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Abstract
Schools are trying to teach programming at an earlier age, but there are some difficulties, namely the 
cost of having enough computer stations for the kids. We present the tangible system Tactode for 
young students to learn to program in the classroom, using handheld camera devices. The system 
was tested with a small focus group of students between 10 and 12 years old, that were asked to draw 
a regular polygon using the Scratch cat. All students completed the required task although some 
required help. Both students and teachers reported that they thoroughly enjoyed the experience and 
would like to repeat. In questionaries following the activities, the students declared that they found the 
language easy to use, with only 14% deeming it somewhat difficult. We consider these early results 
encouraging as well as informative for future developments.

Keywords: Programming, Programming Teaching, Programming Learning, Technology, Technologies 
for Education, Technology in the Classroom.

1 INTRODUCTION

Teaching children to program has several advantages, even more so due to the ubiquity of technology.  
For example, Chetty [1] found evidence that learning to program at an earlier age leads to future 
interest in Computer Science. Also, has Resnick et. al [2] pointed out, learning to program expands 
what children can do with a computer, the range of what they can learn and their problem solving and 
design capabilities.

Schools have recognized the need and early age programming has entered educational curricula. 
However, there are some difficulties. Mainly the insufficient availability of technology, as many schools 
do not have enough computers for all students to use for long periods or in several classes. We 
consider it more likely for schools to adopt (less expensive) tablets and for the students to be early 
adopters of smartphones that can be used for education in the classroom.

Inexpensive devices are typically small screen, no keyboard, handheld devices. Using common 
computer tools for programming in such devices is awkward and frustrating. A large number of visual 
solutions exist but are hard to manipulate in small screens, are not very flexible and many do not 
produce generic code, usable elsewhere outside the programming environment.

Besides some well known block based programming languages aimed at children (such as Scratch 
[6]), there has been increasing evidence supporting the use of tangible languages in the classroom for 
younger students. Hort et al. [7] present two tangible programming languages as well as the practical 
advantages of this approach, with initial studies revealing that children between the ages of 6 and 7 
were capable of designing chains of actions, with some even finding bugs. In a subsequent study [8], 
the authors conducted a museum experiment, where the visitors classified the tangible and graphical 
interfaces as equally easy to use, but were significantly more likely to interact and collaborate with the 
tangible interface. In [9] Horn et al. propose a hybrid approach between tangible and graphical 
interfaces in which teachers and students chose the best fit for each situation, given that both have 
strengths and limitations. Sapounidis et al. [10] conducted a formal study with 109 children between 
the ages of 6 and 12, where they compared the same programming language with two different 
interfaces: tangible and graphical. The results showed that children using the tangible interface made 
less errors, were more likely to effectively debug their errors and, in the case of the younger children, 
needed less time to accomplish robot programming tasks. Also, when interacting freely, the older 
children were more engaged, designed programs with higher complexity and used a wider variety of 



commands, with the tangible interface.

Unfortunately, the usage of tangible languages is (a) rare, (b) frequently expensive, because they 
usually rely on electronic components, or (c) limited in terms of capabilities. When it comes to finding a 
multipurpose tangible language that could be used with different paradigms and robots, our literature 
review revealed fruitless.

In this work, we propose Tactcode, a programming system based on tangible tiles, similar to puzzle 
pieces, that can be assembled in a very open and flexible manner in order to create programs that can 
be exported to different platforms. Given their physical nature, the tiles are adequate for team 
cooperation and do not require a dedicated computer. They have also been conceptually designed to 
support different paradigms of programming, as well as different approaches for different age ranges. 
Additionally, Tactcode reuses the same tiles to target different platforms and robots already available 
on the market.

To avoid the usage of expensive electronics, we rely on a simple photography of the assembled tiles, 
that can be taken with a common smartphone. Our software then automatically recognises the tiles 
and compiles the final program targeting the desired platform. Depending on the platform itself, all 
computing power can be undertaken by the same smartphone or tablet used for the photograph, and 
shared along the classroom.

Although Tactcode is currently a proof of concept, the existing implementation already supports a few 
different target platforms, and provides several working examples. This allowed us to conduct 
preliminary, quasi-controlled experiments, in order to assess our original hypothesis by measuring 
their reactions, and simultaneously provide us feedback for future developments. We can conclude 
that the students overall enjoyed working with the system, and managed to successfully complete the 
assignments we gave them. We thus believe to have sufficient evidence that our approach can 
eventually address some (if not most) of the aforementioned difficulties of teaching programming in 
early education.

2 THE TACTODE PROGRAMMING SYSTEM

Tactode has two main components: a set of puzzle like tiles, each containing an instruction for the 
robot; and a mobile application that is used to capture the assembled tiles through a photograph and 
translate them into executable code that is then sent to the destination platform.

As the example in Fig. 1 shows, each tile has three elements: a title that sums what the tile does, an 
image that illustrates it, and an Aruco [7] tag that allows the tile to be recognized in the photograph.

Figure 1. The Tactode tile instructing the Scratch cat to use the pen to write.

The mobile application has a very simple interface. In addition to the settings and the previous 
programs database, there is a main tab dedicated to capturing (through photograph) and exporting 
new programs. If the program is successfully captured and it contains no errors, then the students are 
able to export it. In contrast, when programming errors are detected, they are reported by highlighting 
the corresponding tile in the picture and showing an error message.

