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1. INTRODUCTION

Observations that look discordant in a data set are often encountered in time series. These observations, outliers
according to Barnett and Lewis (1994), may result from gross errors in the collection or processing of the data,
or from non-repetitive exogenous interventions such as strikes, wars and other sudden or unexpected shocks.
Neglecting the presence of outliers in a time series hinders meaningful statistical inference, leading to model mis-
specification, biased parameter estimation, and poor forecasts. Since the fundamental article of Fox (1972) there
has been an increasing amount of literature on outliers in time series. Two major approaches for outlier handling
may be distinguished. One approach advocates the use of robust estimators to reduce the effect of the outlying
observations. Denby and Martin (1979) and Martin and Yohai (1986), among others use this approach for ARIMA
models, Beran (1994) for Gaussian long-memory models, Chan and Cheung (1994) for threshold autoregressive
models, Kleiner and Martin (1979) consider robust frequency domain analysis. However, this approach often leads
to ignoring observations which may be the most interesting. The fact that outlying observations have led to the dis-
covery of important underlying phenomena (e.g. holes in the atmospheric ozone layer), suggests the importance
of the alternative approach which detects possible outliers and estimates the corresponding sizes. Several method-
ologies for this, and other intervention effects, have been established in the framework of Gaussian linear time
series. The empbhasis is on iterative procedures and likelihood based statistics, Tsay (1986), Chang et al. (1988),
and Chen and Liu (1993). In particular, the residual based iterative procedure of Chen and Liu (1993) is standard
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now in retrospective analysis of outliers with linear models. More recently, several authors considered the detec-
tion of outliers in nonlinear time series models: Chen (1997) considered additive outliers in bilinear models and
Battaglia and Orfei (2005) considered detecting the presence of outliers when the series is generated by a general
nonlinear model that includes as particular cases the bilinear, the self-exciting threshold autoregressive (SETAR)
model and the exponential autoregressive model, among others. In financial time series modelling, Doornik and
Ooms (2005), Carnero et al. (2007), Grané and Veiga (2010), and Hotta and Tsay (2012) presented procedures for
detecting outliers in GARCH models, while Abanto-Valle et al. (2010) and Wang et al. (2011) develop Bayesian
methods for treating outliers in stochastic volatility models.

Apparently there is not much work, so far, on the analysis of outliers in positive-valued and count time series.
These time series arise in a wide variety of fields including: telecommunications, actuarial science, computer
science, economics, epidemiology, finance, hydrology, meteorology, and environmental studies. These data are
naturally non-Gaussian and typically right-skewed, creating a need for especially designed models and procedures.
In fact, the usual procedures to detect outliers in time series would suggest real-valued sizes for outliers and these
are not appropriate for integer-valued time series. In the context of count data, Silva and Pereira (2015) proposed an
approach for detecting single additive outliers in Poisson integer-valued autoregressive processes while Fokianos
and Fried (2010) and Fried et al. (2015) analyse outliers and other interventions for count time series within the
framework of generalised linear models. In this article we consider a general class of convolution closed infinitely
divisible (CCID) models as proposed by Joe (1996).

The CCID class, while being simple and flexible, is useful for modelling positive-valued and integer-valued time
series possessing an autoregressive structure with non-negative serial correlation. The CCID class includes the
Poisson, negative binomial (with fixed probability parameter), gamma (with fixed scale parameter), generalised
Poisson (with one fixed parameter), inverse Gaussian (with one fixed parameter), and Gaussian distributions. Here
we consider the problem of modelling outliers in the CCID class, focussing on the integer-valued time series
models although the same approach may be taken for any members of the class. We conduct a retrospective
analysis of purely additive outliers, occurring at unknown time locations, and which do not enter the dynamics of
the model. To this end, we specify a state space model where the observations are a contaminated version of a state
(latent) CCID process. The unknown contamination mechanism is a sequence of independent variables, each one
containing information on the occurrence (or not) of a contaminating outlier and its size. A natural approach to
estimate such a model is in a Bayesian framework, as this does not require advance knowledge of the number and
location of outliers in the span of the series. Moreover, this approach allows estimation of the contamination process
itself, providing, at each time point, the probability that outlier occurred and an estimate of the corresponding size.

