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Medical imaging is fundamental for improvements in diagnostic accuracy. However, 

noise frequently corrupts the images acquired, and this can lead to erroneous 

diagnoses. Fortunately, image pre-processing algorithms can enhance corrupted 

images, particularly in noise smoothing and removal. In the medical field, time is 

always a very critical factor, and so there is a need for implementations which are fast 

and, if possible, in real-time. This study presents and discusses an implementation of 

a highly efficient algorithm for image noise smoothing based on General Purpose 

Computing on Graphics Processing Units (GPGPU) techniques. The use of these 

techniques facilitate the quick and efficient smoothing of images corrupted by noise, 

even when performed on large-dimensional data sets. This is particularly relevant since 

GPU cards are becoming more affordable, powerful, and common in medical 

environments. 
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1. Introduction 

Computational image processing is a field that has seen tremendous advances in recent years. These 

advances are the result of huge demands coming from areas such as medicine [1], agriculture [2], security 

[3], traffic and satellite data analysis [4] and industry [5]. These fields require image-processing tasks such 

as noise and artefact removal and smoothing [6], geometrical correction [7], contrast enhancement [8], 

image restoration, [9] and illumination correction [10]. Briefly, the use of image processing techniques, 

particularly of image pre-processing, is mainly intended to enhance the data presented in the original images 

so that the processed data can be analyzed more easily using higher-level techniques of computational image 

analysis, such as image segmentation [11] or image registration [12]. However, many of the original images 

that need to be enhanced have large dimensions [13], and need to be processed in real- or near real-time 

[14]. This is the case, for example, in the fields of robotic navigation or assisted surgery, or even when the 

input data are long sequences of 2D or 3D images, such as in ultrasound imaging [15]. Additionally, to 

obtain more robust and efficient results, the computational complexity of the more recent methods has 

considerably increased, leading to slower runtimes. Therefore, the use of parallel computing strategies has 
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attracted attention, and this has led to higher speeds, particularly in time-constrained applications for 

medical diagnosis [16]. 

Frequently, noise corrupts images, and this may be due to the image acquisition procedure involved, or to 

artefacts generated by data transmission or other processes [17]. The image smoothing method proposed 

by Jin and Yang [18] has obtained very promising results, particularly when applied to medical images. 

However, a long computational time when performing several iterations on the input image is required by 

this method, especially when applied to large-scale images; as a result, its use has become less attractive 

for some potential applications. Additionally, there is a frequent and increasing demand for fast responses 

from computational methods in high-resolution image processing, and real-time is preferable due to the 

severe time constraints that characterize medical imaging. 

Therefore, we have developed a parallel implementation of the smoothing method proposed by Jin and 

Yang [18] using General Purpose Computing on Graphics Processing Units (GPGPU) [19] and Compute 

Unified Device Architecture (CUDA) [20] in order to speeding up its runtime. We have assessed the 

performance of this strategy by comparing the runtime for parallel implementation (GPU) against that of 

sequential implementation (CPU). 

The method adopted for image smoothing selects each pixel from the input image, and thus requires a 

large number of calculations; this leads to the long runtime mentioned. Briefly, the method involves the 

use of an (𝑚×𝑛) matrix, which is processed for T iterations. Thus, the computational complexity of the 

processing of the input image is equal to 𝑂(𝑚×𝑛×𝑇), where m and n are the number of rows and columns 

of the input image, respectively. 

In our parallel implementation, the input image data are stored in the GPU’s memory, where the highest 

number of accesses occur, in order to eliminate as many data accesses as possible within the main memory 

system [21, 19]. Hence, input image processing is executed in parallel in the GPU. The experimental 

findings confirmed that the combination of the CUDA architecture and GPGPU techniques were very 

promising in terms of speeding up the runtime for image processing and computational analyses. These 

approaches led to high processing performance at a low cost, mainly when compared to parallel 

implementations in multicomputers. 

As far as the authors known, this was the first time that the smoothing method adopted was parallelized 

using CUDA architecture and GPGPU techniques. The findings are of great interest for image processing 

and analysis, mainly within the medical community. In this case, medical images of ever higher resolution 

need to be smoothed as fast as possible in real clinical scenarios. Nowadays, computers with GPUs are 

commonly available in medical environments and, although these computers are not always the most up-

to-date models, their computational power is still sufficient to achieve efficient fast results. 

