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Abstract

Background: Computer and paper examinations in our days are constructed from an item pool which is regularly
updated. Given the way that exams are created, one of the major concerns is the security of the items that are
being used in order to ensure a good estimation of abilities. The aim of this study is to measure the prevalence of
item pre-knowledge in our medical school.

Methods: The Deterministic, Gated Item Response Theory Model (DGM) was applied to estimate the prevalence of
students who have had item pre-knowledge from six multiple choice examinations of the Clinical Anatomy course
at the Faculty of Medicine of University of Porto. Each examination consisted of 100 items with an average of 200
students and 20% repeated items per examination. The estimation of the sensitivity and specificity was based on a
simulation study. The sensitivity and specificity estimates, and apparent prevalence were used to estimate true
prevalence of cheating students in the examinations under study.

Results: The specificity in the DGM for different simulation scenarios was between 68 and 98%, while the sensitivity
ranged from 60 to 91%. The apparent prevalence was between 0.0 and 3.4%, while the true prevalence ranged
from 1.2 to 3.7%.

Conclusions: The true prevalence was much lower compared to the students self-reported copying of responses
from other students; however, it is important to keep monitoring the pre-knowledge prevalence in order to enforce
measures in case an increase occurs.

Keywords: Deterministic Gated item response theory model, Item pre-knowledge, Item sharing, Item exposure,
Repeat items

Background
Over a medical school course, it is very common to assess
developed skills through multiple choice examinations [1].
An exam is constructed from an item pool which is regu-
larly updated. Given the way that exams are created, one
of the major concerns is the security of the items that are
being used to ensure a good estimation of abilities. In
some situations, students have item pre-knowledge either
by over exposure or by item illicit access, and their item

responses deviate from the underlying item response the-
ory (IRT) by inflating their test scores [2].
Illicit access to items would be considered academic

cheating. Academic cheating is defined as unethical or
unauthorized academic activity, and is usually related to
examinations [3]. A coordinated and purposeful exposure
of items is very worrisome and would magnify examination
scores for students who have gained examination pre-
knowledge, while punishing honest students and conse-
quently threaten the examination’s validity [4]. Additionally,
item responses may move away from the subjacent IRT
model [5].
Modeling potential behavior for students possessing

prior item knowledge is further compounded by the
issue of whether this knowledge is actually used to gain
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some advantages on the examination [4]. That is, modeling
the impact of prior item knowledge is difficult because we
need to identify disclosed items and we cannot disregard
students who may have access to this information [6].
Several studies have shown that innocuous repeating

of a small set of items within a larger examination had
little impact on performance [2, 7, 8]. For example, in a
national USA certification test in radiography, the same
test or a different test form were assigned for the indi-
viduals that repeated the examination and indistinguish-
able score gains between the two groups were found [9];
a similar result was observed for the Medical Council of
Canada Evaluating Examination [10]. Normally, the test-
maker can control the proportion of reused items when
assembling the test, however due to lack of time or eco-
nomical pressure this is not always done.
The self-reported prevalence of item pre-knowledge was

about 25%, while the self-reported prevalence of copying
answers during an examination at least once during med-
ical school has ranged from 52% [11] to 67% [12].
The most common way to detect copying answers or

item pre-knowledge is using Classical Testing The-
ory (CTT) or Rasch IRT modeling to identify miss fitting
response patterns. These miss fitting response patterns,
especially on lower ability candidates on the examination
overall, although not conclusive evidence of “cheating”
per se, suggest that irregular behavior might have been
engaged in order to achieve the correct responses on diffi-
cult questions (something we would not expect from low
ability candidates). In this context, several classical statis-
tics [3, 13–15] and software [16] have been developed to
detect cheating on multiple-choice examinations.
Furthermore, several item pre-knowledge detection

statistics have been recently developed [17, 18] and
those that showed better efficiency were the posterior
shift and the Shu Deterministic, Gated Item Response
Theory Model (DGM) [19].
In 2013, Shu et al. proposed the DGM that classifies