The structure of the article is as follows. Section 2 introduces the CCID class for non-Gaussian time series,
Section 3 describes the contaminated state space model, the Bayesian priors and MCMC schemes to compute the
posteriors. The methodology is illustrated with synthetic Poisson integer-valued autoregressive time series with
multiple outliers and two observed time series in Section 4. Some final remarks are made in Section 5.

2. CONVOLUTION CLOSED MODELS FOR NON-GAUSSIAN TIME SERIES

Let R(-) denote a random operator such that the conditional distribution of R(X) given X = x has a distribution
Gau’(,_a)w, with 4 > 0 and 0 < a < 1, and R(X) has a marginal distribution F,, when X has a distribution F u
belonging to the CCID parametric family. In particular, F, is assumed to satisfy F,, * F, =F, , ., where x is
the convolution operator. A time series process {X,;t = 0, +1,+2, ...} satisfying the CCID(1) equation

X, =R((X,_)+e (D

where the innovations e, are i.i.d. with distribution F,_,,, and {R,(-) : = 0,1, +2, ...} are independent replica-
tions of the operator R(-), is a stationary time series with margin F, that is, X, ~ F, and the lag 1 autocorrelation
p(1) = a (Joe, 1996). Model (1) encompasses many non-Gaussian AR(1) time series models proposed in the
literature for integer-valued and positive-valued time series.

wileyonlinelibrary.com/journal/jtsa © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. (2018)
DOI: 10.1111/jtsa.12439



OUTLIER DETECTION IN NON-GAUSSIAN AR(1) 3

iid
Table I. Methods for constructing non Gaussian AR(1) models with specified marginals ¥, and innovations e, =F b A=
u(l — a). B(-, -) denotes the beta function

Marginal Random

distribution operator g(s|X, s a) Innovations [4
Poisson Binomial thinning (X‘x" )ax(l — o)X Po(4) (u, @)
Po(u)

Negative Beta binomial

binomial thinning (x:, ) %‘W NB(4, &) (u,a,8)
NB(u, &)

Generalised Quasi binomial (X’;' Ja(a + s(&/ )

Poisson thinning (1 —a —s(&/u))s-1—s GP(4, &) (U, a, &)
GP(u,$)

Gamma(u, v) AX, Gamma(4, v) (u,a,v)

A <Beta(au, 4)

If one chooses F(;_,, as Poisson((1 — a)u), and the random operation as the usual binomial thinning operation
(based on underlying Bernoulli random variables) R,(X,_,) = Zf:”l‘ & & ~ Ber(a) then F . 1s Poisson(u) and
the Poisson integer-valued autoregressive model, POINAR(1), model proposed by McKenzie (1988) and Al-Osh
and Alzaid (1987) is recovered. In this case, R,(X,_,) is denoted by aoX,_, and the probability mass function, pmf,
of R, given X,_,, is g(s|X,_;a) = (X’S*‘ )a‘(l —a)X-17, where () is the usual combinatorial factor. Similarly, if one
needs to account for overdispersion present in the count time series, then a negative binomial marginal may be
entertained. In this case, F, is the negative binomial distribution with parameters u and ¢ (fixed), NB(u, &) and pmf

o Tu+s) e
fsu,8) = TG+ DT 1)F(M)é"(l &, s=01,...,

where I'(+) is the gamma function.! Then, with arrivals distributed as F, (1-ayu @0d G set to be beta-binomial