This paper is organized as follows: section 2 introduces the image smoothing method proposed by Jin and 

Yang [18]; section 3 describes the metrics of Structural SIMilarity (SSIM), Peak Signal-to-Noise Ratio 

(PSNR) and Normalized Cross-Correlation (NCC), all of which are used to assess the quality of the 
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smoothing results; section 4.3 presents the parallel implementation of the image smoothing method; the 

computational runtimes demanded by the CPU- and GPU-based implementations are discussed in section 

5; and finally, section 6, presents the concluding remarks.  

2. Image Smoothing Method 

Images frequently have multiplicative noise, which comes from multiplying an original image I by a noisy 

image In [22]. This type of noise is present, for example, in microscopy, ultrasound and infrared imaging 

[23]. Multiplicative noise is usually more difficult to remove than additive noise [24]. Therefore, to 

overcome this problem, variational models for multiplicative noise removal have been integrated into 

smoothing methods specially developed for such images [24, 25]. In 2011, Jin and Yang [18] proposed a 

very promising method for removing and smoothing multiplicative noise from corrupted images using 

the variational model for additive noise removal proposed by Rudin et al. [26], as shown here: 

𝑚𝑖𝑛) 𝐽(𝑢) + 𝜆 	/ (𝑓 − 𝑢)2 ,	 	 	 	 (1)	

where Ω is a closed area belonging to R2, f is the image corrupted by additive noise, u is the image in the 

current smoothing iteration, J(u) is a regulator term, and λ is a weight parameter. Jin and Yang designed 

the method specifically to remove multiplicative noise from ultrasound images, and they concluded that 

the function proposed by Krissian et al. [27] could be adopted to solve the variational model of Eq. 1, 

using: 

𝐸(𝑢) = 		/
(78))9

)
,	 	 	 	 (2)	

where u is the original image, 𝑓 = 𝑢 + 𝑢𝑔 is now the input image corrupted by multiplicative noise, 

and g is a Gaussian variable with a non-zero mean. Thus, the variational model adopted by Jin and Yang 

[18] is: 

𝑚𝑖𝑛) 𝐽 𝑢 	 + 	𝜆 		Ω
(78))9

)
,	 	 	 	 (3)	

where λ > 0	is a weight parameter. As such, the model given by Eq. 3 deals with the problem of 

multiplicative noise removal by adopting: 

𝜕B𝑢 = 𝑑𝑖𝑣 E)
E)

+ 𝜆 79

)9
− 1 ,	 	 	 	 (4)	

where ∇ and div are the gradient and divergent operators respectively. In order to discretize the continuous 

part of Eq. 4, Rudin et al. used the finite difference scheme [26], adopting h=1 for the step size and 𝛥𝑡 

for the time interval, which leads to: 
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𝐴 = 𝐷
L
M(𝑢N,O) = 𝑢NPQ,O − 𝑢N,O,

𝐵 = 𝐷LS(𝑢N,O) = 𝑢N,O − 𝑢N8Q,O,
𝐶 = 𝐷

U
M(𝑢N,O) = 𝑢N,OPQ − 𝑢N,O,

𝐷 = 𝐷US(𝑢N,O) = 𝑢N,O − 𝑢N,O8Q,

|𝐷L(𝑢N,O)| = 𝐴2 + (𝑚[𝐶, 𝐷])2 + 𝛿,

|𝐷U(𝑢N,O)| = 𝐶2 + 𝑚 𝐴, 𝐵 2 + 𝛿,

	 	 	 	 (5)	

where the parameter δ > 0	is a constant defined close to zero, and term m is defined as: 

𝑚[𝑎, 𝑏] = ^N_`(a)P^N_`(b)
2

𝑚𝑖𝑛(|𝑎|, |𝑏|),	 	 	 	 (6)	

where 𝑚𝑖𝑛(|𝑎|, |𝑏|) is a function that returns the smallest absolute value between a and b, and 𝑠𝑖𝑔𝑛 a  is 

a function that determines the sign of a, returning 1 if  a is positive, -1 if it is negative, and 0 if 𝑎 is equal 

to 0. Assuming the iterations of the model k = 1,2, … , Eq. 4 can be rewritten as: 
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where f is the input image affected by multiplicative noise. In this method, the 𝜆 parameter is automatically 

calculated for each new iteration as: 

𝜆f = Q
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where 𝜎2 is the variance of the image at iteration k. As an example, Fig. 1 shows the result of the 

smoothing method when applied to ultrasound images. 

