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CLUSTERING INDICES AND DECAY OF CORRELATIONS IN

NON-MARKOVIAN MODELS

MIGUEL ABADI, ANA CRISTINA MOREIRA FREITAS, AND JORGE MILHAZES FREITAS

Abstract. When there is no independence, abnormal observations may have a tendency
to appear in clusters instead of scattered along the time frame. Identifying clusters and
estimating their size are important problems arising in statistics of extremes or in the study
of quantitative recurrence for dynamical systems. In the classical literature, the Extremal
Index appears associated to the cluster size and, in fact, it is usually interpreted as the
reciprocal of the mean cluster size. This quantity involves a passage to the limit and in some
special cases this interpretation fails due to an escape of mass when computing the limiting
point processes. Smith [18] introduced a regenerative process exhibiting such disagreement.
Very recently, in [3] the authors used a dynamical mechanism to emulate the same inadequacy
of the usual interpretation of the Extremal Index. Here, we consider a general regenerative
process that includes Smith’s model and show that it is important to consider finite time
quantities instead of asymptotic ones and compare their different behaviours in relation to
the cluster size. We consider other indicators such as what we call the sojourn time, which
corresponds to the size of groups of abnormal observations, when there is some uncertainty
regarding where the cluster containing that group was actually initiated. We also study the
decay of correlations of the non-Markovian models considered.

1. Introduction

In Extreme Value Theory, the convergence of the maxima of a sequence of i.i.d. random
variables is a very well studied subject. The book [15] is a major reference on the subject.
The starting point is that, for (Xn)n≥N a sequence of i.i.d. random variables over a probability
space (Ω,F ,P) with cumulative distribution function F , it is straightforward to see that, for
any real positive τ and a real sequence (un)n≥0 one has

lim
n→∞

P(max{X1, ...,Xn} ≤ un) = e−τ if and only if lim
n→∞

n(1− F (un)) = τ.

And the classical three possible limits theorem for the maximum follows.

The independent case is far from modelling the real world, and a major effort to extend this
result to dependent processes has been faced in the last decades. The principal ingredient is
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the appearance of the extremal index θ verifying

lim
n→∞

P(max{X1, ...,Xn} ≤ un) = e−θτ whenever lim
n→∞

n(1− F (un)) = τ.

This new factor describes the capacity of a given maximum to produce subsequent ones, due
to the correlation of the r.v.’s, ingredient that is absent in the i.i.d. case. It follows by the
above property that the extremal index θ ∈ [0, 1] and that it is strictly smaller than one for
observables that tend to appear in clusters rather than isolated, as in the i.i.d. case, where
it is equal to one. However, this way of introducing it as a limiting value through the above
properties gives rise to certain difficulties to calculate or even estimate it.

It is the purpose of this paper to show the relevance of considering the extremal index not just
as an asymptotic limit but rather as quantity at finite time, as well as, to show the different
behaviours that both cases may present.

It appeared as natural to associate the extremal index with the reciprocal mean of the distri-
bution of the size of the cluster of excedentes generated by the correlation of the r.v.’s.. The
reason is heuristically clear. Suppose that one wants to observe a cluster of size, at least k, of
exceedances of the level un. That is

P(N ≥ k) = P(∩k
i=1{Xi > un}).

Here N stands for the number of consecutive observations of the exceedance. The universal
formula

P(∩k
i=1Ai) =

k
∏

i=1

P(Ai| ∩i−1
j=1 Aj)

says that, if dependance with respect to the remote past is small and only close past matters,
the factors on the right hand side in the above equality should be all about the same. If the
meaning of "close past" is quantified by looking back up to a distance q, then the last display
suggests that

P(N ≥ k) ≈ P({Xq+1 > un}| ∩q
i=1 {Xi > un})k, (1)

and N has a limiting geometric distribution with success probability

P(Xq+1 ≤ un| ∩q
i=1 {Xi > un}), (2)

which concludes the intuition. This heuristic argument was proved to hold under suitable
conditions in [1]. On the other hand, Aytaç et al. ([8]) constructed several examples where
both (limiting) parameters conincide even when the cluster size distribution has nothing to
do with a geometric one. R.L. Smith proposed an example where this two quantities have
different limits [18].