with parameters x, ua and u(l — ), BB(x, pa, u(1 — @)) with pmf

(sl po o) = x\Blau+s,(1—a)u+x—ys) = 0.1
SRR O=S) T Ban o T

ap,(1-a)ux

where B(-,-) is the beta function, the observations are also marginally negative binomial, that is, X, ~ F,.
This model corresponds to the beta-binomial thinning of McKenzie (1986). Table I summarizes some particular
non-Gaussian models, indicating the marginal distribution, the random operation and its pmf or pdf and the set of
parameters @ for each model. The Poisson INAR(1), PoOINAR(1), the negative binomial INAR(1), NBINAR(1),
and the generalised Poisson INAR(1), GPINAR(1) (Alzaid and Al-Osh, 1993), have been widely used in the liter-
ature to model time series of counts, see inter alia Jung and Tremayne (2011) and Han and McCabe (2013), among
others. The gamma AR(1) which is the same model proposed by Lewis et al. (1989) is suitable for positive-valued
time series.

Since model (1) is Markovian (Joe, 1996), given a time series x = (X|, ..., X,,), the conditional likelihood is as
follows
LO) = [ [ o, ) @)
=2

! In applications we do not consider ¢ to be fixed but we continue to use the CCID nomenclature for ease of reference when extra parameters
are required.
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with
min{k,/}

Fom, el = PX, =KX, =D =Y g(lDPe, =k—)) 3)

j=0

for discrete-valued models such as Poisson, generalised Poisson and negative binomial and

T, Olx) = / gwlx)f, (v — w)dw “
0
for the continuous-valued models such as gamma.

3. BAYESIAN OUTLIER MODELLING IN CCID(1) TIME SERIES

Given a model as in (1), a basic question is whether it properly describes all the observations of a given time series,
or whether some observations have been affected by extraordinary effects which do not enter the dynamics of the
process. Here we describe a model for dealing with additive outliers in CCID(1) processes and develop a Bayesian
approach to achieve its estimation.

3.1. Modelling Additive Outliers

Additive outliers correspond to the contamination of single observations so that the effect is not carried over to
subsequent observations by the dynamics. Therefore, additive outliers can be modelled assuming that a contami-
nated process, Y, is observed instead of the clean CCID(1) process, X,. Thus, we consider (1) as a latent process
and add an observation equation, contaminating, with probability p,, each clean value X, with an additive outlier
of random size #, . Hence

Y, =X, +n,0,

X, =RX,_)+e

6, ~ Ber(p,), n,~F,

n, and 6, independent. (5)

The binary sequence ¢, indicates, for each ¢, the occurrence (or not) with probability p,, of an outlier. The size
of the outlier at time ¢, #,, is a random variable with the same support as X, and mean g, : n, ~ Po(f,) for Poisson,
negative binomial and generalised Poisson models and #, ~ Gamma(f, 1) for the gamma model (c.f. table I). We
assume that the occurrence of an outlier is independent of its size and of the latent clean process, that is 5, and
n, are independent and independent of X,. This model is quite flexible since we do not fix either the probability
of occurrence nor the outlier size over the span of the time series. Once priors have been specified, the Bayesian
Additive Integer Outlier Detection (BAIOD) method inspects the plots of the posterior values of p, to determine
the presence of outliers or not. Automatic outlier detection can be accomplished by setting a threshold probability
value which may depend on the application.

3.2. Prior Distributions

A Bayesian analysis of the contaminated model (5) requires two sets of prior specifications; one for the parameters
of the CCID model, 0, and a second for the parameters of the outlier generating process.”

2 Note, within a non-Bayesian framework (conditional) likelihood based inference is difficult, if not impossible, since the uncontaminated
values enter the dynamics of the process at contaminated but unknown time points.
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In the absence of prior information we use weakly informative prior distributions for 6. Thus, for the parameter
0 < a < 1 we choose a non-informative beta prior with parameters (a, b), while for the positive parameter u
we choose a non-informative Gamma(shape, rate) prior with parameters (c, d). Additionally, the prior for the
parameter ¢ € ]0, 1] in NBINAR and GPINAR models is a Beta (e,f) and for v > 0 in the gamma model is a
gamma distribution.

The specification of priors for the contamination parameters p, of the indicator variables 6, and those for the
mean size of the outliers, f,, is a more sensitive issue as these affect directly the frequency and magnitude of the
outliers.

