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ABSTRACT 

In the present work, a numerical model based upon the Large Eddy Simulation approach has been set up for 

predicting the three-dimensional flow around a cylindrical pier, mounted on a flat and fixed bed, a generic case 

that is relevant for the study of flow and scour around bridge piers. This turbulent flow configuration was 

studied experimentally by Nogueira et al. (2008) with Particle Image Velocimetry (PIV). The main goal of this 

paper is a first validation of the numerical model, based upon the available data. The numerical tool is capable 

to qualitatively reproduce the characteristic flow features around the pier, like e.g. the horseshoe vortex system 

and the vortex shedding in the wake. The predicted extent of the initial scour hole, based upon the bed shear 

stress magnitudes, agrees well with the observations at the onset of the souring process during the lab 

experiments. Further quantitative validation of the numerical model will benefit from additional measurement 

efforts in the experiments.  
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1. INTRODUCTION

The flow past a circular cylinder is of practical relevance for many engineering fields, with regards to the flow 

around e.g. towers, chimneys, cables or bridge piers, with the latter being the subject of this work.  

The flow disturbance caused by piers on riverbeds usually induces scour around those structures. The principal 

features of the corresponding flow pattern are shown in Figure 1. As the flow approaches the pier, its velocity 

decreases down to the point where the flow is halted at the upstream face of the obstacle. As a consequence of 

the change of the pressure field, an increment on the level of the free surface on the upstream side of the pier 

occurs, forming the so-called surface roller. Accordingly, the approach velocity is higher near the water surface 

than near the bed, as well as the pressure. Therefore, this pressure gradient results in a downflow that impinges 

on the bed and it is partially deflected upstream. Simultaneously, the boundary layer of the approaching flow 

undergoes a three-dimensional separation due to the adverse pressure gradient induced by the pier. The resulting 

horseshoe vortex is subsequently advected along both sides of the pier base. The aforementioned phenomena 

tend to scour the pier’s foundation, both upstream and at the sides of the pier.  

Scour around obstacles in rivers occurs after the formation of a scour cavity of sufficiently large dimensions to 

stabilize the large-scale oscillations of the horseshoe vortex (Kirkil and Constantinescu 2010). The latter 

dissipates itself downstream the pier, having an important role in the bed scour due to the bed material trailing 

(Melville and Coleman 2000).  

At the lee side of the pier, the shedding of wake vortices can be seen. While the horseshoe vortex causes 

essentially the entrainment of the bed material, the wake vortices pluck the particles with a suction effect, 

transporting them then in suspension (Melville and Coleman 2000).  

In summary, turbulent structures over a wide range of scales are present around the cylinder, controlling the 

entrainment and transport of sediment from the scour hole. Hence, to understand how the flow induces scour on 

the bed, it is necessary to properly account for the structure of the large-scale eddies around the cylinder.  



 

 

Figure 1. Flow pattern around a circular pier (Hammil 1999) 

The flow around a circular cylinder has been extensively studied in fluid mechanics. For many years, due to the 

complexity of the flow structures involved, the study of this issue has been mostly experimental. Nevertheless, 

in the last decades, the numerical modeling of the flow around piers has been a growing field.  

Thwaites (1960) reviewed the previous aerodynamic experimental studies about the flow around cylindrical 

structures. One of the earliest computational studies about flow around circular cylinders was conducted by 

Beaudan and Moin (1994). Nakamura et al. (1996) studied the vortex shedding from a rectangular pier both 

numerically and experimentally. Yulistiyanto et al. (1998) focused on the modeling of the flow over cylinder on 

shallow-water. Large Eddy Simulation (LES) was initially introduced for simulating atmospheric flows in the 

1960s (Smagorinsky 1963) and has become one of the most successful methodologies for eddy-resolved 

modeling of turbulent flows (Zhiyin 2014). Researchers’ attention has turned to the application of this model to 

flow around bluff bodies (e.g. Sakamoto et al. 1993, Yang et al. 1993, Murakami and Mochida 1995, Rodi et al. 