In the present paper we have two main purposes. Firstly, we want to show that one should
consider not only asymptotic limits but also look at the behaviour for finite n in order to get
a full picture of the situation. Not only because in the real world we only observe finite n,
but also because things may behave differently at finite size and in the limit. For instance,
we will show that, even if, in the limit, the extremal index and the reciprocal of the cluster
size are different as in Smith’s example, they coincide for finite time. Also, we show that
the above heuristic argument may not work and a subtle different quantity could be more
appropriate to consider. In the above argument, N was considered assuming the existence of
a cluster, i.e, assuming that we started with an exceedance without specifically guaranteeing
if that exceedance initiated a cluster, which means that it could correspond to an exceedance
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inside a cluster initiated in the past. But we can consider the case where that exceedance is
actually beginning the cluster. This would make no difference if the far past is irrelevant. In
our models, the extremal index will correspond to the second case and will be different to the
first one.

Further, to emphasize the importance of looking at finite and not just limiting statistics, we
present another model where the extremal index does not exist since its asymptotics fluctuate.
The same happens with the distribution of the cluster size. However, both can still be identified
as the reciprocal of each other for finite observations.

In our case study we also consider the following application.

Application: Hitting times. Parallel to the extreme value theory and totally independently,
it was deeply studied the theory of hitting times in Poincaré Recurrence Theory. The review
papers [5, 11, 14] bring a major panorama of classical results. Hitting times to balls and
cylinder sets were specifically considered. To fix ideas, consider a sequence an−1

0 and define
the hitting time

τn = inf
{

t ≥ 1 | Xt+n−1
t = an−1

0

}

.

Now, if an infinite sequence a = (a∞0 ) is fixed, then one can consider the number of (consecu-
tive) letters of a that can be read in the process at any time t. Namely

Yt = max{k ≥ 0 | Xt+k−1
t = ak−1

0 }.
The usual abuse of notation Xt−1

t = a−1
0 means there is no coincidence. Thus, one gets

{τn > t} =

{

max
1≤j≤t

Yj < n

}

.

That is, the hitting time problem translates to a maximum problem. It is well known that,
under suitable mixing conditions, the hitting time converges to an exponential law. The most
general result to date [6] says that for α-mixing systems and every a

lim
n→∞

P

(

τn >
t

θqµ(a
n−1
0 )

)

= e−t,

for some q = q(a, α) which in general is as large as the memory of the process. Therefore, the
problem is how to compute θq for q large (which also may include to determine the appropriat
q). Under certain conditions (φ-mixing) [1, 2] it was shown that q can be replaced by the
periodicity of the observed set, which in general is short and makes θ easier to handle. In our
case, these mixing conditions are not verified if the alphabet is infinite. However we show that
actually the periodicity of the observed set can still be used to calculate θ.

The structure of the paper is the following. In Section 2, we introduce the general form of
the regenerative processes we consider and basic properties are derived. Section 3 is dedicated
to the decay of correlations of the model. In Section 4 we compute the parameters for the
different cases we consider. The first one exhibits different values for the finite and limiting
extremal index. The second one exhibits the geometric distribution where finite and infinite
case coincide. The third one shows a case where the limit of the cluster size is actually a
sub-distribution and the limiting extremal index does not exist. Finally, the fourth case shows
a cluster size distribution which fluctuates cyclically and thus the limiting extremal index also
does not exist. In all of them the finite extremal index coincides with the inverse of the finite
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mean cluster size. Only in the geometric case the cluster size equals to the sojourn size, which
we introduce in the beginning of Section 4.

2. The Model

We consider a general construction of regenerative processes of which the Smith model [18]
is a particular case. They are discrete time models over a finite or countable alphabet. To
simplify, from now on we consider that the alphabet is the set of positive integers N.

Let first (Zn)n∈Z be an i.i.d sequence of random variables taking positive integer values, with
common distribution pa = P(Zn = a), a ∈ N and finite mean E(Zn) < ∞. To each a ∈ N

we also associate a distribution qa = (qa(k))k∈N. The process (Xn)n∈Z that we are going to
consider can be described, informally, in the following way: take Zn, choose a random number
ξn with distribution qZn

independent of everything, and repeate the symbol Zn a number ξn
of times. The blocks of size ξn (filled-up with the symbol Zn) are concatenated to create the
process (Xn)n∈Z. A suitable initial condition turns it into a stationary process if we assume
that the mean regeneration time is finite. To formalize, define the sequence (Xn)n∈Z as follows.
Let the auxiliary random variable ζ have distribution

P(ζ = a) =

∑

k≥1 kqa(k)pa

ν
. (3)

It will be used only as a random shift to make the process stationary. To that end, for every
n ≥ 1 and each index i such that

ζ +
n−1
∑

j=1

ξj ≤ i < ζ +
n
∑

j=1

ξj =: ζn,

set Xi = Zn. (By convention the sum over an empty set of indexes equals zero.) This defines
Xi for all i ≥ ζ.