The priors for p, are Beta (g,h) and for the mean size of the outliers f, we use non-informative gamma
distributions with parameters (/, m). The hyper-parameters a to m are specified on a case by case basis.

3.3. Posterior Distributions

For the remainder of the article, we denote by y = (Y, ..., Y,,) the observed time series and assume that there is no
outlier in the first observation, thatis Y, = X,.Let 6 = (6,,...,9,),n = (1, ...,n,), B = (p,, ..., B,). The posterior
distribution for (0, 6, n, p, ) is then

7(0,8,1n.p, Bly) < (0, 5,n,p, B) L(0,8,1.p, B) (6)
where 7(0, 8, n, p, B) denotes the prior distribution for (6,5, n, p, B) and L (60,6, n, p, B) the (conditional) likelihood.

To illustrate the complexity of the posterior distribution consider the model POINAR(1). In this case, 6 = (u, @)
and using the prior distributions and the independence assumptions, we have

(0.8.m.p.B) & ¢ ™ @ (1 - ) 'Hp‘”g (1 =p)'

e~ DA g 7
and
7(0,6,n.p, Bly) x z(6,8,n.p, p) L(0, 6,1.p, B) ®)
with
(W =)' (Y 6,
L“”&"’P’ﬂ){! 2 0 om0t (")
e H1=0) i (1 — g)Y1=Fmitir=i
©)
where M, = min(Y,_; — n,_,6,_;, Y, — 1,6,).

Thus, given the complexity of the posterior distribution, Markov Chain Monte Carlo techniques are required
for sampling from the full conditional distributions.

3.4. Full Conditional Distributions

To obtain the full conditional distributions for each parameter we condition the posterior on all the other parameters
(and the data). Thus, the full conditional distributions for the parameters 6, in 6 and p are easily obtained. To
obtain the full conditional distributions for 6 and n we must also take into account the presence of outliers. In
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what follows, define for eachj = 2,...,n, Y5 = (6, 6(_].), n,p, B) and Y,7 = (0, 6(_j>, NP p) where Vi) denote
the vectors v with the jth component deleted. The full conditional distributions are illustrated for the POINAR(1)
model. Appendix establishes likelihood and full conditional distributions for the NBINAR(1).

3.4.1. Full conditional distributions for 6
The full conditional distributions for the parameters 6, in 0 are obtained from

7(6,10_;, 6,m,p, B,y) x x(0,)L(0, 8, n,p, B).

In the case of the POINAR(1), 8 = (u, @) and thus

n M,
(ula,8,m,p, B,y) o e DA TN Yondit k() (10)
=2 i=0

with K(t,i) = (I—a)¥rmdi—i (Yl—]_”.l—laz—l)ai (1- a)erl_’?r—lﬁt—l_i and
1

¥, —n,6,—0)!
n M,
(alp, 8.0, B.y) x @’ (1 =)~ le @ D[] D (1= @)~ al(1 — @)1 7107 Ty (1)
=2 i=0

. . Y=y =i Y. —n &
with T(t,i) = £t—— ( =17 H)
(Y;=n,6,—0)! i

3.4.2. Full conditional distribution for §;
Recalling that o, takes only the values 0 and 1, the specification of z(;|Y 5, y) reduces to the computation of

P, = 1,yIY,)
f(ylY;)

B P, = 1Y pf(yls; = 1,X;)

" PG, = 1,18, = 1,X,) + (1 — P(6, = 1[Y,))(yI5, = 0,Y,)

7, =P = 1Ysy) =

12)

with P(5, = 1{X ) = p;.

