
MODULI OF STABILITY FOR HETEROCLINIC CYCLES1

OF PERIODIC SOLUTIONS2
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Abstract. We consider C2 vector fields in R3 with an attracting heteroclinic cycle between
two periodic hyperbolic solutions with real Floquet multipliers. The proper basin of this
attracting set exhibits historic behavior and from the asymptotic properties of its orbits
we obtain a complete set of invariants under topological conjugacy in a neighborhood of
the cycle. As expected, this set contains the periods of the orbits involved in the cycle, a
combination of their angular speeds, the rates of expansion and contraction in linearizing
neighborhoods of them, besides information regarding the transition maps and the transition
times between these neighborhoods. We conclude with an application of this result to a class
of cycles obtained by the lifting of an example of R. Bowen.

1. Introduction4

In the study of dynamical systems it has long been of interest to identify systems that5

display similar behavior in the sense that their phase diagrams look qualitatively the same.6

For continuous systems ẋ = f(x) given by some vector field f , this amounts to deciding under7

what conditions the flows generated by two different vector fields are topologically equivalent8

or even conjugate. In particular, it is desirable to find quantities of the system that are9

invariant under topological conjugacy and, moreover, fully characterize conjugacy classes of10

systems through a (minimal) number of these quantities. Such a collection is then called a11

complete set of invariants.12

In the context of heteroclinic dynamics, significant contributions to this type of question13

have been made by several authors. We briefly review the invariants under conjugacy that14

have been found for: (a) heteroclinic connections between equilibria; (b) attracting hetero-15

clinic cycles between equilibria; and (c) heteroclinic connections associated to one periodic16

solution. As far as we know, the description of complete sets of invariants for attracting17

heteroclinic cycles associated to periodic solutions has not yet been done.18

For heteroclinic connections, Dufraine [7], building on the work of Palis [14], considers one-19

dimensional heteroclinic connections between two hyperbolic equilibria on a three-dimensional20

manifold, each with one real and one pair of complex conjugated eigenvalues. He finds a set of21
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invariants involving two quantities: the ratio of the real parts of the complex eigenvalues, and1

an expression combining this ratio with their imaginary parts. Bonatti and Dufraine [4] go on2

to extend this result to obtain a complete characterization of such a heteroclinic connection3

up to topological equivalence. Higher dimensional heteroclinic connections between equilibria4

are analyzed in a similar way by Suśın and Simó [18].5

Takens [20] provides analogous investigations for an attracting heteroclinic cycle with two6

one-dimensional connections between hyperbolic equilibria, this time with only real eigenval-7

ues. Under the assumption that the transitions between suitable cross sections to the cycle8

is instantaneous and the global maps are linear, he finds a complete set of three invariants9

that are intuitively compatible with the ones mentioned above: two ratios of eigenvalues as10

found by Palis [14], plus an expression relating these to properties of the global transition11

map. Completeness is proved by constructing a conjugacy based on asymptotic properties of12

Birkhoff time averages – a technique we also use in this paper.13

Carvalho and Rodrigues [5] consider a Bykov attractor – a heteroclinic cycle between two14

hyperbolic equilibria on a three-dimensional sphere with a one-dimensional connection as in15

[7] and a two-dimensional connection as in [18] between them. Extending the argument of16

[20], they find a complete set of four invariants for this situation, namely a combination of17

the angular speeds of the equilibria, the rates of expansion and contraction in linearizing18

neighborhoods of them, besides information regarding the transition maps between these19

neighborhoods. See their paper also for a more detailed overview of the previous results that20

we mentioned here only briefly.21

Beloqui [3] considers a one-dimensional connection between a saddle-focus equilibrium and
a periodic solution and derives an invariant under conjugacy. More precisely, Beloqui studies
a heteroclinic connection associated to a saddle-focus p (with eigenvalues −Cp ± iω and Ep)
and a periodic solution P (with minimal period ℘ and real Floquet exponents CP and EP
such that |CP | < 1 and |EP | > 1) and shows that

Cp

ωEP
is a topological invariant. By a similar

argument but under additional assumptions, Rodrigues [15] obtains a new invariant, given by

1

EP + Cp

(
ωEP +

2π

℘
Cp

)
.

Our contribution lies in combining and extending techniques used in the previous works to22

address the question of complete sets of topological invariants for attracting heteroclinic cycles23

with two-dimensional connections between two hyperbolic periodic solutions with real Floquet24

multipliers (called “PtoP” cycle). From the asymptotic properties of the orbits, the transition25

maps and the transition times between linearizing neighborhoods of the periodic solutions,26

we obtain a complete set of invariants under topological conjugacy in the basin of attraction27

of the cycle. Unsurprisingly, the eight invariants we find include the two minimal periods of28

the periodic solutions; the other six are closely related to those found in earlier works. They29

reduce to those found in [5] under the assumptions therein on the global transitions (which30

we are able to loosen here).31

While our results are primarily of interest in terms of further understanding and classify-32

ing heteroclinic behavior from an abstract point of view, heteroclinic cycles between periodic33

solutions appear in several models of real-life systems: for instance, Zhang, Krauskopf and34

Kirk [22] consider a four-dimensional model for intracellular calcium dynamics where a codi-35

mension one “PtoP” cycle between two periodic solutions appears. Their setup differs from36

our situation, though, by one of the connections being one-dimensional.37
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This paper is structured as follows. In Sections 2 and 3 we introduce the setting and1

establish some notation. Section 4 states our main result, giving a complete list of invariants2

under topological conjugacy for a “PtoP” heteroclinic cycle. In Sections 5 and 6 we analyze3

the local and global dynamics near the cycle as well as the hitting times of the trajectories4

attracted to it. The proof of our main theorem is spread over Sections 7 and 8, where we5

derive the invariants and prove that they indeed form a complete set. We conclude with6

an example in Section 10, obtained by the lift of a well-known system studied in [20] and7

attributed to Bowen.8

2. The setting9

We consider C2 vector fields f : S3 → TS3 on the unit sphere S3 and the corresponding10

differential equations ẋ = f(x) subject to initial conditions x(0) = x0 ∈ S3. We will assume11

that f has the following properties:12

(P1) There are two hyperbolic periodic solutions C1 and C2 of saddle-type, with minimal13

periods ℘1 and ℘2, within which the flow has constant angular speed ω1 > 0 and14

ω2 > 0, respectively. The Floquet multipliers of C1 and C2 are real and given by15

eE1 > 1 and e−C1 < 1 for C1
eE2 > 1 and e−C2 < 1 for C2

where C1 > E1 and C2 > E2.16

(P2) The stable manifoldsW s
loc(C1), W s

loc(C2) and the unstable manifoldsW u
loc(C1), W u

loc(C2)17

are smooth surfaces homeomorphic to a cylinder.18

(P3) For every j ∈ {1, 2}, each connected component of W u(Cj) \ {Cj} coincides with a19

selected connected component of W s(C(j+1)mod 2) \ {C(j+1)mod 2}.20

The two periodic solutions C1 and C2 and the set of trajectories referred to in (P3) build a21

heteroclinic cycle we will denote hereafter by H. The assumptions (P1) and (P3) ensure that22