Secondly we define the process for the remaining indexes in a similar way. That is, for every
n ≥ 0 and each index i such that

ζ−n := ζ −
n
∑

j=0

ξ−j ≤ i < ζ −
n−1
∑

j=0

ξ−j,

set Xi = Z−n.

The times (ζn)n∈Z which determine a new choice for a symbol a form a regenerative process.
The process is positive recurrent with stationary measure µ if and only if the regeneration
time has finite mean. In our case, this mean is

ν := E(ξ1) = E(E(ξ1|Z1)) =
∑

a∈N

paE(qa) , (4)

which we assume to be finite. By Kac’s Lemma one has that the invariant measure of a
regeneration is equal to the reciprocal of the above display. The regenerations are useful to
compute the invariant measure of a measurable set A, which will follow from conditioning on
the last regeneration time of (Xn)n∈Z. To simplify the notation, for every j ∈ Z, we define
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the events

Rj = {∃i ∈ Z | ζi = j} and Wj = Rj ∩
0
⋂

i=j+1

Rc
i , for j ≤ 0,

corresponding, respectively, to the occurrence of a regeneration at time j and that no other
regeneration occurs until time 0. The invariant measure of any measurable set U can be
computed partitioning the past according to the W−j’s

µ(U) =

∞
∑

i=0

µ(U |W−i)µ(W−i). (5)

In particular, U = {X0 > a} gives the tail distribution and we put

ga := P(X0 > a) =
∞
∑

j=a+1

µ(j) . (6)

These formulae will be used later on with the ad hoc properties of each specific model con-
sidered. Finally, note that by construction, the process is reversible, and as a consequence we
have conditional independence of consecutive blocks. That is

PR1(X0 ∈ A,X1 ∈ B) = PR1(X0 ∈ A)PR1(X1 ∈ B),

for A,B ⊆ N.

We introduce now four particular examples corresponding to different cases which we are going
to study in order to illustrate the finite and limiting behaviour of the extremal index.

Basic example: i.i.d. As a first basic example, notice that a sequence of i.i.d. random
variables is included in this family of processes with qa(k) = δ1(k) for all k and every a. We
now come to the specific models we consider in this paper.

Smith’s model. The model considered by Smith [18] to show that the limiting extremal index
and the limiting reciprocal mean of the cluster size may be different is defined by setting

qa(k) =







a−1
a for k = 1

1
a for k = a+ 1
0 otherwise

.

Thus E(qa) = 2, for all a ∈ N, and hence ν = 2. Moreover and in particular, by (5) we get
µ(a) = pa. In fact, for a ∈ N

µ(a) = P(X0 = a,W0) +
a
∑

j=1

P(X0 = a,W−j) =
1

2
pa +

a
∑

j=1

P(X0 = a,R−j ,∩0
i=−j(Ri)

c)

=
1

2
pa +

a
∑

j=1

P(R−j)PR
−j
(X0 = a,∩0

i=−j(Ri)
c) =

1

2
pa +

a
∑

j=1

1

2

pa
a

= pa. (7)

The block model. This model is constructed to present a case where the limiting extremal
index does not exist, since the exit probability fluctuates as the level un diverges. The same
occurs for the limiting cluster size distribution. However, the finite parameters are equal.
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The model is constructed using any distribution (pa)a∈N but with deterministic distributions
(qa)a∈N. Specifically

qa(k) =

{

1 for k = a
0 otherwise

.

Hence E(qa) = a for all a ∈ N, and we get ν =
∑∞

a=1 apa, which we assume to be finite in or-
der to have stationarity. In a similar way to Smith’s model, it follows by (5) that µ(a) = apa/ν.

3. Decay of correlations

A general argument shows that a mixing regenerative process is weak Bernoulli (see for instance
the book of P.C. Shields [17]). Thus, the models presented in this paper are all weak Bernoulli.
In some specific cases, stronger decay of correlations can be computed explicitly. As an
illustration, we are going to compute here the probability of having a regeneration after n-
steps, given another one was observed in the present time. Namely,

cn = P(Rn+1 | R0),

in the case of a two symbols process.

Morse Code and Fibonacci numbers. Consider the following case, as a basic example of
the block model. Suppose p2 = 1− p1 (and pa = 0 for a ≥ 3). That is, the process only takes
values 1 and 2. Further, for a = 1 and a = 2 consider qa = δa. Namely, when 1 is chosen, it
is written once, and when 2 is chosen, it is written twice. This model represents the messages
that can be written with the Morse code where only points and traces are allowed. Thus cn
can be regarded as the probability to write a message of exactly length n. Put x to be the
total number of 1’s and similarly y the total number of 2’s in this message. We get

cn =

⌊n/2⌋
∑

y=0

(

x+ y

y

)

px1p
y
2. (8)

The condition x+ 2y = n allows to rewrite the above display as

cn = pn1

⌊n/2⌋
∑

y=0

(

n− y

y

)

(
p2
p21

)y.