							 							 	

Fig. 1 - Original, noisy and smoothed (128x128 pixels) images, respectively. 

3. Assessment Metrics 

The comparison between two images is a natural task for the human visual system, but it is not so natural 

for computer systems. Therefore, various authors have proposed different solutions which assess the 

similarities between two images, and in particular, evaluate the performance of image pre-processing 
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methods [28, 29, 30, 31, 32]. Basically, there are two classes of solutions: one is based on intensity error, 

and the other on structural information. 

3.1. Based on Intensity Error 

For image smoothing, the comparative solutions or similarity indices use intensity error in order to 

estimate the error between the enhanced image, i.e. the smoothed image, and the original image before 

noise corruption. The main disadvantage of these similarity indices is the possibility of failure where there 

are displacements between the images under comparison. Moreover, these indices compare the intensity 

variation of each pixel of the input images, which can lead to similar results for images with different 

types of geometrical distortions [29]. Nevertheless, indices based on intensity error are frequently used to 

compare the performance of image enhancement [33, 34, 35] and smoothing [13, 17] methods, due to 

their simplicity. 

In particular, the Peak Signal-to-Noise Ratio (PSNR) index has been widely used to assess the 

performance of image restoration and smoothing methods. This index determines the ratio between the 

highest possible strength of a signal, which in the case of images is the highest intensity value, and its 

strength as affected by noise [17, 15]. For simplicity, the PSNR is represented according to a logarithmic 

scale (base 10), since some signals can have very high values. 

The PSNR can be calculated from the Mean Squared Error (MSE), which is computed as: 

𝑀𝑆𝐸 = Q
u×`

	u8Q
Nvw 	`8Q

OvQ [𝐼(𝑖, 𝑗) − 𝐼z(𝑖, 𝑗)]2,	 	 	 	 (9)	

where m and n are the dimensions of the images I and Ir to be compared, as follows: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔Qw
����

9

���
,	 	 	 	 (10)	

where MAXI is the maximum intensity value that a pixel can assume, which is equal to 255 for 8-bit 

grayscale images. Thus, the higher the PSNR value is, the more efficient the performance of the pre-

processing algorithm is. The two images are considered identical, when the MSE value is 0 (zero), and 

the PSNR value is undefined. 

Normalized cross-correlation (NCC) is another metric based on pixel intensity. It is widely used in image 

registration [30, 36] to compare the degree of similarity between two input images. NCC is as follows: 

𝑁𝐶𝐶	 = 	 LiUi�×�
i�j

Li
9 Ui

9�×�
i�j

�×�
i�j

,          (11) 

where xi and yi denote the intensity values of each pixel of the (𝑚×𝑛) images under comparison, leading 

to values in the interval [0, 1], where 1 (one) indicates a best match [37]. 
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3.2. Based on Structural Information 

In this class of quality metrics, the goal is to find changes in the structural information of the images under 

comparison. The analysis of the structural information represented in the input images assumes that the 

human vision system is adapted to extract, i.e. segment, structural information from what is seen, and to 

search for changes in the structures detected. In other words, any possible differences, such as those due 

to artefacts generated by noise processes [37], are quantified. 

The Structural Similarity Index (SSIM) is the main index in this category which analyzes the performance 

of computational image processing methods [38, 13]. Wang et al. [29] proposed this similarity index in 

an attempt to prevent images with very different visual qualities ending up with high similarity values, as 

can happen when the similarity indices are based on intensity error. The index measures the change in 

three components of each image under comparison: luminance, contrast and image structure. The former 

is  defined as average pixel intensity. The contrast component is modeled using the standard deviation of 

the intensity, while image structure comes from the normalized image using the standard deviation of  

images under comparison. The SSIM is as follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)� ⋅ 𝑐(𝑥, 𝑦)� ⋅ 𝑠(𝑥, 𝑦)�,	 	 	 	 (12)	

where 𝑙 refers to luminance, 𝑐 to contrast and 𝑠 to structure, and 𝛼 > 0, 𝛽 > 0 and 𝛾 > 0 are weights. 

