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Previous Note 

 In the elaboration of this dissertation, we opted for an integral incorporation of a set 

of submitted research works or in preparation for publication in international indexed journals 

with cientific arbitration, which are included in the Section 3 (“Case Studies”) of this 

dissertation. In the presented articles, the candidate participates as first author in two of 

them, being co-author of another. The candidate clarifies that in the two articles tha appears 

as first author, despite the collaboration of the other authors, participated in the data 

collection, he was responsible for its design, as well as for its obtaition, analysis and 

discussion of the results, and for the elaboration of the published version. The article wich 

the candidate collaborated as co-author, gathers data of three years (2014, 2015 and 2017), 

being the candiated participated in the data collection of 2017 and collaborated in the data 

analysis and in the writing of the final version of the article. 

 Part of the activities of this dissertation derives from the “Wine-spectra” project that 

aims to assess the hydric condition of grapevines in the Douro with remote sensing 

techniques. This project results from a protocol between the Faculty of Sciences of the 

University of Porto (FCUP), the Association for the Development of Viticulture Duriense 

(ADVID), and the companies Real Companhia Velha and Symington Family Estates. The 

responsability of “Wine-spectra” is given by Doctor Mário Cunha, Assistant Professor of the 

Department of Geosciences, Environment and Spatial Planning of the Faculty of Sciences of 

the University of Porto and Researcher at INESCTEC and Doctor Isabel Pôças, researcher 

at the Center for Research in Geo-Spatial Sciences of the University of Porto, who are also 

the tutors of this dissertation. The author of this dissertation is part of the reseracher’s team 

of the “Wine-spectra” project since 2017. 
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Nota Prévia 

Na elaboração desta dissertação, optamos pela incorporação integral de um 

conjunto coerente de trabalhos de investigação submetidos ou em preparação para 

publicação em revistas internacionais indexadas e com arbitragem científica, os quais 

integram a Secção 3 (“Case Studies”) da presente dissertação. Nos artigos apresentados, o 

candidato participa como primeiro autor em 2 deles, sendo co-autor de outro. O candidato 

esclarece que nos dois artigos em que aparece como primeiro autor, não obstante a 

colaboração de outros autores, participou na colheita dos dados, foi o responsável pela sua 

conceção, bem como pela obtenção, análise e discussão de resultados, e ainda pela 

elaboração da sua forma publicada. O artigo em que o candidato colaborou como co-autor, 

integra dados de 3 campanhas (2014, 2015 e 2017), tendo o candidato participado, na 

colheita dos dados da campanha de 2017 e colaborou na análise dos dados e, ainda, na 

redação da versão final deste artigo. 

Parte das actividades desta dissertação enquadram-se nas linhas de trabalho do 

projecto “Wine-spectra” que tem como objectivo avaliar a condição hídrica da videira na 

região do Douro com base em técnicas de detecção remota. Este projeto resulta do 

protocolo de colaboração entre a Faculdade de Ciências da Universidade do Porto (FCUP), 

a Associação para o Desenvolvimento da Viticultura Duriense (ADVID), e as empresas Real 

Companhia Velha e Symington Family Estates. A responsabilidade do “Wine-spectra” está a 

cargo do Doutor Mário Cunha, Professor Auxiliar do Departamento de Geociências, 

Ambiente e Ordenamento do Território da Faculdade de Ciências da Universidade do Porto 

e Investigador no INESCTEC e da Doutora Isabel Pôças, Investigadora no Centro de 

Investigação em Ciências Geo-Espaciais da Universidade do Porto, que são também os 

orientadores desta dissertação. O autor desta dissertação integra a equipa de investigação 

do projecto “Wine-spectra” desde o ano de 2017.  
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Abstract 

The Mediterranean climate, characterized by warm and drought summers, gathers ideal 

conditions for the practice of viticulture. Such conditions are found in Douro region, in the 

Northeast of Portugal, where viticulture represents the most important agricultural and 

economic activity. The application of remote sensing (RS) tools in precision agriculture (PA) 

is revolutionizing the input management in agriculture, including in viticulture. This 

dissertation presents three case studies of RS techniques application in Portuguese 

vineyards, based on physiological assumptions and supported by modelling approaches. 

The first case study is related to the use of hyperspectral and thermal data to assess the 

application of kaolin in grapevines. According to the bibliography, kaolin is reported as a 

potential tool to minimize the effect of high temperatures over the vegetation during the 

Mediterranean summer. The main findings presented in this case study report the 

wavelength 535 nm, related to foliar pigments responsible for the heat dissipation (i.e. 

xanthophyll), and the wavelength 733 nm as possible indicators of thermal stress promoted 

by the solar radiation. Moreover, a principal component analysis (PCA) showed that the 

thermal data also highly contribute for explaining the vines response to kaolin application 

throughout the grapevine cycle, while considering the time-losing effect after kaolin 

application. The other two case studies present different modelling approaches for the 

estimation of predawn leaf water potential (ѱpd) in vineyards of two sub-regions in Douro 

wine region using hyperspectral data: (i) the second case study presents a generalized 

predictive model of (ѱpd)  based on machine learning techniques applied in regression mode 

– Random Forest (RF), Bagging Trees (BT), Gaussian Process Regression (GPR), and 

Variational Heteroscedastic Gaussian Process Regression (VH-GPR); (ii) in the third case 

study a multisite predictive model of (ѱpd) were developed  based on a machine learning 

technique applied in the classification mode – ordinal logistic regression (OLR) using the 

data-set from 2017. A large set of spectral vegetation indices (VIs) were tested, optimized, 

and validated as models’ predictors. In both case studies, the VIs selected encompassed the 

visible and near-infrared (NIR) zones of the electromagnetic spectrum. Analyzing model’s 

performance, the second case study provided overall accuracy between 82-83% and the 

third case study an overall accuracy of 73.2% in the estimation of classes of ѱpd values. The 

results obtained from both case studies showed potential for the models’ operational use to 

estimate the ѱpd in support to irrigation management. 

 

Keywords: grapevine; hyperspectral; machine learning; predawn leaf water potential; 

vegetation indices.  
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Resumo 

O clima mediterrânico, caracterizado por verões quentes e secos, reúne condições ideais 

para a prática da viticultura. Tais condições são encontradas na região do Douro, no 

nordeste de Portugal, onde a viticultura representa a cultura mais importante e a principal 

atividade económica. A aplicação de técnicas de deteção remota em agricultura de precisão 

está a revolucionar o gerenciamento de inputs na agricultura, incluindo a viticultura. Esta 

dissertação apresta três casos de estudo de aplicação de deteção remota em vinhas 

Portuguesas, abordando parâmetros fisiológicos através de modelos matemáticos. O 

primeiro caso de estudo é relacionado com o uso de informação hiperespectral e térmica 

para avaliar a aplicação de caulino em videiras. De acordo com a bibliografia, o caulino é 

relatado como uma potencial técnica para minimizar os efeitos das altas temperaturas na 

vegetação durante o verão mediterrânico. Os principais resultados apresentados neste caso 

de estudo reportam o comprimento de onda 535 nm, relacionado com pigmentos foliares 

responsáveis pela dissipação do calor (p.e. xantofilas), e o comprimento de onda 733 nm 

como possíveis indicadores de estresse térmico promovidos pela radiação solar. Além 

disso, uma análise de componentes principais (PCA) mostrou que a informação térmica 

também contribui fortemente para a explicação da resposta espectral da vinha sobre a 

aplicação do caulino no ciclo da videira, quando considerado o efeito de perda do caulino 

após a sua aplicação. Os outros dois casos de estudo apresentam diferentes abordagens 

de modelação para a estimação do potencial hídrico de base na folha ao amanhecer (ѱpd) 

em vinhas de duas sub-regiões da região vinícola do Douro usando dados hiperespectrais: 

(i) o segundo caso de estudo apresenta um modelo generalista para a previsão do (ѱpd)  

baseado em técnicas de machine learning aplicadas em modo de regressão - Random 

Forest (RF), Bagging Trees (BT), Gaussian Process Regression (GPR), e Variational 

Heteroscedastic Gaussian Process Regression (VH-GPR); (ii) no terceiro caso de estudo é 

apresentado um modelo multi-local para a previsão do (ѱpd), baseado em técnicas de 

machine learning em modo de classificação – regressão ordinal logística (OLR) utilizando os 

dados do ano de 2017. Foi testada uma grande variedade de índices de vegetação, 

otimizada, e validada como preditores dos modelos. Em ambos os casos de estudo, os 

índices de vegetação selecionados abrangeram as zonas do espectro eletromagnético do 

visível e do infravermelho próximo. Analisando a performance dos modelos, o segundo caso 

de estudo obteve uma exatidão média entre 82-83% e o terceiro caso de estudo uma 

exatidão média de 73.2 % na estimação dos valores das classes de ѱpd. Os resultados 

obtidos de ambos casos de estudo mostraram potencial operacionalização dos modelos 

para estimar o ѱpd como suporte do maneio da rega. 
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Palavras chave: videira, hiperspectral, machine learning, potencial hídrico de base da folha 

ao amanhecer, índices de vegetação.  
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Scope of the dissertation 

 This dissertation presents an overall review of the main concepts related with RS 

techniques and their application for agricultural purposes. 

Specifically, RS applications related to the monitoring of crop water status and leaf 

protective energy dissipation in vineyards are considered. The use of machine learning 

techniques in the modelling of biophysical parameters based on hyperspectral and thermal 

data is tested. Three case studies are presented, corresponding to three articles submitted 

or prepared for publication in peer reviewed scientific journals. 

The dissertation involved training in fieldwork skills associated with vineyard surveys 

and remote sensing data collection using field hyperspectral spectroradiometer and 

thermocam; technical skills associated with the collecting of plant spectra, plant predawn leaf 

water potential; statistical, and analytical skills associated with hyperspectral and thermal 

remote sensing data processing (e.g. spectral vegetation index optimization) which included 

computer programming skills through the application of R and Matlab specific applications. 
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Dissertation structure  

The dissertation is organized in five sections. First, an introduction section presents a 

contextualization of the the topics covered throughout the dissertation, followed by a state of 

the art section, providing the most relevant information on agricultural remote sensing 

applications. Afterwards, three case studies are presented in a specific section where the 

main dissertation’ findings are explained: i) Spectral and thermal data as a proxy for leaf 

protective energy dissipation under kaolin application in grapevine cultivars; ii) Toward a 

generalized predictive model of grapevine water status in Douro region from hyperspectral 

data; iii) Estimation of grapevine predawn leaf water potential based on hyperspectral 

reflectance data in Douro wine region. An overall discussion about the results of the three 

case studies is presented in the following section, comparing with the findings in the 

bibliography. Finally, the main gaps existing in the use of spectral information in precision 

agriculture are presented in a section of conclusions and perspectives. 
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1.  Introduction 

The modelling of the data collected by RS optical sensors has been increasingly used in 

the agrarian sciences domain aimed at estimating different biophysical parameters from 

crops. The spectral reflectance allows monitoring crop parameters such as: crop water 

condition (Pôças et al., 2017), incidence of plagues and diseases (Ray et al., 2017), crop 

nutrients content (Samborski et al., 2016), leaf area index (Cheng et al., 2014), and foliar 

pigments content (e.g. xanthophyll) used as proxy of plant physiological processes 

(Middleton et al., 2012). 

The spectral response from the crops can be obtained through proximity sensors (e.g., 

handheld spectroradiometers) and sensors onboard drones, aeroplanes or satellites, with 

different spatial, temporal and spectral resolutions. The quantity and width of bands captured 

from the electromagnetic spectrum characterizes the spectral resolution and allow 

distinguishing between multispectral or hyperspectral data. The hyperspectral data differ 

from multispectral due to the higher number of spectral bands with narrow width, allowing 

more easily detecting subtle changes in the energy reflected by the objects surface (Jones 

and Vaughan, 2010). 

Often, the implementation of spectrally-based methodologies to estimate plant 

biophysical parameters follows statistical approaches. The large amount of data generated 

through RS tools and the often complex pattern of biophysical parameters data demands the 

selection of appropriate statistical techniques (e.g. machine learning algorithms) and 

predictors adjusted to the study conditions (Cheng et al., 2014; Gorsevski and Gessler, 

2009). Nevertheless, these statistical approaches represent semi-empirical methodologies, 

hindering models transferability when applied to conditions differing from those tested in their 

development (Rivera et al., 2014). 

Therefore, despite the wide potential of hyperspectral data for crops monitoring, their 

operational use for assessing crop biophysical parameters with complex data patterns, like 

those related with crop water status, still needs more/better knowledge. From this limitation, 

this work aims to assess the potential of hyperspectral reflectance collected from proximity 

sensors (handheld spectroradiometer and thermal camera) for estimating vines biophysical 

parameters. The study focuses in vineyards of two sub-regions within Douro wine region and 

data collected in different years, thus encompassing variability conditions regarding 

agronomic, environmental and climatic features. Various statistically-based methodologies 

focusing on machine learning algorithms are tested for training the big data obtained from 

the proximity sensors aiming to estimate the target parameters. 
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2.  State of the art 

2.1. Precision agriculture (PA) 

PA, also known as precision farming, represents the application of geospatial techniques 

and tools, including remote sensing, to identify in-field soil and crop variability and to deal 

with them using alternative strategies aiming for improving farming practices and optimizing 

agronomic inputs (Khanal et al., 2017; Zhang and Kovacs, 2012), with the aim to improve 

the agronomic output while reducing the input, that is, producing ‘more with less’. 

The PA has begun with the use of global positioning system (GPS) in the agriculture in 

the 1980’s following mainly crop mechanization (Zhang et al., 2002). In the early 2010s, PA 

was boosted by sophisticated technology such as smart sensors, remote sensed data, 

actuators and micro-processors, high bandwidth cellular communication, nanotechnology, 

cloud-based Information and communication technology systems as well as data sciences. 

As such, data is no longer only sourced from the farm equipment, but new services coupled 

with new algorithms are being available to transform data into actionable intelligence (Zarco-

Tejada et al., 2014). 

In Portugal, the viticulture is one of the most important perennial crops, with the grapes 

produced for wine representing the second large area of permanent crops, totalizing 

approximately 176805 hectares with a total of 6558 tons of wine produced (INE, 2018). The 

use and optimization of geospatial techniques and tools in this activity possibly will bring a 

smart approach on how this crop is conducted. Precision viticulture can be defined by 

monitoring and managing spatial variation linked to physical and biochemical parameters 

related to yield and quality (Hall et al., 2002). According to these authors, the relationship 

between the yield and quality are complex and the cultivars, climates and season are 

affected by the management, being the soils one of the factors with high variability. With the 

development of precision viticulture, it is possible to map the within vineyards variability 

regarding multiple parameters (Thenkabail et al., 2000), such as water status (Borgogno-

Mondino et al., 2018), chlorophyll content (Zarco-Tejada et al., 2013b) and grape ripening 

(Orlandi et al., 2018).  

 

2.2. Platforms of obtaition of spectral data 

Different types of RS sensors and platforms can be used to collect spectral data (Figure 

1). As an example, proximity sensors like handheld spectroradiometers allow obtaining 
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hyperspectral data from the energy reflected by the vegetation (Verrelst et al., 2018), as 

represented in Figure 1 by the device closest to the vegetation. Other examples are the 

spectral and thermal cameras on-board drones (Gago et al., 2017), airborne platforms 

(Serrano et al., 2002), and satellites (Huang et al., 2018) as illustrated in Figure 1. 

 

Figure 1. Different platforms for Earth observation data collection (senseFly, 2015). 

 

2.3. The electromagnetic spectrum and spectral signatures 

The radiation usually refers to the electromagnetic radiation, which is the form of energy 

that travels at the speed of light and have wave-like properties (e.g., wavelength and 

frequency). The electromagnetic spectrum describes the range of frequencies of the 

electromagnetic radiation and it is possible to define wavelength as the distance of wave 

crests in a specific frequency that hits a determined point in one second (Hungate et al., 

2008). The electromagnetic spectrum encompasses radio waves, microwaves, infrared, 

visible light, ultraviolet, x-ray and gama-ray (Schmitt, 2002).  

The Figure 2 represents the electromagnetic spectrum and characterizes its energy and 

frequency according to the wavelengths. As the wavelength increases, the energy and 

frequency decreases. This kinetics can be explained by the following formula: 

𝐶 = 𝜆. 𝑉 

 Where, C is the speed of light in the vacuum (299.792,458 km/s), λ the wavelength 

(nm) and V the frequency of the wavelength (Hz). 
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Figure 2. Representation of the electromagnetic spectrum, encompassing the various domains and their corresponding energy 
and frequency (Penubag, 2012). 

 

All the radiant energy received from the sun that is not absorbed or dissipated, is 

transformed in other form of non-radiant energy such as soil heat (G), biochemical energy 

(P, photosynthesis), sensible (H) and latent heat (λE) as represented in Figure 3 (except P 

flow). The relationship between radiant and non radiante energy flows, which represents the 

energy balance in the Earth surface is presented in equation 1. 

The net radiation (Rn) integrates the total amount of incoming and outgoing radiation 

components, accounting for the shortwave and longwave radiation portions (Petropoulus, 

2013). The shortwave radiation corresponds to the radiation with short wavelengths (0.4 – 

2.5 μm) that usually refers to the part of the electromagnetic spectrum dominated by the 

incoming solar radiation; the longwave radiation is the radiation with longer wavelengths (2.5 

– 14 μm) that typically corresponds to the part of the electromagnetic spectrum dominated 

by the radiation emitted by the surface of Earth and atmosphere (Campbell and Norman, 

1998). Through the energy balance equation, it is possible to estimate the crops 

evapotranspiration that broadly represents crop water status and, consequently, its water 
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needs (Anapalli et al., 2018; Ortega-Farías et al., 2016; Pôças et al., 2013). The Rn is 

partitioned into sensible heat (H), soil heat (G) and latent heat (λE) fluxes. 

 

Figure 3. The energy balance diagram in Earth adapted from DeMeo et al. (2003) 

 

𝑅𝑛 = 𝐻 + 𝐺 + 𝜆𝐸          (1) 

 

The Rn and G are components that can be measured or estimated based on climatic 

parameters, while determining the H component is more challenging and requires the 

accurate measurement of temperature gradients above the surface (Allen et al., 1998). λE 

represents the evapotranspiration fraction and is derived from all the others components of 

the energy balance equation (Allen et al., 2011; Allen et al., 1998). 