At the moment, notice that for the golden ratio p1 = (−1 +
√
5)/2 = φ, one gets

cn = φnFn,

where Fn is the n-thd Fibonacci number. Pascal recurrence leads to re-write the above formula
as

cn = p1cn−1 + p2cn−2 .

A recursive formula conditioning on the previous regeneration could be also invoked to obtain
this recursion. It is classical to obtain the solution of this recursion via roots of its characteristic
polynomial

x2 − p1x− p2,

which, since the different roots are r1 = 1 and r2 = p1 − 1, takes the form

cn = K11
n +K2(p1 − 1)n.
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With the initial condition c0 = 1, c1 = p1, the constants become

K1 =
1

2− p1
; K2 =

1− p1
2− p1

.

Thus, notice that K1 = P(R0) and since cn converges to K1, we get the (exponential) decay of
correlations. Now, it follows easily that the process is ψ-mixing with exponential rate function
φ(n) = (1− p1)

n. For easy reference, we recall the reader that ψ is defined as

ψ(n) = sup
A∈Cu,B∈f−(n+u)Cv,u,v∈N

∣

∣

∣

∣

P(A ∩B)

P(A)P(B)
− 1

∣

∣

∣

∣

,

where f is the shift operator.

The Finite Block Model. The argument on the example above can be easily carried on
(except for interpretation (8)) to prove that the process (Xn) considered in this paper over a
finite alphabet C are exponentially ψ-mixing.

It is worth noticing that the above methodology captures the eigenvalues of the Perron-
Frobenious operator, identifies the largest one with modulus equal to 1, the remaining with
smaller modulus and also the rate of mixing given by the spectral gap.

The Infinite case. The infinite case must be considered with more attention and may
be not ψ-mixing. Consider for instance a probability (pa)a∈N with no-null entries pa. We
treat first the block model. So, suppose further that for each positive integer a, one has the
conditional probability qa = δa. That is, each time a is chosen in a regeneration, it is repeated
deterministically a times. Thus

P(Xa−1 = a|R0,X0 = a) = 1.

Since a can be as large as we want, the process can not be ψ-mixing.

Now consider the Smith’s model. Fix n ∈ N and for a > n take Aa = {X−1 6= a,X0 = a} and
B = {Xn+1 = a}. Thus P(A ∩B)/P(A) ≥ 1/a while P(B) = pa, and the ratio of the last two
probabilities can not be close to one.

4. Extremal index & company

4.1. Definitions. In this section we present specific definitions for the family of parameters
we are going to consider. Being one of the main purposes of this paper, we present them for
finite observations and then consider their asymptotics. We begin with the extremal index.
We introduce first some notation to simplify the expressions. For a size q ∈ N and a level

a > 0, let us define the sets Ua = {X0 > a} and A
(q)
a = {X0 > a,X1 ≤ a, ...,Xq ≤ a}.

Definition 1. The (finite, a-level) extremal index (up to time q) is defined by

θq(a) = P(A(q)
a |Ua).

This is the probability of not observing another exceedance (of level a) up to time q given that
we begin with the observation of an exceedance at time 0. This formula was used firstly by
O’Brien and then by other authors for the extremal index (see for instance [10, 13, 12, 16]).
The value of q is determined by the observable Ua and the decay of correlation properties of
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the process. See [9, equation (15)] and the discussion preceding it regarding adequate choices
of q. In general, the larger is q, the more difficult it will be to compute it. In the context of
hitting times, it was shown that, under fast mixing conditions ([1, 2]) q can be taken as the
(minimum) periodicity of the observable (also called shortest possible return time, or shortest
possible distance between two observations of Ua). It is given by the positive integer defined
as follows

p(Ua) = inf{k ≥ 1 | P(X0 > a,Xk > a) > 0}.
We call the escape probability [4] to θq when taking q = p(Ua). Namely, the escape probability

is θp(Ua) = P(A
(p(Ua))
a | Ua).