To obtain f(y|6; = 1,Y,) (and f(y|6;, = 0, X)) we first note that Y, inherits the Markovian property of X, and
also that at time # = j — 1 an outlier may have occurred and at time j + 1 an outlier may occur. Thus taking into
account these possible outlier configurations we write

f(yl5, = 1,Y,) = [f(Yj|Yj_,,5j =6, = DE(Y,,,1Y,8, = 6, = DP(S;,, = 1)

+EIY, .8

J J

=6 = DE(Y,,,1Y,6, = 1,6, = 0)(1 — P(5,,, = 1))]
Iis, mn) + [f(Yjw_l,aj = 1,6, = Of(Y;,,1Y,, 6, = 6, = DP(&,,, = 1)

HENY, 1,8 = L3, = OF (V17,8 = 1,8, = 0)(1 = PG, = )]

L5, =0 (13)
and
£(y16; = 0,Y,) = [f(¥,|Y,_.6, = 0,5, = DE(Y;,,1Y;, 8, = 0,6, = DP(S;,; = 1)
wileyonlinelibrary.com/journal/jtsa © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. (2018)
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+EY|Y,_ .6, = 0,6, = DEY,,,1Y,,8, = 6, = 0)(1 — P(5,,, = 1))]

Lg =y + [ {)1Y1. 6= 6, = OF(X}41Y}, 6, = 0,6, = DP(G;,, = 1)

Y18 = 6, = O, 1¥,,5, = 8, = 0)(1 = PG, = 1)
1{5,'—1=0]

(14)
where I, is the indicator function of the set A and the conditional distributions f(Y,|Y,_,,6, = u,6,_, = v), u,v =
0,1,72=j,j+ 1, are defined as

fY,|Y,_,,6, =u,6,_, =v) = fyfly:_](YﬂY;‘_l)
with
«_ [, 6,=0
N {55
and fmy*_ ] (Y7|Y;",) obtained from (3) or (4). In particular for the POINAR(1) we have
Yy, .6, =u,6,_,=v)= g wil-a)
M; Y* 1 Y¥*—i
Z ( "1> a (1 —a)a™ wd —a) ™ a).) i
i=0 i ;=0
a5)

withu,v =0,1,7=j,j+ 1, M’ = min(Y* , ¥").

3.4.3. Full conditional distributions for p;
The conditional posterior distribution for p; depends only on 6;. Since the prior distribution of p; is Beta(g, 1) the
full conditional is given by

6:+g—1 s
7(p;]6,8,1.p_;B.Y) pj’+g (1= p)i= (16)

that is a Beta(o; + g,h — 6; + 1) distribution.

3.4.4. Full conditional distributions for n;

The hierarchical structure of model (5) implies that #; is independent of all other parameters except of 6;. In fact,
if 6j = 0, no outlier at ¢ = j, there is no information about 1; except that contained in the prior 7r(;1j). However, if
6, = 1, y contains information about #;. Therefore we have

o« m(n) f(y Im;, 6, = 1,X,) a7
form; =0,1,2,... with f(y |n;,6, = 1,Y,) as given in (13).
eigh
In case of the POINAR(1), zr(r/j) = n"ﬂ’ .
J. Time Ser. Anal. (2018) © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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3.4.5. Full conditional distributions for p;
Finally, the conditional posterior distribution for f; depends only on ;. Then

n+l—1

7(B10,6,1,p,y) x e "V (18)

4. ILLUSTRATIONS

We document the performance of the above procedure with count time series simulated from equi and over dis-
persed CCID(1) processes with additive outliers introduced at fixed time points. The simulation allows control of
the number, size and configuration of the outliers. In addition, we apply the procedure to two time series of monthly
counts: the first is of poliomyelitis cases in the USA between 1970 and 1983 and the second is of bruise injuries
incurred during logging operations in British Columbia, Canada between 1985 and 1994. Taken together, these
examples suggest that the new procedure is effective at detecting potential outliers and is not prone to excessive
false alarms. We compare the results from our BAIOD approach with two other generic outlier detection proce-
dures available in the literature. The comparators are from the R packages forecast (Hyndman and Khandakar,
2008; Hyndman, 2017) and tsoutliers (de Lacalle, 2017). The first uses function tsoutliers (1) which implements a
non-parametric outlier detection procedure based on exponential smoothing while the second, fso (2), implements a
residual based outlier detection strategy designed for ARMA models. We begin by addressing some computational
issues that arise in the implementation of the procedure.