1997, Franke and Frank 2002, Lisenko et al. 2012). Breuer (1998) studied the numerical and modeling 

influences on Large Eddy simulations for the flow past a circular cylinder. Catalano (2003) performed LES 

simulations of the flow around a circular cylinder at high Reynolds numbers.  Kuroda et al. (2007) studied the 

flow around a rectangular cylinder (applying LES) and then compared the results with particle image 

velocimetry (PIV) data. Zhao and Huhe (2006) presented a 3D LES of the flow around a cylindrical pier.  

Reviews of advances in the use of LES to study flow around bodies can be found in Zhiyn (2014), Majeed et al. 

(2015) and Schanderl and Manhart (2016), with the latter focused on the bed shear stress around a cylinder.   

The hydrodynamic studies are important to understand and minimize the result of the deflection of the flow 

caused by the obstacle: scour. To understand scour around piers quantitative and qualitative data of the flow 

field are required. Although this subject has been extensively studied, some features of the flow are not fully 

understood. The body geometry is quite simple, but the flow structures around the body can be very complex, 

including separation with no fixed separation point, transition to turbulence in the thin shear layers, which are 

separating, and shedding of large scale vortices (Zdravkovich 1997). Nogueira et al. (2008) studied the flow 

around a cylindrical pier by means of PIV, showing the presence of the downflow and horseshoe vortex system 

upstream the cylindrical pier (schematized in Figure 1).  

Although the main interest of the authors is scour around bridge piers, the primary goal of this paper is to assess 

the quality of an eddy-resolving numerical model based upon the LES approach for the flow field around a 

cylindrical pier in a flat fixed bed, representative for the initial phase of the scour process. More specifically, the 

objective is to simulate the flat bed lab experiments of Nogueira et al. (2008), allowing a partial validation of the 

numerical predictions. Additionally, validation data from literature will be used. This validation exercise is a 

first step towards numerical simulation of the scouring process and countermeasures (of cylindrical and even 

more complex bridge pier geometries). 

Note that the use of the LES approach allows to reveal the dynamics of large-scale eddies in the flow around a 

circular pier, enabling the study of the influence of the flow structures on the bed shear stresses (which are 

difficult to measure in laboratory experiments) and on the cylinder itself. The bed shear stress values are useful 

to identify where and how scour will start to occur.  

The outline of the paper is as follows. In section 2, the characteristics of the studied flow configuration will be 

described. Section 3 presents the numerical model set-up and verification criteria. Results on the instantaneous 

velocity fields, drag coefficient and bed shear stress are presented and discussed in section 4. Conclusions are 

drawn in section 5. 

https://www.researchgate.net/profile/Bambang_Yulistiyanto


 

 

2. FLOW CONFIGURATION  

As stated before, the reference case used for the numerical simulation is the experimental work of Nogueira et 

al. (2008), namely the configuration with a flat and fixed bed (Figure 2 and Table 1). The laboratory work was 

performed in a long water flume with 0.7 m width (B) and 8 m length. A PVC cylinder with 0.048 m diameter 

(D) was positioned and founded in the channel bed. The bed material consisted of quartz sand with a median 

diameter (d50) equal to 0.837 mm with a coefficient of gradation (σD) equal to 1.48.  

 
Figure 2. Experimental installation (from Nogueira et al. 2008) 

 

Nogueira et al. (2008) also aimed at the study of the scour around the pier, measuring the scour cavity after 

5 minutes (corresponding to 45 % of the equilibrium scour depth). The maximum depth of local scour is 

obtained for flow conditions near the critical condition (U ≈ Uc), i.e. the mean flow velocity corresponds to the 

initiation of the particles’ motion (Melville and Coleman 2000). Thus, the flow rate supplied (Q) was 20 l/s and 

the flow depth (h) equal to 0.10 m, resulting in a mean flow velocity of 0.286 m/s, a value which lies between 

the critical velocities suggested by Goncharov and Neil equations (Nogueira et al. 2008). The water temperature 

was kept around 20°C. Taking in consideration the features provided, the Reynolds number of the flow 

calculated based on the pier diameter is given by ReD = 1.37×104. The contraction and wall effects were 

negligible to the scouring process, since ratios of B/D ≥ 10 and B/h ≥ 5 (Moreno et al. 2012, Ramos et al. 2015) 

were guaranteed (see Table 1).  