An extremal index smaller than one gives rise to a clustering phenomenon. The size of this
cluster, being random, has a distribution with expectation related to the reciprocal of the
extremal index. One must be careful in defining the size of this cluster. Two different cases are
considered here. The first one is due to the heuristic argument described in the introduction. It
considers the process starting from the observable state of interest and counts for how long does
it stay in the same state. The geometric behaviour of this quantity, called sojourn time (under
suitable conditions) was proved by Abadi and Vergne [7]. In practice, this situation is usual in
physical problems and computational simulation where an initial condition must be imposed.
It also corresponds to the case when some automatic mechanism detects the occurrence of
Ua but failures on the mechanism or in the sample itself do not allow to guarantee that the
cluster actually started at this point. To formalize, let

Na = sup{k ≥ 0 | Xjp(Ua) > a,∀0 ≤ j ≤ k}+ 1,

the number of consecutive observations of the excedance of a. The +1 at the end corresponds
to counting the occurrence of the exceedance at time zero, namely X0 > a. (And we set
Na = 0 if X0 ≤ a).

Definition 2. The expected sojourn is defined by

EUa
(Na).

The second one is due to a natural interpretation of the process as a time series evolution and
then considering the beginning of a cluster. That is, when the process enters in the observable
state of interest. Stationarity lets us fix this entrance at any position in the time scale.

Definition 3. Let Ea = {X−p(Ua) ≤ a,X0 > a} the entering to the exceedance to a. We
define the mean cluster size to the expectation of Na

EEa
(Na).

Note that in the first one we know that at time 0 we have an exceedance but do not know if a
cluster of such exceedance could have been initiated earlier, while in the second one we know
that the occurrence at time 0 was the beginning of a cluster.

4.2. Computations. In this section we proceed to compute the clustering parameters defined
in the previous section, to illustrate the already mentioned different behaviours.

4.2.1. The Smith’s model. We are going to consider first the case of an excedance to a level a
and then the case of hitting a cylinder of at least size n.
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Exceedances

Consider an exceedance of a level a, and let us compute the clustering parameters associated
to this event. We begin with the escape probability. Since in our examples two exceedances
can occur immediately one after the other, we get p(Ua) = 1. Thus we compute

θ1(a) =
P(X0 > a,X1 ≤ a)

P(X0 > a)
.

Recall that by (4), one has ν = 2. The denominator is computed using (6) and (7) so that
P(X0 > a) =

∑

j>a pj which gives that in this model ga = ea. The numerator follows
by noticing there is a regeneration at time 1 and then the future and the past becomes
conditionally independent. That is, first {X0 > a,X1 ≤ a} = {X0 > a,R1,X1 ≤ a}. It follows
that

P(X0 > a,X1 ≤ a) = P(R1)P(X0 > a|R1)P(X1 ≤ a|R1).

Since the distribution of X0, conditioned to a regeneration at the origin, is the distribution of
Z0 we get

P(X0 > a|R1) = ea :=
∑

j>a

pj, and P(X1 ≤ a|R1) = 1− ea.

We obtain θ1(a) = (1 − ea)/2. The limiting extremal index equals 1/2 as stated in Smith’s
work [18].

We compute now the mean cluster size and then the mean sojourn time. In the first case one
can establish the following equation according to whether or not one chooses a block of size
one

EEa
(Na) =

∑

j>a

(

1 + ER1(N
(1)
a )
) j − 1

j

pj
ga

+
∑

j>a

(

j + 1 + ERj+1(N
(j+1)
a )

) 1

j

pj
ga

= 2 + ER0(Na).

Here N
(j)
a ) stands for the cluster size starting to count at j instead of 0. The second equality

follows by stationarity.

Now, a recursive relation can be established for x = ER0(Na). Decomposing the future in
choosing or not the symbol a, and if so, in the length of the first block, we can equate

x =
∑

j>a

(1 + x)
j − 1

j
pj +

∑

j>a

(j + 1 + x)
1

j
pj +O(1−

∑

j>a

pj).

Solving this equation one gets x = 2ea/(1 − ea), and therefore EEa
(Na) = 2/(1 − ga) which

is the reciprocal of the finite escape probability. This holds even when the expectation of the
limiting distribution of the cluster size equals one.

For the mean sojourn time we will use (18). To that, we need first the second moment
EE(N

2
a ). We write Na as the length of the first block plus the length of the cluster after the

next regeneration

Na = F +G

where

F = inf{ξj | ξj ≥ 1},
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and

G = inf{ξj | ξj > F} − F.

With this, since F and G are independent and by stationarity

EE(N
2
a ) = EE(F

2
a ) + 2EE(F )ER0(Na) + ER0(N

2
a ). (9)

Direct computations give

EE(F ) = 2, EE(F
2
a ) =

1

ea

∑

j>a

(j + 3)pj = 4,

and

ER0(Na) =
2ea

1− ea
and ER0(N

2
a ) = 2

ea(ea + 1)

(1− ea)2
.

