularly, it became quite clear that the system works and that students learn while
enjoying themselves.

We learned that the quality and speed of the image capturing process needs to be improved since that
was one of the main difficulties of the students. Also, the steps necessary to get the compiled code
executed could be reduced. Arguably this depends on each platform developer as much as it depends
on us, but if nothing else can be achieved, it is worth considering having execution directly in our
application similarly to what Scratch does. This because a considerable justification given by students
for their preference of Scratch was how fast and easy it was to execute.

Of course it is important to keep in mind that the students in this experiment were using tablets or
computers, so they had plenty of screen to conveniently use the drag and drop interface of Scratch.
With smartphones this quickly changes and the only thing missing from our system is its own simulator
for execution.

Although the students seemed to prefer the graphical interface, particularly the older ones, this would
not have been possible if they were using smartphones instead of tablets and computers. Thus, there
is still the compelling argument of cost on the side of the tangible interface. In any case, as suggested

in [5], there is probably more to gain from a hybrid approach.

ACKNOWLEDGEMENTS

This paper was financed by FEDER funds, through the Programa Operacional Competitividade e
Internacionalização – COMPETE 2020, in the scope of project POCI-01-0145-FEDER-006961, and by
Nacional Funds, through the FCT – Fundação para a Ciência e a Tecnologia, in the scope of project
UID/EEA/50014/2013.

REFERENCES

[1] J. Chetty, “Combatting the War Against Machines: An Innovative Hands-on Approach to Coding”
in Robotics in STEM Education (Khine M. eds.), pp. 59 - 83. Cham: Springer International
Publishing, 2017.

[2] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. “Scratch: Programming for all”,
Communications of the ACM, vol. 52, no. 11, pp. 60 - 67, 2009.

[3] M. S. Horn and R. J. K. Jacob, “Designing tangible programming languages for class room use”,
Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 159
- 162, 2007.

[4] M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J. K. Jacob, “Comparing the use of tangible and
graphical programming languages for informal science education”, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 975 - 984, 2009.

[5] M. S. Horn, R. J. Crouser, and M. U. Bers, “Tangible interaction and learning: the case for a
hybrid approach”, Personal and Ubiquitous Computing, vol. 16, no. 4, pp. 379 - 389, 2012.

[6] T. Sapounidis, S. Demetriadis, and I.Stamelos, “Evaluating children performance with graphical
and tangible robot programming tools”, Personal and Ubiquitous Computing, vol. 19, no. 1, pp.
225 - 237, 2015.

[7] F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, "Speeded up detection of
squared fiducial markers", Image and Vision Computing, vol. 76, pp. 38 - 47, 2018.

[8] F. Bellas, M. Naya, G. Varela, L. Llamas, A. Prieto, J. C. Becerra, M. Bautista, A. Faiña, and R.
Duro, “The Robobo project: Bringing educational robotics closer to real-world applications” in
Robotics in Education (W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, and D.
Obdržálek eds.), pp. 226–237, Cham: Springer International Publishing, 2018.