students as cheaters or non-cheaters according to score
gain in the exposed items (e.g.: repeated items on previ-
ous examinations) compared to the non-exposed items
(e.g.: new items) [18].
The proposed DGM consists of a two One-parameter Lo-

gistic (1-PL) model mixture [20–22] which classifies students
into two groups, cheater and non-cheater by conditioning
them to two types of items; the first type includes the items
that are probably exposed, and the second type, the non-ex-
posed items. The DGM allows item pre-knowledge detection
through the analysis of the variation between students’ item
pre-knowledge ability and their true ability.
Although, previous studies have measured the appar-

ent prevalence (AP) (percentage of students classified as
having item pre-knowledge), no studies have measured
the true prevalence (TP) (percentage of students who

truly have item pre-knowledge) as they did not take into
account the sensitivity (SEN) and specificity (SPE) of the
detection method.
In the case of high pre-knowledge item prevalence, the

design of the examinations of Clinical Anatomy will
need to be restructured.
The aim of this study was to estimate the item pre-know-

ledge true prevalence among medical students in the course
of Clinical Anatomy at the Faculty of Medicine of University
of Porto (FMUP) through the application of the DGM.

Methods
All multiple choice examinations from the Clinical Anatomy
course between 2008 and 2011 were analyzed to estimate
the prevalence of students who had item pre-knowledge.
In each year, there were two final examinations which

comprised a total of eight examinations. Each examin-
ation consisted of 100 standard multiple choice ques-
tions (MCQ) (five response options where only one was
the correct answer), for a total of 800 items.
Each of the 100 items in each examination was compared

with all other examination items in order to verify whether
the item had been reused. The year 2008 was considered as
the starting year and was excluded from the analysis be-
cause it did not contain any reused items. The items classi-
fied as reused were treated as exposed items, since students
may have memorized items from a previously provided
examination. The items used for the first time in the exam-
ination were treated as non-exposed items.
Initially, the data description was carried out using CTT

in order to better comprehend the items’ characteristics;
1-PL and Two-parameter Logistic (2-PL) IRT models
[20–22] were applied in order to validate the 1-PL model
choice used in the DGM.
The 1-PL and 2-PL models were estimated using the mar-

ginal maximum likelihood estimation and the Expectation-
Maximization (EM) algorithm [23, 24]. The chosen 1-PL
model was the logistic model in which the discrimination
parameter was estimated to be identical in all items.
In this study, the selected model was defined accord-

ing to the Akaike Information Criterion (AIC) [25, 26],
the Bayesian Information Criterion (BIC) [27, 28] and
Convex Hull (CHull) method [29]. The model that better
fits the data has the lowest AIC and BIC values, and the
highest CHull value.
The difficulty (percentage of students who correctly

answered the item) and discrimination index (biserial
correlation between the item and the number of correct
answers to the other items) of item examination were
described using the mean and standard deviation (SD).
To assess whether there were significant differences

between the examinations or number of repetitions, in
the difficulty and discrimination indexes, mixed effect
models were used with a fixed factor (examination or
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number of repetitions) and the item-level random inter-
cept to account for the residual correlation within the
same (reused) items.
Data were aggregated by item in order to eliminate the

residual correlation within students that repeated the ex-
aminations; therefore, the previous model needed to in-
clude a student- level random intercept. The main reasons
for aggregating data were data sparsity due to the reduced
number of items reused and the small number of students
that repeated the examinations; furthermore, item-level
characteristics (e.g. the number of repetitions of the items)
were the features of interest in this study.
The recommendations for the interpretation of the

difficulty index suggest that values between 0 and
30% indicate a difficult item; values ranging from 31
to 80% imply an item with medium difficulty; values
between 81 and 100% can be labeled as an easy ques-
tion [30]. The recommendations for the interpretation
of the discrimination index suggest five categories: values
between − 1.00 and − 0.19 indicate negative discrimination;
values ranging from − 0.20 to 0.19, weak discrimination;
values between 0.20 e 0.29, sufficient discrimination; values
from 0.30 to 0.39, good discrimination; and between 0.40
and 1.00, very good discrimination [31].
Cronbach’s alpha was used to assess the examination reli-

ability. Recommendations suggest that examinations with
50 or more items have a good reliability if Cronbach’s alpha
value is equal to or greater than 0.8 [32]. The alternative co-
efficient ωh and ωt of McDonald [33] was used as well to
evaluate the reliability (general factor saturation and the in-
ter-consistency, respectively) of the examinations.