The incident radiation reflected is unique for each material/object due to its biophysical 

composition (Hungate et al., 2008), guaranteeing a spectral signature for each object that is 

sampled. Figure 4 illustrates the different spectral signatures of green vegetation, soil and 

water.  

Green vegetation leaves are characterized by a higher absorption (low reflectance) in the 

visible wavelengths and lower absorption (high reflectance) in the infra-red zone. When 

specifically focusing the visible domain, there is a lower absorption (higher reflectance) of 

the radiation in the green zone when compared to blue and red zones This reflectance 

profile of vegetation in the visible domain is mainly characterized by the pigments presence 

(Hall et al., 2002). For example, chlorophylls absorption of light is mainly associated with the 

red and blue zones, while carotenoids and xanthophylls are reported to the blue-green 
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zones (Jones and Vaughan, 2010). The lower absorption of radiation and higher reflectance 

in the infra-red zone is associated to the water content. The reported water absorption bands 

corresponding to 0.97 µm, 1.20 µm, 1.40 µm and 1.94 µm wavelengths (Curran, 1989), 

support that the infrared zone is potentially useful as indicator for water status in plants 

(Peñuelas et al., 1997; Rodríguez-Pérez et al., 2018).  

The soil spectral signature is characterized by the increment of the reflectance from the 

visible to the near-infrared zone. However, there are many factors that influences the soil 

reflectance, including the soil water content (Borgogno-Mondino et al., 2018; Jones and 

Vaughan, 2010; Roosjen et al., 2015), the level of organic matter (Jones and Vaughan, 

2010), the soil texture (Jones and Vaughan, 2010) and roughness (Eshel et al., 2004; Jones 

and Vaughan, 2010), and the iron content (Chicati et al., 2017; Jones and Vaughan, 2010).  

Conversely, the spectral signature of the water has a small proportion of reflectance of 

the incident radiation when compared to the green vegetation and soil spectral signatures 

(Jones and Vaughan, 2010). There are some factors that affect the water reflectance 

including the water turbidity, chlorophyll content, surface and below surface content related 

with sediments and phytoplankton (Jones and Vaughan, 2010; Zeng et al., 2017).  

 

Figure 4. Curve of reflectance of soil, water and green vegetation from the visible until the mid-infrared zone (SEOS, 2018). 

Towards an agricultural point of view, the reflectance signature of the crops under 

specific agronomic conditions provides an understanding of the different crops response due 

to the environmental conditions (Mulla, 2013). 

 

2.4. Spectral information for sensing vegetation properties  

The spectral information has a high potential to describe vegetation properties (Hall et 

al., 2002; Jones and Vaughan, 2010) due to its power to depict the effects of the 
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environment conditions over the plants (Féret et al., 2017). The changes in the crop 

reflectance in different regions of the electromagnetic spectrum can be associated to a wide 

range of biophysical parameters, including crop water status (Pôças et al., 2017; Rodríguez-

Pérez et al., 2018), fungal disease (Ray et al., 2017), fertilization content (Li et al., 2018), 

fruit maturation (Orlandi et al., 2018; zhang et al., 2016), chlorophyll fluorescence (Rapaport 

et al., 2015) and canopy temperature (Verrelst et al., 2015b). 

The various zones of the electromagnetic spectrum can be explored to assess specific 

properties of the vegetation (and soil): (i) visible and near infrared (NIR) are related with  

plant structural characteristics and pigments content (Chen et al., 2015; Datt, 1999), (ii) short 

wave infrared (SWIR) relates with plant moisture (Lobell et al., 2001; Rodríguez-Pérez et al., 

2018), (iii) thermal infrared (TIR) provides thermal information from the crops and can be 

further related with crop water conditions (Poblete et al., 2018), and (iv) microwaves allows 

determining soil moisture (Schellberg et al., 2008). In the context of this dissertation, a 

particular focus will be devoted to the visible, NIR and thermal domains. 

The visible zone provides information about changes in the concentration of xanthophyll 

and other plant pigments and are associated to the biochemical absorption in the mesophyll 

(Blackburn, 1998; Knipling, 1970). The different pigments present in the leaves permit to 

assess physiological plant condition through the photosynthesis rate. Among the leaf’s 

pigments, it is important to highlight the family of chlorophylls, carotenoids and anthocyanins. 

The combination of pigments in the leaves will control the sunlight that is absorbed and used 

in the photosynthesis, even though, the pigments try to control the excess of light and 

heating that is received from the sun (Féret et al., 2017). Under stress conditions of 

temperature, nutrition, and water, the radiation absorbed will decrease due to the defence 

mechanism of plants that is controlled by the xanthophyll that promote the dissipation of the 

heating (Middleton et al., 2012). Additionally, under stress, the canopy can present other 

symptoms related to its vigour, such as: changes in the angle of the leaves, foliar area, 

concentration of pigments in the epidermis, shape of the plant and depth of the root 

(Middleton et al., 2012). Regarding the NIR zone, various studies report its relation with plant 

water content and plant water stress in liaison with the water absorption bands in this 

spectral zone as referred in section 2.3 (Peñuelas et al., 1993; Peñuelas et al., 1997; 

Rodríguez-Pérez et al., 2018). Thus, spectral information from the visible and NIR domains, 

with relation with plant structural characteristics and pigments content, can be used as proxy 

of plants response to stress conditions, including those from water stress (Suárez et al., 

2008). 
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The thermal data has provided positive evidences that environmental conditions 

influences the canopy (Buitrago Acevedo et al., 2017; Sepulcre-Cantó et al., 2006). Thermal 

data is reported to influence in pigments concentration (Shellie and King, 2013), water status 

(Zarco-Tejada et al., 2013a), lignin and cellulose concentrations and leaf area (Buitrago 

Acevedo et al., 2017).  

The combination of optical and thermal data is able to improve the crop monitoring due 

to the detailed information provided (Khanal et al., 2017). 

Furthermore, the leaf pigments play an important rule when pretends to create 

biophysical models. The models PROSPECT (Jacquemoud and Baret, 1990) and PROSAIL 

(Verhoef, 1984, 1985) have been largely used since their creation (Jacquemoud et al., 

2009). These models use as input the leaf reflectance, leaf transmittance and soil 

reflectance (Jacquemoud et al., 2009). These models are basically applied to assess the 

canopy architecture (e.g. leaf area, angle distribution) and leaf biochemical content (e.g. 

chlorophyll content) (Féret et al., 2017; Jacquemoud et al., 2009). 

 

2.5. Hyperspectral and multispectral data in precision 

agriculture  

As mentioned in the introduction section in RS, the spectral resolution represents the 

ability of a sensor to define fine wavelength intervals and is determined by the number and 

width of spectral bands (Jones and Vaughan, 2010). The terms multispectral and 

hyperspectral are defined according to the number and width of spectral bands recorded by 

a sensor. While multispectral refers to instruments that record information in a small number 

of spectral bands (usually two to ten) and with a broad width, hyperspectral is associated to 

sensors recording information from a large amount of bands (more than ten) with fine width 

(Hall et al., 2002). Handheld spectroradiometers and cameras onboard satellites and drones 

are examples of devices that collect multispectral and hyperspectral data. Although 

multispectral data are more easily available, often associated to satellite missions (e.g., 

Landsat and Sentinel missions), there is an increasing interest over hyperspectral data for 

purposes related with the assessment and monitoring of vegetation biophysical parameters.  

The main advantage of hyperspectral data reports to the high detailed information 

provided, allowing the differentiation of multiple surfaces due to its high sensibility to detect 

differences owing to the narrow band information (Blackburn, 2007; Jones and Vaughan, 

2010; Mariotto et al., 2013). However, hyperspectral data has a high level of bands 
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correlation, in other words, many wavelengths provide similar information, creating 

dimensionality problems and making hard the bands selection (Jones and Vaughan, 2010). 

The optimization of VIs and the application of machine learning techniques are used to 

reduce the dimensionality of the bands.  Additionally, the use of hyperspectral data is still 

limited due to the high cost of data acquisition and processing (Hamzeh et al., 2016).  

 

2.6. Vegetation indices  

The VIs are mathematical combinations of two or more spectral bands. There are 

different typologies of VIs, as summarized in Table 1. Most VIs consider two spectral bands. 

However, two-bands indices are more likely to suffer saturation problems mostly because of 

the environmental conditions of the reflectance (Wu et al., 2008). To overcome the 

saturation problem, VIs with three or more bands have been used in the construction of VI 

(Wang et al., 2012). 

 

Table 1. Examples of types of VI. Adapted from: Verrelst et al. (2015c). 

Type Formula Example 

ρ (reflectance) ρ 𝑎 
Boochs (Boochs et al., 

1990) 

SR (simple ratio) ρ𝑎 ρ𝑏
⁄  GI (Smith et al., 1995) 

ND (normalized 

differences) 
(ρ𝑎  −  ρ𝑏) (ρ𝑎 +  ρ𝑏)⁄  NDVI (Tucker, 1979) 

mSR (modified simple 

ratio) 
(ρ𝑎  −  ρ𝑐) (ρ𝑏 −  ρ𝑐)⁄  

SIPI (Peñuelas et al., 

1995b) 

mND (modified 

normalized difference) 
(ρ𝑎  −  ρ𝑏) (ρ𝑎 +  ρ𝑏 − 2ρ𝑐)⁄  

mNDVI (Sims and Gamon, 

2002) 

3BSI (three-band 

spectral indices) 
(ρ𝑎  −  ρ𝑐) (ρ𝑏 +  ρ𝑐)⁄  Datt (Datt, 1999) 

3BSI Wang (three-band 

spectral indices Wang) 
(ρ𝑎  −  ρ𝑏 + 2ρ𝑐) (ρ𝑎 +  ρ𝑏 − 2ρ𝑐)⁄  

LNC Wang (Wang et al., 

2012) 

3BSI Tian (three-band 

spectral indices Tian) 
(ρ𝑎 −  ρ𝑏 −  ρ𝑐) (ρ𝑎 +  ρ𝑏 +  ρ𝑐)⁄  LNC Tian (Tian et al., 2014) 

DVI (derivate vegetation 

index) 
ρ𝑎  −  ρ𝑏 DVI (Jordan, 1969) 
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VI can be used to highlight changes in vegetation condition (Hall et al., 2002) and to 

estimate a vast number of parameters such as plant water content, stomatal conductivity, 

chlorophyll fluorescence, soil water content and others (Katsoulas et al., 2016). The 

Attachment 1 reports multiple formulation of VI, for example, the curvature index (CI), related 

to the chlorophyll a fluorescence (Zarco-Tejada et al., 2003), the spectral polygon vegetation 

index (SPVI) associated to the pant nutrition (Vincini et al., 2006) and the plant senescence 

reflectance index (PSRI), which tells information about the plant senescence and fruit 

ripening (Merzlyak et al., 1999). Additionally, it is important to highlight the most popular VIs, 

such as the normalized difference vegetation index (NDVI) (Tucker, 1979) related to the 

plant biomass content, the soil-adjusted vegetation index (SAVI) (Huete, 1988) that 

describes the soil-vegetation system, and the photochemical reflectance index (PRI) 

(Gamon et al., 1992) used to assess the photosynthesis efficiency. 

The VIs can be either broadband or narrowband depending if they are built with bands 

with a large range of wavelengths (e.g., encompassing the full range of the red and NIR 

zones) or with bands corresponding to specific wavelengths. A large diversity of VIs is 

currently available in the bibliography (Attachment 1). Additionally, several studies based on 

hyperspectral data have aimed at optimizing VIs, through the selection of the best 

combination of bands (Verrelst et al., 2015a; Wang et al., 2017). This optimization of VIs is 

performed to obtain the best band combination consonant with the target variable. The 

selection of the band combination considers statistical parameters such as root mean square 

error (RMSE) and determination coefficient (R2) (Li et al., 2018; Rodríguez-Pérez et al., 

2018). For example, Pôças et al. (2017) optimized normalized indices to find the best 

combination of wavelengths to explain the water status in vines in the Douro Wine Region. 

Similarly, Elvanidi et al. (2018) searched for the best combination of bands to explain the 

water stress in soilless tomato through VI in a controlled growth chamber located in 

Velestino, Central Greece and Sims and Gamon (2002) developed the modified simple ratio 

index (mSR705) VI to better explain the chlorophyll content in diverse species leaves 

collected from plants growing on the California State University, Los Angeles campus, or 

from natural habitats in Southern California and Southern Nevada (Nevada Test Site, 

Mercury, NV).  

 

2.7. The assessment of RS data in agriculture  

To provide a very rich information about the crop condition, the (hyper)spectral data 

needs to be extracted, stored and analysed (Huang et al., 2018). Figure 5 broadly 
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summarizes the steps for the spectral data processing and analysis when applied for PA 

purposes. However, this type of data brings the challenge of data analysis (Heikkinen, 2018; 

Katsoulas et al., 2016) and the methods of data processing (Verrelst et al., 2018).  

 

Figure 5. Chartflow of the analysis of spectral images in precision agriculture. 

 

The processing and analysis of spectral data can be complex when a large amount of 

data, with redundant information, is captured along with the target information (Huang et al., 

2018). That is the case when hyperspectral data is assessed as a high correlation between 

bands can occur and thus the band selection constitutes an important challenge (Feng et al., 

2017; Huang and He, 2005; Wang et al., 2017). Another issue related with the large amount 

of information collected with either proximity sensors or sensors onboard aerial and satellite 
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platforms (imagery), generating the so called big data (Huang et al., 2018), concerns the 

data processing demands. A high computational performance and robust modelling tools are 

required to analyse large amounts of data (Huang et al., 2018; Verrelst et al., 2018). 

Nevertheless, the rising improvements in both sensors technology and computation 

associated with the increasing efforts to develop robust modelling approaches positively 

contribute to overcome the mentioned challenges and limitations.  

Techniques of machine learning have been widely used to improve the modelling in PA 

(Verrelst et al., 2018; Wang et al., 2017). Parametric and non-parametric models have been 

used in modelling regressions. In a very simple way, what differs the non-parametric 

methods from the parametric method is the use of weights in the training data and the fact 

that non-parametric methods do not assume a specific distribution of the data, in other 

words, it is possible to say that the non-parametric methods learn with the training of the 

data (Verrelst et al., 2018). Also, the non-parametric methods are subclassified in linear and 

non-linear methods. While the linear non-parametric methods englobe methods such as: 

stepwise multiple linear regression (SMLR) (Draper and Smith, 2014); principal components 

regression (PCR) (Wold et al., 1987); partial least squares regression (PLSR) (Geladi and 

Kowalski, 1986), ridge (regulated) regression (RR) (Geladi and Kowalski, 1986) and least 

absolute shrinkage and selection absolute shrinkage and selection operator (LASSO) 

(Tibshirani, 1996), the non-linear non-parametric methods are focused in methods such as 

decision-trees, artificial neural-networks and kernel-based machine learning methods 

(Patrício and Rieder, 2018; Verrelst et al., 2018). Authors have been using these techniques 

to optimize the estimation of biophysical parameters that will help in decision making 

processes related with crop production (Elvanidi et al., 2018; Orlandi et al., 2018; Pôças et 

al., 2017; Rodríguez-Pérez et al., 2018; Veraverbeke et al., 2018; Verrelst et al., 2018). 

The modelling of biophysical parameters requires high computational requirements due 

to their exhaustive computational process and long-time processing (Huang et al., 2018; 

Verrelst et al., 2018). Techniques of modelling are applied in software such as MATLAB 

(The Math Works, Inc., USA) and R (R Core Team, 2017) due to their versatility to use 

different toolboxes in the case of MATLAB, and multiple packages in R. Both ARTMO 

(Automated Radiative Transfer Models Operator) (Verrelst et al., 2011), which is a software 

that runs in MATLAB environment, and the package HSDAR (Lehnert et al., 2017) for R 

include features of machine learning able to handle multispectral and hyperspectral data. 

Also, the package caret (Kuhn, 2008) for R includes multiples algorithms to create non-

parametric and parametric models that can be applied to RS data. 
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Moreover, through these tools, it is possible to create physically-based models such as 

PROSPECT (Jacquemoud and Baret, 1990), as well as create and optimize VI and construct 

nonparametric and parametric models, which have a statistical basis (Caicedo et al., 2014; 

Lehnert et al., 2017; Verrelst et al., 2011), aimed at retrieving biophysical parameters of 

vegetation. Examples of the use of these features are given by Verrelst et al. (2015c) who 

used ARTMO to estimate the leaf area index (LAI) by choosing the band combination of 

bands from multispectral imaging. Also, Dechant et al. (2017) used the HSDAR package to 

estimate the chlorophyll, carotenoid and water contents by PROSPECT model and Pôças et 

al. (2017) used the same HSDAR package to find the best combination of bands to optimize 

normalized indices, and then used the caret package to construct predictive models for 

estimating the water status in vine.  
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3. Case studies 

The articles presented follow the same editorial pattern of the dissertation. However, the 

number of figures, tables and references follow the manuscript requirements of journal that 

they were submitted, and they are not included in the table of contents. 

 

3.1.  Spectral and thermal data as a proxy for leaf protective 

energy dissipation under kaolin application in grapevine 

cultivars 

 
Journal: The Open Agriculture Journal 

Date of submission: 2/10/2018 

Manuscript number: OPAG-D-18-00143 

Status: under review 

 

 
Figure 6. Receipt of submission of manuscript number 1. 

 
Note: this paper is based on the “long abstract” previously presented by the same authors in 
the “I Symposium Ibérico de Ingeniería Hortícola”, Lugo, Spain, 21-23 February, 2018.  