The settings allow the user to choose between getting the picture from camera or from a file and also 
to specify the robot or platform to be used. Currently, three robots, namely Cozmo, Ozobot Evo and 
Robobo [8] are supported, plus Scratch and Python as the non-robotic platforms. In terms of 
computing platforms, the application works on Android, iOS, macOS and Windows.

In the background, the application uses a compiler to translate the pictures into executable code. This 
compiler is divided into three components. The first component uses the Aruco JavaScript library to 
detect and organize the tags according to their relative position. The second component generates an 
abstract syntax tree of the code and is also responsible for detecting errors. The third component is 
the code generator, and it heavily depends on the output platform, since each robot/system has its 



own language.

3 METHODOLOGY

In preparation for the experiments, a guide for the teachers was created, detailing the process of 
drawing a regular polygon with the Scratch cat. The guide contains a small introduction to 
programming, focusing on block based programming and on how it significantly simplifies learning. 
Both the languages Scratch and Tactode are presented, although only the blocks pertaining to the task 
at hand are detailed. There is also an explanation about regular polygons and their internal and 
external angles. After these introductory sections, the process of programming the solution in both 
languages is described in constructive steps.

The choice of the regular polygon activity was based on its appeal, its simplicity, the connection to 
mathematics and the programming concepts involved, namely loop blocks. Also, Scratch was selected 
because it allows for some comparison with our language.

The experiment was conducted with 14 students between the ages of 10 and 12. The students where 
organized into groups of 2 or 3 elements and the objective of the experiment was introduced by their 
teacher. They where told about the Tactode tiles and application, the Scratch environment, that they 
would use, and about a strategy for drawing regular polygons. Then, they proceeded to their task of 
trying to assemble the tiles in order to make the Scratch cat draw a polygon as it walks. 

Figure 2. Code for drawing a regular polygon in Tactode.

Fig. 2 shows the final code for drawing a regular polygon, but the students where given the task in 
smaller steps. First, organize the tiles to make the cat draw a square, without using any repeat block. 



Second, understand that for polygons with more sides the task becomes tiresome and the code very 
long, thus the need for repeat blocks. Third, place the same number in front of repeat and after the 
divide sign, change this number a few times to obtain different polygons. Fourth, use the question/
answer tool to make a general program where the user decides how many sides (lados in Portuguese) 
the polygon should have.

During our test, the students were divided into two different types of groups. The first group used the 
Tactode system, while the second used the Scratch system directly. The students then traded places, 
so that they could test the alternative. There was also some time devoted to free exploration.

4 RESULTS

The total experiment lasted nearly 2 hours, including material distribution, explanations, group 
activities and questionaries.

All the students completed the basic steps of the required tasks, although some groups required more 
assistance, especially in the first steps. The final step was not completed by several groups, but this 
was mainly due to the teacher deeming it too difficult without trying. Figs. 3 and 4 show the students 
taking a photograph of the completed code and then executing it with Scratch.

Figure 3. Students capturing the code.

In enquiries following the activities, students were asked 5 multiple choice questions. Tables 1 and 2 
show the results.

Table 1. Questionnaire results, first part

Question 1 2 3 4 5
Did you understand the 
objective of the activity? 
(1 - nothing, 5 - completely)

- - - 4 10

Did you find the Tactode 
language easy to use?
(1 - very hard, 5 - very easy)

- - 3 6 5

Did you find the Tactode 
application easy to use?
(1 - very hard, 5 - very easy)

- - - 10 4



Table 2. Questionnaire results, second part

Question Tactode Scratch
Which language did you find easier? 5 9
Which language did you prefer to use? 5 9

Figure 4. Scratch cat drawing a regular polygon.

Observing the students while they were performing their tasks, there seemed to be more focus in the 
groups using Tactode, while the other groups experimented more with different commands and 
objectives. 

5 CONCLUSIONS

Given the number of students, our experiment is not statistically relevant. But that was not our goal 
with this test, we simply wanted to see if the current implementation is working, if the students manage 
to use it with minimal help and what future developments are more important. In those aims, we were 
successful. Particularly, it became quite clear that the system works and that students learn while 
enjoying themselves.

We learned that the quality and speed of the image capturing process needs to be improved since that 
was one of the main difficulties of the students. Also, the steps necessary to get the compiled code 
executed could be reduced. Arguably this depends on each platform developer as much as it depends 
on us, but if nothing else can be achieved, it is worth considering having execution directly in our 
application similarly to what Scratch does. This because a considerable justification given by students 
for their preference of Scratch was how fast and easy it was to execute. 

Of course it is important to keep in mind that the students in this experiment were using tablets or 
computers, so they had plenty of screen to conveniently use the drag and drop interface of Scratch. 
With smartphones this quickly changes and the only thing missing from our system is its own simulator 
for execution.

Although the students seemed to prefer the graphical interface, particularly the older ones, this would 
not have been possible if they were using smartphones instead of tablets and computers. Thus, there 
is still the compelling argument of cost on the side of the tangible interface. In any case, as suggested 



in [5], there is probably more to gain from a hybrid approach.
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