DGM
As referred previously, DGM is composed by a mixture
of two 1-PL models which allows students to be classi-
fied into two groups. This classification takes into ac-
count the students results obtained in the secure and
exposed items. Thus, DGM uses, on the one hand the
true ability, θtm, to characterize the real skill of the mth

student ,m = 1, …, M, and on the other hand, his/hers
cheating ability, θcm to estimate cheating efficiency.
Therefore, DGM classifies each student with item pre-

knowledge (cheater) or without item pre-knowledge
(non-cheater) according to a specific threshold value.
Each item of the test is classified either as compro-

mised or secure according to the fact that it is a reused
item or not. Thus, for each item, i, the item exposure
status, Gi, is dichotomously defined as

Gi ¼ 1; compromised item i
0; secure item i

�
i ¼ 1;…; Ið Þ

Assuming that true and cheating abilities are known, stu-
dent can be classified as a cheater if his/her true ability is

lower than his/her cheating ability. Therefore, for each stu-
dent is considered the dichotomous indicator variable Tm

Tm ¼ 1; θtm < θcm
0; otherwise

�
m ¼ 1;…;Mð Þ

where Tm= 1 represents that the m th examinee is a
cheater.
The goal of conditioning the two item types is to use

the information provided from the secured items to infer
the level of item-compromise contained in the exposed
items. The probability that the m th examinee answers
correctly to the i th item is

Pi θtm; θcmð Þ ¼ P ymi ¼ 1jθtm; θcm; bið Þ; m ¼ 1;…;M; i ¼ 1;…; Ið Þ;

where bi represents the item difficulty index.
Both Gi and Tm are dichotomously defined, therefore,

the DGM can be further broken down to four condi-
tional models:

P ymi ¼ 1jθtm; θcm;Tm;Gi; bið Þ

¼
P ymi ¼ 1jθtm; bið Þ for Tm ¼ 0;Gi ¼ 0
P ymi ¼ 1jθtm; bið Þ for Tm ¼ 1;Gi ¼ 0
P ymi ¼ 1jθcm; bið Þ for Tm ¼ 1;Gi ¼ 1
P ymi ¼ 1jθtm; bið Þ for Tm ¼ 0;Gi ¼ 1

8><
>:

When the student is classified as a non-cheater, Tm =
0, the responses to all items are based only on his/her
true ability, θtm, and therefore do not depend on θcm.
However, when Tm = 1, that is, for students that are
cheaters, it is necessary to take into account whether the
items are exposed or not. Student answers to the un-
exposed items (G = 0) are based on their true ability
(θtm), while responses to the exposed items (G = 1) are
based on their cheating ability (θcm). Accordingly, cheat-
ing ability only influences the response probability of
cheating students in the exposed items.
Taking into consideration the Gi and Tm values, the

probability of the mth student correctly answering item i
can be written as a unique expression