These three components are relatively independent, and therefore, modifying one of them does not affect 

the others. More details of the calculation of these components, as well as a detailed analysis of them, are 

presented in [29]. 

The SSIM is an index which applies to each pixel of the input image and, for convenience, the mean SSIM 

is usually adopted. The Mean Structure Similarity Index (MSSIM) is the average of all the SSIM values 

obtained. For identical images, this index is equal to 1 (one). As the images become different, the index 

becomes lower until it is equal to -1 when the images are exactly opposite, i.e. one is the negative of the 

other. 

4. Parallelization of the Smoothing Method 

Studies have shown that GPU-based parallel methods have focused on massively parallel programming 

[40], and most common image processing methods can operate with parallelization strategies based on 

the data decomposition technique. This section describes the steps involved in the GPU-based parallel 

implementation, which was developed in order to optimize the runtime performance of the adopted 

smoothing method. 

The smoothing method adopted in this study, as described in Section 2, made use of four fundamental 

equations to find a solution for the multiplicative noise smoothing process given by Eq. 4. The method 

starts by solving the finite difference scheme adopted in Eq. 5. Then, Eq. 7 obtains the final value for each 

pixel according to the on-going iteration, and Eq. 8 finds the associated weight parameter. Thus, Eqs. 4, 
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5, 7, and 8, define a sequence of steps for the parallelization of the smoothing method. The implementation 

procedure was based on the NVIDIA programming best practices guide [19].  

The CUDA architecture was developed with the objective of using data parallelism, by establishing a new 

model named Single-Instruction, Multiple-Thread (SIMT). In this model, data are represented as a stream, 

which is structured as an array; and when running one or more instructions using this array, the 

instructions are defined as a kernel [16, 19]. A kernel performs operations in parallel along the entire 

stream, using it as both input and output [39, 19]. 

In the SIMT model, the calling of multiple kernels follows a hierarchy of thread groups. This feature 

divides each kernel into independent blocks, and as a result, the efficient threading support in the GPUs 

ensures transparency, portability and scalability, besides allowing a CUDA program to be executed in any 

number of processor cores. Threads are used for fine-grained parallelism; groups of threads, defined as 

“blocks”, are used for coarse-grained parallelism; groups of blocks are placed in a grid which represents 

a kernel call. As illustrated in Fig. 2, this hierarchy allows each thread within a block and each block in a 

grid to have a unique identifying index [39]. 

 
Fig. 2 - Representation of the Single-Instruction, Multiple-Thread Model (adapted from [30]). 

4.1. Setting the Occupancy Level 

The setting of each kernel must be adjusted to use the correct number of blocks and threads in order to 

optimize the occupancy of the CUDA cores (code lines in Fig. 3); i.e. if the number of blocks and threads 

is not sufficient, some cores will not be able to execute the code, wasting some of the processing power. 
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In our implementation, we used 256 threads per block in all the kernels. The number of blocks B is given 

by: 

𝐵 = ��hP���8Q
���

,	 	 	 	 (13)	

where Tpx is the total number of pixels of the input image, and TTb is the number of threads per block. In 

this case, we defined one two-dimensional variable (numBlocks), which has the image height (HImage) 

as the first dimension (Tpx) and the image width as the second dimension (Tpx). These calculations 

determine the settings used to perform one thread per pixel. When there are excess threads, a stopping 

criterion discards them. 

 
Fig. 3 - Definitions for the settings of each kernel used in the experiments. 

Applications developed for massively parallel architectures achieve greater performance when the 

graphics card resources are used efficiently. The occupancy level of the GPU measures the proportion of 

active processors in the graphics card during a kernel execution. This calculation takes into account the 

following specification query attributes acquired from the CUDA device: the maximum number of threads 

per block, the number of blocks per multiprocessor, the number of registers per multiprocessor, and the 

shared memory per multiprocessor. Increasing the number of concurrent threads is a good strategy for the 

purpose of  making full use of the GPU, and the limit of threads is defined by the architecture. However, 

a high level of GPU occupancy does not guarantee an additional performance gain [19] because there is 

a problem of memory latency, and a high level of occupancy may reduce the overall performance [40].  