In accordance with the Shields diagram (Shields 1936), the critical shear stress of the bed particles is 

approximately 0.48 Pa. This parameter will be useful to compare with the bed shear stress values obtained in the 

numerical simulations. 

Table 1. Characteristic parameters of experiment by Nogueira et al. 2008 

d50 B D B/D h B/h Q U ReD 

(mm) (m) (m) (-) (m) (-) (m3/s) (m/s) (-) 

0.837 0.7 0.048 14.58 0.10 7.00 0.20 0.286 1.37×104 

 

No measured data for the drag force on the pier are available in the data set of Nogueira et al. (2008). Therefore, 

use is made of information in the literature. The drag force on the pier depends on the Reynolds number. If the 

approaching flow were to be uniform over the flow depth, which is not the case in the experiment, the drag 

coefficient, CD, is expected to oscillate around the mean value of 0.683 for ReD = 1.37×104 (Figure 5.3 of White 

2006).  

The oscillations of the drag force may (in principle) also be important to the pier’s structural design, but this is 

beyond the scope of this paper. To quantify the shedding frequency of the wake vortices, no use can be made of 

measured velocities in the lee side of the pier, since they are absent in the data set of Nogueira et al. (2008). 

Therefore, again information in the literature will be relied upon. For a given main frequency, f, of the vortex 

shedding, the corresponding dimensionless Strouhal number, St (White 2006) is: 

U

Df
St

.
   (1) 

where D is the diameter of the pier. For the present case, the Strouhal number according to literature (Figure 3) 

assumes a value of about 0.20. This yields a vortex shedding frequency of 1.19 Hz, hence a period (T) of 0.84 s. 



 

 

Figure 3. Relationship between Strouhal number and Reynolds number for circular cylinders, after Techet 

(2005), data from Lienhard (1966) and from Roshko (1955) 

3. NUMERICAL MODEL 

3.1. Computational mesh 

A 3-D finite-volume incompressible Navier-Stokes model, applying the Large Eddy Simulation approach, is set 

up and run by means of the Ansys Fluent software. The mesh used for the simulations is a parallelepiped (0.7 m 

wide and 0.1 m high), representing the fluid domain, with a cylindrical cavity, with a diameter of 0.048 m, 

representing the pier (Figure 4). The geometric model is not very complex, allowing the adoption of a block-

structured mesh with an O-grid mesh with a radius of 6D around the cylinder. The pier’s zone was subjected to a 

further refinement (Figure 5 and Figure 6), as well as the cells next to the walls and bed. Note however, that the 

wall boundary layers are not fully resolved. In order to limit the computational time, a so-called wall model will 

be relied upon. In Figure 4, the sub-zones of the mesh are indicated. The grey arrows indicate the cell size 

gradient direction (from the smallest to the biggest cell). Note the smaller cells are next to the cylindrical pier 

and walls (Table 2). Also, a size cell gradient in the z-direction was applied (with the finer cells near the bed). 

Note that the presented mesh is the final result of some (iterative) mesh optimization efforts, aiming at mesh 

independency of the solution as well as respecting some quality criteria (see also 3.5). 

 

 

Figure 4. Computational domain with indication of the zones of the mesh and direction of the cell size grading 

(not to scale) 

 

Figure 5. Partial plan view of the mesh (mesh is symmetric with respect to the 𝑥 axis shown in Figure 4) 



 

 

Table 2. Number of cells in each zone of the mesh  

Zone of 

the mesh 

x-direction y-direction z-direction 

Size of first 

cell (mm) 

Number 

of Cells 

Size of first 

cell  (mm) 

Number 

of Cells 

Size of first 

cell  (mm) 

Number of 

Cells 

1 0.005 200 0.0025 100 0.015 80 

2, 3 0.010 30 0.010 50 0.015 80 

4 3.000 400 3.000 80 0.015 80 

5, 6 0.010 400 0.010 60 0.015 80 

7 3.000 300 3.000 80 0.015 80 

8, 9 0.010 300 0.010 30 0.015 80 

 

 

Figure 6. Detailed view of the mesh next to the pier  

3.2. Boundary conditions  

Taking advantage of the available PIV data regarding the approaching flow, the inlet boundary condition was 

defined by three velocity profiles at y = 0.175 m, y = 0 m (symmetry axis) and y = 0.086 m, respectively (i.e. 

points A, B and C of Figure 7), corresponding to the total discharge (Q = 20 l/s). According to the literature, the 

inlet distance from the pier (72D) is sufficient for the turbulence to be developed (Ferziger and Peric 2002). The 

standard wall model from Fluent (Launder and Spalding 1974) was used to model the flow near the walls, bed 

and pier. In the outlet, the outflow condition from Fluent was applied, meaning a zero diffusion flux for all flow 

variables (the conditions of the outflow plane are extrapolated from within the domain and have no impact on 

the upstream flow) and an overall mass balance correction. 