4.1. Computational Issues and Prior Hyper-Parameters

The full conditional distributions are not standard distributions and therefore MCMC methods
(Metropolis-Hastings and Gibbs sampling) are needed. In particular, the Adaptive Rejection Metropolis Sam-
pling (ARMS) is used for the parameters 6, and, within Gibbs sampling, the values &, are sampled from a
Bernoulli distribution with parameter given by (12). In the absence of any information on the underlying pro-
cess or on the occurrence (time and size) of outliers, the prior distributions must be weakly informative and
the hyper-parameters chosen to meet this requirement. In the examples considered here, the hyper-parameters
for the gamma and beta priors for parameters of the Poisson and negative binomial marginal distributions are
¢ =d =0.1and a = b = 0.01 respectively. The prior for a is also a Beta(0.01, 0.01). These are the weakly infor-
mative priors for the POINAR(1) used in Silva et al. (2005). The probabilities p, are assigned priors Beta(5, 95)
(mean 0.05) to reflect that outliers occur infrequently. Finally, the priors for the outlier sizes, #,, are Gamma(10, 1)
(mean 10).

Our BAIOD procedure is implemented in R Core Team (2014) and, in particular, the package HI (Petris, 2013)
is used for the ARMS algorithm. The algorithm is iterated 22,000 times, the 2000 initial burn-in iterations were
discarded and only every 40th value of the last iterations is kept to reduce the autocorrelation within the chain.
Nevertheless, the convergence of the MCMC algorithm was duly analysed with the usual diagnostic tests available
in Plummer et al. (2006). The initial estimates are obtained by conditional least squares and the model parameters
are estimated by posterior means or medians.

4.2. Simulation

The first example is a time series of length n = 120 simulated from the POINAR(1) model with parameters
A= u(l —a) =1, a = 0.85. There are five outliers all of the same size # at times 7 = 7,26, 60,90,91. As is
well known, it is expected that detection of the outlier patch at = 90,91 will prove problematic. We consider
two different values for # = 6,9. The results are presented in Figures 1 and 2 respectively. Panels (a) plot the data
while Panels (b) give the posterior probabilities p,.

Figure 1 gives the results for = 9. The point estimates (standard error) for latent POINAR(1) model are

A= ;4(/1——\04) = 0.94 (0.0093) and @ = 0.87 (0.0653) and these exhibit some bias. This is in accordance with

wileyonlinelibrary.com/journal/jtsa © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. (2018)
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Figure 1. (a) Simulated POINAR(1) time series with @ = 0.85, A = u(1 — @) = 1, outliers at times ¢ = 7,26, 60, 90, 91, all with
same size 7, = 9; (b) posterior probability of outlier occurrence at each time point

0.0

previous results see Silva et al. (2005). The data plot in Panel (a) shows that the outliers are visually identifiable
but nevertheless is it reassuring that the BAIOD plot in Panel (b) clearly identifies the outliers including the patch
of two outliers that occurs at times ¢t = 90, 91. The estimated sizes of the outliers themselves are 7§, = 7,8, 8,4,7
which are reasonably close to the true value of 9 except for t = 90.

Applying the function zsoutliers (1) to this data, it identifies correctly the outliers, including the patch, and it
produces quite good (real-valued) estimates for the sizes: 7.0,4.0,9.5,8.3,8.7. However function tso (2), which uses
ARMA residuals, finds only 3 outliers and does not find the patch.

Figure 2 covers the case when # = 6. The data plot shows that the outliers are less easily visually identified and
this is reflected in the somewhat lower p, probabilities in Panel (b). In particular, the outlier at = 90, part of the
patch, is assigned very low probability. Nevertheless the remaining outliers are clearly identified by the p, plot.
The estimated sizes of the outliers themselves are 7, = 4,5,5,1,5.

When 5 = 6, tsoutliers (1) finds only 1 outlier at time ¢t = 91 while fso (2) finds 4 outliers but does not identify
the patch. Over the two scenarios, the new BAIOD method would appear to be the procedure of choice.