4.2. Optimizing the Memory Hierarchy in CUDA 

As shown in Fig. 4, each multiprocessor can use four types of memory: a set of registers for each Stream 

Multiprocessor (SM), a shared memory between the SMs, a constant cache shared between the SMs, and 

a texture cache which optimizes the bandwidth of the texture memory. Registers have the largest 

bandwidth and, like other kinds of memory, threads can access them; threads can also access data in 

different memory spaces. Each SM used in the experiments has 256kB worth of memory registers [19]. 

In the case of shared memory, the bandwidth is similar to the registers, and threads can cooperate to load 

and compute data shared by them. Each memory module has a set of 32-bit registers, which makes the 

threads access consecutive positions of a data vector more efficiently. A module can receive multiple 

requests for the same data but this creates conflicts. However, automatic serialization satisfies all memory 

access requests. As this serialization can reduce bandwidth performance, a broadcast device is set up to 

prevent the reading of all the threads at the same memory address (NVIDIA, 2010). On the other hand, 

all threads can access the GPU global memory (GDRAM) simultaneously. However, there are some 

restrictions which improve the bandwidth. Global memory has the lowest bandwidth but has the largest 
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storage capacity. In order to obtain the maximum possible speed-up, a group of threads are used which 

has consecutive indices, and is bundled into a unit named a warp. Thus, a single SM can run multiple 

warps simultaneously. The size of a warp depends on the GPU specification (NVIDIA, 2010; Kirk & 

Hwu, 2010). 

 
Fig. 4 - Memory spaces accessed by each thread (adapted from [41]). 

All threads have read-only access to the GPU memory cache, which has 48kB for each SM; moreover, 

the threads of a half-warp can read only one memory address. Only instructions from the GPU can write 

into this kind of memory, and these processes persist throughout the execution of multiple kernel calls 

[19]. 

All threads can also access the texture memory, which is only read by kernels. This kind of memory uses 

a separate cache with a capacity of 32kB per SM, and provides high performance access when all threads 

perform operations on memory addresses close to them [40]. The types of access of on-chip memory for 

Compute 3.5 and later devices are indicated in Table 1. 

Table 1 - Types of memory access in CUDA [42] (r - reading access, w - writing access, INT - internal memory space location, 

EXT - external memory space location). 

Memory Location Access Cached Scope 

Register INT r/w no One thread 

Local INT r/w yes One thread 

Shared INT r/w N/A All threads in a block 

Global EXT r/w yes All threads + host 

Constant EXT r yes All threads + host 

Texture EXT r/w yes All threads + host 

4.3. Implementation of Kernels in CUDA C 

Tasks of computational image processing and analysis usually involve a large amount of data processing. 

Thus, the first strategy is to allocate the required space in the GDRAM, and then copy the input image as 

a data matrix from the host memory (RAM) to the device’s memory (GDRAM); this process allows data 

to be managed directly in the GPU. Accesses to the coalesced memory are performed in contiguous 
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segments, half-warps access the segments simultaneously. Such accesses are known as coalesced memory 

accesses, and they enable parallel operations, thereby reducing the number of memory transactions [19, 

39]. The data are then loaded into contiguous segments, and this allows a thread block to process an input 

image more efficiently; moreover, both the global memory and the texture memory are used. 

Eqs. 5, 7 and 8 were implemented in the kernels called kDiFinitas, kVariancia and kFinal, respectively. 

The threads from the kDiFinitas kernel perform the computations in Eq. 5 in each image pixel 

independently. This kernel has several threads, each of which represent a matrix index, and process a 

specific image pixel. Thus, to manage access to a set of image pixels in the “for-loops”, each pixel has an 

access condition. 

First of all, in the kDiFinitas kernel, each pixel from the input image is associated with a thread, then the 

thread blocks are stored in the texture memory. After running the kDiFinitas kernel, the kVariancia kernel 

performs the parallelized computation of the λ parameter according to Eq. 7. In the parallel 

implementation, an auxiliary vector stores the values of the operations involved in each iteration, i.e. each 

thread calculates the resultant value of each iteration. Fig. 5 presents the pseudocode of the developped 

algorithm. 

Fig. 5 - Pseudocode of the developped parallel implementation. 