H is asymptotically stable (cf. [9, 10]), that is, there exists an open neighborhood V 0 of H23

in R3 such that every solution starting in V 0 remains inside V 0 for all positive times and is24

forward asymptotic to H. This open set V 0 is part of the basin of attraction of H, which we25

denote by B(H).26

Following the strategy adopted in [20, 5], we will select cross sections (submanifolds of27

dimension two) inside linearizing neighborhoods of the periodic solutions (see Section 5 for28

more details) and assume that, in appropriate coordinates, we have:29

(P4) The transition maps are linear with diagonal and non-singular matrices given by30  1 0 0
0 a 0
0 0 b

 and

 1 0 0
0 c 0
0 0 d

 with a, c > 0, 0 < b, d ≤ 1.31

(P5) The transition times between these cross sections are non-negative constants, say s132

and s2, not necessarily equal.33

(P6) The periodic solutions C1 and C2 have the same chirality. This means that near C1 and34

C2 all solutions turn in the same direction around the two-dimensional connections35

W u(C1) and W u(C2). This is a reformulation of the concept of similar chirality of two36

equilibria proposed in Section 2.2 of [11].37
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We denote by Xr
PtoP(S

3) the set of Cr, r ≥ 2, smooth vector fields in S3 which satisfy the1

assumptions (P1)–(P6), endowed with the Cr-Whitney topology.2

3. Background material3

For the reader’s convenience, we include in this section some definitions, notation and4

preliminary results.5

3.1. Invariants under conjugacy. Given two vector fields ẋ = f1(x) and ẋ = f2(x), defined6

in domainsD1 ⊂ S3 andD2 ⊂ S3, respectively, let φi(t, x0) be the unique solution of ẋ = fi(x)7

with initial condition x(0) = x0, for i ∈ {1, 2}. The corresponding flows are said to be8

topologically equivalent in subregions U1 ⊂ D1 and U2 ⊂ D2 if there exists a homeomorphism9

h : U1 → U2 which maps solutions of the first system onto solutions of the second preserving10

the time orientation. If h is also time preserving, that is, if for every x ∈ S3 and every11

t ∈ R, we have φ1(t, h(x)) = h(φ2(t, x)), the flows are said to be topologically conjugate and12

h is called a topological conjugacy. A set of invariants under topological conjugacy is said to13

be complete if, given two systems with equal invariants, there exists a topological conjugacy14

between the corresponding flows.15

3.2. Terminology. Given a compact, flow-invariant set K ⊂ S3, its basin of attraction B(K)
is the set of points eventually attracted to K, that is,

B(K) :=
{
x ∈ S3 : ω(x) ⊂ K

}
where ω(x) stands for the ω-limit set of the trajectory of x.16

We are especially interested in the case where K is a heteroclinic cycle. Let ξ1 and ξ217

be hyperbolic invariant sets. We say that there is a heteroclinic connection from ξ1 to ξ2 if18

W u(ξ1)∩W s(ξ2) ̸= ∅. Note that this intersection may contain more than one trajectory and be19

of dimension greater than one. If there exist finitely many invariant hyperbolic sets ξ1, . . . , ξk20

and cyclic heteroclinic connections between them, namely W u(ξi) ∩W s(ξi+1) ̸= ∅ for every21

i ∈ {1, · · · , k−1} andW u(ξk)∩W s(ξ1) ̸= ∅, then the union of all sets and connections is called22

a heteroclinic cycle. The sets ξi may be equilibria, periodic solutions or more complicated23

invariant sets.24

3.3. Constants. For future use, we settle that:

R1 =
ω1 ℘1

2π R2 =
ω2 ℘2

2π γ1 =
C1
E2

γ2 =
C2
E1

δ1 =
C1
E1

δ2 =
C2
E2

δ = δ1 δ2

τ1 =
1
E1

(1 + γ1) τ2 =
1
E2

(1 + γ2).

According to the assumptions, we have τ1, τ2 > 0, δ1 > 1 and δ2 > 1. Notice also that25

τ1 =
1

E1
(1 + γ1) =

C1 + E2

E1E2

τ2 =
1

E2
(1 + γ2) =

E1 + C2

E1E2

δ = γ1 γ2 = δ1 δ2 =
C1C2

E1E2
.
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4. Main result1

We now state the main theorem of this work. In Section 10 we apply it to an example.2

Theorem A. Let f ∈ Xr
PtoP(S

3), r ≥ 2. Then{
℘1, ℘2, γ1, γ2, ω1 + γ1ω2, ω2 + γ2ω1, −

1

E1
log d+ (s1 − γ1s2), −

1

E2
log b+ (s2 − γ2s1)

}
is a complete set of invariants for f under topological conjugacy in a neighborhood of the3

heteroclinic cycle H.4

The orbits of all points in the proper basin of attraction of H exhibit historic behavior,5

a terminology introduced by Ruelle in [17]. This means that there exists a continuous map6

G : S3 → R whose sequence of Birkhoff time averages along each orbit in B(H) \ H does not7

converge. Clearly, in the particular configuration of an attracting heteroclinic cycle between8

two periodic solutions C1 and C2, the ω-limit of the orbits starting in B(H) \ H includes the9

disjoint closed sets C1 and C2. In addition, the assumption (P1) on the values of C1, C2, E110

and E2 and the fact that the time these orbits spend near each one of the periodic solutions11

C1 and C2 is well distributed allow us to find such a map G. A proof of this fact may be read12

on the pages 1889-1891 of [12].13

Observe that, if we assume that s1 = s2 = 0 (that is, both transitions are instantaneous),
then the complete set of invariants reduces to{

℘1, ℘2, γ1, γ2, ω1 + γ1ω2, ω2 + γ2ω1,−
1

E1
log d, − 1

E2
log b

}
a set which generalizes the ones found in [20] and [5].14

At the end of the paper the reader will gather convincing evidence that the essential steps15

of the proof of Theorem A may be applied to attracting heteroclinic cycles between more16

than two hyperbolic periodic solutions, although the computations may be unwieldy. We17

conjecture that no qualitatively different invariant will arise within this more general setting.18

Regarding attracting homoclinic cycles associated to a periodic solution, see Section 9.19

5. Local and global dynamics in B(H)20

We will start defining two disjoint compact neighborhoods V1 and V2 of the C1 and C2,21

respectively, such that each boundary ∂Vj is a finite union of smooth submanifolds (with22

boundary) which are transverse to the vector field.23

5.1. Local coordinates. For j ∈ {1, 2}, let Sj be a cross section transverse to the flow at24

a point Pj of Cj . As Cj is hyperbolic, there is a neighborhood V∗
j of Pj in Sj where the first25

return map to Sj , denoted by πj , is C1 conjugate to its linear part (the eigenvalues of the26

derivative Dπj(Pj) are precisely eEj > 1 and e−Cj < 1). Moreover, for each r ≥ 2 there is an27

open and dense subset of R2 such that, if Cj and Ej lie in this set, then the conjugacy is of28

class Cr (cf. [19]). The vector field associated to this linearization around Cj is represented29

by the system of differential equations given, in cylindrical coordinates (ρ, θ, z), by30 
ρ̇ = −Cj (ρ−Rj)

θ̇ = ωj

ż = Ej z
(5.1)

where Rj =
ωj℘j

2π , whose solution with initial condition (Rj + k, θ0, z0), for −ε ≤ k ≤ ε, is31
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t ∈ R 7→


ρ(t) = Rj + k e−Cj t

θ(t) = θ0 + ωj t mod 2π.
z(t) = z0 e

Ej t

(5.2)

and whose flow is C2-conjugate to the flow of f in a neighborhood of Cj . Unless there is risk1

of misunderstanding, in what follows we will drop the label mod 2π when referring to the2

variable θ. In these cylindrical coordinates,3

(a) the periodic solution Cj is the circle described by ρ = Rj and z = 0;4

(b) the local stable manifold W s
loc(Cj) of Cj is the plane defined by z = 0;5

(c) the local unstable manifold W u
loc(Cj) of Cj is the cylindrical surface defined by ρ = Rj .6

See the illustration in Figure 1.7




W   (C)s
loc

W   (C)  u
loc

2

εε

Out  (C)+

Out  (C)-

W   (C)  u
loc

In  (C)+

In  (C)-

Figure 1. Local data near a periodic solution C.