P ymi ¼ 1jθtm; θcm;Tm;Gi; bið Þ ¼ P ymi ¼ 1jθtm; bið Þ1−Tm

� 1−Gið ÞP ymi ¼ 1jθtm; bið Þ þ GiP ymi ¼ 1jθcm; bið Þ½ �Tm

emphasizing the mixture structure of the model used.
In order to discriminate if the student is classified as

cheater or non-cheater, it is necessary to fix a value
representing the cut-off point. This threshold was
defined according to the probability of a student being a
cheater (T = 1), Pc (0 < Pc < 1), by the DGM. Shu et al
[11] used the fixed value of 90% as the cut-off point Pc,
while in the present study, we also used a classification
tree to identify the best cut-off point value of Pc to
classify students with or without item pre-knowledge.
Classification trees are a statistical method used to
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construct binary trees, by successive divisions of data ac-
cording to a rule that divides the data into groups as
uniform as possible [34]. Homogeneity between the two
constituted subgroups is defined by impurity – a meas-
ure that takes the zero value in completely homogeneous
subgroups. In classification trees (the response variable
is qualitative); impurity can be measured by the amount
of entropy, which must be minimized since it measures
heterogeneity within groups. Thus, the criterion used to
choose the best cut-off point from all possible cut-off
point values was the one that minimized entropy.

Simulation study
This subsection aims to describe the conditions of the
simulation study that supported the analysis of sensitiv-
ity and specificity of the DGM as well as the best choice
of the cut-off point that distinguishes cheaters from
non-cheaters.
The simulation study was carried out considering the

closest conditions to the ones verified in the Clinical
Anatomy course examinations. In real data, there were
an average of 20 reused items and 200 students per
examination, and those values were used in the simula-
tion study. The simulation study must take into account
the item pre-knowledge characteristics, including the
proportion of item pre-knowledge and the effectiveness
of item pre-knowledge. The proportion of item pre-
knowledge refers to the percentage of students who have
pre-knowledge of the exposed items. The effectiveness
of item pre-knowledge is the effective score gain as a re-
sult of prior knowledge of the exposed items. According
to the score gain level, the most effective students (high-
effective) obtain the most effective gain and low effective
(low-effective) obtain a lower effective gain. We consid-
ered four scenarios with four levels of proportion of item
pre-knowledge, 5, 10, 35 and 70%, and two levels of
cheating efficacy of item pre-knowledge, high-effective
and low-effective. For each of the scenarios, we simu-
lated 100 replicates.
The items’ difficulty (b) was simulated according to a

standard normal distribution. The student’s true ability
(θt) was simulated according to the standardized normal
distribution, N(0, 1) and student’s cheating ability (θc)
was obtained by the sum of the effective score gain, (Δ),
to true ability. In a non-cheating student, the effective
gain is zero, while for a cheating student; it is simulated
from a beta distribution. When the cheating category is
high-effective, the score gain is characterized by Beta(9,
4) ∗ 3 and when it is low-effective, it is simulated accord-
ing to Beta(5, 5) ∗ 3.
Thus, we can summarize the distributions used in the

simulation of the parameters related to items and stu-
dents of the DGM as

θt ; b � N 0; 1ð Þ;
θc ¼ θt þ Δ;

with Δ = 0 for the non-cheater, Δ~Beta(9, 4) ∗ 3 for the
cheater high-effective and Δ~Beta(5, 5) ∗ 3 for the
cheater low-effective.
Let Ymi, m = 1, …, 200, i = 1, …, 100, be the response

of student m to item i. Ymi were generated using the
equations

P Ymi ¼ 1ð Þ ¼ Pi θcmð Þ ¼ 1
1þ eθcm−bi

for the exposed items and cheaters, and

P Ymi ¼ 1ð Þ ¼ Pi θtmð Þ ¼ 1
1þ eθtm−bi

for all other cases.

Estimation of the DGM
The parameters of the DGM were estimated using
Markov chain Monte Carlo (MCMC) [35, 36] methods
through Gibbs algorithm [37]. The following prior distri-
butions were considered:

Ymi � Bernoulli Pi θcmð Þð Þ;
θtm; b � N 0; 1ð Þ;
θcm � N 1; 2ð Þ;

Tm ¼ 1 when θtm < θcm:

These variables are i.i.d for m = 1, …, 200, i = 1, …, 100
Since the distributions of θtm and θcm do not depend

on the considered student, for simplification, considerer
θtm = θt and θcm = θc. WinBUGS’ DGM commands are
available in Additional file 1.
For each DGM, sample parameters were generated, with

dimension 110,000 from the posterior distribution, which
include a burn-in period of 10,000 observations to ensure
the convergence of Markov chains in the sampling process.
Only observation parameters with a 100 iterations jump in
order to obtain a sample, with dimension 1,000, of approxi-
mately uncorrelated observations were stored.