We conclude then that

EUa
(Na) =

θ1(a)

2
(6 +O(ea)),

which converges to 3/2 as a grows while the expected cluster size converges to 2.

Hitting to cylinders

Consider the infinite sequence a = (a, a, a, ...) consisting only by the symbol a. For large n,
visits to the first n symbols of a are exceedances of the level corresponding to coincidences of
the process with a. We are going to compute the extremal index θ for exceedances of level
the corresponding to n coincidences and then we consider the asymptotics on n. The period
of {Xn−1

0 = a} is 1. Thus, we are going firstly to obtain the escape probability θ1(n). Namely

θ1(n) =
P(Xn−1

0 = a,Xn 6= a)

P(Xn−1
0 = a)

.

As in the previous case, we consider the numerator and the denominator separately. By
reversibility and conditioning on the regeneration, the numerator is equal to

1

2
P(X1 6= a|R0)P(X

n−1
0 = a|R0).

The first factor to compute is just 1−pa. For the second one, put p = pa/a and q = pa(a−1)/a.
Since one put immediately after the regeneration, either a block of length 1 or a+ 1, one can
construct the recursive equation

P(Xn−1
0 = a|R0) = qP(Xn−2

0 = a|R0) + pP(X
n−(a+2)
0 = a|R0), (10)

which has characteristic polynomial

xa+1 − qxa − p = xa(x− q)− p.

From the last expression it follows that, for a odd, it has two roots r1, r2 positive and negative
respectively with 0 ≤ −r2 < r1 < 1 and thus the solution of the recursion takes the form

P(Xn−1
0 = a|R0) = K1r

n
1 +K2(n)r

n
2 , (11)

with K1 a constant (on n) and K2(n) a polynomial of degree a − 1. For a even, it has only
one root 0 < r1 < 1 and so the solution of the recursion takes the form

P(Xn−1
0 = a|R0) = K1r

n
1 . (12)
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In either case, the leading term is the first one. Now we compute the denominator, the
stationary measure of an. We decompose it with respect to the previous occurrence of a
regeneration. Namely, it is equal to

1

2

a
∑

j=0

P(Wj,X
n−1
−j = a|Wj).

The first term has just been computed. For the remaining term, since there is no regeneration
at time 0, the first block (the one immediately after the regeneration at −j) has to have size
a+ 1. Therefore, for 1 ≤ j ≤ a

P(Wj ,X
n−1
−j = a|Wj) = pP(Xn−1

−j+a+1 = a|R−j+a+1) = pP(Xn−2+j−a
0 = a|R0).

The second equality follows by stationarity. The last expression is the one already obtained.
We conclude that

µ(an) =
1

2



P(Xn−1−j
0 = a|R0) + p

a
∑

j=1

P(Xn−1−j
0 = a|R0)



 (13)

=
1

2
K1r

n
1



1 +
p

ra

a−1
∑

j=0

rj1



+ o(rn1 ). (14)

A direct calculation using the fact that r is the root of the characteristic polynomial gives
that the factor between brackets is equal to

1− pa
ra(1− r)

.

Finally, we get

θ−1
n ≈ 1

1− r
.

Now we compute the expectation of the cluster size. It can be easily derived from the condi-
tional measure of an derived in (11) and (12)

EE(Na) =

∞
∑

j=0

P(Xn−1+j
0 = a|R0)

P(Xn−1
0 = a|R0)

=

∞
∑

j=0

rj =
1

1− r
.

Observe that the sojourn distribution is geometric and this example shows how the cluster
and sojourn size coincide in this case.

4.2.2. The block model. As before, we consider first the case of exceedences of the level a and
then the case of hitting a sequence of at least size n.

Exceedances

Consider an exceedance of a level a, We still have in this case p(Ua) = 1. As in the Smith’s
model, we compute θ1(a) = P(X0 > a,X1 ≤ a)/P(X0 > a). Similarly to that case,

µ(j) =
jpj
ν

, P(X0 > a) = ga =

∑

j>a jpj

ν
and ν =

∑

j≥1

jpj .
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For the numerator P(X0 > a,X1 ≤ a) = µ(R1)PR1(X0 > a,X1 ≤ a). It follows that

P(X0 > a,X1 ≤ a) =
1

ν
ea(1− ea),

where we recall that ea =
∑

j>a pj. Thus θ1(a) = ea(1 − ea)/ga, and the limiting extremal
index is equal to zero.