We will analyze the dynamics inside a cylindrical neighborhood Vj(ε) of Cj , for some ε > 0,
contained in the saturation of V∗

j by the flow and given by

Vj(ε) =
{
(ρ, θ, z) : 0 < Rj − ε ≤ ρ ≤ Rj + ε, θ ∈ [0, 2π[, −ε ≤ z ≤ ε

}
.

When there is no risk of confusion, we will write Vj instead of Vj(ε). For j ∈ {1, 2}, each Vj ,8

called an isolating block for Cj , is homeomorphic to a hollow cylinder whose boundary is the9

union ∂Vj = In(Cj) ∪Out(Cj) ∪∆(Cj) satisfying the following conditions:10
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(1) In(Cj) is the union of the walls of Vj , that is,

In(Cj) =
{
(ρ, θ, z) : ρ = Rj ± ε, θ ∈ [0, 2π[, |z| ≤ ε

}
with two connected components which are locally separated by W u(Cj). In cylindrical
coordinates, In(Cj) ∩W s(Cj) is the union of the two circles in Vj , namely

In(Cj) ∩W s(Cj) =
{
(ρ, θ, z) : ρ = Rj ± ε, θ ∈ [0, 2π[, z = 0

}
.

Forward trajectories starting at In(Cj) go inside Vj .1

(2) Out(Cj) is the union of two annuli, the top and the bottom of Vj , that is,

Out(Cj) =
{
(ρ, θ, z) : Rj − ε ≤ ρ ≤ Rj + ε, θ ∈ [0, 2π[, z = ±ε

}
with two connected components which are locally separated by W s(Cj). The intersec-
tion Out(Cj) ∩W u(Cj) is precisely the union of the two circles in Vj given by

Out(Cj) ∩W u(Cj) =
{
(ρ, θ, z) : ρ = Rj , θ ∈ [0, 2π[, z = ±ε

}
.

Backward trajectories starting at Out(Cj) go inside Vj .2

(3) The vector field is transverse to ∂Vj at all points except possibly at the circles ∆(Cj) =3

In(Cj) ∩Out(Cj), parameterized by ρ = Rj ± ε and z = ±ε.4

Denote by In+(Cj) the intersection of In(Cj) with ρ = Rj + ε, and let Out+(Cj) be the5

intersection of Out(Cj) with z = ε. More precisely,6

In+(Cj) =
{
(ρ, θ, z) : ρ = Rj + ε, θ ∈ [0, 2π[, −ε ≤ z ≤ ε

}
(5.3)

Out+(Cj) =
{
(ρ, θ, z) : Rj − ε ≤ ρ ≤ Rj + ε, θ ∈ [0, 2π[, z = ε

}
.

5.2. Local dynamics. In this subsection we restrict the analysis to initial points of In(Cj)7

with z0 > 0 and ρ = Rj + ε. The other cases are entirely similar. Using the dynamics in8

local coordinates described by (5.2), we now evaluate the time needed by an initial condition9

(Rj + ε, θ0, z0) ∈ In+(Cj) to reach Out+(Cj).10

To estimate this time T , we have just to solve the equation

z0 e
Ej T = ε

from which we deduce that

T = − 1

Ej
log

(z0
ε

)
.

Therefore, the local map, acting inside Vj and sending In+(Cj) into Out(Cj), is given by11

Φ+
j (Rj + ε, θ0, z0) = (ρ(T ), θ(T ), z(T )) (5.4)

=

(
Rj + ε

(z0
ε

)δj
, θ0 −

ωj

Ej
log

(z0
ε

)
mod 2π, ε

)
.
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5.3. Transition maps. Denote by [C1 → C2] the component of the heteroclinic cycle H1

formed by the coincidence between W u(C1) and W s(C2). Similarly, [C2 → C1] represents the2

coincidence between W s(C1) and W u(C2). Notice that [C1 → C2] connects points with z = ε3

in V1 (respectively z = −ε) to points with ρ = R2 + ε (respectively ρ = R2 − ε) in V2.4

Notice that Out+(C1) \ [C1 → C2] has two connected components (the same holds for5

Out+(C2)) and that points in Out+(C1) near W u(C1) are mapped into In+(C2) along a flow-6

box around the connection [C1 → C2]; analogously, points in Out+(C2) near W u(C2) are7

mapped into In+(C1) along the same flow-box.8

Recall that, by Property (P4), we are assuming that both transition maps from Out±(Cj)9

to In±(Cj), for j = 1, 2, have a linear component with submatrices
[

a 0
0 b

]
from Out(C1) to10

In(C2), and
[

c 0
0 d

]
from Out(C2) to In(C1), for some 0 < b, d ≤ 1 and a, c > 0. Therefore, the11

transition maps Ψ+
12 : Out+(C1) → In+(C2) and Ψ+

21 : Out+(C2) → In+(C1) are expressed12

in cylindrical coordinates as13

Ψ+
12(ρ, θ, ε) =

(
R2 + ε, a θ mod 2π, b (ρ−R1)

)
(5.5)

and14

Ψ+
21(ρ, θ, ε) =

(
R1 + ε, c θ mod 2π, d (ρ−R2)

)
. (5.6)

Figure 2 summarizes this information.15

(   )


b

0

0

a

C2 C

(   )


d

0

0





c

1

Figure 2. Linear components of the global maps.

5.4. The first return map to In(C2). Given an initial condition (R2 ± ε, θ, z) ∈ In+(C2),16

its trajectory returns to In+(C2), thus defining a first return map17

F2 := Ψ+
12 ◦ Φ

+
1 ◦Ψ+

21 ◦ Φ
+
2 : In+(C2) → In+(C2) (5.7)
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which is as smooth as the vector field f and acts as1

2

F2(R2 ± ε, θ, z) = (R2 ± ε,Θ, Z) , (5.8)

where3

Θ = ac θ −
[
ac ω1E1 + a ω1C2

E1E2

]
log

(z
ε

)
− aω1

E1
log d mod2π

Z = b ε dδ1
(z
ε

)δ
.

If s1(X) stands for the time needed for the orbit starting at X ∈ Out(C2) to hit In(C1)4

(see Figure 3) and we choose the cross sections Out(C2) and In(C1) small enough, then the5

interval [smin, smax] is arbitrarily small, where6

smin = min
{
s1(X) : X ∈ Out(C2) ∩W u(C2)

}
smax = max

{
s1(X) : X ∈ Out(C2) ∩W u(C2)

}
.