The kFinal kernel computes the weight parameter, used previously in the kVariancia kernel, and then 

applies it to each image pixel, giving access to the texture cache and coalesced access to the global 

memory. Each thread attributes the resulting value to the corresponding memory, providing the data 

needed to calculate the final sum of each image pixel. Finally, the SomaElem kernel assists with the 

calculation of the vector values. The vector is divided into two equal parts, their values are summed, each 

thread sums two values, and keeps them in the lowest available vector position. This procedure continues 

until only one vector position remains for the storage of the resulting sum. In the case of a vector with an 

odd number of elements, an extra element with a zero value is added. This procedure uses the partitioning 

strategy of the global memory to optimize the bandwidth of the active warps during memory access; the 

1 Input: Noisy image  

2 /* Host program executed on CPU */ 

3 Allocate CPU and GPU memory 

4 Store image to CPU memory 

5 Copy image from CPU memory to GPU memory 

6 Set the number of threads per blocks 

7 /* kDiFinitas: Kernel program executed on each thread block */ 

8 Parallel each image pixel 

Compute the finite difference using Eq.(5) 

9 /* kVariancia: Kernel program executed on each thread block */ 

10 Parallel each image pixel 

Compute weight parameter by Eq.(8) 

Call kFinal kernel 

11 /* kFinal: Kernel program executed on each thread block */ 

12 Parallel each image pixel 

Create a new vector with zeros to store the smoothed image 

Compute the new pixel values for each new iteration using Eq.(7) 

13 Copy image from GPU memory to CPU memory 

14 Output: Smoothed image 
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warps are organized into partitions. This is the slowest kernel used, and this is because the memory blocks 

become less contiguous while the elements are processed. Fig. 6 illustrates the implemented 

parallelization technique. 

An image corrupted by multiplicative noise is used as input (Step 1), and after running the kernels 

described previously in steps 4 to 8, the result will be a new noise-smoothed image. Steps 4, 6, and 7 

perform the reading of data in the texture memory. On the other hand, the results of each step of memory 

writing go into the global memory, where the output images are stored. 

 
Fig. 6 - Parallel CUDA-based implementation of the adopted image smoothing method. 

Eqs. 5, 7 and 8 were implemented as a nested “for-loop”. A CPU-based implementation was also 

developed as a comparison with the GPU-based implementation. The main memory system was accessed 

contiguously for all of these loops in order to optimize execution, and the GDRAM was accessed 

contiguously as well, creating a fair comparison [19] between the implementations.  

5. Experiments and Discussion 

This section describes the infrastructure used to perform the experiments and also discusses the results. 
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5.1. Test Infrastructure 

The used test infrastructure includes a desktop computer equipped with an Intel(R) Core(TM) i7-4790 

3.60 GHz processor, 16GB of RAM (DDR3 - 1600 MHz), Linux Ubuntu 14.04 operating system, CUDA1 

nvcc release 7.5 compiler driver, and GNU gcc/g++ compiler version 4.8.4. Additionally, there was a 

GPU NVIDIA Tesla K20c, with 2496 CUDA cores and 5GB of GDRAM. 

5.2. Results and Discussion 

In this section, we present results of experiments aimed at evaluating the performance of the method 

adopted. The runtime performance of GPU-based implementation is the focus of this study; however, the 

PSNR, SSIM and NCC metrics were used to confirm the smoothing method’s accuracy. In the tests, 15, 

25 and 50 smoothing iterations were adopted. 

We used a set of six images with different resolutions (128x128, 256x256, 512x512, 1024x1024, 

2048x2048 and 4096x4096 pixels) built synthetically with an image editor software and then corrupted 

with synthetic multiplicative noise of a variance equal to 0.3. There were 100 iterations for each test, and 

the mean and the standard deviation values of the time spent smoothing each input image were calculated. 