 

 

Figure 7. Schematic description of the domain (plan view) and its boundary-conditions (not to scale).  

The upper boundary condition (water surface) was modelled by means of a rigid lid without any friction. As 

mentioned before (Section 1) and shown in Figure 8, in reality an elevation of the water level occurs upstream 

of the pier, a phenomenon which is accompanied by a surface roller.  



 

 
Figure 8. Schematic description of free-surface upstream the pier (Roulound et al. 2005). 

 

The free surface elevation upstream the pier is a phenomenon mostly influenced by the Froude number of the 

flow (Roulund et al. 2005). The higher the Froude number, the bigger is the described effect. For relatively 

small Froude numbers, Δh (i.e. the difference between the water level immediately upstream the pier and the 

lowest point of the water surface close to the pier) is given by Equation 2 (Roulund et al. 2005). 

2

2Fr

h

h



 

(2) 

 

In the present case, the Froude number is 0.29. Thus, Δh is expected to be about 4.2 mm, i.e. about 4 % of the 

flow depth. Since this value is relatively small (Roulund et al. 2005), the rigid lid approximation seems to be 

acceptable.  

3.3. Sub-grid scale model 

When using LES, the time-dependent, three-dimensional, spatially-averaged Navier-Stokes equations are 

solved. In this method, the largest scales are resolved numerically on the mesh, while the unresolved scales must 

be modeled with a sub-grid scale model. This study adopts the most widely used sub-grid scale model, being the 

standard Smagorinsky model with a Smagorinsky constant Cs=0.1 (Smagorinsky, 1963).   

3.4. Numerical solution 

The PISO solver was used, since it is the most suitable one for turbulent flows of incompressible fluids (Singh 

2004). Both skewness and neighbor correction values were set to 1. Discretization in space and time are second 

order accurate. A constant time step Δt = 1×103 s was chosen (regarding Δt/T << 1 and after conducting several 

sensitive analysis). The maximum number of iterations per time-step was 20.  

Simulations were carried out on the supercomputer platform of Ghent University. The residual values were 

controlled and kept below the recommended values for convergence (Kulkarni and Moeykens 2005). After a 

period of 100T, a quasi-steady vortex shedding was established.  

3.5. Model verification 

During the simulations, the residuals value were recorded and kept under the values recommended by Ansys 

Fluent Theory Guide. After trying several meshes and model parameters, the model described above was found 

to (largely) fulfill two important criteria. The first criterion is related to the use of the standard wall function and 

requires the dimensionless wall distance y+ of the first cells near solid walls to be within the range of 

30 ≤ y+ ≤ 500 (Keylock et al. 2012). This condition was verified in several locations of the computation domain, 

with a special look to the cells near the pier and the bed.  

The second criterion requires a LES simulation to have at least 80 % of the turbulent kinetic energy being 

resolved by the mesh (Pope 2004). Not all parts of the mesh meet this criterion (see Figure 9, obtained by the 

approach described in Coussement et al. 2012). In the region around the pier, however, the second criterion is 

largely met. 



 

 

Figure 9. Percentage of turbulent kinetic energy resolved on the mesh 

4. RESULTS AND DISCUSSION 

4.1. Drag force on the pier 

Figure 10 presents the variation in time of the drag coefficient for the entire pier during a period of 60T. 

Note that the drag coefficient is calculated automatically by Fluent by integrating the instantaneous pressures 

and shear stresses on the entire pier surface. The drag coefficient is found to oscillate around a mean value 

(0.602). The irregularities observed in the behavior of the drag coefficient, and thus the drag force, might be 

explained by the unstable three-dimensional breakup of the vortices, as other studies report (Lysenko et al. 