 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

15 

 

 

Spectral and thermal data as a proxy for leaf 

protective energy dissipation under kaolin 

application in grapevine cultivars 

 

Renan Tosin1, Isabel Pôças1,2,3,4 and Mário Cunha1,3,4,* 

1 Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre 

sn, 4169-007 Porto, Portugal; renantosin@gmail.com 

2 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior 

de Agronomia, Universidade de Lisboa, Portugal; isabel.pocas@fc.up.pt 

3 Centro de Investigação em Ciências Geo-espaciais (CICGE), FCUP 

4 Institute for Systems and Computer Engineering, Technology and Science 

(INESCTEC) 

*Corresponding author: mccunha@fc.up.pt 

 

Abstract 

The dynamic effects of kaolin clay particle film application on the temperature and spectral 

reflectance (325 to 1075 nm) of leaves of two autochthonous varieties (Touriga Nacional and 

Touriga Franca) were studied in Douro wine region. The study was implemented during the 

summer of 2017, in conditions prone to multiple environmental stresses that include 

excessive light and temperature as well as water shortage. Light reflectance from kaolin-

sprayed leaves was higher than the control (leaves without kaolin) in all dates. The kaolin 

protective effect over leaves temperatures was low on the 20 days after application and 

ceased about 60 days after its application. At this latter date, the leaves protected with kaolin 

recorded higher temperatures than leaves without kaolin. Differences between leaves with 

and without kaolin were explained by the normalized maximum leaf temperature, reflectance 

at 400 nm, at 535 nm, and at 733 nm. The wavelengths of 535 nm and 733 nm are 

associated with plant physiological processes, which support the selection of these variables 

for assessing kaolin effects on leaves. The application of a principal component analysis 

based on these four variables allowed explaining 85% of data variability, obtaining a clear 

differentiation between leaves with and without kaolin treatment. The normalized maximum 

leaf temperature and the reflectance at 535 nm were the variables with a greater contribution 

for explaining data variability. The results improve the understanding of the vines response 
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to kaolin throughout the grapevine cycle and support decisions about the re-application 

timing. 

Keywords: handheld spectroradiometer, leaves reflectance, leaves temperature, thermal 

camera, xanthophyll. 

 

1. Introduction 

Temperature and solar radiation coupled with water shortage are central to how 

climate influences the growth, yield and quality of grapevine. Despite the advances in 

technology, breeding included, as well as the incremental use of irrigation in vineyards, 

grapevine remains highly dependent on weather, which can affect both the quantity and 

quality of the harvest. In semi-arid environments, typical of Mediterranean climate, excessive 

radiant heat load combined with excessive temperature, often limits the plants physiological 

processes and growth during the rainless summer, mainly in no irrigation crop system such 

as vineyard. According to Palliotti et al. (2015), these climate factors can have synergetic 

effects on CO2 assimilation related with stomata conductance or damage leaves pigments 

responsible for protective energy dissipation which can limit growth, yield, and fruit 

composition.  

In Douro wine region, potential multiple abiotic stresses are very frequent during 

summer as a consequence of the high solar radiation, excessive temperature and the 

elevated gradients of the water vapour pressure between the leaves and the air (Chaves and 

Rodrigues, 1987). This may be further exacerbated by the foreseen drier and warmer 

climate scenarios, despite the noticeable advances in vineyard technologies (Cunha and 

Richter, 2016; Giorgi and Lionello, 2008; IPCC, 2007; Moriondo et al., 2015). Therefore, 

adaptive cultural practices are needed to mitigate the negative impact of actual and future 

climate scenarios in order to keep the competitiveness of the wine industry. 

Modifications of the solar radiation balance in the plant leaves can be obtained by 

spraying foliage with a white suspension of inert reflective material such as a kaolin-particle 

film. The kaolin is a product originated from clay that transmits visible light and gases 

necessary for photosynthesis, while reflecting ultraviolet and infrared bands. According to 

(Glenn et al., 2002), the kaolin application reduces temperatures of treated leaves through 

increment of reflectivity radiations (e.g. ultraviolet), promoting the activation of enzymes 

responsible for the impairment of protective leaf pigments related with energy dissipation 

(Shellie and King, 2013). 

Among the protective pigments presented in the leaves, it is important to highlight the 

family of chlorophylls, carotenoids and anthocyanins, which are associated with light 

harvesting and energy dissipation and varies greatly according to the environmental factors. 
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The combination of pigments in the leaves will control the sunlight that can be absorbed and 

used in the photosynthesis, even though, the pigments try to control the excess of light and 

heating that is received from the sun in several horticultural crops, orchards, and grapevines 

(Dinis et al., 2016; Moutinho-Pereira et al., 2007; Palliotti et al., 2015; Shellie and King, 

2013; Zarco-Tejada et al., 2013), tobacco (Falcioni et al., 2017), Persian walnut (Gharaghani 

et al., 2018) and others species (Féret et al., 2017; Gitelson et al., 2003; Middleton et al., 

2012; Müller et al., 2001). Under stress conditions of temperature, humidity, nutrition, and 

water, the radiation absorbed will decrease due to the defence mechanism of plants 

controlled by the xanthophylls, which promotes the dissipation of energy (Middleton et al., 

2012). Nevertheless, under stress, the canopy can present other symptoms related to its 

vigour, such as: changes in the angle of the leaves, foliar area, concentration of pigments in 

the epidermis, shape of the plant and depth of the root (Middleton et al., 2012). 

The application of a kaolin-particle film has been reported to protect canopy against 

excessive light and temperature as well as pest and diseases pressure (Ferrari et al., 2017; 

Glenn and Puterka, 2010) in different crop systems. Many studies demonstrate that kaolin-

film application can be an important practice for reduced midday leaf temperature (AbdAllah 

et al., 2018; Jifon and Syvertsen, 2003),  leaf to air vapour pressure differences net gas 

exchange (Glenn et al., 2010), chlorophyll fluorescence (Shellie and King, 2013) as well as 

for regulating plant water status overcoming the negative impact of water stress (AbdAllah, 

2017), preserving plant growth, yield and quality (Djurović et al., 2016; Gharaghani et al., 

2018). The application of a kaolin-particle film over the grapevines in Douro region has 

shown good results to protect the plants from the effects of heating and radiation (Dinis et 

al., 2016) and its application in commercial vineyards is often considered due to its low cost 

for application. These authors have also demonstrated that kaolin is able to improve the 

quality of the grape under stress conditions by improving its concentration of phenols, 

flavonoids, anthocyanins and vitamins C. 

Remote sensing techniques have been applied in crop production to provide a better 

understanding of the crop’s spectral response under different agronomic and environmental 

(e.g., soil, climate) conditions (Féret et al., 2017). Spectral-derived data provide information 

about plant status. These data reflect the changes in leaf pigments, which vary seasonally in 

pigment composition, enabling them to be used as a proxy of physiological processes (Hall 

et al., 2002; Jones and Vaughan, 2010), including the epoxidation state of xanthophyll cycle 

pigments and chlorophyll fluorescence emission (Gamon et al., 1997; Moya et al., 2004; 

Ustin et al., 2009). 

Thermal imagery can also be used to detect canopy temperature differences 

associated to plant responses (Sepulcre-Cantó et al., 2006), e.g., to different pigments 
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concentration (Shellie and King, 2013) and to assess water status of the canopy (Zarco-

Tejada et al., 2013). The combination of the optical spectral data and thermal imagery opens 

up new avenues for ecophysiological observations, potentially providing insights into the 

remote detection/monitoring of the viticulture practices impact on the abiotic multiple 

stresses. 

Although the effects of kaolin applications on diseases control and leaf and canopy 

physiology, plant growth, yield and fruit composition have been deeply studied, their time-

dynamics impacts on leaf spectral reflectance modification are not well understood.  

The main goal of this study was to evaluate the effect of kaolin on the leaf 

microclimate, throughout the grapevine growth cycle. We hypothesize that kaolin application 

would reduce the temperature through the increase reflectivity of leaves and the analysis of 

the leaf’s reflectance pattern could be a proxy for the physiological process of protective 

energy dissipation through leaf pigments. 

 

2. Materials and methods 

The study was conducted in a commercial vineyard (Quinta dos Aciprestes, Real 

Companhia Velha) located in Soutelo do Douro (latitude 41.24ºN; longitude 7.43ºW) in 

Douro wine region (Northeast of Portugal). The region is characterized by a climate of 

Mediterranean type, with high temperatures and low precipitation during the summer period 

as shown in the Figure 1. 

 

Figure 1. Temperature and precipitation characterization of the Douro wine region for the 30-years period between 1931-1960 

Ferreira (1965) and comparison with the temperature and precipitation records in 2017 during study period.  
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The Douro valley is one of the most non-irrigated arid wine regions of the world, with 

strong and consistent post-flowering water, thermal and solar radiation stresses. These 

multiple stresses occur mainly during the ripening period (20th July to 1st September), 

where the precipitation is typically lower than 20 mm, accompanied by high values of solar 

irradiation and temperature and also elevated gradients of the water vapour pressure 

between the leaves and the air (Reis and Lamelas, 1988). 

The study was conducted in the year 2017, which was characterized by low 

precipitation levels from April to September (Figure 1). 

The vineyard has a total area of 1.17 ha, with an undulating terrain and an average 

slope of 25%. The vines were planted according to a bilateral Royat system, following the 

orientation Northeast-Southwest, with 2.2 m × 1 m plant spacing and a maximum plant 

height of 1.5 m. Two cultivars were considered: Touriga Nacional (TN) and Touriga Franca 

(TF). A porous kaolin-particle film (a “SunProtect” by Epagro) was applied over both cultivars 

leaves during the summer period. The concentration followed the instructions of the 

manufacture (5 kg /100 L of water). The kaolin-particle film was applied in June 6 (DOY 156) 

in the whole vine. The application was performed by spraying over the vines canopy, 

covering a large percentage of the leaves but also leaving unsprayed leaves. 

Ground measurements of spectral reflectance data and thermal data were collected 

in four dates of 2017: July 5, 29 days after kaolin application (DAA 29), July 20 (DAA 44), 

August 3 (DAA 57), and August 31 (DAA 85). Four leaves with kaolin-particle film treatment 

and another four leaves without kaolin-particle film treatment, of each one of the two 

cultivars, were randomly selected and collected for data acquisition in each date. An 

exception was considered for DAA 29, when no data were collected for TF. A total of 56 

observations of spectral reflectance data and thermal data were collected. 

The spectral reflectance data were collected using a portable spectroradiometer 

(Handheld 2, ASD Instruments) recording spectral signatures between 325 nm and 1075 nm 

of the electromagnetic spectrum, with a wavelength interval of 1 nm. The measurements 

were done in nadir position, in cloud free conditions, between 11 and 14 h (local time) aiming 

to minimize changes in solar zenith angle. Ten repetitions per leaf were performed and later 

averaged to minimize the effect of noise. Only data between 400 nm and 1010 nm were 

considered for further analysis due to noise at the limits of the spectrum. 

Thermal image data were collected using a portable thermal camera (Flir Systems, 

Inc.) in the same leaves where spectral reflectance data were measured. Thermal images 

were processed using Flir Tools 6.3.17227.1001 software (Flir Systems). The maximum 

temperature of the leaves was obtained by the analysis of the thermal images. A 

normalization of the maximum temperature of the leaves (T_max_f_N) was performed, 
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dividing by the hourly air temperature at the time of measurements, in order to minimize the 

effect of the air temperature increase during the 3-hours period of data acquisition in each 

date. 

Leaf temperature differences between means of kaolin treatment within grape 

varieties for each date of measurements were assessed by one-way ANOVA and these 

mean differences were considered statistically significant if the F-test from ANOVA gives a 

significance level P (P value) below 0.05. The Duncan test was performed to do the 

separation of means between kaolin treatments and cultivars. These statistical analyses 

were performed in R (R Core Team, 2017) through the packages “car” (Fox and Weisberg, 

2011) for ANOVA and “agricolae” (Mendiburu, 2017) for the Duncan test. 

An assessment of the spectral and thermal behaviour of the vineyard leaves 

following the kaolin-particle film treatment was performed through a principal component 

analysis (PCA). The reflectance data at each wavelength between 400 nm and 1010 nm, as 

well as the T_max_f_N were considered as variables. Previously to the PCA, a correlation 

analysis between variables was performed to reduce collinearity among variables. A 

threshold of 0.70 for the correlation value was selected based on Kuhn and Johnson (2013). 

Following the correlation analysis four variables were selected for the application of PCA: 

T_max_f_N, reflectance at 400 nm, reflectance at 535 nm, and reflectance at 733 nm. The 

software R (R Core Team, 2017), combined with the package “factoextra” (Kassambara and 

Mundt, 2017), was used for computing the correlation, cluster analysis and the PCA. 

 

3. Results 

3.1. Effects of kaolin on leaves temperature 

The temperature measurements in the leaves of TN and TF cultivars in both kaolin 

treatments, as expected, were roughly 10 to 20ºC (DAA 57) higher than the air temperature, 

which was close to 30ºC in all dates (Figure 2). 
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In the two first dates of data acquisition, carried out in DAA 29 and in DAA 44, the 

temperatures in leaves with kaolin are always lower than those without kaolin, but these 

temperature differences are not statistically significant (p>0.468 DAA 29; p>0.275 DAA 44). 

The temperature of the leaves in the third measurement (DAA 57), in both treatments and 

varieties, reached values higher than 50ºC, being much higher than the previous 

measurements (DAA 29 and DAA 44). Also, in this date (DAA 57), the temperature in both 

grapevine cultivars is significantly (p<0.000) higher in the treatments with kaolin than without 

kaolin and the cultivar TN reached higher temperatures than TF in both treatments (Figure 

2). 

 

3.2. Effects of kaolin on leaves reflectance 

Figure 3 presents the leaves spectral reflectance patterns grouped by varieties and 

kaolin treatments within each measurement date. Broadly, the light reflectance from kaolin-

sprayed leaves were at least 2 times higher in the visible domain (<700 nm) and very similar 

in the near infrared domain (>700 nm) than in the control leaves for all dates. In both 

treatments, the cultivar TF, when compared with the TN, presents consistently higher levels 

of reflectance in the visible region. Consistently, the higher reflectance obtained in the leaves 

of TF suggest a correlation, but not statistically different, with lower temperature of leaves 

without kaolin in the DAA 29 and DAA 44. 

Figure 2. Average maximum temperatures of the leaves in Touriga Nacional without kaolin (TN_N), Touriga Nacional with 

Kaolin (TN_Y), Touriga Franca without kaolin (TF_N), Touriga Franca with kaolin (TF_Y) and the average maximum air 

temperature from 11 AM to 2 PM [AIR (11-14H)] in the field for the four measurement dates. Vertical bars are the standard 

deviation and the letters show the mean comparation through Duncan test with a confidence level of 95%.  
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 The leaves partially lost the kaolin film as observed during field measurements in the 

DAA 57. In this third measurements date, the leaves with kaolin presented higher 

temperatures than leaves without kaolin (Figure 2) and the reflectance for both cultivars and 

treatments were very alike (Figure 3). This effect may be related with a long-term reduction 

of leaves ability to dissipate energy under conditions of heat and radiation stresses when 

they were treated with kaolin at an early stage. 

 

 

 

3.3. Effects of kaolin assessed through multivariate analyses 

The Figure 4 presents the results for the principal component analysis (PCA) of leaf 

spectral and leaf temperature in axis ordination planes, with kaolin treatment and grapevine 

cultivars as response variables. The PCA results show the separation of leaves with (Y) and 

without kaolin (N), especially in the first (DAA 29) and second (DAA 44) dates. However, in 

the third (DAA57) and fourth (DAA85) dates, data of leaves with and without kaolin are 

closer. 

Figure 3. Average reflectance recorded in leaves of Touriga Nacional without kaolin (TN_N), Touriga Nacional with Kaolin 

(TN_Y), Touriga Franca without kaolin (TF_N), Touriga Franca with kaolin (TF_Y) during the four-measurement time. The 

secondary Y axis represents the ratio of reflectance of leaves with kaolin per leaves without kaolin for TN (TN_Y/N) and TF 

(TF_Y/N). 
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The Table 1 presents the eigen values obtained from PCA and the contribution of the 

principal components. The first two principal components (Dim 1 and Dim 2) are enough to 

explain the data variability due to their high level of explanation (85%). The R535 and R733 

present the higher contribution in Dim 1 (Y axis), while the T_max_f_N and the R400 show 

higher contribution in Dim 2 (X axis).  

Figure 5 shows the data aggregation in six groups according to a cluster analysis. It 

is possible to see the combination of data from the first and second dates into close groups 

(G1-G3), and a larger dispersion among G4, G5 and G6 groups, encompassing leaves with 

and without kaolin during the third and fourth dates. Also, the first groups (G1-G3) are 

distinguished according to the cultivar, treatment and measurement dates. The first group 

(G1) includes observations of TN_N in the first date, while the second group (G2) principally 

groups data of TN_Y also in the first date. The third group (G3) mainly groups leaves of 

TN_N from the second data collection. The fourth group (G4) mostly gathers leaves of TF_Y 

for the second and fourth collecting dates. In the fifth group (G5), although only leaves 

without kaolin have been aggregated, there is an almost equal distribution of both cultivars 

during the third and fourth dates. In the sixth group (G6) it is observed the mix of leaves from 

both cultivars and treatments during the third and fourth measurements dates. 

 

 

Figure 4. Principal Component Analysis for kaolin treatment in grapevine leaves (cultivars Touriga Franca – TF and 

Touriga Nacional – TN). The first digit refers to DAA: 1: DAA 29; 2: DAA 44; 3: DAA 57; 4: DAA 85 and the second 

digit is the repetition number. 
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Table 1. Variance explained by PCA and the contribution of each principal component (Dim) as well as the contribution of each 

variable to the principal component. 

 

Eigen 

value 

Variance 

% 

Cumulative 

variance % 

Contribution of each Principal 

Component 

 
T_max_f_N R400 R535 R733 

Dim. 1 2.24 55.88 55.88 12.01 18.44 39.09 30.46 

Dim. 2 1.16 29.10 84.98 44.54 40.13 4.86 10.47 

Dim. 3 0.49 12.30 97.28 43.30 19.77 2.25 34.68 

Dim. 4 0.11 2.72 100.00 0.16 21.67 53.79 24.38 

PCA – Principal component analysis; T_max_f_N – maximum temperature of the 

leaves; R400 – reflectance at 400 nm; R535 – reflectance at 535 nm; R733 – 

reflectance at 733 nm. 

 

 

4. Discussion 

The results presented in this paper show a decrease, although not statistically 

different, of the leaves temperature sprayed with kaolin particle film until DAA 44 (Figure 2). 