Estimation of the true prevalence
In real data, we do not know if a student is a cheater or
not. When we apply a DGM, it tells us which students
were classified by the model as cheaters (positive test).
The percentage of those students is referred to as the
apparent prevalence (AP) and is obtained by

AP %ð Þ ¼ #positives
#total students

� 100

We want to know the percentage of students who are
truly cheaters; the true prevalence (TP) [38] is
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TP %ð Þ ¼ #cheaters
#total students

� 100

A Bayesian approach can be used to estimate the TP
[39] using the following relationship with the AP and
taking into account the sensitivity (SEN) and specificity
(SPE) of the DGM.

AP ¼ TP � SEN þ 1−TPð Þ � 1−SPEð Þ:

The SEN is the percentage of students who were
correctly classified as cheaters and the SPE is the per-
centage of students who were correctly classified as
non-cheaters [40].
To obtain the TP, we used the SEN and the SPE means

and SD computed in the simulation study. The minimum
SEN and SPE for the uniform distribution were fixed for
the DGM classification as the minimum and the max-
imum mean for all scenarios in the simulation study.
The R software [41] was used for statistical analysis

and for programming.
Furthermore, the estimation of parameters was per-

formed by Gibbs algorithm, implemented in WinBUGS
through the R2WinBUGS package [42], the rpart pack-
age [43] for the classification trees, the ltm package [44]
to see which model best fit the data, and for the algo-
rithm distributions display and convergence study, we
used the coda packages [45] and mcmcplots [46].

Results
Simulation study
The SEN and SPE for the cut-off point of 90% were ob-
tained by computing the 100 replicates of the simulations
for the different scenarios showed in Table 1. The SPE was
higher than 90%, while the SEN ranged from 60.3 to 90.7%.
The AP in all scenarios was different compared to the

TP (Table 1).

The simulation study showed that for high prevalence,
the cut-off value should be decreased, and for low preva-
lence, the cut-off value should be increased.
Figure 1 presents the estimated gain for each one of the

scenarios. We can observe that a cheating student obtains
a much higher effective score gain than a non-cheating
student. For the non-cheating student, the score gain is
very close to 0. If we analyze Fig. 1a and b we can observe
that for the same proportion of item pre-knowledge
(35%), students obtain a higher effective score gain when
it is high-effective; the same happens for the proportion of
item pre-knowledge (70%) (Fig. 1c and d).

Application to real data
Data description
A total of 1008 students completed the examination
between 2008 and 2011, from those 774 (76.8%), 218
(21.6%), 14 (1.4%) and 2 (0.2%) completed the exami-
nation 1, 2, 3 and 4 times, respectively.
Table 2 shows the number of reused items, the

number of items reuses, the students’ mean score, and
the items’ difficulty and discrimination mean levels and
respective Cronbach’s alpha and McDonald’s ωh and ωt

for each examination.
From a total of 800 items, 84 (10.5%) were reused

once, 13 (1.62%) twice, and the percentage of repetitions
ranged from 4 to 26%. The mean items’ difficulty index
was between 0.57 and 0.66, there were statistically sig-
nificant differences in the difficulty index by examination
(p = 0.0471), and all examinations showed a medium
difficulty level. The mean items’ discrimination index
ranged from 0.30 and 0.37, and there were statistically
significant differences in discrimination index by exam-
ination (p = 0.008); however, all examinations presented
good discrimination. Cronbach’s alpha was above 0.8 in
all examinations, which showed that all examinations
have a good reliability. The ωt showed high internal

Table 1 Specificity, sensitivity, positive and negative predictive value in each scenario of the simulation study using the cut-off value
of 90%