Now, we compute the mean of the cluster size of exceedances of a. Entering Ua means
that a regeneration has just occurred. Recall that by construction of the process, one puts
blocks of length a of level a. The first one is mandatory by the initial condition. Thus
EE(Na) =

ga
ea

+ ER0(Na). The recursion for the last expectation is

x =
∑

j>a

(j + x)pj +O(1− ea),

which gives x = ga/(1− ea). Then, it follows a geometric number of blocks with random size,
but larger than a.

EE(Na) =
ga
ea

+
ga
ea

ea
(1− ea)

=
ga

ea(1− ea)
,

which is the reciprocal of the escape probability. Even though, the distribution of Na, as a
diverges, does not even converge to a limiting distribution. Actually, the cumulative distri-
bution PE(Na ≤ k) converges pointwise to zero for all k, which means the reciprocal of the
mean size does not even exist and one can not compare with the extremal index in the limit.
Despite of this, they are equal for the finite case. The reason is clear, there is a mass escape
in the distribution of the Na’s, they are not uniformly bounded by an integrable function and
the Dominated Convergence Theorem does not hold. The lack of tightness is at the core of
the construction. Taking the limit of the expectation and not the expectation of the limit
should be the recipe for relating it to the extremal index.

To compute the mean sojourn time, as in the Smith’s model we use formula (18), in the
appendix. Thus we first compute

EE(F ) =
ga
ea
, EE(F

2
a ) =

1

ea

∑

j>a

j2pj.

And further

ER0(Na) =
ga
ea

ea
1− ea

, ER0(N
2
a ) =

ga
ea

ea(ea + 1)

(1− ea)2
.

Using again Lemma (7), we obtain that

EUa
(Na) = O

(

∑

j>a j
2pj

ga

)

which differs from the expected cluster size.

Hitting to cylinders
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Take yet the infinite sequence a = (a, a, a, ...). Still in this model p(Un) = 1. Let us compute
the escape probability

θ1(n) = P(Xn 6= a|Xn−1
0 = a) = 1− µ(an+1)

µ(an)
.

It is suffice therefore to compute µ(an). To do that we condition in the last occurrence of a
regeneration of the process before X0 = a. Since the process repeats a times the symbol a,
this regeneration cannot go further than a coordinates before 0. Thus

µ(an) = P(Xn−1
0 = a) =

a−1
∑

j=0

P(Xn−1
−j = a|R−j)P(R−j).

Now, for 0 ≤ j ≤ a− 1, write

n+ j =

⌈

n+ j

a

⌉

a− sn+j, 0 ≤ sn+j ≤ a− 1. (15)

By construction of the process

P(Xn−1
−j = a|R−j) = p

⌈n+j

a ⌉
a . (16)

We conclude that

µ(an) =
1

ν

a−1
∑

j=0

p
⌈n+j

a ⌉
a =

p
⌈n

a ⌉
a

ν
[sn + 1 + (rn − 1)pa] .

Therefore θ1(n) is equal to

1− sn + rnpa
sn + 1 + (rn − 1)pa

=
1− pa

sn + 1 + (rn − 1)pa
.

Thus, the extremal index, as a limit, does not exist since sn runs cyclically between 0 and
a− 1.

We now estimate the mean of the distribution of consecutive observations of the target se-
quence an. Set E = {X−1 6= a,Xn−1

0 = a}. We use again the unconventional Euclidean form
(15) and get

µE(Nn ≥ k) =

{

1 if 1 ≤ k ≤ sn + 1,
pℓa if ℓa+ sn + 1 < k ≤ (ℓ+ 1)a+ sn + 1, ℓ ≥ 1.

We conclude that the distribution of Nn does not converge to a limit distribution in n. Further,
since a new block of size a is chosen with probability pa, we can establish the following equation

EE(Nn) = (EE(Nn) + a)pa + (sn + 1)(1 − pa).

It follows that
EE(Nn) = sn + 1 +

apa
1− pa

.

Now, sn does not have limit as n diverges. Thus EE(Nn) does not have a limit in n. However
it is easy to verify the identity

1

EE(Nn)
= θ1(n) .

Let us consider the mean sojourn time. In this case

EE(F ) = sn + 1, EE(F
2
a ) = (sn + 1)2,
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and

ER0(Na) = a
pa

1− pa
, ER0(N

2
a ) = a

pa(pa + 1)

(1− pa)2
.

Using (18), one can derive an expression for the mean sojourn time. Even though a is fixed
and one consider asymptotics in n, it is interesting in particular to consider the case of large
a for which apa is small. In that case

EE(Na) ≈ sn + 1 and EUa
(Na) ≈

sn
2

+ 1.