Notice that these extreme values exist since Out(C2)∩W u(C2) is compact. Therefore, there is7

M1 > 0 such that 0 ≤ s1(X) ≤ M1 for all X ∈ Out(C2). Analogously, we define s2(X) as the8

time needed for the orbit starting at X ∈ Out(C1) to hit In(C2). Using the same argument, we9

may find M2 > 0 such that 0 ≤ s2(X) ≤ M2 for all X ∈ Out(C1). Let M = max {M1,M2}.10

We remark that, for each initial condition X0 ∈ B(H), the time spent by the piece of the11

trajectory {φ(t, X0) : t ∈ [0,T]} inside V1 ∪ V2 goes to infinity as T → +∞, while both12

transition times s1 and s2 during its sojourn outside V1 ∪ V2 remain uniformly bounded.13

Out(C  )1

In(C  )2

C
1

C
2

x

ϕ(x,s (x))1

Figure 3. Scheme for the global transition.
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6. Hitting times1

In this section we will obtain estimates of the amount of time a trajectory spends between2

consecutive isolating neighborhoods of the periodic solutions. To simplify the computations,3

we may re-scale the local coordinates in order to assume that ε = 1.4

As a trajectory approaches H, it visits a neighborhood of C1, then moves off towards a5

neighborhood of C2, comes back to the proximity of C1, and so on. During each turn it6

spends a geometrically increasing period of time in the small neighborhoods of the periodic7

solutions. More precisely, starting at the time t0 (which we may assume equal to 0) with the8

initial condition (ρ0, θ0, 1) ∈ Out+(C2), its orbit hits Out+(C1) after a time interval equal to9

t1 = s1(ρ0, θ0, 1)−
1

E1
log (d |ρ0 −R2|) (6.1)

at the point in Out+(C1) whose cylindrical coordinates are10

(ρ1, θ1, 1) = (Φ+
1 ◦Ψ+

21)(ρ0, θ0, 1) = Φ+
1 (R1 + 1, c θ0, d (ρ0 −R2))

=

(
R1 + [d(ρ0 −R2)]

δ1 , c θ0 −
ω1

E1
log [d(ρ0 −R2)] , 1

)
if ρ0 > R2;

(ρ1, θ1, 1) = (Φ+
1 ◦Ψ+

21)(ρ0, θ0, 1) = Φ+
1 (R1 − 1, c θ0, d (R2 − ρ0))

=

(
R1 − [d(R2 − ρ0)]

δ1 , c θ0 −
ω1

E1
log [d(R2 − ρ0)] , 1

)
if ρ0 < R2.

Then, the orbit goes to In+(C2) and proceeds to Out+(C2), hitting the point

(ρ2, θ2, 1) = (Φ+
2 ◦Ψ+

12)(ρ1, θ1, 1)

in Out+(C2), where11

ρ2 = R2 ± bδ2 [d|ρ0 −R2|]δ ,

θ2 = ac θ0 −
[
aω1E2 + ω2C1

E1E2

]
log |ρ0 −R2| −

[
aω1E2 + ω2C1

E1E2

]
log d− ω2

E2
log b mod 2π,

and spending in the whole path a time equal to12

t2 = t1 + s2(ρ1, θ1, 1) +

(
− 1

E2
log (b |ρ1 −R1|)

)
(6.2)

= t1 + s2(ρ1, θ1, 1)−
1

E2
log b− δ1

E2
log d− δ1

E2
log (|ρ0 −R2|).

And so on for the other time values.13

7. The invariants14

Now we will examine how the hitting times sequences generate the set of invariants we are15

looking for. Starting with a point P0 := (ρ0, θ0, 1) ∈ Out+(C2) at the time t0 = 0 (notice16

that P0 ∈ B(H)\H), we consider the sequences of times (tj)j ∈N constructed in the previous17

section and define, for each i ∈ N0 = N ∪ {0}, the sequences of points and transition times18

19



MODULI OF STABILITY 11


P2i := φ (t2i, P0) = (ρ2i, θ2i, 1) ∈ Out+(C2)
s2i+1 := s2i+1(P0) = s1(P2i)

P2i+1 := φ (t2i+1, P0) = (ρ2i+1, θ2i+1, 1) ∈ Out+(C1)
s2i+2 = s2i+2(P1) = s2(P2i+1).

(7.1)

1

The trajectory (t ∈ R+
0 → φ(t, P0)) is partitioned into periods of time corresponding2

either to its sojourns inside V1 and along the connection [C2 → C1] (that is, the differences3

t2i+1 − t2i for i ∈ N0) or inside V2 and along the the connection [C1 → C2] (that is, t2i+2 − t2i+14

for i ∈ N0) during its travel that begins and ends at Out+(C2).5

Lemma 7.1. Let P0 = (ρ0, θ0, 1) be a point in Out+(C2) and take the corresponding sequence6

(tj)j ∈N0. Then:7

(1) (t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1
E1

log d+ (s2i+1 − γ2 s2i).8

(2) (t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = − 1
E2

log b+ (s2i+2 − γ1 s2i+1).9

(3) (t2i+2 − t2i)− δ (t2i − t2i−2) = −τ1 log d− τ2 log b+ (s2i+2 + s2i+1)− δ (s2i + s2i−1).10

Proof. Firstly, recall from (6.1) and (6.2) that11

t2i − t2i−1 = − 1

E2
log (b |ρ2i−1 −R1|) + s2i

t2i+1 − t2i = − 1

E1
log (d |ρ2i −R2|) + s2i+1.

Besides, one has12

t2i+1 − t2i = − 1

E1
log (d |ρ2i −R2|) + s2i+1 = − 1

E1
log

[
d
(
b |ρ2i−1 −R1|

)δ2
]
+ s2i+1

= − 1

E1
log d− δ2

E1
log b− δ2

E1
log (|ρ2i−1 −R1|) + s2i+1.

Therefore,13

(t2i+1 − t2i)− γ2 (t2i − t2i−1) = (t2i+1 − t2i)−
C2

E1
(t2i − t2i−1)

= − 1

E1
log d− δ2

E1
log b− δ2

E1
log (|ρ2i−1 −R1|) + s2i+1 −

− C2

E1

[
− 1

E2
log b− 1

E2
log (|ρ2i−1 −R1|) + s2i

]
= − 1

E1
log d− δ2

E1
log b+

C2

E1

1

E2
log b+

(
s2i+1 −

C2

E1
s2i

)
= − 1

E1
log d+

(
s2i+1 −

C2

E1
s2i

)
.
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The proof of item (2) of the lemma is similar. Concerning item (3), we start evaluating1

t2i − t2i−2 and t2i+2 − t2i:2

t2i − t2i−2 = − 1

E2
log (b |ρ2i−1 −R1|) + s2i−1 −

1

E1
log (d |ρ2i−2 −R2|) + s2i

= − 1

E2
log

[
b
(
d |ρ2i−2 −R2|

)δ1
]
− 1

E1
log (d |ρ2i−2 −R2|) +

(
s2i + s2i−1

)
= −

(
1

E1
+

δ1
E2

)
log d− 1

E2
log b−

(
1

E1
+

δ1
E2

)
log (|ρ2i−2 −R2|) +

(
s2i + s2i−1

)
= −τ1 log d−

1

E2
log b− τ1 log (|ρ2i−2 −R2|) +

(
s2i + s2i−1

)
;

3

t2i+2 − t2i = −τ1 log d−
1

E2
log b− τ1 log (|ρ2i −R2|) +

(
s2i+2 + s2i+1

)
= −τ1 log d−

1

E2
log b− τ1 log

[(
b (d |ρ2i−2 −R2|)δ1

)δ2
]
+

(
s2i+2 + s2i+1

)
= −τ1 log d−

1

E2
log b− τ1δ2 log

[
b (d |ρ2i−2 −R2|)δ1

]
+

(
s2i+2 + s2i+1

)
= −τ1 log d−

(
1

E2
+ τ1δ2

)
log b− τ1δ1δ2 log (d |ρ2i−2 −R2|) +

(
s2i+2 + s2i+1

)
= −τ1(1 + δ) log d−

(
1

E2
+ τ1δ2

)
log b− τ1δ log (|ρ2i−2 −R2|) +

(
s2i+2 + s2i+1

)
.