We also conducted some experiments to assess the effect of the prior specification of the contaminated compo-
nent of the model. Figure 3 gives the results for the previous POINAR(1) model when # = 9 but the prior for the
size of the outlier (only) was changed from Gamma(10,1) (mean 10) to Gamma(0.01,0.01) (mean 1). The only
significant difference is that the first observation in the outlier patch at + = 90,91 is no longer identified as an
outlier.

Figure 4 illustrates the effect of changing the prior on p, (only) from an informative Beta(5, 95) (mean 0.05) to
the Bayes—Laplace non-informative prior Beta(1, 1) (mean 0.5) thus significantly increasing the prior probability

J. Time Ser. Anal. (2018) © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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Figure 2. (a) Simulated POINAR(1) time series with a = 0.85, 4 = u(1 — a) = 1, outliers at times = 7,26, 60, 90, 91, all with
same size n = 6; (b) posterior probability of outlier occurrence at each time point

0.0

of observations being classed as outliers. In this case, Panel (b) assigns a large proportion of the observations a
probability of being an outlier in excess of 0.5, indicating the responsiveness of the analysis to the presence of
valuable prior information in this dimension.

4.3. Empirical Examples

This section looks at two empirical examples and checks for the presence of outliers. The first example is the
U.S. polio incidence counts, henceforth polio data, which is one of the most famous time series of counts, intro-
duced by Zeger (1988) and which serves as a benchmark data set in the literature. The second is a time series of
monthly counts of claimants collecting wage benefits from the Workers Compensation Board of British Columbia,
Canada.

4.3.1. Polio data

The polio data set consists of monthly observations from January 1970 to December 1983, a total of 168 data
points. Figure 5(a) plots the data. The counts range from 0 to 14 with a sample mean of x = 1.33 and a sample
variance of s> = 3.5. The variance mean ratio is 2.63, indicating overdispersion relative to Poisson. The data
presents an unusually large count of 14 in October 1972 which has been treated as an outlier by several authors.
Here we use a NBINAR(1) with additive outliers to model the data. The priors for the negative binomial (NB)
parameters of the marginal distributions are beta with a = b = 0.01 for £ and « and gamma with ¢ = d = 0.1 for
u leading to weakly informative priors.
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Figure 3. (a) Simulated PoINAR(1) time series with @ = 0.85, 4 = u(1 — &) = 1, outliers at times ¢ = 7, 26, 60, 90, 91, all
with same size n = 9; (b) posterior probability of outlier occurrence at each time point when non-informative prior for the
mean size of outliers is used

The estimated parameters of the model are /i = 1.33, & = 0.503 and & = 0.106. The priors for the probability of
outlier occurrence p, and the mean size of the outliers f, are beta with g = 5 and 4 = 95 (mean 0.05) and gamma
with / = 10 and m = 1 (mean 10). The posterior probabilities of outlier occurrence, Figure 5(b), indicate that the
observation in October 1972 is an outlier with probability p;, = 0.56. The estimated size of the mean is 9.0 and
the estimated size of the outlier is 8.

By contrast, function tsoutliers (1) indicates that this data set presents outliers at times June 1970, September
1972, October 1972, April 1979, and May 1979. Also function #so (2) suggests additive outliers at times June
1970, October 1972, April 1979, and November 1983.

To assess the adequacy of the underlying negative binomial model we analyse the Pearson (studentised) residuals
after having removed the outlier. These residuals and the ACF are presented in Figure 6 which indicates that there is
still some degree of correlation remaining but it is not substantive. A probability integral transform (PIT) analysis
is given in Figure 7 and it shows some slight deviation from the NB distribution. Overall though, the negative
binomial model may be deemed acceptable.