On the contrary, in the DAA 57, leaves with kaolin for both varieties achieved temperature 

Figure 5. Cluster analysis grouped in six groups. Cultivars Touriga Franca without kaolin – TF_N, Touriga Franca with 

kaolin – TF_Y, Touriga Nacional without kaolin – TN_N and Touriga Nacional with kaolin – TN_Y. The first digit refers 

to DAA: 1: DAA 2 
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significantly higher (p<0.000) than leaves without kaolin. Equally, the effect of reflectance of 

kaolin-sprayed leaves (Figure 3) was consistently higher until DAA 44 than those of without 

kaolin. Additionally, in the spectral zone related to dissipation of heat by the leaves, around 

531-535 nm (Middleton et al., 2012), the DAA 57 showed no reflectance differences between 

leaves from both treatments. 

These findings suggest that the effect of kaolin is lower in the third and fourth dates 

of measurements due to the environmental factors that are responsible for the loose of the 

product in the leaves (Cantore et al., 2009), e.g., wind, precipitation occurrence. When the 

leaves loose the kaolin particle film and the stomates close, the plants will be more likely to 

be exposed under stress conditions and will reduce the leaf transpiration that would relief the 

leaves from the high heating (Glenn et al., 2010; Shellie and Glenn, 2008; Shellie and King, 

2013). Consequently, the leaves with less kaolin would increase the temperature as shown 

in the Figure 2 and behave physiologically more similarly to leaves without kaolin.  

The separation of leaves with and without kaolin shown in the Figure 5 can be 

explained by the variances found in different levels of both leaves reflectance and 

temperature. As shown by Shellie and King (2013) and observed in the Figure 3, the 

reflectance of leaves with kaolin is higher than leaves without kaolin. As the kaolin particles 

film indirectly induces the reduction of leaf temperature (Glenn et al., 2010; Ou et al., 2010; 

Shellie and King, 2013), the segregation into groups with and without kaolin appoints this 

circumstance. In addition, the group G6, which encompasses both leaves with and without 

kaolin from DAA 57 and DAA 85, suggest that kaolin loses its effect with time as discussed 

above and a new application is required to guarantee the same effect, as the last application 

of kaolin is usually at the beginning of grape ripening (Brillante et al., 2016). 

The plant physiology can provide insights for explaining the differences on leaves 

temperature and reflectance between the cultivars observed. In a study conducted in the 

Douro Valley where three distinct cultivars were analysed, it was found that cultivars with low 

chlorophyll concentration are brighter and present a high rate of chlorophylls a and b (Chl 

a/b) that will promote a low photo absorbance and increase the photochemical rate 

(Moutinho-Pereira et al., 2007). This effect may be related with the differences in reflectance 

between TN and TF in DAA 57 (Figure 3), when TF reflectance was higher than TN. 

Additionally, kaolin will increase the whiteness of leaves that will promote high levels of 

reflectance and probably decrease the temperature (AbdAllah et al., 2018; Jifon and 

Syvertsen, 2003). Also, TN does not present high rate of photosynthesis per stomata 

conductance (Moutinho-Pereira et al., 2007), and the application of kaolin would promote 

high levels of internal CO2 concentration due to the lower temperature in the leaves and the 

increase of the photosynthesis per stomata conductance rate (Jifon and Syvertsen, 2003). 
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While many studies have shown that kaolin film application is a powerful tool to 

improve the crop development under stress conditions, others did not observe significant 

results with this practice. In a study with Persian walnut, the kaolin was positively efficient to 

reduce the leaf temperature, gas exchange rate, sunburn and it has also improved the 

quality of the nut and kernel (Gharaghani et al., 2018). Dinis et al. (2016) and Shellie and 

King (2013) have demonstrated that kaolin is able to improve the quality of the grape under 

stress conditions by improving its pigments concentration and also a better water use 

efficiency in some cultivars. However, some of these positive physiological effects of kaolin 

were recorded few days after kaolin application and/or under intensive treatments, namely 

with applications up to twice a week for three weeks (Brillante et al., 2016; Gharaghani et al., 

2018; Glenn et al., 2010; Jifon and Syvertsen, 2003; Ou et al., 2010; Shellie and King, 

2013). On the other hand, Dinis et al. (2016) sprayed kaolin in vines twice in a day to ensure 

the efficient adhesion of kaolin in the leaves and showed the good efficiency of kaolin in 

grapevine.   Contrarily, Russo and Diaz-Perez (2005) did not obtain any improvement on 

physiological measurements, leaf temperature (also observed in the present study in the 

Figure 2), disease incidence or yields in two cultivars of peppers following the use of several 

kaolin applications under stress conditions. Also, Ou et al. (2010) did not observed 

significant differences in water potential, ºBrix, pH and titratable acidity with the application of 

kaolin in Merlot grapevine cultivar, although the kaolin impact on the studied parameters 

varied with different levels of irrigation. Thus, the meaningful differences found in this study 

are related to the reflectance of kaolin. 

The variables selected to explain the separation of leaves with and without kaolin are 

related to physiological processes of the energy dissipation in leaves. It is notable the strong 

weight of the wavelength 535 nm in Dim. 1. The leaves with kaolin are mainly distributed on 

the side of the axis where R535 is projected, while the leaves without kaolin are on the 

opposite side. This area of the electromagnetic spectrum allows detecting subtle changes in 

the xanthophyll cycle pigment activity resulting from stress conditions, including thermal 

stress (Middleton et al., 2012). In the Figure 3 it is notable the visual difference of reflectance 

between the treatments during the four-measurement time. When the kaolin was highly 

present in the leaves, the reflectance at the wavelength 535 nm was always high when 

compared to leaves without kaolin, suggesting that the level of oxidated xanthophylls is 

lower in leaves with kaolin. Nevertheless, in the third measurement-time, when the leaves 

have lost part of the kaolin particle film, the reflectance at this wavelength is alike to the 

leaves without kaolin film. This observation may be explained by the comfort level that kaolin 

promotes on leaves. The leaves that were previously protected with the particle film might 

not have developed enough pigments to protect from the high incidence of solar radiation 
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when the particles film has lost its adherence to the leaves. This argument might support the 

not successful impact of the application of kaolin in the physiological parameters analysed 

by Russo and Diaz-Perez (2005). 

The second variable ranked in Dim 1 is R733, which corresponds to the red edge 

region of the electromagnetic spectrum (sharp transition of vegetation’s reflectance between 

red and near-infrared spectral ranges: 680 – 740 nm). The red edge has been often 

considered as an indicator of plant stress responses (Behmann et al., 2014; Filella and 

Penuelas, 1994; Zarco-Tejada et al., 2013). The Figure 3 shows the differences of 

reflectance in this zone of the spectrum between the leaves of both treatments, mainly in the 

first two measurement dates (DAA 29 and DAA 44). During the first measurement, the 

reflectance of leaves with kaolin is higher, suggesting that these leaves are more likely to 

support stress conditions. As shown by Glenn et al. (2010), the kaolin particle film can 

increase the water potential in well-watered vines minimizing the heating stress. Though, 

from the second until the last measurement-time of our study, there is no visual difference 

from the reflectance in this zone. Nevertheless, it is noteworthy that all grapevines were 

under (increasing) moderate to high water stress throughout our study period.  

In Dim 2, the T_max_f_N presents a dominant role in the distribution of the 

observations, which agrees with the effect of kaolin to control leaf temperature in vines under 

drought conditions (Dinis et al., 2016). Likewise, the lower temperature is associated to the 

better water use efficiency in vines with kaolin (Glenn et al., 2010). Yet, when the reflectance 

become alike to the leaves with and without kaolin, we suggest that there is no difference in 

the temperature in the leaves from both treatments and the leaves that were previously 

protected with particle film can also increase its temperature due to the lack of protection 

mechanisms presented in the leaves, such as the xanthophylls. 

 

5. Conclusion 

These preliminary results improve the understanding of the vines response to kaolin 

throughout the grapevine cycle and support decisions about the re-application timing. The 

results show that the kaolin film protects the leaves against the thermal stress promoted by 

the solar radiation, while the product is well dispersed in the leaves. The effect of the kaolin 

film on the leaves may be explained by the concentration of foliar pigments such as the 

xanthophyll, which is related to the dissipation of heat in the leaf. Even though this work has 

shown the potential of spectral and thermal data to explain the effect of kaolin in different 

cultivars of grapevines, physiological and biochemical analysis should be further tested in 

future work to complement and strengthen the findings presented in this paper. Additionally, 
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future studies should consider the effect of kaolin (e.g. potential increase in pH) in the wine 

quality of Portuguese varieties, in the particular climate conditions of Douro Valley. 
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Abstract 

The predawn leaf water potential (ѱpd) is an eco-physiological indicator widely used for 

assessing vines water status and thus supporting irrigation management in several wine 

regions worldwide. However, the ѱpd is measured in a short time period before de sunrise 

and the collection of a large sample of points is necessary to adequately represent a 

vineyard, which constitute operational constraints. In the present study, an alternative 

method based on hyperspectral data derived from a handheld spectroradiometer and 

machine learning algorithms was tested and validated for assessing grapevine water status. 

Two test sites in Douro wine region, integrating three grapevine cultivars, were studied for 
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the years of 2014, 2015, and 2017. Four machine learning regression algorithms were tested 

for predicting the ѱpd as a continuous variable, namely Random Forest (RF), Bagging Trees 

(BT), Gaussian Process Regression (GPR), and Variational Heteroscedastic Gaussian 

Process Regression (VH-GPR). Three predicting variables, including two vegetation indices 

(NRI554,561 and WI900,970) and a time-dynamic variable based on the ѱpd (ѱpd_0), were applied 

for modelling the response variable (ѱpd). Additionally, the predicted values of ѱpd were 

aggregated into three classes representing different levels of water deficit (low, moderate, 

and high) and compared with the corresponding classes of ѱpd observed values. A root 

mean square error (RMSE) and a mean absolute error (MAE) lower or equal than 0.15 MPa 

and 0.12 MPa, respectively, were obtained with an independent validation data set (n=72 

observations) for the various algorithms. When the modelling results were assessed through 

classes of values, a high overall accuracy was obtained for all the algorithms (82 – 83 %), 

with prediction accuracy by class ranging between 79 % and 100 %. These results show a 

good performance of the predictive models, which considered a large variability of climatic, 

environmental, grape cultivars and agronomic conditions. By predicting both continuous 

values ѱpd and classes of ѱpd, the approach presented in this study allowed obtaining 2-

levels of accurate information about vines water status, which can be used to feed 

management decisions of different types of stakeholders.  

Keywords: handheld spectroradiometer; machine learning; predawn leaf water potential; 

reflectance; vegetation indices; water deficit. 

 

1. Introduction 

The vineyard is traditionally rainfed in most parts of the world. However, many of the 

wine-producing regions undergo seasonal drought coincident with the grapevine growing 

season, and an increase in aridity is additionally foreseen related to climate change 

scenarios (Chaves et al., 2010; Flexas et al., 2010; Fraga et al., 2018). Consequently, deficit 

irrigation strategies, in critical phenological stages, have been adopted in the last decades 

aiming to stabilize wine production and quality (Costa et al., 2016; Pisciotta et al., 2018; 

Serrano et al., 2010). 

Nevertheless, water resources are increasingly under pressure as a result of the 

population growth and changes in lifestyle and diets, along with climate change and climate 

variability, with increasing occurrence of drought events (HLPE, 2015; Pereira, 2017). 

Therefore, the improved water management is now one of the most important challenges in 
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agriculture, including in viticulture, and the enhancement of irrigation management is 

paramount within this context. 

A key aspect for the improved irrigation management relies on the accurate 

monitoring of the vines water status. Often, the irrigation scheduling is based on eco-

physiological indicators of the vines response to water deficit, integrating both the plant and 

the environment influence (De Bei et al., 2011; Rodrigues et al., 2012; Williams et al., 2012). 

The predawn leaf water potential (ѱpd) is one of these eco-physiological indicators, being 

considered adequate for assessing vines water status (Alves et al., 2012; Lopes et al., 2011; 

Williams and Araujo, 2002) and thus widely used to support irrigation management in 

several wine regions worldwide. The ѱpd approximates the water potential of the soil before 

the sunrise and correspondingly the measurement period is restricted to a short daily time 

window, with operational constraints when the collection of a large sample of points is 

needed to adequately represent a vineyard. Additionally, some studies have shown a 

significant variability of ѱpd measurements at the block and vineyard level, particularly in 

conditions of high water restriction, resulting in the need of an increased sampling density 

(e.g., Ojeda et al., 2005; Taylor et al., 2010). Therefore, it is of most importance setting 

alternative methods suitable for reliably and operationally assessing the plant water status of 

large vineyards in order to support precision viticulture production systems. 

The spectral data has been increasingly used for retrieving information about 

vegetation, including greenness (e.g., leaf area index), dynamics (e.g., phenology), 

physiology (e.g., pigments content), and plant conditions (e.g., water status) (e.g., Marshall 

et al., 2016; Ustin et al., 2009; Verrelst et al., 2015; Zarco-Tejada et al., 2013). The 

wavelengths of 970 nm, 1200 nm, 1450 nm, 1930 nm, and 2500 nm, from the near infrared 

(NIR) and mid infrared regions of the electromagnetic spectrum, are well recognized by their 

strong water absorption of radiation and thus represent natural regions for assessing crop 

water status (Roberto et al., 2012). The thermal infrared spectra has also been considered 

for assessing plants water status ant water stress signs through the canopy temperatures 

(e.g., Bellvert et al., 2014; Buitrago et al., 2016; Neinavaz et al., 2017). However, the 

availability of spectral data in these domains is still limited, particularly concerning 

hyperspectral data. Sensing the vegetation through hyperspectral data has proven 

advantages compared to broadband (multispectral) data, including for detecting plant stress, 

as discussed by Thenkabail et al. (2012). Therefore, several studies have focused on using 

hyperspectral data from the visible and NIR, which are more easily available and allow 

analyzing stress indicators that are considered proxy for the crop water status, e.g., the 

xanthophyll pigment cycle or the chlorophyll fluorescence (Hernández-Clemente et al., 2011; 

Middleton et al., 2012; Pôças et al., 2017; Zarco-Tejada et al., 2013). 
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Several approaches have been considered for estimating biophysical parameters 

using hyperspectral data, including physically-based and statistically-based methods (e.g., 

Clevers et al., 2010; Lázaro-Gredilla et al., 2014). The physically-based approaches 

(inversion of radiative transfer models) establish a cause-effect relationship grounded on 

physical knowledge and are considered sound methodologies, although its application is 

rather challenging (Berger et al., 2018; Verrelst et al., 2015). Alternatively, the statistically-

based approaches are less input demanding than physically-based models, while producing 

good results for retrieving several biophysical parameters, including plant water status 

(Pôças et al., 2017; Pôças et al., 2015; Rossini et al., 2013; Zarco-Tejada et al., 2013), and 

thus are more suitable for operational applications. Hence, the present study focuses on 

statistical approaches. 

The statistically-based methodologies can be either parametric or non-parametric. 

The parametric models assume an explicit relationship between the spectral data 

(predictors) and the biophysical parameter (response variable), while non-parametric models 

assume a flexible approach to exploit the data and do not rely on a predefined relationship 

(Kuhn and Johnson, 2013). The parametric models are often based on spectral vegetation 

indices (VIs) that are mathematical combinations of a few selected spectral bands to 

describe the biophysical parameter (Jones and Vaughan, 2010). The VIs have been 

considered for approximating a large set of parameters related with plant water status, 

including plant water content, leaf water potential, and equivalent water thickness (Casas et 

al., 2014; González-Fernández et al., 2015b; Pôças et al., 2015; Rallo et al., 2014) 

The predictive modelling techniques are often considered for the retrieval of 

biophysical parameters. Specifically, the machine learning algorithms, which represent non-

parametric methods, are often applied for such purpose due to their potential to generate 

robust relationships between the predictors and the response variables with complex and 

non-linear patterns (e.g., crop water status). In machine learning, a training data set is used 

to learn the data patterns and train the model, which is further tested and assessed using a 

validation dataset. A large set of machine learning algorithms have been developed and 

applied for predicting biophysical parameters using hyperspectral data, e.g., random forest 

(e.g., Doktor et al., 2014; Pôças et al., 2017), bagging trees (e.g., Verrelst et al., 2015), 

partial least squares regression (e.g., González-Fernández et al., 2015a; Rapaport et al., 

2015), Gaussian process regression (e.g., Lázaro-Gredilla  et al., 2014; Verrelst et al., 

2012a; Verrelst et al., 2015). The ultimate goal of the different types of machine learning 

algorithms is to develop a model that makes an accurate prediction. Several studies present 

predictive models specifically developed for estimating the crop water status based on 

spectral reflectance data. However, such models often rely on small sample sizes, 



 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

38 

 

 

corresponding to a few dates of field measurements (e.g., Romero et al., 2018), or a large 

number of predicting variables (e.g., González-Fernández et al., 2015a; Rallo et al., 2014), 

and thus their applicability is limited. Additionally, an important issue for the generalization of 

predictive models is associated with the validation process. Often, the validation of the 

predictive models is performed with small size independent data sets or through cross 

validation procedures (e.g., Pôças et al., 2017; Rallo et al., 2014), limiting its generalized 

application on an operational basis. 

The present study aims at develop and validate a simple generalized model for 

predicting vines water status based on hyperspectral data in Douro wine region. Specific 

goals include: (i) testing and validating multiyear modelling approaches on a diversified set 

of climatic, environmental, grape varieties and agronomic conditions; (ii) comparing the 

performance of various modelling approaches based on regression mode considering 

different levels of water deficit; (ii) predicting two levels of vines water status data, i.e., 

numeric continuous values vs. classes of values, to assist different types of stakeholders. 

 

2. Material and Methods 

2.1. Study area 

The study area is located in Douro Wine Region, Northeast of Portugal (Figure 1), where 

vineyards are mainly built over terraces and slopes with soils mostly derived from shale. The 

vineyards represent one of the most important features of Douro landscape, counting for 

18.3 % of the region total area. The Douro Wine Region covers around 250 000 ha, divided 

into three sub-regions: Baixo Corgo, Cima Corgo, and Douro Superior, distributed from the 

western up to eastern part of the region, and representing 32.2%, 22.0%, and 9.3% of land 

cover by vineyard, respectively (Fig. 1). 
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Figure 1 – Location of the study area, identifying the test site 1 and test site 2 in the Douro Wine Region, Northeast Portugal, 

and the sub-regions: Baixo Corgo, Cima Corgo and Douro Superior. 