Finally, combining the two previous equalities, we obtain4

(t2i+2 − t2i)− δ (t2i − t2i−2) =

= −τ1(1 + δ) log d−
(

1

E2
+ τ1δ2

)
log b− τ1δ log (|ρ2i−2 −R2|)

+ τ1δ log d+
δ

E2
log b+ τ1δ log (|ρ2i−2 −R2|) +

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)
= −τ1 log d−

(
1

E2
+ τ1δ2 −

δ

E2

)
log b+

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)
= −τ1 log d−

1

E2
(1 + γ2) log b+

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)
= −τ1 log d− τ2 log b+

(
s2i+2 + s2i+1

)
− δ

(
s2i + s2i−1

)
.

�5

Taking into account that the sequences (s2i)i∈N and (s2i−1)i∈N are uniformly bounded, a6

straightforward computation gives additional information on the evolution of the quotients7

of the previous sequences, besides a connection between the return times sequences and the8

combinations ω1 + γ1 ω2 and ω2 + γ2 ω1.9

Corollary 7.2.10

(1) limi→+∞
t2i+2 − t2i+1

t2i+1 − t2i
= γ1.11
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(2) limi→+∞
t2i+1 − t2i
t2i − t2i−1

= γ2.1

(3) limi→+∞
t2i+2 − t2i
t2i − t2i−2

= δ.2

(4) limi→+∞
ω1 (t2i+1 − t2i)+ω2 (t2i+2 − t2i+1)

t2i+2 − t2i
= (ω1 + γ1 ω2)

1
γ1 +1 .3

(5) limi→+∞
ω2 (t2i − t2i−1)+ω1 (t2i+1 − t2i)

t2i+1 − t2i−1
= (ω2 + γ2 ω1)

1
γ2 +1 .4

Observe that

(ω1 + γ1 ω2)
1

γ1 + 1
− (ω2 + γ2 ω1)

1

γ2 + 1
= (ω1 − ω2)

1− γ1 γ2
(γ1 + 1)(γ2 + 1)

so, under assumption (P1), the invariants (ω1 + γ1 ω2)
1

γ1 +1 and (ω2 + γ2 ω1)
1

γ2 +1 are equal5

if and only if ω1 = ω2.6

From now on, and having in mind the assumption (P5) and the examples we are interested7

in (see Section 10), we will assume that there exist s1 ≥ 0 and s2 ≥ 0 such that8

s2i+1 = s1 and s2i = s2, ∀ i ∈ N ∀P0 ∈ Out+(C2). (7.2)

This way, using the previous computations, we may estimate the invariants we are looking9

for.10

Corollary 7.3. Let P0 = (ρ0, θ0, 1) be a point in Out+(C2) and take the corresponding times11

sequence (ti)i∈N0. Then:12

(1) limi→+∞ (t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1
E1

log d+ (s1 − γ2 s2).13

(2) limi→+∞ (t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = − 1
E2

log b+ (s2 − γ1 s1).14

(3) limi→+∞ (t2i+2 − t2i)− δ (t2i − t2i−2) = −τ1 log d− τ2 log b+ (s2 + s1)(1− δ).15

Thus, besides ℘1, ℘2, the values16

γ1 γ2

ω1 + γ1ω2 ω2 + γ2ω1

− 1

E1
log d+ (s1 − γ1s2) − 1

E2
log b+ (s2 − γ2s1)

are invariants under topological conjugacy. Notice that the invariant

−τ1 log d− τ2 log b+ (s1 + s2)(1− δ)

may be rewritten as a combination of − 1
E1

log d + (s1 − γ2 s2) and − 1
E2

log b + (s2 − γ1 s1)17

with coefficients that are invariants as well. Indeed, summoning the links between the several18
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constants listed in Subsection 3.3, we deduce that1 [
− 1

E1
log d+ (s1 − γ2 s2)

]
(1 + γ1) +

[
− 1

E2
log b+ (s2 − γ1 s1)

]
(1 + γ2)

= − 1

E1
log d+ s1 − γ2 s2 −

γ1
E1

log d+ γ1 s1 − γ1 γ2 s2 −
1

E2
log b+ s2 − γ1 s1

− γ2
E2

log b+ γ2 s2 − γ1 γ2 s1

=
(
− 1 + γ1

E1

)
log d+

(
− 1 + γ2

E2

)
log b+

(
s1 + s2

)(
1− γ1 γ2

)
= −τ1 log d− τ2 log b+ (s1 + s2)(1− δ).

8. Completeness of the set of invariants2

Let f and g be vector fields in Xr
PtoP(S

3), r ≥ 2, having a stable heteroclinic cycle associated3

to two periodic solutions. For a conjugacy between f and g to exist it is necessary that the4

conjugated orbits have hitting times sequences, with respect to fixed cross sections, that are5

uniformly close. Therefore, besides the numbers ℘1 and ℘2, which are well known to be6

invariants under conjugacy, the values γ1, γ2, − 1
E1

log d+(s1−γ2s2), − 1
E2

log b+(s2−γ1s1),7

ω1+γ1 ω2 and ω2+γ2 ω1 are also invariants under topological conjugacy. We are left to prove8

that they form a complete set. The argument we will present was introduced by F. Takens9

in [20] while examining Bowen’s example and, with some adjustments, used in [5] for a class10

of Bykov attractors.11

Let ℘1, ℘2, γ1, γ2, ω2+γ2ω1, ω1+γ1ω2, − 1
E1

log d+(s1−γ2s2) and − 1
E2

log b+(s2−γ1s1)12

be the invariants of f , and ℘1, ℘2, γ1, γ2, ω1 + γ1ω2, ω2 + γ2ω1, − 1
E1

log d + (s1 − γ2s2)13

and − 1
E2

log b + (s2 − γ1s1) the ones of g. Assume that they are pairwise equal. We are14

due to explain how these numbers enable us to construct a conjugacy between f and g in a15

neighborhood of the respective heteroclinic cycles Hf and Hg.16

8.1. Takens’ argument. We will start associating to f and any point P in a fixed cross17

section Σ another point P̃ whose f−trajectory has a sequence of hitting times (at a possibly18

different but close cross section Σ̃) which is determined by, and uniformly close to, the hitting19

times sequence of P , but is easier to work with. This is done by slightly adjusting the cross20

section Σ using the flow along the orbit of P . Afterwards, we need to find an injective and21

continuous way of recovering the orbits from the hitting times sequences. Repeating this22

procedure with g we find a point Q whose g−trajectory has hitting times at some cross23

section equal to the ones of P̃ . Due to the fact that the invariants of f and g are the same,24

the map that sends P to Q is the desired conjugacy.25

8.2. A sequence of adjusted hitting times. Fix P = (ρ0, θ0, z0) ∈ B(Hf ) and let (ti)i∈N0

be the times sequence defined in (7.1). We start defining, for each i ∈ N0, a finite family of
numbers

T̃
(i)

0 , T̃
(i)

1 , T̃
(i)

2 , . . . , T̃
(i)

i

satisfying the following properties26

T̃
(i)

i = Ti = t2i+2 − t2i (8.1)

T̃
(i)

j − δ T̃
(i)

j−1 = −τ1 log d− τ2 log b+ (1− δ)(s1 + s2) ∀ j ∈ {1, 2, . . . , i}.
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By finite induction, it is straightforward that, for every i ∈ N,1

T̃
(i)

0 =
Ti + (

∑i−1
j=0 δj) − τ1 log d− τ2 log b+ (1− δ)(s1 + s2)

δi
. (8.2)

Therefore, using the argument of [5], we may conclude that:2

Lemma 8.1. Let P0 = (ρ0, θ0, 1) be a point in Out+(C2) and take the corresponding sequence
(tj)j ∈N0. Then, for each i ∈ N, there exists Ji ∈ R such that

∑∞
i=1 i |Ji| < ∞ and

(t2i+2 − t2i)− δ (t2i − t2i−2) = −τ1 log b− τ2 log d+ Ji.