Proportion (True prevalence) 5% 5% 10% 10% 35% 35% 70% 70%

Cheating efficacy High Low High Low High Low High Low

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Specificity (%) 77.82 (2.74) 78.16 (3.76) 81.65 (3.28) 81.46 (3.41) 94.41 (3.02) 92.33 (2.83) 98.00 (1.80) 97.65 (2.14)

Sensitivity (%) 69.78 (14.52) 60.30 (15.73) 81.35 (7.88) 69.35 (12.16) 83.75 (15.78) 83.35 (7.28) 90.75 (2.48) 68.99 (11.40)

Positive predictive value (%) 14.84 (6.37) 12.71 (3.48) 34.07 (7.92) 29.54 (5.57) 88.42 (10.31) 85.30 (4.50) 99.07 (0.83) 98.66 (1.20)

Negative predictive value (%) 96.90 (8.59) 96.66 (7.02) 97.18 (2.83) 96.00 (1.55) 92.02 (6.77) 89.88 (3.13) 82.30 (4.13) 58.31 (7.65)

Model absolute agreement (%) 77.44 (2.81) 76.97 (3.37) 81.16 (5.56) 80.16 (3.36) 90.54 (4.17) 88.21 (2.71) 92.93 (1.75) 77.59 (7.71)

Apparent Prevalence 24.52 (2.7) 24.07 (3.2) 24.7 (2.9) 23.7 (3.1) 32.8 (7.2) 33.2 (3.5) 64.1 (1.9) 49.0 (8.3)

Cohen’s Kappa (%) 17.22 (6.86) 15.07 (9.56) 38.32 (6.96) 31.64 (8.46) 78.43 (10.68) 73.76 (6.29) 84.21 (3.71) 56.26 (11.41)

Best Cut-off pointa 99.9% 100% 98.6% 98.8% 86.8% 91.4% 79.3% 65.9%
aBest Cut-off point estimate by a classification tree
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consistency and the ωh moderated the general factor
saturation for all examinations.
The index of difficulty increased 3.5% (p = 0.013) in the

first repetition and 6.9% (p = 0.036) in the second repeti-
tion compared to the first time, meaning that with repeti-
tions, the items were easier for the students (Table 3).

Goodness-of-fit of 1-PL model
In order to assess if we could use the 1-PL model to fit
the data we compared the 1-PL and 2-PL models to
verify which one gives the best fit to the real data. Table 4

presents a summary of the goodness-of-fit index for year
and period. Using BIC and CHull, the 1-PL model better
fits the data in the eight examinations. Using AIC, in five
of the eight examinations, the model that fits better is
the 2-PL model (Table 4).

Item pre-knowledge prevalence
The DGM estimated that the AP ranged from 0.00 to
3.30%, and the TP after using the information SEN and
SPE from the simulation study was between 1.20 and
3.70% for all examinations (Table 5).

Fig. 1 Example of the effective gain of the cheating versus non-cheating students. a Proportion 35% & medium-effective. b Proportion 35% &
high-effective. c Proportion 70% & medium-effective. d Proportion 70% & high-effective
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This situation happens in all studied examinations and
can be seen in Fig. 2, where for students considered not
cheaters regardless of item exposure or not, the percentage
of the students correct answers practically does not change;
the same cannot be said for students considered cheaters.
In this case, the percentage of correct answers in the
exposed items increases very significantly when compared
to the percentage of correct answers in the unexposed
items. This was expected considering that the DGM model
more easily detects the students with item pre-knowledge
with low ability. Those students will have a high gain in the
number of correct answers compared to students with high
ability where the gain would be smaller, and consequently
more difficult to detect. Additionally, these students (with
low ability) will be more effective compared to the high
ability students in the exposed items, since the main focus
will usually be items memorization from past examinations
compared to high ability students that use all types of infor-
mation and so will not be so effective in memorizing items.
Focusing only on the non-exposed items, there is a

considerable difference between the two groups of
students revealing differences in their true skills that can
also be explained by the arguments referred to above.