2012).  Note that the time-averaged value of the drag coefficient (0.602) is somewhat lower than the value 

according to the literature (0.683), which was derived in Section 2. The latter value, however, assumes an 

infinitely long cylinder (with a uniform approaching flow over the depth). 

 
 

Figure 10. Time evolution of numerically predicted drag coefficient for the entire pier 

 

To quantify the vortex shedding frequency – which is half the value of the drag coefficient oscillations (Blevins 

1999) – a Fourier analysis was carried out, resulting in a main frequency of approximately 2.20 Hz (Figure 11). 

Therefore, the vortices detach themselves from the pier at a frequency of 1.10 Hz. This corresponds to a 

Strouhal number (Equation 1) of 0.19, a value relatively close to the one expected from the literature (0.20, see 

Section 2).  



 

 

Figure 11. Spectrum of frequencies of the numerically predicted drag coefficient 

of the entire pier (FFT analysis) 

4.2. Velocity fields around the cylindrical pier 

The turbulent flow features around a cylinder are vastly documented in the literature. To validate the numerical 

model results, however, first the available experimental data for this particular flow configuration, will be used. 

In Figure 12, the velocity profiles 10D upstream of the cylindrical pier in the symmetry plane (i.e. point E in 

Figure 7) are compared (R2=0.89). 

Note that the PIV data of the approaching flow are used as inlet boundary condition. Around 3 meters (62D) 

downstream of the inlet, i.e. at point E, the numerical and experimental profiles still match reasonably well, with 

some discrepancies near the bed (specifying inlet boundary conditions in a LES model is particularly difficult 

(Zhiyin 2014). Moreover, it seems that the rigid lid approach does not affect the velocity profile too much, near 

the upper boundary. 

 

Figure 12. Comparison of measured and numerically predicted approaching velocity profiles 

in point E of Figure 7 (10D upstream of the cylinder in symmetry plane)  

A map of an instantaneous velocity field is presented in Figure 13, for the zone near the bed, upstream of the 

cylinder. The presence of the horseshoe vortex system and the downflow is evident and the qualitative 

comparison with the PIV results is satisfactory (see Figure 11 of Nogueira et al. 2008). 

  



 

 

Figure 13. Numerically predicted instantaneous velocity field (near the bed, upstream of the pier) 

with vectors with colours according to the magnitude (m/s) 

In plan view, numerically predicted instantaneous velocity magnitudes around the pier are shown in Figure 14 

(at z/h = 0.5) and in Figure 15 (at z/h = 0.01). In both figures there is a clear influence of the vortex shedding, 

since the velocities occur asymmetrically in the two distinct instants in time and the individual vortices are 

perceptible.  

 

  

Figure 14. Numerically predicted instantaneous velocity magnitudes in plane z/h = 0.5 

at two instances in time: t/T = 150 (left panel) and t/T = 155 (right panel) 

 



 

  

Figure 15. Numerically predicted instantaneous velocity magnitudes in plane z/h = 0. 

at two instances in time: t/T = 150 (left panel) and t/T = 155 (right panel) 

 

In Figure 16 the velocity in point 1 is presented for a duration of 2T. The chosen (small) window of time is 

intended to be able to illustrate the effect of alternating vortices (higher amplitudes) as well as the effect of the 

smaller turbulence scales (minor variations). However, there is no clear dominant frequency, perhaps due to the 

location of the chosen point.  

 

Figure 16. Numerically predicted velocity magnitude at half-height in point 1 (marked in Figure 17) 

 

 

Figure 17. Schematic description (plan view) of the discrete points used to investigate time series of velocity 

magnitude and bed shear stress. Points 1, 2 and 3 are at z/h = 0.5 (half-height), z/h = 0 (bed) 

and z/h = 0.1 (near bed), respectively. 



 

Analysis of the velocity magnitude time series in a near-bed point upstream of the pier (point 3 of Figure 17) 

does not reveal a distinct dominant frequency, suggesting that the horseshoe vortex system has a complex 

dynamic behaviour.  