In addition, for every i ∈ N0, we have T̃
(i+1)

0 − T̃
(i)

0 = Ji+1

δi+1 .3

As δ > 1, the series
∑∞

j=1
Jj
δj

converges, and so the sequence
(
T̃

(i)
0

)
i∈N0

converges. Denote4

its limit by T̃0:5

T̃0 := lim
i→+∞

T̃
(i)

0 = T
(0)
0 +

∞∑
j=1

Jj
δj

= T0 +

∞∑
j=1

Jj
δj

. (8.3)

Next, for i ≥ 1, consider the sequence (T̃i)i∈N0 satisfying6

T̃i = δ T̃i−1 − τ1 log d− τ2 log b+ (1− δ)(s1 + s2) ∀ i ∈ N (8.4)

where T̃0 was computed in (8.3).7

Lemma 8.2. [5] The series
∑+∞

i=0 (Ti − T̃i) converges and limi→+∞(Ti − T̃i) = 0.8

Therefore, we may take a sequence
(
t̃2i

)
i∈N0

of positive real numbers such that9

t̃0 = 0

T̃i = t̃2i+2 − t̃2i

lim
i→+∞

(t2i − t̃2i) = 0. (8.5)

Moreover, by construction (see (8.4)) we have10

(t̃2i+2 − t̃2i)− δ (t̃2i − t̃2i−2) = −τ1 log d− τ2 log b+ (1− δ)(s1 + s2). (8.6)

After defining the sequences of even indices, we take a sequence
(
t̃2i+1

)
i∈N0

satisfying, for11

every i ∈ N0,12

t̃2i+2 − t̃2i+1 = γ1 (t̃2i+1 − t̃2i)−
1

E2
log b+ (s2 − γ1s1). (8.7)

Lemma 8.3 ([5]).13

(1) limi→+∞ (t2i+1 − t̃2i+1) = 0.14

15

(2) limi→+∞ (t̃2i+1 − t̃2i)− γ2 (t̃2i − t̃2i−1) = − 1
E1

log d+ (s1 − γ2 s2).16

17

(3) limi→+∞ (t̃2i+2 − t̃2i+1)− γ1 (t̃2i+1 − t̃2i) = − 1
E2

log b+ (s2 − γ1 s1).18

19
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As any solution of f in B(Hf ) eventually hits Out (C2), we may apply the previous con-
struction to all the orbits of f in B(Hf ). So, given any P0 ∈ B(Hf ), we take the first
non-negative hitting time of the forward orbit of P0 at Out (C2), defined by

tΣ2(P0) = min {t ∈ R+
0 : φ(t, P0) ∈ Out (C2)}.

As Out+(C2) and Out−(C2) are relative-open sets, this first-hitting-time map is continuous
with P0. Then, having fixed

P = φ(tΣ2(P0), P0) = (ρ0, θ0,±1) ∈ Out (C2)

we consider its hitting times sequence
(
t
(P )
i

)
i∈N0

and build the sequence
(
t̃

(P )
i

)
i∈N0

as1

explained in the previous section.2

Adjusting the cross sections Σ1 and Σ2 if needed, we now find a point P̃ ∈ Out (C2) in3

the f−trajectory of P whose hitting times sequence is precisely
(
t̃

(P )
i

)
i∈N0

. Notice that the4

new cross sections are close to the previous ones since the sequences (ti)i∈N0
and

(
t̃i
)
i∈N0

are5

uniformly close. We are left to show that there exists a continuous choice of such a trajectory6

with hitting times sequence
(
t̃

(P )
i

)
i∈N0

.7

8.2.1. Coordinates of P̃ . Given a sequence of times
(
t̃i
)
i∈N0

satisfying t̃0 = 0 and the8

properties established in Lemma 8.3, (8.5), (8.6) and (8.7), one may recover from its terms9

the coordinates of a point (ρ0, θ0, 1) ∈ Out+(C2) whose ith hitting time is precisely t̃i. Firstly,10

we solve the equation (see (6.1))11

t̃1 = − 1

E1
log (d |ρ0 −R2|) + s1 (8.8)

obtaining ρ0. Then, using (6.2), we get12

t̃2 = t̃1 + s2 −
1

E2
log (b |ρ1 −R1|) (8.9)

and compute ρ1. And so on, getting from such a sequence of times all the values of the13

radial coordinates (ρ2i+1)i∈N0
and (ρ2i)i∈N0

of the successive hitting points at Out+(C1) and14

Out+(C2), respectively.15

Notice that the previous computations do not depend on the angular coordinate. That is16

why nothing has yet been disclosed about θ0 from them. Concerning the evolution in R+ of17

the angular coordinates, the spinning in average inside the cylinders is given, for every i ∈ N0,18

by19

θ2i+2 − c θ2i

t̃2i+2 − t̃2i
=

(θ2i+2 − a θ2i+1) + (a θ2i+1 − c θ2i)

t̃2i+2 − t̃2i

=
ω2 (t̃2i+2 − t̃2i+1) + ω1 (t̃2i+1 − t̃2i)

t̃2i+2 − t̃2i

=
ω1 + γ1 ω2

γ1 + 1
(8.10)

(cf. Corollary 7.2). Moreover, Lemma 8.3 indicates that

θ2i+1 − c θ2i
θ2i+2 − a θ2i+1

=
ω1 (t̃2i+1 − t̃2i)

ω2

(
t̃2i+2 − t̃2i+1

) =
ω1

γ1 ω2
.
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So1

θ2i+2 − θ2i = (θ2i+2 − a θ2i+1) + (a θ2i+1 − a c θ2i) + (a c− 1) θ2i

= (θ2i+2 − a θ2i+1)

(
aω1

γ1 ω2
+ 1

)
+ (a c− 1) θ2i

= ω2 (t̃2i+2 − t̃2i+1)

(
aω1

γ1 ω2
+ 1

)
+ (a c− 1) θ2i

=
aω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) + (a c− 1) θ2i.

On the other hand, from (8.10) we get2

θ2i+2 − θ2i = (θ2i+2 − c θ2i) + (c− 1) θ2i

=
ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + (c− 1) θ2i.

Consequently,

aω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) + (a c− 1) θ2i =

ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + (c− 1) θ2i

or, equivalently,3

θ2i

(
c (a− 1)

)
=

ω1 + γ1 ω2

γ1 + 1

(
t̃2i+2 − t̃2i+1

)
− aω1 + γ1 ω2

γ1

(
t̃2i+2 − t̃2i

)
. (8.11)

Similar estimates show that4

θ2i+1 − a θ2i−1

t̃2i+1 − t̃2i−1

=
ω2 + γ2 ω1

γ2 + 1

θ2i+1 − θ2i−1 =
ω2 + γ2 ω1

γ2 + 1
(t̃2i+1 − t̃2i−1) + (a− 1) θ2i−1

θ2i+1 − θ2i−1 =
c ω2 + γ2 ω1

γ2
(t̃2i+1 − t̃2i) + (a c− 1) θ2i−1

θ2i−1

(
a (c− 1)

)
=

ω2 + γ2 ω1

γ2 + 1

(
t̃2i+1 − t̃2i−1

)
− c ω2 + γ2 ω1

γ2

(
t̃2i+1 − t̃2i

)
. (8.12)

5

From these computations the angular coordinate θ0 is uniquely determined if and only if
either a ̸= 1, in which case

θ0 =
( 1

c (a− 1)