4.3.2. Wage benefit data

We investigate the existence of outliers in a time series of monthly counts of claimants collecting wage loss benefits
from the Workers Compensation Board of British Columbia, Canada, for injuries due to bruises in the logging
industry from January 1985 to December 1994. The bruise counts, represented in Figure 8(a), range from 4 to 17,
with a mean of 9.83 and a sample variance of 9.56. A PoINAR(1) model with additive outliers is fitted to the data.
The estimated model with parameters j = 9.61, and @ = 0.49 agrees well with the empirical mean and variance
and first-order autocorrelation. Since the POINAR(1) model can be interpreted as an infinite server queue with a
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Figure 4. (a) Simulated POINAR(1) time series with & = 0.85, 4 = u(1 —a) = 1, outliers at times ¢ = 7, 26, 60, 90, 91, all with
same size n = 9; (b) posterior probability of outlier occurrence at each time point when a Beta (1,1) prior for the probability
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geometric service time and Poisson arrival process these results indicate that a newly injured worker is expected
to collect benefit for 1.95 months.

The posterior probabilities of outlier occurrence, Figure 8(b), indicate absence of outlier occurrences. In addi-
tion, neither of the two competitors to BAIOD suggest that outliers are present. As before, model fit assessed
by residual analysis and both the ACF (Figure 9) and the PIT diagram (Figure 10) indicate the Poisson model is
adequate for the data.

5. CONCLUDING REMARKS

This article describes a Bayesian framework for the retrospective analysis of CCID(1) models for positive-valued
time series with multiple additive outlier effects. The Bayesian paradigm allows for the computation of the
probability that an outlier occurred at each time point and an estimate of its size. The procedure has been
presented as useful for detecting suspicious observations given a certain model but it can also be used for detect-
ing possible model deficits, for example, suggesting that distributions with fatter tails or dummy variables be
employed.

Further extensions of this work are possible. The first and foremost, is the extension to higher-order models,
that is, models with longer lags. The necessary mathematical expressions are easily derived from the likelihood
function. However, the likelihood and consequently the full conditional posterior distributions are highly complex,
leading to additional computing effort. Another extension is the incorporation of other effects such as transient or
permanent level shifts and covariates. Finally, possible future work might attempt to improve the component-wise
Metropolis-Hastings sampling algorithm, using approaches such as Hamiltonian Monte Carlo Neal (2010) or the
Wang-Landau algorithm Atchadeé and Liu (2010).
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Figure 5. Incidence of U.S. Polio, January 1970-December 1983 and posterior probabilities of outlier occurrence at each time
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Figure 6. Pearson residuals (a) ACF of residuals (b) for Incidence of U.S. Polio, January 1970-December 1983
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Figure 7. PIT analysis for Incidence of U.S. Polio, January 1970-December 1983
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Figure 8. Monthly counts of claimants collecting wage benefits for injuries due to bruises, January 1985 to December 1994
and posterior probabilities of outlier occurrence at each time point
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Figure 10. PIT for bruises data
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APPENDIX

This section contains the calculations needed to perform Bayesian outlier detection when we consider the nega-
tive binomial INAR(1) model with the beta-binomial thinning operator (see Table I).

— Joint prior:
7(0.8,n.p, f) x ¥ ™ @™ (1 - @)1 - g eV BN

[P a=p)=2p " ! (A1)
=1

where 0 = (u, a, ).

— Conditional likelihood:

n M,

_ F(M(l - (Z) + Y[ - 5r’1t - l) _ e\, =8m—i gu(1-a)
L(6,8,n.p, B) = ]‘! 2;, T — o DTGl —ayy L~ &

<Yz—1 - 5t—1’7t—1> Blap+i,(1 —a)u+ Yt—l B 5t—1’7t—1 — 1) (A2)
i B(ayu, (1 —a)u)
where M, = min(Y,_; — n,_,6,_;, Y, — 1,6,).
— Full conditional distributions:
c—1 a—du gu(1—a)(n—1)
uTeHE
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The full conditional distribution for &,, depends on the expression of f(Y,|Y,_,, 6, = u, §,_; = v) which changes to:
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withu,v=0,1,7r=j,j+ 1, M; = min(Y] , Y}).
Full conditional distributions for p,, #, and f, remain the same as in POINAR(1) context.
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