 

Overall, the region is characterized by a Mediterranean climate, with high temperatures 

and low precipitation values during summer period, resulting in frequent water deficit 

occurrence. The annual precipitation amount is 856 mm in Baixo Corgo, 658 mm in Cima 

Corgo and 539 mm in Douro Superior, with precipitation amounts during summer period 

corresponding to 10.3 %, 8.8 % and 7.4 % of the annual precipitation, respectively (INMG, 

1965). The average temperature in the summer is higher in Douro Superior and Cima Corgo 

(24.1ºC) compared to Baixo Corgo (22.4ºC) (INMG, 1991). A more detailed characterization 

of the region and sub-regions climate is presented by Pôças et al. (2017). 

Two test sites, integrated in commercial vineyards, were considered for the study (Figure 

1): (i) Quinta dos Aciprestes (wine company Real Companhia Velha) located in Cima Corgo 

sub-region (Test site 1; Latitude 41.21º N; Longitude 7.43º W; 145 m a.s.l.), and (ii) Quinta 

do Ataíde (wine company Symington Family Estates), in Douro Superior (Test site 2; 

Latitude 41.25º N; Longitude 7.11º W; 161 m a.s.l.). Table 1 summarizes the vineyards 

overall characteristics in the test sites. 
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Table 1 – Overall characteristics of the vineyards in the two test sites in Douro Wine Region 

Vineyard 

characteristics 

Test site 1 Test site 2 

Vines planting system Bilateral Royat Bilateral Royat 

Plants spacing 2.2 m x 1 m 2.1 m x 1.1 m 

Vines maximum height 1.5 m 1.8 m 

Irrigation system Drip irrigation Drip irrigation 

Spacing between emitters 1 m 0.5 m 

Emitters discharge 2 Lh-1 1.6 Lh-1 

 

Two cultivars were studied in test site 1: (i) Touriga Nacional (TN; years 2014, 2015, and 

2017), and (ii) Touriga Franca (TF; years 2015 and 2017). Two plots, with two replicate 

areas, were sampled for TN, each plot including three irrigation treatments: non-irrigated 

(TN_NI), irrigation treatment 1 (TN_IT1), and irrigation treatment 2 (TN_IT2). A single plot 

and a single irrigation treatment (TF_IT) were considered for TF. 

In test site 2, four plots, covering three cultivars, were studied in the years 2015 and 

2017: two plots of TN (TN1 and TN2), one plot of TF, and one plot of Tinta Barroca (TB). 

Two irrigation treatments were sampled for TN and TF: (i) irrigated treatment: TN1_IT, 

TN2_IT, TF_IT, and (ii) non-irrigated treatment: TN1_NI, TN2_NI, TF_NI; and for TB only an 

irrigated treatment was sampled (TB_IT).  

The irrigation amounts/dates per teste site, plot, and irrigation treatment (Table 2) were 

managed by each wine company, following the ѱpd regular measurements and aiming to 

adjust for quality criteria. 
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Table 2 – Irrigation period and irrigation amounts (L/Plant/day) per test site and irrigation treatment. 

Test site Irrigation period Irrigation events Irrigation amount 

  2014 2015 2017 2014 2015 2017 2014 2015 2017 

1 TN_IT1 26/7- 

8/8 

3/7 - 

25/8 

19/6 - 

11/8 

3 7 6 32 62 92 

TN_IT2 26/7- 

8/8 

3/7 - 

25/8 

19/6 - 

11/8 

4 9 8 36 130 124 

TF_IT 26/7- 

8/8 

3/7 - 

25/8 

19/6 - 

11/8 

- 7 6 - 62 92 

           

2 TN1_IT - 30/6 - 

25/8 

20/6 - 

22/8 

- 5 10 - 95 157 

TN2_IT - 30/6 - 

25/8 

20/6 - 

22/8 

- 5 10 - 95 157 

TF_IT - 30/6 - 

25/8 

24/6 - 

14/8 

- 5 8 - 95 125 

TB_IT - 30/6 - 

25/8 

20/6 - 

14/8 

- 5 9 - 95 154 

Test site 1: TN_IT1– Touriga Nacional – irrigation treatment 1; TN_IT2– Touriga Nacional – irrigation 

treatment 2; TF_IT – Touriga Franca – irrigation treatment. Test site 2: TN1_IT –Touriga Nacional, 

plot 1 – irrigation treatment; TN2_IT – Touriga Nacional, plot 2 – irrigation treatment; TF_IT – Touriga 

Franca – irrigation treatment; TB_IT – Tinta Barroca– irrigation treatment. 

 

2.2. Ground measurements 

The study was implemented in the years 2014, 2015, and 2017, with ground data being 

collected in the vineyards of both test sites. In the year 2014, no data were collected in the 

test site 2, while in the test site 1 only data of cultivar TN were collected. 

The ground measurements were done between post-flowering and harvest, roughly 

between June and September. The climatic conditions during the ground measurements 

period presented large variability among years. The year 2017, in both test sites, was 
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characterized by high temperatures and very low precipitation during the summer period, 

while 2014 was the coldest and wet year (Table 3). This climatic pattern among years can 

explain the irrigation amounts presented in table 2 that increase from 2014 to 2017.  

Predawn leaf water potential (ѱpd) 

The ѱpd measured with a pressure chamber (Scholander et al., 1965) (PMS600, Albany, 

OR, USA) was used as a reference for the plants water status. A minimum of six plants per 

plot were sampled in each test site. A total of 21 measurement dates were considered, six in 

2014 (Test site 1) and eight both in 2015 and 2017 (four in test site 1 and four in test site 2), 

as shown in Table 3. 

Table 3 – Ground measurement dates, number of observations in each grape cultivar and climatic conditions during the study 

period per test site and year 

Teste Site 2014 2015 2017 

Test site 1 

Measurement dates 

 

June 16 

July 10 

July 26 

August 19 

September 9 

 

June 25 

July 16 

August 6 

September 3 

 

July 5 

July 20 

August 3 

August 31 

Cultivar*   TN (120) TN (96), TF (40) TN (96), TF (40) 

Average Temperature 22.7ºC 23.8ºC 24.6ºC 

Precipitation amount 69.8 mm 115.6mm 11.2 mm 

Test site 2 

Measurement dates 

 

- 

 

June 26 

July 15 

August 7 

September 2 

 

July 4 

July 21 

August 4 

September 1 

Cultivar*   - TN (208), TF (48) 

and TB (24) 

TN (196), TF (36) 

and TB (18) 

Average Temperature 21.6ºC 22.9ºC 25.0ºC 

Precipitation amount 146.2mm 105.9mm 19.6mm 

*TN, TF and TB represent the cultivars Touriga Nacional, Touriga Franca and Tinta Barroca, 

respectively, with the number of plants sampled in parenthesis. The temperature and precipitation 

refer to the means or sum for measurements period. 
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The ѱpd data set presents a large intra and inter annual variability (Figure 2a), covering in 

each studied year, all the vineyard water deficit conditions defined by Deloire et al. (2005): (i) 

none up to mild water deficit  (0 MPa > ѱpd > −0.2 MPa); (ii) mild to moderate (−0.2 MPa > 

ѱpd > −0.4 MPa); (iii) moderate to high (−0.4 MPa > ѱpd > −0.6 MPa); and (iv) high (−0.6 

MPa > ѱpd). The year 2014 presented lower water deficit conditions while the higher water 

deficit values were recorded in the year 2017 and intermediate values were observed in 

2015 (Figure 2a). Thus, the years 2014 and 2017 encompassed the largest variability of 

water deficit conditions within the overall data set. 

Figure 2 – Dispersion of predawn leaf water potential (MPa), represented by (a) Boxplot for each year (2014, 2015, and 2017) 

and the comparison between years, and (b) Histogram of the data with the class frequency distribution. 

An one-way analysis of variance (ANOVA) with p-value associated to the Fischer test 

was performed to compare the means of ѱpd between years regarding the test sites location, 

the irrigation treatment, and the cultivars. 

Hyperspectral data 

The hyperspectral data were measured in the same dates and plants of ѱpd 

measurements (Table 3) using a portable spectroradiometer (Handheld 2, ASD Instruments, 

Boulder, CO, USA) maintained approximately 30 cm above canopy and directed vertically 

downward. The spectroradiometer records reflectance signatures between 325 nm and 1075 

nm of the electromagnetic spectrum (corresponding to visible and NIR), with a wavelength 

interval of 1 nm. However, reflectance data below 400 nm and above 1010 nm were 

discarded due to noise occurrence in the spectroradiometer spectral limits. 

Measurements were done between 11 h and 13 h (local time) to minimize changes in 

solar zenith angle, in cloud free days. Prior to canopy spectral data acquisition, a dark 

current correction was performed and the reflectance of a spectralon (white reference panel) 

was measured for directly obtaining a reflectance output. Ten repetitions per plant were 

collected and later averaged to minimize the effect of noise.  
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2.3. Data processing 

The hyperspectral and ѱpd data were averaged per plot and treatment aiming for 

minimizing the noise effects. Following this procedure, 218 observations of hyperspectral 

profiles were obtained and similarly for the ѱpd data. An analysis of outliers was performed 

resulting in the identification of 28 outliers, which were removed from the study. Therefore, a 

total of 190 observations were considered, covering different conditions regarding year, 

location, cultivar, and irrigation. The 190 observations accounted for 54 observations of the 

year 2014, 72 of 2015, and 64 of 2017. 

Hyperspectral data were further processed into spectral VIs. Two VIs tested in a 

previous study in Douro vineyards (Pôças et al., 2017) were computed: (i) NRI554,561, which 

was optimized by Pôças et al. (2017); and (ii) WI900,970, which follows the original formulation 

by Peñuelas et al. (1997). The NRI554,561 is a normalized index (eq. 1), while the WI900,970 is a 

simple ratio of bands (eq. 2). 

𝑁𝑅𝐼𝑖,𝑗 = (𝑏𝑖 − 𝑏𝑗) (𝑏𝑖 + 𝑏𝑗)⁄         (eq. 1) 

𝑆𝑅𝑖,𝑗 = 𝑏𝑖 𝑏𝑗⁄           (eq. 2) 

 

Where bi and bj correspond to the reflectance in the band wavelengths i and j, 

respectively. 

A time-dynamic variable based on the ѱpd was also computed by integrating, in each ѱpd 

date to be predicted, the information of previous ѱpd measurements (ѱpd_0), aimed at 

assimilating all the available information regarding the crop water status dynamics in the 

post-flowering – harvest period. Additionally, this ѱpd_0 aimed at minimizing the spurious 

association between ѱpd and hyperspectral data resulting from a common (downward) time 

trend inherent to each one of these two types of data. This time trend effect was discussed 

by Pôças et al. (2017). The ѱpd_0 was defined for each measurement point and 

measurement date as the ѱpd value corresponding to the previous measurement.  

 

2.4. Modelling approaches 

For adequately train the predictive models, the training data set should be representative 

of the entire sample population, thus representing a broad range of the response variable 

(ѱpd) conditions (Kuhn and Johnson, 2013). As shown in Figure 2a, the year 2017 recorded 
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high ѱpd values, which were not observed in the previous years (2014 and 2015) and thus 

could not be learnt by the models if the data of 2014 and 2015 were used for training the 

models. Therefore, the data from the years 2014 and 2017 were used as training data set 

(118 observations) aiming to adequately learn the data patterns and train the machine 

learning algorithms with the larger possible variability of the ѱpd conditions.  

Various machine learning techniques were tested, in the regression mode, for modelling 

the ѱpd using a training data set integrating the pairs of concurrent measurements of the ѱpd 

and the corresponding values of the predicting variables. Four state-of-the-art machine 

learning algorithms were tested for predicting the ѱpd as a continuous variable: (i) Random 

Forest, RF (Breiman, 2001); (ii) Bagging Trees, BT (Breiman, 1996); (iii) Gaussian Process 

Regression, GPR (Rasmussen and Williams, 2006); and (iv) Variational Heteroscedastic 

Gaussian Process Regression, VH-GPR (Lázaro-Gredilla et al., 2014). These machine 

learning algorithms have been successfully applied in previous studies related with the 

retrieval of vegetation biophysical parameters (e.g., Lázaro-Gredilla  et al., 2014; Pôças et 

al., 2017; Verrelst et al., 2012a; Verrelst et al., 2015). 

RF and BT algorithms are tree-based models, while GPR and VH-GPR algorithms are 

Bayesian statistical inference models (Kuhn and Johnson, 2013; Verrelst et al., 2015).  

In the tree-based models, the data are progressively split into smaller groups, more 

homogenous regarding the response variable, and learning decision rules inferred from the 

training data are used to predict the values of the response variable (Kuhn and Johnson, 

2013). In the BT, multiple versions of the predictive model are generated (ensemble 

technique) by making bootstrap of the training set and each model is then used for predicting 

a new sample (Breiman, 1996). The multiple versions of the predictive model are then 

averaged to obtain an aggregated model prediction. Contrarily to the BT, where all the 

original predictors are considered at every split of every tree, in the RF, the algorithm 

randomly selects predictors at each split, consequently reducing the trees correlation and 

potentially impacting on models performance (Breiman, 2001; Kuhn and Johnson, 2013). 

In the Bayesian statistical inference models, a process of assigning and refining 

probability statements about unknown quantities is applied, which incorporates and updates 

prior knowledge and accounts for all sources of uncertainty (Link and Barker, 2010). The 

GPR algorithm provides a probabilistic approach for learning generic regression problems 

using flexible kernels functions (Verrelst et al., 2012a). An assumption of homoscedasticity is 

considered in GPR algorithm, i.e. assumes a constant noise power (error) in the relationship 

between the predicting variables and the response variable; such assumption is often not 

verified in biophysical retrieval studies because the noise can affect differently the 
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acquisition process depending on the range of the measured variable (Lázaro-Gredilla  et 

al., 2014). The VH-GPR overcomes this issue by allowing the noise power to vary 

throughout the input space, i.e. allowing a nonstandard variational approximation, which is 

more adjusted to signal-dependent noise scenarios (Lázaro-Gredilla  et al., 2014). 

In the application of the various machine learning regression algorithms, the NRI554,561, 

the WI900,970 and the ѱpd_0 were used as predicting variables for modelling the response 

variable (ѱpd). The selection of the predicting variables NRI554,561 and WI900,970 was 

knowledge-assisted, following previous results in the same vineyards (Pôças et al., 2017), 

and the ѱpd_0 was newly-added, allowing the model(s) to learn, in each moment, from prior 

grapevine water status data.   

The software ARTMO (Automated Radiative Transfer Models Operator) (Verrelst et al., 

2012b), through the machine learning regression algorithm toolbox (Rivera et al., 2014), was 

used in the implementation of the four algorithms. 

 

2.5. Models performance assessment 

In the machine learning approaches, the relationship between the predicting variables 

and the response variable is learnt by fitting a flexible model from the data (training data) 

and adjusted to minimize the prediction error of an independent data set (validation data). 

Therefore, a validation procedure through an independent data set, corresponding to the 

data set built with data collected in the year 2015, was considered.  

Several goodness-of-fit indicators were used to evaluate the prediction error of the 

regression-mode models (RF, BT, GPR, and VH-GPR), including the root mean squared 

error (RMSE) and the mean absolute error as suggested by Kuhn and Johnson (2013).  

When applying the ѱpd for supporting irrigation scheduling, often data are aggregated 

into classes of vines water deficit (Deloire et al., 2005; Ojeda et al., 2001), which allows an 

easier data use by stakeholders, while minimizing the inherent variability of ѱpd. Therefore, 

the predicted values of ѱpd obtained by each machine learning algorithm were further 

aggregated into classes of water deficit and compared with the corresponding classes of ѱpd 

observed values. The definition of ѱpd classes was based on the analysis of the ѱpd 

distribution (Figure 2b), resulting three class labels: (i) class low water deficit: 0 MPa > ѱpd > 

−0.25 MPa; (ii) class moderate water deficit: −0.25 MPa > ѱpd > −0.50 MPa; and (iii) class 

high water deficit: −0.50 MPa > ѱpd. This class definition was further supported by the fact 

that, in Mediterranean regions, the irrigation (under deficit irrigation strategies) most often 
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starts when plants are under ѱpd values below -0.5 MPa to stabilize the wine quality 

conditions (Lopes et al., 2011; Van Leeuwen et al., 2009).  

The 72 observations of ѱpd of the validation dataset were distributed into the three 

classes of water deficit as: (i) 5 observations in class low, (ii) 24 observations in class 

moderate, (iii) and 42 observations in class high. For evaluating the results of the 

comparison between observed and predicted classes following the data aggregation, a 

confusion matrix was built and the percentages of the overall model accuracy as well as the 

positive prediction value by class were obtained. The overall model accuracy reflects the 

agreement between observed and predicted classes and corresponded to the ratio of the 

number of cases correctly predicted (represented in the diagonal position of the confusion 

matrix) and the total number of cases, expressed as a percentage (Kuhn and Johnson, 

2013). The overall accuracy makes no distinction about the type of errors being made. The 

positive prediction value by class was also computed considering the ratio of the number of 

cases correctly assigned in a class (true positives) and the total cases of that class, 

expressed as a percentage, thus taking in consideration the prevalence of the event (Kuhn 

and Johnson, 2013).  

The validation procedures were implemented in ARTMO (Verrelst et al., 2012b), through 

the machine learning regression algorithm toolbox (Rivera et al., 2014).  

 

3. Results  

3.1. Comparison between study years 

The average results of ѱpd for each year, test site, irrigation treatment, and cultivar show 

the large variability of climate, agronomic, and environmental conditions (Table 5). 