) [ω1 + γ1 ω2

γ1 + 1

(
t̃2 − t̃1

)
− aω1 + γ1 ω2

γ1

(
t̃2 − t̃0

) ]
or c ̸= 1, in which case

θ1 =
( 1

a (c− 1)

) [ω2 + γ2 ω1

γ2 + 1

(
t̃3 − t̃1

)
− c ω2 + γ2 ω1

γ2

(
t̃3 − t̃2

) ]
is known, from which θ0 is found iterating the flow backwards.6

If a = 1 = c, we may evaluate θ2 − θ0, but all possible values θ0 ∈ [0, 2π[ are good choices7

for the angular coordinate. In particular, in this case, the invariants ω1+γ1 ω2

1+γ1
and ω2+γ2 ω1

1+γ2
are8

not used to construct the conjugacy.9
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8.3. The conjugacy. Consider linearizing neighborhoods of C1 and C2, the periodic solutions1

of g, and take a point P = (ρ0, θ0, 1) ∈ Out+(C2), the corresponding hitting times sequence2

(ti)i∈N0
at cross sections In+(C1) and Σ2, and the sequence of times

(
t̃i
)
i∈N0

obtained in3

Subsection 8.2.4

As done for f in Subsection 8.2.1, using estimates similar to (8.8), (8.9) and (8.11), we now5

find for g a unique point QP , given in local coordinates by (ρ0, θ0, 1), where6

ρ0 = R2 ± e−(t̃1−s1)E1

d

θ0 =
( 1

c (a− 1)

) [ω1 + γ1 ω2

γ1 + 1

(
t̃2 − t̃1

)
− aω1 + γ1 ω2

γ1

(
t̃2 − t̃0

) ]
if a ̸= 1

θ1 =
( 1

a (c− 1)

) [ω2 + γ2 ω1

γ2 + 1

(
t̃3 − t̃1

)
− c ω2 + γ2 ω1

γ2

(
t̃3 − t̃2

) ]
if c ̸= 1

θ0 = any value in [0, 2π[ if a = 1 = c.

The set of these points build cross sections Σ1 and Σ2 for g at which the points QP have the
prescribed hitting times

(
t̃i
)
i∈N0

by the action of g. Next, we take the map

H : P ∈ Σ2 ∩Out+(C2) 7→ QP

and extend it using the flows φ and φ of f and g, respectively: for every t ∈ R, set H(φt(P )) =7

φt(H(P )). An analogous construction is repeated for Out−(C2).8

Lemma 8.4 ([5]). H is a conjugacy.9

This ends the proof of Theorem A.10

11

9. Final remark12

The proof of Theorem A may be easily adapted to the case C1 = C2, thereby providing a
complete set of invariants for an attracting homoclinic cycle associated to a periodic solution
of a vector field in Xr

PtoP(S
3), subject to the condition (7.2). More precisely, the corresponding

complete set of invariants reduces to{
℘1, γ1, ω1, − 1

E1
log b+ s1 (1− γ1)

}
.

Regarding the construction of invariants under conjugacy for homoclinic cycles of a vector13

field, we refer the reader to [21], where Togawa analyzes a homoclinic cycle of a saddle-focus14

and shows, using a knot-like argument, that the saddle-index is a conjugacy invariant; to15

the paper [1], where Arnold et al prove that the saddle-index is in fact an invariant under16

topological equivalence; and to the work [7] whose author, in the same setting, describes a new17

invariant under conjugacy given by the absolute value of the imaginary part of the complex18

eigenvalues of the saddle-focus. The search for a complete set of invariants for more general19

homoclinic cycles associated to either a saddle-focus or a periodic solution is still an open20

problem.21
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10. An example1

In this section we present a family of vector fields in R3 satisfying properties (P1)–(P6)2

obtained from Bowen’s example presented in [20]. The latter is a C∞ vector field in the plane3

with structurally unstable connections between two equilibria. We will use the technique4

introduced in [6] and further explored in [13, 2], combined with symmetry breaking, to lift5

Bowen’s example to a vector field in R3 with periodic solutions involved in a heteroclinic cycle6

satisfying the conditions stated in Section 2.7

10.1. Lifting and its properties. The authors of [2, 16] investigate how some properties of
a Z2–equivariant vector field on Rn lift by a rotation to properties of a corresponding vector
field on Rn+1. For the sake of completeness, we review some of these properties. Let Xn be
a Z2–equivariant vector field on Rn. Without loss of generality, we may assume that Xn is
equivariant by the action of

Tn(x1, x2, ...., xn−1, y) = (x1, x2, ...., xn−1,−y).

The vector field Xn+1 on Rn+1 is obtained by adding the auxiliary equation θ̇ = ω > 0 and8

interpreting (y, θ) as polar coordinates. In cartesian coordinates (x1, ..., xn−1, r1, r2) ∈ Rn+1,9

this extra equation corresponds to the system r1 = |y| cos θ and r2 = |y| sin θ. The resulting10

vector field Xn+1 on Rn+1 is called the lift by rotation of Xn, and is SO(2)–equivariant in11

the last two coordinates.12

Given a set Λ ⊂ Rn, let L(Λ) ⊂ Rn+1 be the lift by rotation of Λ, that is,{
(x1, ..., xn−1, r1, r2) ∈ Rn+1 : (x1, . . . , xn−1, ||(r1, r2)||) or (x1, . . . , xn−1,−||(r1, r2)||) ∈ Λ

}
.

It was shown in [2, Section 3] that, if Xn is a Z2(Tn)–equivariant vector field in Rn and Xn+113

is its lift by rotation to Rn+1, then:14

(1) If p is a hyperbolic equilibrium of Xn, then L({p}) is a hyperbolic periodic orbit of15

Xn+1 with minimal period 2π
ω .16

(2) If [p1 → p2] is a k-dimensional heteroclinic connection between equilibria p1 and p217

and it is not contained in Fix(Z2(Tn)), then it lifts to a (k+1)-dimensional connection18

between the periodic orbits L({p1}) and L({p2}) of Xn+1.19

(3) If Λ is a compact Xn–invariant asymptotically stable set, then L(Λ) is a compact20

Xn+1–invariant asymptotically stable set.21

10.2. Bowen’s example. Consider the system of differential equations22 {
ẋ = −y
ẏ = x− x3

(10.1)

whose equilibria are O = (0, 0) and P± = (±1, 0). This is a conservative system, with first
integral given by

v(x, y) =
x2

2

(
1− x2

2

)
+

y2

2
.

It is easy to check that the origin O is a center. The equilibria P± are saddles with eigenvalues23

±
√
2. They are contained in the v-energy level v ≡ 1/4, and therefore there are two one-24

dimensional connections between them, one from P+ to P− and another from P− to P+, we25

denote by [P+ → P−] and [P− → P+], respectively. Let H0 be this heteroclinic cycle. The26
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open domain D bounded by H0 and containing O is filled by closed trajectories and we have1

0 ≤ v < 1/4. Notice also that the boundary of D intersects the line x = 0 at the points2

(0,±
√
2/2). See Figure 4.3

x

V(x,0)

x
.

P+
P-

Figure 4. Phase diagram of (10.1).

10.3. A perturbation of Bowen’s example. Given ε > 0, consider the following pertur-4

bation of (10.1) defined by the differential equations5 {
ẋ = −y
ẏ = x− x3 − ε y

(
v(x, y)− 1

4

)
.

