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Pyramid Spatial Pooling Convolutional Network for whole liver segmentation
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Abstract

Segmentation of the liver in Computer Tomography (CT) images allows
the extraction of three-dimensional (3D) structure of the liver structure.
The adequate receptive field for the segmentation of such a big organ in
CT images, from the remaining neighboring organs was very success-
fully improved by the use of the state-of-the-art Convolutional Neural
Networks (CNN) algorithms, however, certain issue still arise and are
highly dependent of pre- or post- processing methods to refine the final
segmentations. Here, an Encoder-Decoder Dilated Poling Convolutional
Network (EDDP) is proposed, composed of an Encoder, a Dilation and
a Decoder modules. The introduction of a dilation module has produced
allowed the concatenation of feature maps with a richer contextual infor-
mation. The hierarchical learning process of such feature maps, allows
the decoder module of the model to have an improved capacity to analyze
more internal pixel areas of the liver, with additional contextual infor-
mation, given by different dilation convolutional layers. Experiments on
the MICCAI Lits challenge dataset are described achieving segmentations
with a mean Dice coefficient of 95.7%, using a total number 30 CT test
volumes.

1 Introduction

Automatic segmentation of different medically relevant liver tissues is
continuously an active research topic in medical image analysis. Such
segmentations can provide doctors with meaningful and reliable quanti-
tative information of the structure of the liver, which subsequently enable
the identification of abnormalities. Knowledge of the liver structure be-
comes particularly relevant in individuals diagnosed with liver cancer. In
this clinical scenario, physicians need to study the full liver physiology
and make an informed decision on the treatment course. Liver cancer
treatment may include chemo- or radio- therapy, hepatectomy (liver re-
section) or in very specific cases transplantation. Liver cancer has an
alarming prevalence in a global scale and is the second most lethal can-
cer worldwide, accountable for more than 788,000 deaths in 2015 [6].
Computed Tomography (CT) is one of the most common modalities used
for detection, diagnosis and follow-up of liver cancer [4]. Liver cancer is
characterized by the development of abnormal cell accumulations, com-
monly referred as lesions that will appear represented differently within
the anatomy of the liver, in structural images such as Computed Tomogra-
phy (CT). Thus, in the clinical setting the image-aided diagnosis requires
an accurate segmentation of the whole liver anatomy in CT images. In
this paper, we present a new method for training a global CNN for liver
segmentation in CT scans address the issues above by developing a fully
automatic liver segmentation model which efficiently combines the FCN
with residual blocks and dilated convolutions.

2 Methods

2.1 Dataset

Public datasets are commonly used for assessing liver cancer in CT tissue
segmentation algorithms as they provide ground truth labels. The model
studied was trained and tested on data from the 2017 LITS MICCAI chal-
lenge dataset. We use a total of 130 CT volumes. Each image volume
was characterized by a 512x512 image resolution and varying number of
slices, ranging from 91 to 844. Having in mind the segmentation problem
in this setting is regarded as a pixel-wise classification, the classification

Figure 1: Neural network architecture of the Encoder-Decoder Dilated
Poling FCN (EDDPFCN).

targets are comprised by two different classes: liver and background. To
prevent extra errors induced by class data imbalances, the models pro-
posed here were trained only on central slices depicting the liver area,
comprising a total of 90 slices from each exam. CT images acquisition
outputs a quantification of X-rays by tissues at a pixel wise level, which is
outputted according to the known scale of Hounsfield units (HU), propor-
tional to the degree of tissue attenuation suffered. Although different HU
intervals characterize different organs, these values often overlap, diffi-
culting the intuitive discrimination of the present tissues. To eliminate the
noise effect of other HU value intervals, a technique named CT window-
ing is often applied. Thus, all CT slices were thresholded with a window
range of [–200, 200] recommended for a liver to remove the irrelevant
tissue intensities.

2.2 Feature learning of the proposed CNN model

Input images and the corresponding liver segmentation masks provided by
human experts were used to train the network. Examples of ground truth
masks are latter presented in the Results section. To learn the whole liver
supervised features an FCN model was trained. Such model was formu-
lated taking into account the several sizes of receptive fields that can allow
the network to learn the most discriminative feature maps. Such meth-
ods require also the adequate the kernelized image context to correctly
identify the liver voxels. The size of receptive field roughly indicates the
amount of context information that is used in each feature map.

The proposed architecture is based on the state-of-the-art segmenta-
tion architecture called "Atrous Spatial Pyramid Pooling" (ASPP). The
network works with 2D slice-wise axial images and is composed of (a)
three initial Residual Convolutional-Pooling blocks, followed by (b) five
parallel layers of dilated convolutions with rate r = 1,2,4,6,8,16,32 which
were concatenated and forwarded to (c) three deconvolutional blocks. The
network outputs are fine-tuned with a Sigmoid layer using the given la-
bels. Given a 1D signal x[i], the y[i] output of a dilated convolution with
the dilation rate r and a filter w[s] with size S is formulated as

y[i] =
S

∑
s=0

x[i+ r · s]w[s].