5. Extremal vs. Escape

O’Brien’s formula defines the extremal index as a function of a suitable number q = o(µ(A)−1)

and then putting θ = θq = P(A(q)|U). This formula was also obtained independently for the
exponential law for hitting/return times in [1, 2]. The precise value of q to be taken depend
on the properties of decay of correlations of the process and on the observable itself. In
general, the larger is q, the more difficult is to compute θq. The lemma below establishes
that in the general model we considered, and for any observable level or cylinder set Ua, any
q = o(P(Ua|R0)

−1) can be taken, and thus one can chose the minimum possible, which is the
period of the observable.

Lemma 4. Consider the regenerative process defined in section 2. Consider the level a ∈ N.
The following inequality holds for all q ∈ N

∣

∣

∣

∣

1− θq
θ1

∣

∣

∣

∣

≤ qP(Ua|R0).

Remark 5. The monotonicity of θq as a function of q and the lemma above establish that
the θq’s are equivalent in ratio for all q = o(P(Ua|R0)

−1). In particular, this shows that the
parameter λUa

in the exponential law of the hitting/return time of Ua can be replaced by θ1.

Proof of Lemma 4. Since p(Ua) = 1 consider

θ1 =
P(X0 > a,X1 ≤ a)

P(X0 > a)
and θq =

P(X0 > a,∩q
j=1Xj ≤ a)

P(X0 > a)
.

The difference of the probabilities in the numerators is equal to

P(X0 > a,X1 ≤ a,∪q
j=2Xj > a).

Making a disjoint partition of the union in the above probability as a function of the second
excedance we get that it is equal to

P(X0 > a,X1 ≤ a)

q
∑

j=2

P

(

j−1
⋂

i=2

Xi ≤ a,Xj > a|X0 > a,X1 ≤ a

)

.

Since there must be a regeneration at time j, the leading term can be factorized as

P(

j−1
⋂

i=2

Xi ≤ a,Rj |X0 > a,X1 ≤ a)P(Xj > a|Rj) . (17)

The left-most factor is bounded simply by one. The second one is equal to P(X0 > a|R0,
independently of j, by stationarity. This concludes the proof of the lemma. �
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Exemple 6. Consider first the case of exceedances of the level a by the process. Then P(X0 >
a|R0) is equal to ea. For the case of cylinders an one has P(X0 > a|R0) = O(Kn) for a
constant 0 < K < 1. For a general cylinder an−1

0 the same proof holds when changing θ1 by
θp(an−1

0 ).

Sharpness. Instead of bounding the left-most factor in (17) by one, we can compute it exactly,
at least in some cases. Suppose the Xi’s are independent random variables. In this case, it
becomes equal to (1− pa)

j−2. summing up to q we obtain 1− (1− pa)
q/pa. The denominator

cancels with pa coming from µ(Xj > a|Rj). For large a, one has 1− (1 − pa)
q ≈ 1− exp−paq

which for moderate q is approximated by qpa. Thus, we obtain the order of magnitude of the
upper bound given by the lemma. This means that the lemma cannot be improved. Only a
better constant may be obtained depending on the ad-hoc properties of the process.

Further, the upper bound for the approximation of θq by θ1 is almost trivial to compute. For

the exceedances, in both models, P(X0 > a|R0) = ea. In the case of hitting to {Xn−1
0 = a},

one gets P(Xn−1
0 = a|R0) = p

⌈n/a⌉
a for the block model. For the Smith model, its exponential

decay on n was already computed in (11) and (12) .

6. appendix

The following lemma establishes a general tool for computing the expected sojourn time.

Lemma 7. The mean sojourn time verifies

EUa
(Na) =

θ1(a)

2

(

EE(N
2
a ) + EE(Na)

)

. (18)

Proof. Put

EUa
(Na) =

1

P(Ua)

∞
∑

k=1

kP(∩k−1
j=0Xj > a,Xk ≤ a). (19)

A classical equality for a stationary measure establishes that for all k

P(∩k−1
j=0Xj > a,Xk ≤ a) = P(X0 ≤ a,∩k

j=1Xj > a). (20)

Let Y = max{k ≥ 1 | ∩k
j=1 Xj > a}. Then the last sum can be stated as

∞
∑

k=1

kP(X0 ≤ a, Y ≥ k).

Now notice that, since Y ≥ 1 and calling E = {X0 ≤ a,X1 > a}, one has

E(Y 2|E) =

∞
∑

k=1

(2k − 1)P(Y ≥ k|E).

Thus it follows that the right hand side of (19) is

P (E)

P(Ua)

E(Y 2|E) + E(Y |E)

2
.

By (20) with k = 1 one gets E = {X0 > a,X1 ≤ a} and this ends the proof.

�
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