(10.2)

For ε > 0 small enough, the heteroclinic cycle H0 persists, but now the ω-limit of every6

trajectory with initial condition in D \ {(0, 0)} is H0. Check these details in Figure 5.7

P+
P-

Figure 5. Bowen’s example (10.2) with ε > 0.
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10.4. The lifting of Bowen’s cycle. According to the lifting procedure described above,1

we now construct a vector field on R3 with two periodic solutions linked in a cyclic way within2

a configuration similar to the heteroclinic cycle H0 of Bowen’s example. Noticing that H03

is contained in the half plane y > −1, one rotates the phase diagram of Bowen’s perturbed4

example around the line y = −1. This transforms the equilibria P± into saddle periodic5

solutions as in (P1), and the one-dimensional heteroclinic connections into two-dimensional6

ones which are diffeomorphic to cylinders as in (P2). Meanwhile, the attracting character7

of the cycle H0 is preserved and one connected component of the stable manifold of each8

periodic solution coincides with a connected component of the unstable manifold of the other9

as demanded in (P3).10

More precisely, in the region y > −1, we may write y+1 = r2 for a unique r > 0, and with
ṙ = ẏ

2r the system of equations (10.2) takes the form{
ẋ = 1− r2

ṙ = 1
2r

[
x− x3 − ε

(
x2

2 − x4

4 + (r2−1)2

2 − 1
4

)
(r2 − 1)

]
.

Multiplying both equations by the positive term 2r2 does not qualitatively affect the phase11

portrait, thus (10.2) in the region y > −1 is equivalent to12 {
ẋ = 2r2(1− r2)

ṙ = r
(
x− x3 − ε

(
x2

2 − x4

4 + (r2−1)2

2 − 1
4

)
(r2 − 1)

)
(10.3)

in the domain r > 0. It is straightforward to check that the system of equations (10.3) for13

(x, r) ∈ R2 has the following properties:14

(1) The line r = 0 is flow-invariant.15

(2) It is Z2(Γ)–equivariant, where Γ(x, r) = (x,−r).16

This allows us to apply the lifting procedure as described above, performing the mentioned17

rotation of the phase diagram of (10.3): adding a new variable θ with θ̇ = ω, for some18

constant ω > 0 and taking Cartesian coordinates (x, r1, r2) = (x, r cos θ, r sin θ), the system19

of equations (10.3) becomes20 

ẋ = 2(1− r21 − r22)(r
2
1 + r22)

ṙ1 = r1

[
x− x3 − ε(r21 + r22 − 1)

(
x2

2 − x4

4 +
(r21+r22−1)

2 − 1
4

)]
− ωr2

ṙ2 = r2

[
x− x3 − ε(r21 + r22 − 1)

(
x2

2 − x4

4 +
(r21+r22−1)

2 − 1
4

)]
+ ωr1.

(10.4)

The equilibria P+ and P− lift to two hyperbolic closed orbits satisfying (P1), namely21

C1 :=
{
(x, r1, r2) : x = 1, r21 + r22 = 1

}
C2 :=

{
(x, r1, r2) : x = −1, r21 + r22 = 1

}
with radius R1 = R2 = 1. The Floquet multipliers of C1 and C2 are given by e

√
2 > 122

and e−
√
2 < 1 (details in [8]). Their two-dimensional stable and unstable manifolds are23

homeomorphic to cylinders and, for ε > 0 small enough, the flow of (10.4) has a heteroclinic24

cycle H as stated in (P2) and (P3).25
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Admittedly, conditions C1 > E1 and C2 > E2 of item (P1) fail, and so Krupa-Melbourne’s1

criterium of [9, 10] is no longer applicable. However, by construction, H0 is asymptotically2

stable, and so is H. As explained in Subsection 10.1, the basin of attraction of H contains3

L(D\{(0, 0)}). In what follows, fB stands for the vector field just obtained as the lifting of4

the perturbed version of Bowen’s example.5

10.5. Checking conditions (P4) and (P5) for fB. For the unlifted system (10.2), we6

may choose ε > 0 and K > 0 to define global sections7

Out(P+) =
{
(x, y) : x = 1− ε, y ∈ [0,Kε]

}
In(P−) =

{
(x, y) : x = −1 + ε, y ∈ [0,Kε]

}
and, in a similar way, the sections Out(P−) and In(P+). Therefore, the cross sections for8

(10.2) may be written as9

Out(C1) =
{
(x, r1, r2) : x = 1− ε, r21 + r22 ∈ [1, 1 +Kε]

}
In(C2) =

{
(x, r1, r2) : x = −1 + ε, r21 + r22 ∈ [1, 1 +Kε]

}
and similarly for Out(C2) and In(C1). If r1r2 ̸= 0, changing coordinates as follows

ρ ↔
√

r21 + r22 θ ↔ arctan

(
r2
r1

)
+mπ, m = 0, 1 z ↔ x

we identify (x, r1, r2) with (ρ, θ, z) as done in Section 5. Hence the transition from Out(C1)10

to In(C2) maps (ρ0, θ0, ε) to (R1 + ε, θ1, z1) = (1 + ε, θ1, z1) and is linear, with a diagonal11

matrix given in the cylindrical coordinates (ρ, θ, z) by the matrix

[
1 0 0
0 a 0
0 0 b

]
for some a > 012

and b > 0. The same argument applies to the connection [C2 → C1]. This completes the13

verification of condition (P4).14

15

In order to characterize the first return map to the cross sections of lifted system (10.4),16

we add the following assumptions to the vector field (10.3):17

(H1): There are s1 ≥ 0 and an open set U1 ⊂ Out(P+) containing W u(P+) such that the18

transition time to In(P−) of all trajectories starting in U1 is constant and equal to s1. The19

transition from U1 to In(P−) maps (1− ε, y) to (−1 + ε, b y).20

21

(H2): Analogously, there are s2 ≥ 0 and an open set U2 ⊂ Out(P−) containing W u(P−)22

such that the transition time to In(P+) of all trajectories starting in U2 is constant and equal23

to s2. The transition from U2 to In(P+) maps (−1 + ε, y) into (1− ε, d y).24

25

By construction, property (P6) is guaranteed. We now proceed to check condition (P5).26

Lemma 10.1.27

(1) For j ∈ {1, 2}, the transition times are constant on L(Uj) and equal to sj.28

(2) The angular speeds of the periodic solutions C1 and C2 are equal to ω.29

Proof. Item (1) follows from the way the lifting is carried out, ensuring that the global cross30

sections In(C1), In(C2), Out(C1) and Out(C2) are lifts by rotation of In(P+), In(P−), Out(P+)31

and Out(P−), respectively. Using (H1), if P ∈ L(U1) ⊂ Out(C1), then the transition time of32
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its trajectory to In(C2) is s1. Analogous conclusion holds for P ∈ L(U2) using (H2). Part (2)1

of the statement is a consequence of the fact that the solutions corresponding to the periodic2

solutions are parameterized by t 7→ (±1, cos(ωt), sin(ωt)). �3

Figure 6 summarizes the previous information concerning the lifted dynamics.4

P
+

P
-

C2
C

(   )d

0

0

c

1

y dy

O

Figure 6. Illustration of the properties that are conveyed from (10.3) to its lifting (10.4).

10.6. Invariants for fB. Now Theorem A applies to the heteroclinic cycle H and its basin
of attraction (which contains L(D\{(0, 0)})) of the example (10.4), indicating that the set{

ω, γ1, γ2, − 1

E1
log d+ (s1 − γ1 s2), −

1

E2
log b+ (s2 − γ2 s1)

}
is a complete family of invariants for fB under topological conjugacy in L(D\{(0, 0)}). In5

addition, for the example (10.4) we have E1 = E2 =
√
2 and γ1 = γ2 = 1. The values of the6

constants s1 and s2 depend on the chosen cross sections for the perturbed Bowen’s example.7
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