The total time spent (Table 2) was computed from the moment the data was loaded into the main  memory 

system until the end of the smoothing process when the resultant image was produced. The function 

cudaThreadSynchronize was performed after each kernel call, forcing the CPU to wait for the complete 

kernel execution, and the sdkResetTimer, sdkStartTimer and sdkStopTimer timing functions were used to 

obtain the kernel execution time. The execution times of each kernel were added together to obtain the 

total execution time. Table 2 shows that the execution times of the CPU-based implementation were 

longer than those of the GPU-based implementation except in the case of the smallest test image (128x128 

pixels). This distinct behavior occurred because the speed-up achieved with the data processed in the 

CUDA cores did not justify the computational effort involved in transferring a small amount of data to 

the GPU memory or the latency times necessary for the initialization of the GPU. For large images, the 

speed-up of the GPU was around 10, but less for smaller ones. Moreover, the GPU-based implementation 

achieved noise smoothing in real-time for all tested images. The parallel implementation had transparent 

and portable scalability in GPUs based on CUDA architecture; besides, the performance scales increased 

exponentially, as shown in Fig. 7. Furthermore, when we considered images with dimensions greater than 

256x256 pixels, a speed-up of the GPU-based implementation was evident; for example, it was about 

10.65 times faster for images with 4096x4096 pixels. 

 

                                                
1 CUDA compiler and development suite are available to download through the NVIDIA website 
https://developer.nvidia.com/cuda-downloads. 
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Table 2 - Comparison between the computational time (in milliseconds) required by the CPU- and GPU-based implementations 

to smooth the test static images with 50 iterations. 

Images Tesla CPU 

128x128 30.41 ± 0.81 14.08 ± 0.10 

256x256 36.72 ± 0.20 56.37 ± 0.26 

512x512 59.04 ± 0.96 225.90 ± 1.17 

1024x1024 133.38 ±1.86 944.99  ± 18.34 

2048x2048 423.94 ± 1.23 3761.56  ± 32.18 

4096x4096 1617.16 ± 7.09 15180.35  ± 26.22 

 

 
Fig. 7 - Processing time of the proposed GPU-based implementation, which scales up exponentially. 

As an illustrative example, Fig. 8 shows the results of the CPU- and GPU-based implementations applied 

to the test images. Fig. 8 shows, from left to right, the image affected by the multiplicative noise, and the 

images smoothed by the CPU- and GPU-based implementations. 

             
Fig. 8 - An original noisy test image with 4096x4096 pixels and the smoothed images obtained by the CPU- and GPU-based 

smoothing implementations, respectively. 

The values listed in Table 3 were computed using NCC and SSIM metrics in order to confirm that the 

structural information resulting from the noise images corresponded to smoothed images, since all values 

were close to 1 (one). As for the smoothing method’s accuracy and time performance, the optimal number 

of iterations for better image preservation seems to be 15. 

The PSNR values were also computed for each static test image before and after being smoothed by the 

CPU- and GPU-based implementations (Table 4). The values demonstrate the efficiency of the smoothing 

method, and confirmed that the two implementations smoothed the images using the method adopted. 
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Table 3 - NCC and SSIM values computed for the static test images using 15, 25, and 50 iterations. 

Images 
NCC SSIM 

15 25 50 15 25 50 

128x128 0.99999 0.99996 0.99962 0.99992 0.99869 0.98652 

256x256 0.99973 0.99884 0.99752 0.99894 0.99612 0.98383 

512x512 0.99667 0.99679 0.99554 0.99959 0.99932 0.99715 

1024x1024 0.99664 0.99696 0.99587 0.99967 0.99967 0.99914 

2048x2048 0.99819 0.99827 0.99798 0.99996 0.99995 0.99988 

4096x4096 0.99889 0.99894 0.99864 0.99999 0.99999 0.99997 

 

Table 4 - PSNR values computed for the static test images before (noisy) and after being smoothed by the CPU- and GPU-

based implementations using 15, 25, and 50 iterations. 

Images 

PSNR 

Noisy 
GPU smoothed CPU smoothed 

15 25 50 15 25 50 

128x128 +16.71226 +26.45354 +28.01845 +27.08323 +26.45101 +28.01758 +27.08876 

256x256 +13.63118 +21.45840 +21.15450 +20.48712 +21.46481 +21.13883 +20.51067 

512x512 +10.71005 +11.70306 +11.84286 +12.18230 +11.70372 +11.84272 +12.18366 

1024x1024 +11.04700 +14.64996 +14.63267 +14.81482 +14.64584 +14.63146 +14.80796 

2048x2048 +10.39326 +13.64743 +13.73511 +14.05504 +13.64635 +13.73472 +14.05501 

4096x4096 +9.92586 +13.15495 +13.30716 +13.67279 +13.15451 +13.30648 +13.67202 

 

We also tested three synthetic videos with 240 frames and different resolutions (128x128, 256x256, 

512x512 pixels), and one real ultrasound video with 255 frames of 320x240 pixels. The smoothing method 

was applied only once for each video frame. 