Such type of convolutional kernel is also rotation invariant. The dilations
can be mentally conceptualized as the introduction of discrete intervals
of pixel that are used for the convolution kernel, that are dictated by the
dilation rate r. Figure 1 illustrates the pipeline of the proposed training
process.
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Figure 2: Neural network architecture of the Dilated Spatial Pooling FCN
(DSPFCN). (a) represents the original CT, (b) the ground truth mask; and
(c) the overlay of the obtained mask and the ground truth.

2.3 Model training and parameter fine-tunning

The model parameters are learnt from training data by minimizing a loss
function, via end-to-end training. Given the chosen dataset division a to-
tal of 8100 image slices, from 100 subjects were used as training samples.
For training we use the Adaptive Moment Estimation (Adam) algorithm
[5] for model optimization during 70 epochs with learning rate reduced by
a factor of 0.9 of the original value after 1/3 rd and 2/3 rd of the training
finished. The network weight initialization with and without He norm ini-
tialization were explored. The dataset was augmented using rotation and
horizontal flipping to increase generalizability of the model. The hyper-
parameters were tuned so as to give best performance on validation set.
Training took 8 hours on one Nvidia Titan XP GPU. During training a set
of 900 image slices were used as a validation dataset to monitor the mod-
els performance evolution during training. Having previous knowledge
unbalanced class distribution between the liver and background, we im-
plement a loss function that attempts to overcome this limitation. To this
end, the Dice Similarity Coefficient Loss was chosen for objective func-
tion minimization during model training. Such loss function has been
extensively validated in the literature for Convolutional Neural Networks
training, due its insensitivity to class imbalancing. The model inputs each
image slice, of size 512x512 individually using only contextual informa-
tion in the orthogonal direction. The model outputs the pixel-wise classi-
fication into each of the three classes.

3 Results

In this section, we have discussed the results of the pixel-wise classi-
fication of the images. We trained the model on 3D CT data for liver
segmentation. Table 1 shows the comparative test results of the proposed
model and the top performing methods in the literature. A total 2700 im-
age slices, corresponding to a total of 30 3D CT scans, not previously
used for model training, were used to test the performance of the pro-
posed model. The qualitative results of the segmentation results can be
evaluated through Figure 1. In the two example results, the complex and
heterogeneous structure of the liver were detected in the shown images.
Overall, the model predictions were accurate in the classification of true
positives. However, from the analysis of the entire dataset, the fuzyness of
the liver boundaries in some scans leaked to the neighboring tissues, de-
picted in similar intensities. This is observable in Figure 2, in the example
(c). To quantitatively evaluate the classification performance, we report
the segmentation quality results of two metrics, proposed previously in
the literature namely, the Dice (DSC) and Jaccard (JC) coefficients.

4 Discussion

In this work, we devise a simple, but efficient and end-to-end method that
achieves state-of-the-art results in both quantitative metrics when com-
pared to the four top performing methods of the literature, as detailed in
Table 1. To the best of our knowledge, no previous method taking ad-
vantage of the positive performance aspects of dilated convolutions was
previously proposed for the task of liver segmentation in abdominal CT
images. In medical imaging, the most traditional architecture for segmen-
tation is the well-known U-Net, which is characterized by two distinct
sequential blocks of encoder and decoder or contracting and expanding
convolutional segments that basically aggregate semantic informations.
The simplicity of the proposed method when compared to some of the
most traditional methods used such as the U-Net [3], provided 1) better

Table 1: Liver segmentation performance using different algorithms

Method Dice(%) Jaccard (%)
[2] 95.90 92.19
[1] 89
[3] 94.3 -
[7] 96.3 -
Ours 95.7 91.3

performing results, but also 2) a parameter reduction that is achieved by
the efficiency of the inclusion of the dilated convolutions.

5 Conclusions

In the present work, a novel CNN architecture for whole liver segmenta-
tion in CT images is proposed. The segmentation of a big organ such as
the liver, would in many previous architectures be penalized by an inad-
equacy of the receptive field used for feature learning in previously pro-
posed architectures. The key concatenation of dilation convolutions has
allowed accurate segmentations of the final liver boundaries, with mini-
mal fuzziness. No hole filling post-processing was needed with the pro-
posed architecture. In future works, the proposed architecture potential
to segment other liver tissues, such as lesions and vascular structure will
be explored. Moreover, advanced techniques of data augmentation using
adversarial networks, could further improve the resulting segmentations
obtained in the present study.
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