4.3. Bed shear stress  

The flow deflected by the pier induces increased bed shear stresses, capable of moving bed particles, with the 

higher values in the side close to the pier. Figure 18 shows the temporal evolution of the bed shear stress in 

point 2 (at the side of the pier, see Figure 17), demonstrating that the critical shear stress for the median 

diameter of the bed material in the experiments (0.48 Pa, based on the Shields diagram) is often exceeded.  

 

Figure 18. Numerically predicted bed shear stress in point 2 (marked in Figure 17) 

Figure 19 shows the shear stress distribution in the vicinity of the pier, highlighting the fact that the highest 

values are localized on the sides (such as point 2) and in the wake of the pier, possibly associated with the 

inception of scour.  

Nogueira et al. (2008) did not only study the flow around a pier mounted on a flat, non-movable bed (i.e. the 

flow configuration that is simulated in the present paper), but they also studied the scour around the pier 

mounted in a movable bed. In Figure 20, the bed after 5 minutes of scour is presented. Note the similarities 

between the bed shear stress as predicted by the present numerical model and the scour pattern found in the lab 

experiments.  

As literature suggests (Majeed et al. 2015; Guney and Turkben 2015; Ramos et al. 2015), the maximum scour 

depth during the initial scouring phase in a flume test of this type is not upstream of the pier (i.e. where the 

equilibrium scour depth is located), but rather at the lateral sides of the cylinder. Note that the bed shear stress 

patterns predicted in the simulation (which is representative for the initial phase of the scouring process) indeed 

are in accordance with the observations reported in literature.  

 

 

Figure 19. Numerically predicted instantaneous bed shear stress (Pa) around the cylindrical pier 



 

       

Figure 20. Scoured bed after 5 minutes of flow in movable bed experiments (Nogueira et al. 2008) and contour 

lines of the corresponding bed level (obtained by P.X. Ramos by means of photogrammetry) 

5. CONCLUSIONS 

In the present work, an eddy-resolving numerical model based upon the Large Eddy Simulation approach has 

been set up for predicting the three-dimensional flow around a cylindrical pier, mounted on a flat and fixed bed. 

This turbulent flow (ReD = 1.37×104) configuration was studied earlier experimentally by Nogueira et al. 

(2008), allowing a partial validation of the numerical results. Since no PIV data are available in the lee side of 

the cylinder, other validation data from the literature were used as well.  

The numerical simulation has confirmed the presence and complex dynamics of the horseshoe vortex system at 

the upstream side of the cylinder, as was measured by Nogueira et al. (2008). Similarly, the numerical model 

predicted the vortex shedding in the wake of the cylinder, with a main frequency (and corresponding Strouhal 

number 0.19) that is very close to value (0.20) in the literature. The mean drag coefficient for the entire pier 

(0.602) is somewhat lower than the value (0.683) derived from the literature on infinitely long cylinders (i.e. 

flow configurations with an approaching flow that is uniform over the flow depth). The numerical model 

confirms the instantaneous drag coefficient (of the entire pier) to oscillate around the mean value, as was 

reported in the literature. 

Since no PIV data are available close to the downstream half of the pier surface, neither in the wake of the pier, 

no further direct validation of the numerically predictions is possible based upon the data set of Nogueira et al. 

(2008). An indirect validation of the numerical model is, however, possible based upon the predicted bed shear 

stresses around the pier. The latter turn out to be higher than the critical value according to the Shields diagram 

for the bed material used in the experiments, in agreement with the fact that scour was initiated in the 

experiments. Moreover, the predicted extent of the zone in which the bed shear stress exceeds the critical value, 

agrees well with the extent of the scour hole observed in the initial phase of the scouring process during the 

experiments. 

Based on this first validation exercise, which is constrained by the limitations of the available data set, it can be 

concluded that the numerical model is capable of predicting the flow structures well, at least in a qualitative 

way. However, to enable a further (quantitative) validation of the numerical model, it is advocated to extend the 

experimental data set. These efforts are needed before the numerical tool is adapted to study the further phases 

of the scouring process around a cylindrical (or even a geometrically more complex) bridge pier. Currently, both 

in Ghent University and University of Porto, research on this topic is being carried out, namely regarding 

complex piers (structure with group of cylinders, a cap and a column) and efforts are being made to implement 

VoF (Volum of Fluid) in the present numerical model, enabling the study of the phenomena at higher Froude 

numbers.  
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