Discussion
In this work, the DGM was applied to six multiple choice
examinations of FMUP’s Clinical Anatomy course. The

proportion of pre-knowledge items in the analyzed exami-
nations ranged from 1.2 to 3.7%, that is, in this course, the
proportion of item pre-knowledge is low compared to the
self-reported prevalence of copying answers during an
examination at least once during medical school, which
has ranged from 52% [8] to 67% [9] and the self-reported
prevalence of item pre-knowledge was about 25%. When
compared to the prevalence using detection statistics for
copying answers, the prevalence was high, for example, in
11 examinations held by the Royal College of Pediatrics
and Child Health, there was a prevalence of 0.1% [3]. In a
low-stake test for measuring student proficiency in Grade
4 English, the prevalence of item pre-knowledge was
about 9% [11].
The low prevalence in this study may firstly be due to

the fact that students do little study by previously pro-
vided examinations or to the fact that students study by
the previously provided examinations but also simultan-
eously through other sources and therefore there is no
big difference between the students’ true ability and their
cheating ability because these students have a high true
ability. The second hypothesis is supported by the fact
that no differences in the difficulty index were detected
between exposed and unexposed items within the exam-
ination itself, however, over the years, significant differ-
ences in the difficulty index were detected and exposed
items became increasingly easy.

Table 2 Data description according to CTT

Year Period N Reused
(N)

Difficultya,c

Mean (SD)
Discriminationb,c

Mean (SD)
Cronbach’s Alpha ωh ωt

2008 1 217 0 0.57 (0.18) 0.37 (0.19) 0.88 0.46 0.89

2 123 4 0.63 (0.20) 0.32 (0.17) 0.86 0.51 0.87

2009 1 208 13 0.66 (0.20) 0.34 (0.13) 0.88 0.48 0.88

2 113 6 0.64 (0.21) 0.37 (0.16) 0.89 0.38 0.90

2010 1 192 26 0.64 (0.20) 0.30 (0.14) 0.86 0.44 0.87

2 116 13 0.59 (0.21) 0.32 (0.15) 0.87 0.41 0.88

2011 1 243 21 0.62 (0.22) 0.37 (0.17) 0.89 0.56 0.90

2 48 14 0.59 (0.20) 0.37 (0.19) 0.90 0.36 0.91
a% of students who correctly answered the item
b Biserial correlation between the item and the number of correct answers to the other items
c To assess whether there were significant differences between the examinations, in the difficulty and discrimination indexes, mixed effect models were used with
a fixed factor (examination) and the item-level random intercept to account for the residual correlation within the same (reused) items

Table 3 Mixed effect models to measure repetition effects on difficulty and discrimination indices using CTT

Difficulty index Discrimination index

β̂ 95%CI p β̂ 95%CI p

Model 1a Model 2a

Intercept 0.613 [0.598,0.629] < 0.001 0.337 [0.325,0.348] < 0.001

1st repetition 0.035 [0.008,0.063] 0.013 0.026 [−0.008,0.060] 0.135

2nd repetition 0.069 [0.005,0.133] 0.036 0.009 [−0.073,0.092] 0.820
aTo assess whether there were significant differences between the number of repetitions, in the difficulty and discrimination indexes, mixed effect models were
used with a fixed factor for repetitions and the item-level random intercept to account for the residual correlation within the same (reused) items
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This is the first study that tries to measure the TP of
item pre-knowledge; other studies have used the AP
determined through a diagnostic test, which will differ
from the TP. In our case, we showed that the “apparent”
prevalence would underestimate/overestimate the TP
depending on the examination.
The simulation study was required to assess the

effectiveness of the DGM under the same conditions
of the real data and the DGM was applied to the real
data in order to estimate the TP of cheating students
per examination. The simulation study showed the
effectiveness of the DGM when the number of items
per test is high (100), the proportion of the exposed
items is low (20%) and the number of students is
small (200). The absolute agreement of the DGM
with these conditions was more than 76%. In the