The average runtime for the real ultrasound video was 5.92 seconds for the CPU-based  implementation, 

and 2.87 seconds for the parallel implementation in CUDA. Thus, the processing time of the parallel 

implementation was about 2.06 times faster when processing the entire ultrasound video. Fig. 9 shows an 

example of the smoothing of a video frame selected randomly from the tested video. 

       
Fig. 9 - The original image and the image smoothed by the parallel implementation, respectively 

Table 5 indicates the frame rates of the CPU- and the GPU-based implementations when smoothing the 

four test videos. In this table, the values in bold can be considered in line with real-time processing (> 20 

frames per second), and therefore acceptable for routine medical image processing [43, 44]. As shown in 

Table 5, the experiments using the parallel GPU-based implementation revealed an even higher reduction 

in the runtime of the smoothing method in relation to the CPU-based implementation, confirming initial 

expectations. 
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The CUDA architecture as a computational infrastructure for image pre-processing has revealed to be a 

viable, capable and alternative option to deliver high-performance processing in many applications; 

moreover it can even provide real-time processing at an affordable cost [40]. Here, the performance gain 

of the parallel GPU-based implementation confirms the high processing capacity available in the CUDA 

architecture, with all videos used in the experiments processed in real-time. Today, the available resources 

in these graphic cards have increased the performance gain more efficiently, taking into consideration the 

number of cores and GDRAM memory as well as the SIMT parallel model associated with memory 

optimization techniques.  

Table 5 - Frames per Second (FPS) rate obtained in the CPU- and GPU-based implementations with the smoothing method 

applied with 15, 25 and 50 iterations. (The values in bold can be considered in line with real-time processing.) 

 

Video 

Resolution 

Total of FPS rate obtained 

GPU CPU 

15 25 50 15 25 50 

128x128 116.60 69.61 34.12 249.79 152.93 76.78 

256x256 94.23 57.16 28.84 52.73 33.10 16.39 

320x240 88.61 54.00 27.93 48.16 32.20 16.81 

512x512 57.79 37.10 19.59 13.75 8.44 4.21 

 

Therefore, the benefit of using GPU-based implementations can be totally justified since the reduction in 

the runtime can minimize or even eliminate the time restrictions; such restrictions are common in many 

applications (such as in the medical field) that use image processing and analysis methods, requiring fast 

or real-time results for image-based diagnosis. However, optimal implementation requires maximum 

efforts, particularly when using the CUDA architecture. 

6. Conclusions 

The use of parallel computing techniques to fully explore the high-performance multiprocessor 

architecture is not new. However, the cost of the more traditional hardware for high-performance 

computing is not low; thus, more affordable alternatives such as GPU hardware should be considered. 

The present work has described how to use the high-performance computing CUDA-based architecture 

as a computational infrastructure to accelerate an algorithm for noise image removal. The parallel GPU-

based implementation developed was compared against the corresponding sequential CPU-based 

implementation in several experiments, and image quality metrics confirmed the similarity of the 

smoothing results achieved by each implementation. The parallelization of the image smoothing method 

based on a variational model using the CUDA architecture reduced the runtime by up to 10.65 times in 

comparison to the CPU-based implementation. 

The novel CUDA-based implementation developped to smoothing multiplicative noise by using an 

effective variational method seems to be a high-performance solution for applications with images 
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susceptible to this type of noise, and which have high processing time constraints. Moreover, the proposed 

GPU-based parallelization approach has transparency, portability and scalability, thanks to the adopted 

SIMT model. 

More and more complex methods and larger and larger data sets are used in the medical imaging domain 

that has high time constraints, which makes the use of the CUDA architecture extremely attractive as the 

the study conducted here confirms. As a future works, we intend to extend the proposed CUDA-based 

implementation to enable it to perform in multi-GPUs, besides combining it with multithread (OpenMP) 

and multicomputer (MPI) in order to achieve higher performances using heterogeneous parallel 

computing platforms.  
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