Nevertheless, no statistically significant differences between the years 2015 and 2017 were 

observed for the test site 1, while the opposite was observed for the test site 2. Regarding 

the irrigation conditions, there were statistically significant differences between years for the 

non-irrigated treatment but not for the irrigated treatment. For the cultivars, statistically 

significant differences between years were observed only for TN. Overall, the mean ѱpd of 

the three years (2014, 2015, and 2017) was statistically different between test sites and 

between irrigation treatments, but not between cultivars. Nevertheless, it is noteworthy that 

the number of observations for cultivars TF and TB is much lower when compared to TN. 

The mean values of the ѱpd are significantly different between 2014 and the years 2015 and 

2017, and the absolute value increases from 2014 to 2017. 
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Table 5. Statistical results of predawn leaf water potential (ѱpd, MPa) for the different structural conditions and comparison 

among the three studied years 

Structural 

Parameters 

 Year (ѱpd, MPa) Mean ѱpd  

Nobs 2014 2015 2017 (MPa) ANOVA F* 

Location       

- Test site 1 127 -0.404a -0.613b -0.576b -0.512 0.002 

- Test site 2 63 Na -0.527a -0.667b -0.589 0.029 

ANOVA F* 

 

--- --- 0.099 0.132 0.047 --- 

Irrigation       

- No Irrigation 61 -0.386a -0.585b -0.833c -0.605 0.000 

- Irrigation 129 -0.414a -0.564a -0.517a -0.506 0.178 

ANOVA F* 

 

--- 0.712 0.709 0.000 0.012 --- 

Cultivars       

T. Nacional (TN) 162 -0.404a -0.590b -0.626b -0.538 0.000 

T. Franca (TF) 21 Na -0.505a -0.582a -0.538 0.478 

T. Barroca (TB) 7 Na -0.511a -0.541a -0.524 0.889 

ANOVA F* 

 

--- --- 0.418 0.760 0.990 --- 

Overall mean 190 -0.404a -0.571b -0.616 b -0.538 0.000 

ANOVA F*: is the p-value associated to the Fischer test performed in the ANOVA; means with p-

value less than 0.05 is considered statistically different. Within lines, means followed by the same 

letter are not significantly different according to Duncan test (α=5%).  

Na: No data available. 
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3.2. Models performance 

The predicting variables used in the application of the machine learning regression 

algorithms were NRI554,561, WI900,970, and ѱpd_0. The performance of the machine learning 

regression algorithms based on these predictors was assessed through indicators of the 

predicting errors for the validation data set (2015) (Table 6). 

 

Table 6. Goodness-of-fit indicators of the machine learning regression algorithms performance 

 

Calibration dataset 

(2014 & 2017; n=118 obs.) 

 
Validation dataset 

(2015; n=72 obs.) 

Machine learning algorithms RMSE (MPa) 
MAE 

(MPa) 
 

RMSE 

(MPa) 

MAE 

(MPa) 

Gaussian Processes Regression 

(GPR) 
0.126 0.099  0.142 0.111 

VH. Gaussian Processes 

Regression (VH_GPR) 
0.127 0.100  0.142 0.111 

Bagging trees (BT) 0.127 0.100  0.146 0.119 

Random Forest (RF) 0.130 0.100  0.151 0.120 

 

The results show RMSE and MAE lower or equal than 0.151 MPa and 0.120 MPa, 

respectively, for the application of all the algorithms in the independent validation dataset 

(Table 6). These results are close to those obtained with the calibration dataset, indicating a 

good robustness of the models. 

The predicted values of ѱpd were further grouped into three classes (low, moderate, and 

high water deficit) and the comparison with the corresponding classes of observed ѱpd is 

shown in a confusion matrix (Table 7). The overall accuracy (percentage), obtained by the 

ratio of the cases correctly assigned (in the matrix diagonal) and the total number of cases, 

was 82 % for GPR and RF and 83% for VH_GPR and BT. For all the algorithms, the 

prediction accuracy in the class low water deficit was 100% and for classes moderate and 

high water deficit was always higher or equal than 81% and 79%, respectively. 
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Through this approach it is possible to predict 2-levels of information about ѱpd (values 

and classes of values) that can assist different types of stakeholders. 

 

Table 7. Confusion matrices for the comparison between observed and predicted predawn leaf water potential (ѱpd) in the 

validation dataset using different predictive models. 

ѱpd 

predicted 

ѱpd observed Positive 

prediction by 

class (%) 
Low Moderate High 

Gaussian Process Regression 

Low 1 0 0 100.0 

Moderate 2 17 2 81.0 

High 2 7 40 81.6 

VH. Gaussian Process Regression 

Low 2 0 0 100.0 

Moderate 1 17 2 85.0 

High 2 7 40 81.6 

Bagging Trees 

Low 1 0 0 100.0 

Moderate 2 17 1 85.0 

High 2 7 41 82.0 

Random Forest 

Low 2 0 0 100.0 

Moderate 1 15 1 88.2 

High 2 9 41 78.8 

Predawn leaf water potential (ѱpd) classes: low water deficit, MPa > ѱpd > 

−0.25 MPa; moderate water deficit, −0.25 MPa > ѱpd > −0.50 MPa; high water 

deficit, −0.50 MPa > ѱpd. 
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4. Discussion 

The predicting variables NRI554,561, and WI900,970 were also used for assessing grapevine 

water status in Douro wine region in the years 2014 and 2015 (Pôças et al., 2017). However, 

in this latter study, the variability regarding water deficit conditions was smaller, as 2014 and 

2015 presented a shorter range of water deficit, without ѱpd values exceeding - 1 MPa, when 

compared to the year 2017, as shown in Figure 2a. The NRI554,561 integrates spectral 

information of the green domain (520 – 570 nm), similarly to the Photochemical Reflectance 

Index (PRI; Gamon et al., 1992) that combines wavelengths of 531 nm and 570 nm and is 

often used for assessing crop water status (Hernández-Clemente et al., 2011; Pôças et al., 

2015; Zarco-Tejada et al., 2013). The green spectral domain has been used as a proxy of 

stress conditions, including water deficit conditions, due to its ability for detecting subtle 

changes in the xanthophyll cycle pigment activity resulting from stress conditions (Gamon et 

al., 1992; Middleton et al., 2012). The WI900,970 integrates wavelengths of the near infrared 

domain, specifically including the wavelength 970 nm corresponding to a water absorption 

peak (Peñuelas et al., 1993; Peñuelas et al., 1997; Roberto et al., 2012). A novelty was 

introduced in the model by integrating the ѱpd_0, which accounts for the natural dynamics of 

ѱpd along the grapevine cycle and thus strengthening the learning process by the machine 

learning algorithms. 

The results of the goodness-of-fit indicators of the various algorithms for the validation 

dataset (Table 6) were similar or better than the results of previous studies. The RMSE 

results were similar to those obtained for assessing water status in grapevine (Rapaport et 

al., 2015) and significantly better than those obtained for olive orchard (Rallo et al., 2014) 

using a partial least squares regression algorithm. Nevertheless, in these studies, the 

spectral range included from the visible up to the shortwave infrared (SWIR) domains, thus 

larger than the range considered in the present study and encompassing several SWIR 

wavelengths typical for water absorption (Jones and Vaughan, 2010). The RMSE results 

were also similar to those obtained by Pôças et al. (2017) when assessing grapevines water 

status in Douro region in 2014 and 2015 when conditions of lower variability of ѱpd were 

observed (Figure 2a), which suggests a robust performance of the models in the present 

study. Additionally, it is important to highlight that the results of RMSE and MAE were 

obtained for an independent data set with 72 observations, instead of considering a cross 

validation procedure as in most of the previous studies (Pôças et al., 2017; Rallo et al., 

2014). 
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The good performance of the four algorithms is likely related with the high adaptability of 

machine learning regression methods, with a non-parametric structure, to cope with 

nonlinear relations of biophysical parameters and complex environment/agronomic 

conditions (e.g., Doktor et al., 2014; Im et al., 2009; Lázaro-Gredilla et al., 2014). 

The models based on Bayesian statistical inference, the GPR and the VH_GPR 

algorithms, showed slightly better performance than the tree-based models, with lower 

RMSE and MAE (Table 6). Also, other authors have reported good performance of GPR and 

VH_GPR for the retrieval of biophysical parameters, e.g., leaf area index and leaf chlorophyll 

content (Lázaro-Gredilla et al., 2014; Verrelst et al., 2012a; Verrelst et al., 2015). Such 

results are likely related with the ability of Bayesian inference to provide more realistic 

models, when compared to classical machine learning techniques (e.g., RF), by capturing 

uncertainties related to parameters and models (Zhou et al., 2018). 

The assessment of the predicted values of ѱpd through classes provided good results 

regarding the overall accuracy (equal or higher than 82%) and the predictive positive value 

by class showed good performance for all classes of water deficit (equal or higher than 79%; 

Table 7). This ѱpd data aggregation by classes facilitates the application of the methodology 

proposed in operational contexts, by providing a more user-friendly output, while minimizing 

the inherent variability of ѱpd. 

 

5. Conclusions 

Predictive models applied in the regression modes were used for retrieving crop water 

status in vineyards of Douro wine region. A large set of climatic, environmental, and 

agronomic conditions were sampled to test model’s robustness. Two years of data, 

representing the largest variability of ѱpd, were used for calibrating the models, and a third 

year was used for an external validation of the models generated. 

Overall, the models showed a good performance, including for the class of high water 

deficit, which represents the class of ѱpd values that are considered for irrigation 

management decisions. When the results were further aggregated according to water deficit 

classes, continuous ѱpd and classes of ѱpd values were predicted. These two types of 

information can be used to feed management decisions of different types of stakeholders, 

including wine producers, water managers, and scientists. 
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Abstract 

Hyperspectral data collected through a handheld spectroradiometer (400 – 1010 nm) were 

tested for assessing the grapevine predawn leaf water potential (ѱpd) in two test sites of 

Douro Wine region. The study was implemented in 2017, a year with climatic conditions 

prone to water shortage. Three grapevine cultivars, Touriga Nacional, Touriga Franca and 

Tinta Barroca, were sampled both in rainfed and irrigate vineyards, totalizing 325 plants 

assessed. An ordinal logistic regression model was applied to the hyperspectral data to 

estimate the ѱpd. A large set of vegetation indices computed with the hyperspectral data and 

optimized for the ѱpd values, as well as structural variables, were used as predictors in the 

mailto:mccunha@fc.up.pt
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model. From 631 possible predictors, four were selected through a forward stepwise 

procedure and the Wald statistics: irrigation treatment, test site, ARIopt_656,647 and NRI711,700. 

70 % of the dataset was randomly selected for model calibration and 30 % for model 

validation. The model accuracy with the validation dataset was 73.2 %, with the class of ѱpd 

for high-water deficit presenting a positive prediction value of 79.3 %. The accuracy and 

operability of the predictive model indicates good perspectives for its use in the grapevine 

water status monitoring and to support irrigation scheduling.   

Keywords: handheld spectroradiometer, ordinal logistic regression, vegetation indices, 

vineyard, grapevine water status. 

 

 1. Introduction 

 The severe hydric water stress affects the quantity and quality of wine grapes. 

Therefore, in regions where precipitation is scarce and concentrated in a short period of the 

year, as in the Mediterranean regions, irrigation has been increasingly considered to 

regulate the grapevines yield and quality (e.g. Chaves, Zarrouk et al. 2010). However, in the 

context of foreseen warming and dry climate scenarios and the increasing competition for 

water among different economic sectors, a correct irrigation management is essential to 

ensure the sustainability of Mediterranean irrigated areas (Medrano, Tomás et al. 2015, 

Cunha and Richter 2016). 

The Douro wine region is one of the most arid regions of Europe where a strong 

water deficit occurs in summer as a consequence of the low soil water content, associated to 

the low annual rainfall and high gradients of the water vapour pressure between the leaves 

and the air (Jones and Alves 2012, Alves, J et al. 2013, Prata-Sena, Castro-Carvalho et al. 

2018). 

The grapevines irrigation scheduling is often based on ecophysiological measures of 

vines water status. One of the most widely used measure is referred to the predawn leaf 

water potential (ѱpd) using a Scholander chamber (Scholander, Bradstreet et al. 1965). 

Despite being a very reliable technique (Moutinho-Pereira, Magalhães et al. 2007, Alves, 

Costa et al. 2012, Merli, Gatti et al. 2015), it is a destructive method (Rodríguez-Pérez, 

Ordóñez et al. 2018) and depends on the collection of a large set of measurement points to 

get a very accurate assessment of the target area due to the variability in soil conditions 

(Oumar and Mutanga 2010). Thus, efforts have been made to find alternative methods 



 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

62 

 

 

capable of providing accurate information about vines water status, while being easy-to use 

and non-destructive. 

The contribution of remote sensing to improve water management has increased in 

the last years. Spectral reflectance obtained through proximity sensors (e.g. handheld 

spectroradiometers), cameras mounted in drones or satellite imagery has been widely used 

to estimate crop biophysical parameters (Blackburn 2007, Zarco-Tejada, González-Dugo et 

al. 2013), including for estimating and monitoring water status in vineyards (Pôças, 

Rodrigues et al. 2015, Pôças, Gonçalves et al. 2017, Rodríguez-Pérez, Ordóñez et al. 

2018). Different zones of the electromagnetic spectrum have been studied for the monitoring 

of plant water status, including the near and mid infrared, which present wavelengths of 

strong water absorption by the radiation, and the shortwave infrared due to the relation 

between canopy temperature and crop water status (Clevers, Kooistra et al. 2010, Bellvert, 

Zarco-Tejada et al. 2014). Additionally, the spectral zones of visible and near infrared (NIR) 

are potentially useful to estimate crop water status (Suárez, Zarco-Tejada et al. 2008, De 

Bei, Cozzolino et al. 2011). However, the spectral data from the visible and NIR domains are 

more easily accessible from commonly available handheld spectroradiometers, as well as 

from satellite sensors and unmanned aerial vehicles (Zarco-Tejada, González-Dugo et al. 

2013). 

A particular focus has been given to the use of hyperspectral data, which are 

characterized from numerous narrow bands continuously distributed across the 

electromagnetic spectrum, for assessing crop water status. These hyperspectral data are 

sensitive to subtle variations in the energy reflected and thus have great potential for 

detecting differences between surface characteristics (Blackburn 2007, Jones and Vaughan 

2010, Mariotto, Thenkabail et al. 2013). Nevertheless, the large amount of data generated 

from hyperspectral sensors can result in redundancy of the information captured (Blackburn 

2007, Wu, Niu et al. 2008, Caicedo, Verrelst et al. 2014, Rivera, Verrelst et al. 2014, Feng, 

Itoh et al. 2017). Thus, the adequate data processing, coping with dimensionality issues, and 

modelling tools are required for its efficient use. 

The hyperspectral data can be combined into vegetation indices, which can be 

specifically optimized for vines water status, and thus only using a small portion of the 

spectrum (Suárez, Zarco-Tejada et al. 2008, Zarco-Tejada, González-Dugo et al. 2013, 

Pôças, Rodrigues et al. 2015). 

Also, the techniques of machine learning are often used to cope with the high 

dimensionality of hyperspectral datasets. Diverse studies have applied non-parametric 

regression models to estimate the water status in grapevines, (Pôças, Gonçalves et al. 
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2017, Rodríguez-Pérez, Ordóñez et al. 2018). The machine learning classification methods 

have also been applied to hyperspectral data for estimating biophysical and biochemical 

crop parameters (Im, Jensen et al. 2009). One of such classification methods is the ordinal 

logistic regression (OLR), which is used to explain a ranking variable (Harrell 2015) and has 

been employed in many environmental studies (Brant 1990, Rutherford, Guisan et al. 2007, 

Coppock 2011, Notario del Pino and Ruiz-Gallardo 2015). The OLR algorithm has been 

used for modelling the relationship between an ordinal response variable and one or several 

continuous independent variables, while considering the inherent ordering of the response 

variable, thus making full use of the ordinal information (Kleinbaum and Klein 2010). Often, 

the OLR is fitted through a proportional-odds logit model (McCullagh 1980), applied to obtain 

an ordinal response (Verwaeren, Waegeman et al. 2012). The proportional-odds logit model 

assumes that identical feature variables might result in different values for the underlying 

response variable and therefore the model contains a deterministic component and an error 

term, which is assumed to follow a logistic distribution (Verwaeren, Waegeman et al. 2012). 

We argue that machine learning classification methods based on hyperspectral data 

could be an alternative to estimate grapevine ѱpd, resulting classes of water status. In fact, 

although the ѱpd is recorded as a continuous variable, farmers often use classes of ѱpd to 

characterize the vines stress conditions (Deloire, Ojeda et al. (2005). Thus, the main goal of 

this work is modelling the water status in grapevines through a classification predictive 

regression model based on hyperspectral data. Specific goals include testing and validating 

the model in two different zones of Douro Wine region and considering three cultivars 

growing in to irrigation regimes.  

 

2. Material and methods 

2.1. Study area 

This study was conducted in the Douro Wine Region, Northeast of Portugal (Figure 1), 

where the vineyards dominate the landscape and are established mainly over terraces and 

slopes with shale-derived soils. The region is divided into three sub-regions: Baixo Corgo, 

Cima Corgo, and Douro Superior, distributed from the western up to eastern part of the 

region (Figure 1), all with rigorous climate conditions. 
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Figure 1. Location of the study area, identifying the test sites 1 and 2 in the Douro Wine Region, Northeast Portugal, and 

respective the sub-regions: Baixo Corgo, Cima Corgo and Douro Superior. 

 

The region presents a Mediterranean climate, with high average temperatures during the 

summer period, ranging between 22.4ºC in Baixo Corgo and 24.1ºC in Douro Superior and 

Cima Corgo (INMG 1991). In Baixo Corgo the annual precipitation is 856 mm, while in Cima 

Corgo is 658 mm and in Douro Superior is 539 m, with summer precipitation representing 

10.3 %, 8.8 % and 7.4 % of the annual precipitation, respectively. A detailed characterization 

of the region and sub-regions climate is presented by Pôças, Gonçalves et al. (2017). The 

Figure 2 compares the climate characterization of the Douro Wine Region with both test 

sites in the year of 2017. The Figure 2 compares the climate characterization of the Douro 

Wine Region in both test sites in the year of 2017. 
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Figure 2. Temperature and precipitation characterization of the Douro wine region for the reference period 1931-1960 (Ferreira 

1965) and comparison with the temperature and precipitation records in 2017 during study period in the test site 1 (TS 1) and 

test site 2 (TS 2). 