previous study by Shu, the effectiveness of the DGM
was studied for an examination with 40 items, a pro-
portion of committed items higher or equal to 30%
and 15,000 students, and the cut-off point was set at
0.9. Our study showed that in the case of a high pre-
knowledge prevalence, the SEN was lower compared
to the SPE, thus increasing the bias between the AP
and the TP. Changing the cut-off value from 90% to
lower values would decrease the difference between
the SEN and the SPE, thus decreasing the bias
between the AP and the TP (data not shown). If the
test-maker has a priori information that the pre-
knowledge prevalence is high, they should lower the
threshold in order to use the AP as an estimate of
the TP.
One possible constraint of this study was the fact that

the 1-PL model used by the DGM could not fit the real
data and diminished the diagnostic capacity; however,
the BIC showed that the 1-PL model had a better fit
compared to the 2-PL model.
The analyzed examinations had a medium difficulty,

good discrimination and good reliability scores using
both the CTT and the IRT, showing that the low preva-
lence of item pre-knowledge did not have a large impact
on the quality of the examinations.
Moreover, it is worthwhile to mention that one

restriction of the present work is the small scale of
the study. Surely, it would be of interest to apply
DGM in a larger scale with the increase of response
sample size and the inclusion of clinical courses in
which item re-usage is more common. This remains a
topic for future research.

Table 4 The goodness-of-fit of the 1-PL and 2-PL models to
real data by year and period

Year Period Model Log-Lik AICa BICa CHulla

2008 1 1-PL − 12685.50 25573.09 25914.46 23.58

2-PL − 12536.60 25473.24 26149.22 1.09

2 1-PL − 6707.50 13617.01 13901.04 17.02

2-PL − 6592.09 13584.17 14146.61 1.13

2009 1 1-PL − 10729.40 21660.88 21997.97 22.49

2-PL − 10619.00 21637.89 22305.40 0.97

2 1-PL − 5862.56 11927.13 12202.59 8.81

2-PL − 5774.92 11949.85 12495.32 0.81

2010 1 1-PL − 10321.70 20845.34 21174.34 29.82

2-PL − 10207.60 20815.13 21466.62 1.11

2 1-PL − 6499.01 13200.01 13478.12 18.40

2-PL − 6403.77 13207.53 13758.25 1.05

2011 1 1-PL − 12838.10 25878.19 26230.99 10.10

2-PL − 12629.10 25658.23 26356.84 2.27

2 1-PL − 2687.06 5576.12 5765.11 5.34

2-PL − 2614.77 5629.54 6003.78 0.84
aBold values identifies the best model according to each criterion

Table 5 Mean and SD values obtained for the apparent
prevalence and the true prevalence for the examinations
between 2009 and 2011

Year Period APa TPb

Mean (SD) Mean (SD)

2009 1 2.2 (0.2) 1.5 (1.3)

2009 2 0.0 (0.0) 1.2 (1.2)

2010 1 2.5 (0.2) 1.6 (1.4)

2010 2 3.3 (0.5) 2.6 (2.2)

2011 1 3.4 (0.2) 1.8 (1.5)

2011 2 2.1 (0.0) 3.7 (3.4)
aAP % of students considered cheater (above cut-off point)
bTP True prevalence

Fig. 2 Percentage of correct answers by item and student type 2011
examination period 1
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Conclusions
The DGM has proved effective in item pre-knowledge
detection and the prevalence of item pre-knowledge is
low. The simulation study showed that the DGM under-
estimates/overestimates the TP.
Thus, the threshold established should be lower in the

case of high pre-knowledge prevalence in order to di-
minish the bias between the AP and TP.
We will keep monitoring the pre-knowledge preva-

lence in order to take measures in the case of an in-
crease. These could be by the exclusion of exposed
items for the next examinations or to provide seminars
to increase the awareness of this problem.

Additional file

Additional file 1: WinBUGS DGM Model Commands. (DOCX 17 kb)
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