 

Two commercial vineyards were considered for the study (Figure 1): (i) Test site 1 (TS1) 

– Quinta dos Aciprestes (wine company Real Companhia Velha) located in Cima Corgo sub-

region (Latitude 41.21º N; Longitude 7.43º W; 145 m a.s.l.), and (ii) Test site 2 (TS2) – 

Quinta do Ataíde (wine company Symington Family Estates), in Douro Superior (Latitude 

41.25º N; Longitude 7.11º W; 161 m a.s.l.). 

In test site 1 the cultivars studied were: (i) Touriga Nacional (TN) – two plots, with two 

replicate areas, including three irrigation treatments: non-irrigated (TN_NI), irrigation 

treatment 1 (TN_IT1), and irrigation treatment 2 (TN_IT2), and (ii) Touriga Franca (TF) – a 

single plot and a single treatment (TF_IT). Three cultivars were studied in test site 2: (i) TN – 

two plots (TN1 and TN2) with two irrigation treatments: irrigated (TN1_IT, TN2_IT) and non-

irrigated (TN1_NI, TN2_NI), (ii) TF – one plot with an irrigated treatment (TF_IT) and a non-

irrigated treatment (TF_NI), and (iii) Tinta Barroca (TB) – one plot with an irrigated treatment 

(TB_IT). 

The vines pruning system is Bilateral Royat in both test sites with planting spacing and 

vines maximum height respectively of 2.2 m × 1 m and 1.5 m in test site 1 and 2.1 m × 1.1 m 

and 1.8 m in test site 2. 

The irrigation was managed by each wine company, according to the ѱpd regular 

measurements and aiming to adjust for quality criteria. Table 1 summarizes the irrigation 

dates and amounts in each test site. 
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Table 1. Irrigation dates and irrigation amounts (L/Plant/day) per test site and irrigation treatment. Test site 1: TN_IT1 – Touriga 

Nacional – irrigation treatment 1; TN_IT2 – Touriga Nacional – irrigation treatment 2; TF_IT – Touriga Franca – irrigation 

treatment. Test site 2: TN1_IT – Touriga Nacional, plot 1 – irrigation treatment; TN2_IT – Touriga Nacional, plot 2 – irrigation 

treatment; TF_IT – Touriga Franca – irrigation treatment; TB_IT – Tinta Barroca– irrigation treatment. 

Date 

Test site 1* 

Date 

Test site 2* 

TN_IT1 TN_IT2 TF_IT TN1_IT TN2_IT TF_IT TB_IT 

19 June 16 16 16 20 June 9.6 9.6  16 

23 June 0 16 0 24 June 16 16 16 16 

29 June 16 16 16 1 July 19.2 19.2 16 19.2 

13 July 16 16 16 7 July 19.2 19.2 16 19.2 

21 July 16 16 16 15 July 16 16 16 19.2 

28 July 16 16 16 25 July 16 16 16 16 

4 August 0 16 0 31 July 16 16 16 16 

11 August 12 12 12 7 August 16 16 16 16 

    14 August 16 16 13 16 

    22 August 13 13   

Total 92 124 92  128 128 112 137.6 

*Drip irrigation system with emitters discharge: Test site 1: 2 Lh-1; Test site 2: 1.6 Lh-1 with Spacing 

between emitters of 1 m (test site 1) and 0.5 m (test site 2). 

 

2.2. Ground measurements 

The study was conducted in 2017 between the post-flowering (end of June) and the 

harvest (early September). During this period, the average temperature was 24.6 ºC in the 

test site 1 and 25 ºC in the test site 2 and the precipitation in test site 1 was 11.2 mm while 

for test site 2 was 19.6 mm (Fig. 2). 

Ground measurements of ѱpd data and spectral reflectance data were collected in four 

dates in both test sites: test site 1 (July 5, July 20, August 3, and August 31) and test site 2 

(July 4, July 21, August 4, and September 1). A minimum of six plants per irrigation 

treatment and plot were sampled in each test site for ground measurements, resulting 325 

observations (grapevines), 135 in test site 1 and 190 in test site 2 (Table 2).  
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Table 2. Number of observations (gapevines) per test site, cultivar and irrigation conditions. 

Test site Cultivar Irrigated 

Non 

Irrigated 

Total 

Test site 1 Touriga Nacional 64 31 95 

Touriga Franca 40 0 40 

Total test site 1 104 31 135 

Test site 2 Touriga Nacional 68 68 136 

Touriga Franca 18 18 36 

Tinta Barroca 18 0 18 

Total test site 2 104 86 190 

Total 208 117 325 

 

A pressure chamber (Scholander, Bradstreet et al. 1965) (PMS600, Albany, OR, USA) 

was used for measuring the ѱpd. A large variability both between test sites and within each 

test site was recorded in the ѱpd data set (Figure 3). 

 

Figure 3. Dispersion of predawn leaf water potential (MPa), represented by a Boxplot for the test site. 
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The hyperspectral data were measured using a portable spectroradiometer (Handheld 2, 

ASD Instruments, Boulder, CO, USA) maintained approximately 30 cm above canopy and 

directed vertically downward. The spectroradiometer records reflectance signatures between 

325 nm and 1075 nm of the electromagnetic spectrum (corresponding to visible and NIR), 

with a wavelength interval of 1 nm. However, only reflectance data between 400 nm to 1010 

nm were considered due to noise occurrence outside of these spectral limits. The 

measurements were done in cloud free days between 11 h to 14 h (local time) to minimize 

changes in solar zenith angle. Prior to canopy spectral data acquisition, a dark current 

correction was performed and the reflectance of a spectralon (white reference panel) was 

measured for directly obtaining a reflectance output. Ten repetitions per plant were collected 

and later averaged to minimize the effect of noise. 

 

2.3. Data processing 

The hyperspectral and ѱpd data were analyzed by each plant (Table 2). 

An one-way analysis of variance (ANOVA) with p-value associated to the Fischer test 

was performed to compare the means of ѱpd between the test sites regarding the irrigation 

treatment and the cultivars. These statistical analyses were computed in R (R Core Team 

2017) combined with car package (Fox and Weisberg 2011) and agricolae package 

(Mendiburu 2017). 

The hyperspectral data were processed into spectral vegetation indices. A large diversity 

of vegetation indices, including two-band indices, represented by simple ratios (SR), 

normalized indices (NRI) and also other formulations defined in the literature were computed 

(Table 3). 

Following previous studies (Pôças, Rodrigues et al. 2015, Pôças, Gonçalves et al. 2017), 

a band selection procedure for the two-band vegetation indices optimization was considered, 

testing all two-band combinations (for simple ratio indices and normalized indices) within the 

spectral range of 400 nm and 1010 nm. Additionally, all combinations of broad bands within 

specific combinations of the spectral domains of blue, green, red, red edge, and near 

infrared were tested for the normalized difference vegetation index formulation. The range 

considered for each spectral domain was 451–520 nm for blue, 521–570 nm, for green, 

571–700 nm for red, 681–740 nm for red edge, and 701–950 nm for near infrared (NIR).  

A linear fitting function was used for the band selection optimization, having the ѱpd as 

the dependent variable. A calibration dataset, corresponding to 70% of the total 
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observations, and a validation dataset, with the 30% remaining observations, were used for 

assessing the best combination of bands. The bands selected for each vegetation index 

corresponded to the best combinations obtained for both the calibration and validation 

datasets, expressed through the determination coefficient (R2). A total of fifteen vegetation 

indices were selected following the optimization procedure (Table 3). 

The vegetation indices computation and bands optimization were performed in the 

HSDAR package (Lehnert, Meyer et al. 2017), implemented in software R (R Core Team 

2017) and in the spectral indices toolbox of ARTMO software (Verrelst, Rivera et al. 2011, 

Rivera, Verrelst et al. 2014). 

 

Table 3. Vegetation indices formulations with bands (b) optimized according to grapevines predawn leaf water potential. 

Vegetation 

indexa 

Formulation 

Original 

reference 

2-bands – Normalized indices 

NRI515,523 𝑁𝑅𝐼515,523 = (𝑏523 − 𝑏515) (𝑏523 + 𝑏515)⁄  - 

NRI520,701 𝑁𝑅𝐼520,701 = (𝑏701 − 𝑏520) (𝑏701 + 𝑏520)⁄  - 

NRI520,615 𝑁𝑅𝐼615,520 = (𝑏615 − 𝑏520) (𝑏615 + 𝑏520)⁄  - 

NRI520,694 𝑁𝑅𝐼520,694 = (𝑏694 − 𝑏520) (𝑏694 + 𝑏520)⁄  - 

NRI524,615 𝑁𝑅𝐼524,615 = (𝑏615 − 𝑏524) (𝑏615 + 𝑏524)⁄  - 

NRI535,701 𝑁𝑅𝐼535,701 = (𝑏701 − 𝑏535) (𝑏701 + 𝑏535)⁄  - 

NRI529,694 𝑁𝑅𝐼520,694 = (𝑏694 − 𝑏529) (𝑏694 + 𝑏529)⁄  - 

NRI711,700 𝑁𝑅𝐼711,700 = (𝑏700 − 𝑏711) (𝑏700 + 𝑏711)⁄  - 

NRI718,723 𝑁𝑅𝐼718,723 = (𝑏723 − 𝑏718) (𝑏723 + 𝑏718)⁄  - 

 

2-bands – Simple ratios 

SR718,723 
a 𝑆𝑅718,723 = 𝑏723 𝑏718⁄  - 

WI900,970 𝑊𝐼900,970 = 𝑏900 𝑏970⁄  (Peñuelas, Filella 
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et al. 1993) 

 

2-bands – Other formulations 

ARIopt_665,647 𝐴𝑅𝐼𝑜𝑝𝑡_665,647 = (1 𝑏647⁄ ) − (1 𝑏665⁄ ) (Gitelson, 

Merzlyak et al. 

2001) 

MSAVIopt_701,587 MSAVIopt701,587

= [2 ∗ 𝑏701 + 1

− [(2 ∗ 𝑏701 + 1)2

− 8(𝑏701 − 𝑏587)]
1

2⁄ ] /2 

 

(Qi, Chehbouni et 

al. 1994) 

    

OSAVIopt_745,700 

𝑂𝑆𝐴𝑉𝐼𝑜𝑝𝑡_745,700 = (𝑏745 − 𝑏700) (𝑏745 + 𝑏700 + 0.16)⁄  

 

(Rondeaux, 

Steven et al. 

1996) 

RDVIopt_745,700 RDVIopt_745,700 =   (𝑏745 − 𝑏700) [(𝑏745 + 𝑏700)
1

2⁄ ]⁄  (Roujean and 

Breon 1995) 

a NRI – Normalized Reflectance Index; SR – simple ratio; WI – Water Index; ARIopt – 

Anthocyanin Reflectance Index optimized; OSAVIopt - Optimal Soil Adjusted Vegetation 

Index optimized; MSAVIopt - Modified Soil Adjusted Vegetation Index optimized; RDVIopt - 

Renormalized Difference Vegetation Index optimized. 

 

A time-dynamic variable based on the ѱpd (ѱpd_0) was also used as predictor aimed at 

representing crop water status dynamics in the post-flowering - harvest period. This ѱpd_0 

was computed by integrating, in each ѱpd date to be predicted, the information of previous 

ѱpd measurements. Additionally, this ѱpd_0 aimed at minimizing the spurious association 

between ѱpd and hyperspectral data resulting from a common (downward) time trend 

inherent to each one of these two types of data. The ѱpd_0 was defined for each 

measurement point and measurement date as the ѱpd value corresponding to the previous 

measurement. 
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2.4. Modelling approaches 

In the modelling approaches the ѱpd was used as response variable and 631 predictors 

candidates from both hyperspectral (626) and structural (5) data were tested: i) 611 

predictors in the form of spectral reflectance in the range between 400 nm and 1010 nm 

(wavelength interval of 1 nm), ii) 15 predictors in the form of vegetation indices (Table 3), iii) 

three qualitative variables related with structural parameters, including, irrigation conditions 

(two levels: IT_I – irrigated, IT_NI – non-irrigated), cultivar (tree levels: TN, TF, and TB) and 

test site (two levels: TS_1 and TS_2), iv) the time-dynamic predictor ѱpd_0 (three levels of the 

classification: ѱpd_0-1: low ѱpd_0-2: moderate, and ѱpd_0-3: high) and v) the days after flowering 

(DAF). 

To run the statistical model, the dataset was split into training data (70% of random 

observations) and validation data (30% of the remains observations) (Kuhn and Johnson 

2013). The training and validation datasets integrate the pairs of concurrent measurements 

of the ѱpd and the corresponding values of the predicting variables.  

In the modelling approach, the ѱpd was used as categorical variable. The definition of 

classes of ѱpd values was based on the analysis of the ѱpd dispersion and on the ѱpd 

threshold of -0.5 MPa often considered by farmers in Mediterranean regions for irrigation 

decisions under deficit irrigation strategies (Van Leeuwen, Tregoat et al. 2009, Lopes, 

Santos et al. 2011). Three class labels were defined: (i) class 1 (low water deficit): 0 MPa > 

ѱpd > −0.25 MPa; (ii) class 2 (moderate water deficit): −0.25 MPa > ѱpd > −0.5 MPa; and (iii) 

class 3 (high water deficit): −0.5 MPa > ѱpd.  

 

2.4.1. Predictive modelling applied in classification mode 

The ORL was selected for modeling the ordinal response variables ѱpd. The OLR allows 

building a predictive model on a probabilistic basis. In the present study, the OLR was fitted 

through a proportional-odds logit model (McCullagh 1980), which is widely applied to 

represent ordinal responses (Verwaeren, Waegeman et al. 2012). The proportional-odds 

logit model defines a probability density function over the class labels for a given feature 

vector x, which belongs to the input space X (McCullagh 1980, Verwaeren, Waegeman et al. 

2012).  

The “polr” function from the MASS library in software R (Venables and Ripley 2002) was 

used for (Harrell Jr 2018) applying this methodological approach. 
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A stepwise regression procedure was used for variables selection. A forward strategy 

was applied for selecting within the initial 631 predictors candidates. Such selection is based 

on a saturated model and a null model defined using the “multinom” function from the nnet 

library in software R (Venables and Ripley 2002). The saturated model uses all possible 

predictors and assumes that each data point has its own parameters and thus fully 

explaining individual observations; contrarily, the null model adopts one for the intercept-only 

model (Venables and Ripley 2002). In each step of the forward stepwise regression, the 

predicting variable that most contributes for the model improvement compared to the model 

in the previous step is chosen, based on the lowest value for Akaike information criterion 

(AIC; Akaike (1974). 

 

2.5. Model performance assessment 

The residual deviance (McCullagh 1980, Kleinbaum and Klein 2010) and the Akaike 

information criterion (AIC; Akaike (1974)) were computed for assessing the model’s quality. 

The residual deviance represents the ratio of the likelihood of the current model with the 

likelihood of a model that perfectly predicts the response variable, thus the smaller the 

deviation the better the fit of the model (Kleinbaum and Klein 2010). The AIC statistics allows 

comparing between model’s performance, with lower AIC values corresponding to simpler 

models with fewer predictors (Kuhn and Johnson 2013). The Wald statistic was also used to 

assess the significance of the predictors selected for the model (Peng, Lee et al. 2002). The 

odds ratios were calculated to analyse the weight of each predictor. Additionally, the positive 

prediction value by class and the overall model accuracy were computed and organized in a 

confusion matrix. The overall model accuracy corresponds to the agreement between predict 

and observed values in each categorical class, making no distinction in the types of 

misclassification (Kuhn and Johnson 2013). Differently, the calculated positive prediction 

value reports the percentage of correct classification cases by class considering the 

prevalence of the event (Kuhn and Johnson 2013). The caret package (Kuhn 2018), 

implemented in software R (R Core Team 2017), was used to automatically compute the 

confusion matrices resulting from the predictive modelling approach in the classification 

mode. 
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3. Results 

3.1. Analysis of the variability between and within test sites 

The impact of irrigation treatments and cultivars in each test site on the ѱpd is presented 

in Table 4. The test site 2 consistently presented lower ѱpd values, evidencing that vineyards 

in this test site of sub-region of Douro Superior (Figure 2) are more likely to present water 

deficit conditions. In both test sites, the irrigation and the grapes varieties presented a 

significant impact on ѱpd values. When the cultivars are considered, ANOVA suggests that 

TN is more susceptible to be under stress (lower ѱpd) when compared to TB and TF. 

 

Table 4. Statistical results of predawn leaf water potential (ѱpd, MPa) for the different irrigation regimes and grape varieties in 

the test sites studied. 

Structural 

Parameters N. Obs 
Location (ѱpd, MPa) Mean ѱpd  

Test site 1 Test site 2 (MPa) ANOVA F* 

Irrigation      

- No Irrigation 117 -0.822 -0.976 -0.936 0.002 

- Irrigation 208 -0.434 -0.559 -0.496 0.000 

ANOVA F* 

 

 0.000 0.000 0.000 --- 

Grape cultivars      

T. Nacional (TN) 231 -0.566b -0.781b -0.692b 0.000 

T. Franca (TF) 76 -0.423ª -0.726b -0.566ab 0.000 

T. Barroca (TB) 18 na -0.541ª -0.541ª --- 

ANOVA F* 

 

 0.012 0.003 0.003 --- 

Overall mean 325 -0.523 -0.748 -0.655 0.000 

ANOVA F*: is the p-value associated to the Fischer’ test performed in the ANOVA; means 

with p-value less than 0.05 is considered statistically different. Within columns, means 

followed by the same letter are not significantly different according to Duncan test (α < 5%).  

na: No data available. 
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3.2. Model performance 

From the 631 predictors initially considered, nine variables were selected through the 

stepwise procedure: i) two qualitative variables: Irrigation treatment (IT) and Test site (TS); ii) 

four vegetation indices: ARIopt_656,647, NRI745,700, NRI711,700, WI900,970; iii) days after flowering 

(DAF); iv) ѱpd_0, and iv) one wavelength: R996. Then, the OLR model was applied to these 

nine predicting variables selected by the stepwise method (model 1). This model 1 

presented a residual deviance of 246.88 and an AIC of 270.88. 

The results of the individual regression coefficients of Wald statistics for each predictor, 

showed that only the variables “IT_NI”, “TS_2”, “ARIopt_656,647” and “NRI711,700” were 

statistically significant (p < 0.01) (Table 5). These results suggest that an alternative model 

(model 2) solely including these four statistically significant predictors could be applied to the 

data. The model 2, combining the four selected variables, presents residual deviance of 

250.06 and AIC of 262.06. This AIC value improved when compared to model 1.  

For the model 2 the results of the odds ratio indicate that the non-irrigation treatment 

(IT_NI) has the biggest influence on the assignment of the class, followed by the 

ARIopt_656,647, test site 2 (TS_2), and the NRI711,700. 

Table 5. Coefficients determinate by Wald Statistics and odd ratios of the predictors in the models created to estimated ѱpd. 

 Model 1  Model 2 

Predictors Coefficient Odd ratio  Coefficient Odd ratio 

IT_NI 3.06 x 10*** 1.95 x 1013***  1.89 x 10*** 1.68 x 108*** 

Test site_2 1.10*** 3.01***  1.35*** 3.86*** 

ARIopt_656,647 1.92*** 6.83***  1.77*** 5.86*** 

DAF -4 x 10-3 9.96 x 10-1  - - 

NRI745,700 -1.43 2.40 x 10-1  - - 

NRI711,700 -2.28 x 10*** 0.00***  -1.80 x 10*** 0.00*** 

WI900,970 9.13 9,26 x 103  - - 

ѱpd_0 3.63 x 10-1 1.44  - - 

R996 -2.05 1.28*10-1  - - 

IT_NI: non-irrigation treatment; TS_2: Test site 2; ARIopt_656,647: Anthocyanin Reflectance 

Index optimized; DAF: days after flowering; NRI: Normalized reflectance index; WI: Water 

index; ѱpd_0: time-dynamic variable based on ѱpd; R996: reflectance at wavelength 966 nm. 

*p<0.1; **p<0.05; ***p<0.01 
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The model 2 overall accuracy, assessed through the validation dataset, was 73.2 % and 

the positive prediction value per class was: 33.3%, 44.4% and 79.3% for the classes low (1), 

moderate (2), and high (3) water deficit, respectively (Table 6). The variability in the 

prediction value per class is likely due to the impact of the imbalanced data set used for 

validation (10, 20 and 67 cases in class 1, class 2, and class 3, respectively).  

Additionally, considering the training dataset, it was calculated the probability to estimate 

the class of ѱpd when all the model’s predictors are at their mean values. From the 

observations analyzed, there are more chances of the ѱpd be classified in the class 3 

(68.62%), followed by the class 2 (20.86%) and then class 1 (10.52%). 

 

Table 6. Confusion matrix for the comparison between observed and predicted predawn leaf water potential (ѱpd) in the 

validation dataset. 

ѱpd 

predicted 
ѱpd observed 

Positive prediction by 

class (%) 

 Low Moderate High  

Low 2 3 0 33.3% 

Moderate 5 6 2 44.4% 

High 3 11 65 79.3% 

Predawn leaf water potential (ѱpd) classes: low water deficit, 0 MPa > ѱpd > −0.25 MPa; 

moderate water deficit, −0.25 MPa > ѱpd > −0.50 MPa; high water deficit, <−0.50 MPa. 

 

4. Discussion 

The hyperspectral based predictive model developed in our study is a valuable tool for 

predicting grapevine ѱpd because of the integration of biophysically sound predictors (model 

2): Irrigation treatment (IT), Test Site (TS), ARIopt_656,647 and NRI711,700. 

The selection of a predictor related with the IT is consistent with the differences between 

irrigation treatment (Table 4) resulting in differences on the reflectance of irrigated and non-

irrigated plants (Pôças, Gonçalves et al. 2017). The selection of a variable relative to the test 

site is likely associated to the different climatic conditions between sub-regions of Douro 

Wine region (Figure 2), being the test site 2 located in a warmer and drier zone than test site 

1.  
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Following the vegetation indices optimization for bands selection, the ARIopt_656,647 

integrates wavelengths of the red domain, close to the red edge domain, instead of the 

wavelengths of the original formulation in the green and the red edge domains (Gitelson, 

Merzlyak et al. 2001). The wavelengths of ARIopt_656,647 are close to those studied by 

Blackburn (2010), the wavelengths of 680 nm and 635 nm, which are related to the 

chlorophyll a and chlorophyll b concentrations, respectively. Also, Sonobe, Sano et al. 

(2018) studied similar bands range to estimate the chlorophyll content. The content of 

chlorophylls a and b is a potential indicator of vegetation stress (Zarco-Tejada, Miller et al. 

2002, Wu, Niu et al. 2008), which includes water stress. As discussed by these authors, 

several physiological perturbations in the light-dependent reactions of photosynthesis that 

occur in plants under stress can be related with changes in chlorophylls a and b and 

assessed through differences in spectral reflectance. 

The NRI711,700 combines wavelengths of red and red edge. The red-edge zone is reported 

as a potential indicator of water stress in plants and thus the construction of vegetation 

indices using this zone of the spectrum can provide information about the water status of the 

plant (Zarco-Tejada, González-Dugo et al. 2013, Fang, Ju et al. 2017, Rodríguez-Pérez, 

Ordóñez et al. 2018). 

Although it was obtained a good accuracy of prediction (73.2%), the model was able to 

better classify the classes of higher stress, which may be due to the imbalanced number of 

observations of each class in the data set. As discussed by Brodersen, Ong et al. (2010), an 

imbalanced data set may lead to misleading conclusions about the performance of a 

classification predictive model when using an average accuracy measure.  

The analysis of the positive prediction value per class, which is a more robust measure 

as it takes in consideration the prevalence of each class, shows a good performance for the 

class of high-water deficit (class 3 (ѱpd > -0.5 MPa) = 79.27% of cases correctly classified). 

In Mediterranean regions, the irrigation (under deficit irrigation strategies) most often stars 

when plants are under ѱpd values below -0.5 MPa to stabilize the wine quality conditions 

(Van Leeuwen, Tregoat et al. 2009, Lopes, Santos et al. 2011) and thus the results obtained 

for this specific class are particularly interesting. 

 

5. Conclusion 

In this study we presented how the predawn leaf water potential in vineyards of Douro 

wine region could be predicted by a classification model based on hyperspectral reflectance 
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data. A large set of climatic, environmental, and agronomic conditions were sampled to test 

model’s accuracy and robustness. 

The developed predictive model presented an overall accuracy of 73.2%. The variables 

selected provide information of plant physiology relevant for the prediction of the water 

status in grapevines. Nevertheless, the modelling could be improved if a higher number of 

samples were assessed in the field to avoid problems related to imbalanced observations in 

the classes. 

The use of the classification model to estimate ѱpd brings a potential application to 

support irrigation decision in viticulture. Usually, the operational decisions about the vine’s 

irrigation scheduling are done for ѱpd values associated to the class 3 of this study, where 

the model obtained performed better. Therefore, the results of the proposed model have 

potential to be used in support to irrigation tasks. Moreover, the use of classes of ѱpd instead 

of continuous values provides easier-to-use information for farmers. The accuracy and 

operability of this predictive model justify their use to support decision-making process 

related with improvement of water productivity in vineyards. This work analyses data 

obtained on the ground level, while these results are the first step towards applications using 

other sensors mounted on aerial platforms (e.g. drones or satellites). This is in line, with the 

high number of forthcoming hyperspectral sensors mounted in aerial platforms, which will 

allow for the generation of hyperspectral time-series, giving access to spatial and temporal 

dynamics of crop biophysical parameters. Thus, the results presented in this work can be 

used in support to the development of new technologies for vineyards water status 

monitoring based on hyperspectral data.  

Also, these results could be used with other sensors mounted in drones or satellite in 

order to mapping this information in vineyards.  
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4. General discussion 

The PA has been increasingly attracting the attention from researchers and commercial 

companies working with different crop systems  (Hall et al., 2002). The application of PA 

techniques considers the between and within crop fields variability aiming for the specific 

management for each area (Huang et al., 2018). Thus, the PA can be fed by RS-derived 

data that is processed and analysed to support decision making in relation to diverse 

agronomic purposes (Huang et al., 2018; Hungate et al., 2008; Jones and Vaughan, 2010; 

Mulla, 2013). Accurate quantitative estimation of vegetation biochemical and biophysical 

characteristics is necessary for a large variety of agricultural applications. RS, because of its 

global coverage, repetitiveness, and non-destructive and relatively cheap characterization of 

land surfaces, has been recognized as a reliable method and a practical means of 

estimating various biophysical and biochemical vegetation variables as reported by Rapaport 

et al. (2015) and Orlandi et al. (2018). The advent of hyperspectral remote sensing has 

offered possibilities for measuring specific vegetation variables that were difficult to measure 

using conventional multi-spectral sensors. Considering the present-day technology and the 

available literature, the cornerstone for maximizing the potential use of future hyperspectral 

data is additional research on spatial and temporal enhancement approaches through 

synergies with other sensors such as proxima sensors. Such investigations could help to 

overcome the expensive acquisition of airborne hyperspectral images, which are spatially 

and temporally limited. 

Viticulture represents the second most important perennial crop in Portugal (INE, 2018) 

and technologies that help in decision making, including those based on RS-derived data 

and products, will bring benefits in the optimization of the vines production system (Usha and 

Singh, 2013).  

This dissertation presents three case studies that show in what extent RS techniques 

can be applied to optimize the viticulture in Portugal. One of the case studies presents the 

application of thermal and spectral data to assess the effect of kaolin application throughout 

the grapevines cycle (article 3.1), while the other case studies present the application of 

spectral data for predicting the ѱpd using different modelling approaches (articles 3.2 and 

3.3). The experimental units in the article 3.2 are groups of plants, while in the article 3.3 

individual plants are used. Overall, a large set of agronomic, environmental, and climatic 

conditions were sampled in the various case studies, including various grapevine cultivars 

(articles 3.1, 3.2 and 3.3), two test sites in different sub-regions of the Douro wine region 

(articles 3.2 and 3.3), and multi-years (article 3.2). Hyperspectral data from the visible and 
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NIR zones of the electromagnetic spectrum were considered in all the case studies. These 

reflectance data were directly applied in articles 3.1 and 3.3, while in the articles 3.2 and 3.3 

were applied in the form of VIs, combining data from different zones of the spectrum (articles 

3.1, 3.2, and 3.3). Additionally, thermal data were considered in the case study presented in 

article 3.1. 

 

4.1. Application of kaolin in vineyards 

In article 3.1, statistical differences were observed in the reflectance in the visible 

(wavelengths of 400 nm and 535 nm) and red edge (wavelength of 733 nm) zones of the 

spectrum, which can be related to the pigmentation of the leaves and water absorption, 

respectively. The selection of a predicting variable of the green zone (R535 nm) by the 

modelling approach developed suggests that kaolin is able to protect the canopy by 

reflecting the light from the sun, in the green zone of the spectrum. Such canopy protection 

is obtained by avoiding the de-epoxidation of xanthophylls, responsible for the heating 

dissipation in the leaves (Middleton et al., 2012; Shellie and King, 2013). Additionally, the 

red-edge zone, which was also considered in the modelling approach (R733), can be related 

to plant stress (Peñuelas et al., 1994; Zarco-Tejada et al., 2013a), including stress related 

with plant water and heat conditions. Moreover, the thermal data allowed assessing the 

impact of the loosing effect of kaolin throughout the grapevines cycle. This effect was shown 

by the increment of temperatures and of reflectance in the zone related to xanthophyll in 

leaves that were previously covered by the particle-film. Thus, the combined use of spectral 

data and thermal data in our case study indicated that kaolin has positive effects during the 

first days after the application as also shown by other authors (Shellie and Glenn, 2008); 

however, to keep the positive benefit in the vineyards, more application of the product is 

required throughout the grapevine cycle. 

 

4.2. Assessment of grapevine water status 

In the articles 3.2 and 3.3, the spectral data in the form of VIs were used as predictors for 

a predictive model of ѱpd. The visible and NIR zones that were used to build the VIs are 

reported in the bibliography as potentially useful to assess the water status in plants, either 

by relating with water absorption bands or by acting as proxy of physiological processes 

related with water status (Jones and Vaughan, 2010). 
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The zones of the electromagnetic spectrum that were considered in the VIs selected for 

modelling the ѱpd included the green (NRI554.561) and the NIR (WI900,970) in article 3.2, and the 

red (ARIopt_656,647) and red edge (NRI711,703) in article 3.3. As discussed in the previous case 

study (article 3.1), the green (represented by the NRI554.561) and the red edge (represented 

by the NRI711,703) zones of the spectrum can be used as proxy for stress conditions, including 

those related with plant water stress (Middleton et al., 2012; Pôças et al., 2017; Zarco-

Tejada et al., 2013a). Also, the red zone, close to the red-edge, expressed by ARIopt_656,647 

can be related to the Chlorophyll a and Chlorophyll b content (Blackburn, 2010). The 

Chlorophylls a and b are pigments associated with stress in plants, which includes water 

stress (Wu et al., 2008; Zarco-Tejada et al., 2002). Differently, the WI900,970  (Peñuelas et al., 

1997) integrates in its formulation the wavelength 970 nm, reported as one of the 

wavelengths associated to the water absorption in leaves (Jones and Vaughan, 2010).  

Additionally to the VIs, an innovative predicting variable was included in the modelling 

approaches of both article 3.2 and 3.3, representing a time variable based on ѱpd (ѱpd _0). 

This time-dynamic variable allowed the models to learn, in each moment, from previous ѱpd 

dynamics. 

Two different modelling approaches were considered for estimating the ѱpd, one based 

on continuous values of ѱpd (article 3.2) and another based on classes of ѱpd values (article 

3.3). Therefore, two types of data can be predicted (continuous values and classes of 

values), which allow covering the needs of different types of stakeholders, including farmers, 

water managers, and researchers. Various machine learning techniques have been 

successfully applied in modelling water status in canopy when spectral data is used (Pôças 

et al., 2017; Pôças et al., 2015; Rodríguez-Pérez et al., 2007). The application of different 

algorithms aims to improve the performance of each predictor in the model (Gitelson et al., 

2003; Huang et al., 2018; Pôças et al., 2017). In article 3.2, four algorithms using non-linear 

non-parametric methods were considered for predicting ѱpd (continuous) values, while article 

3.3 tested an ordinal logistic regression (OLR) algorithm to classify the ѱpd. The good 

performance of the methodologies presented in both case studies indicate the potential of 

these modelling tools for application in operational conditions. In fact, it is important to 

highlight that the case studies were implemented in commercial vineyards, under actual 

operation conditions.  

Different validation procedures were considered in articles 3.2 and 3.3. In article 3.2, 

where data of three cultivars, two study areas and three years of data collection were used, 

an external validation was considered. Differently, in article 3.3, where the data of three 

cultivars and two study areas relative to a single year were used, an internal validation was 
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performed by considering a random sample corresponding a 30% of the full dataset. Both 

validation procedures can be found in studies relative to the application of spectral data for 

assessing biophysical parameters of vegetation (Caicedo et al., 2014; Pôças et al., 2017; 

Verrelst et al., 2012). Nevertheless, the external validation brings more robustness to the 

model (Harrell, 2015). 

The model presented in the second case study provided and overall accuracy (83%) that 

is higher than the model developed in the case study 3 (73.2%). The lower performances of 

the proposed classification model could be explained by the use of data from individual 

grapevine (case study 3) instead a group of grapevines (case study 2), as well as the 

exceptionally high temperature and very low precipitation during the summer period of the 

year 2017. 

 

4.3. Crop monitoring 

As shown by the case studies presented, the use of RS portable instruments, including 

handheld spectroradiometers and thermal cameras, provides spectral and thermal 

information that can be used to assess the grapevine status and to help in decision making 

processes, e.g., those related to kaolin application and irrigation management.  

The hyperspectral data provided at field level both by handheld spectroradiometers and 

thermal cameras constitute a very important asset for better understanding the relationship 

between different zones of the electromagnetic spectrum and different biophysical 

parameters of the vegetation. Additionally, these data can be used for calibrating the 

information to be collected by cameras onboard aerial platforms, e.g. drones. The high cost 

of data collected by hyperspectral cameras attached to drones and satellites limits its use in 

operational applications. Nevertheless, the information obtained with portable instruments 

can be used for establishing correlations with multispectral data derived from drones and 

satellites, which are more easily available, and also for adjusting filters of bands to be 

applied in cameras onboard aerial platforms aiming for the data collection in the spectral 

zones of interest. 
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5. General conclusions and perspectives  

This dissertation contributes to the field of information extraction from hyperspectral 

measurements and enhances our understanding of grapevine biophysical characteristics 

estimation. Several achievements have been registered in exploiting spectral information for 

the retrieval of vegetation biophysical parameters using different statistical approaches such 

as principal components and machine learning.  

The hypothesis that RS is a valid tool for PA is well established, as mentioned along the 

dissertation. In order to provide potential RS applications for PA, there is a need to be more 

specific, therefore, three cases studies exploring new RS methods for potential use in 

conjunction with PA was presented in this work. These involve the derivation of optimal 

spectral vegetation indices coupled with the successful modelling of the impact of kaolin 

applications and crop water status (with extensive validation). 

An important contribute of RS in viticulture crops settled in the Mediterranean climate 

can be related with applications associated with irrigation management, considering the 

increasing events of droughts in summers periods. The (deficit) irrigation in specific stages of 

grapevines cycle can positively contribute to increase the yield and improve the grape quality 

and thus easy-to-use and rigorous methodologies for assessing vines water status are of 

upmost relevance. In this dissertation, there were presented two different models to estimate 

the water status in grapevines based on hyperspectral data. Both methods were successfully 

tested through different approaches to estimate water status based on ѱpd. 

Also, one of the techniques reported to minimize the impacts of high temperatures over 

vineyards during summer in Mediterranean conditions is the application of kaolin. In this 

dissertation, the assessment of hyperspectral and thermal data allowed evaluation the 

effects of the kaolin application throughout the grapevine cycle, following physiological 

assumptions in the vineyards, as well as to make recommendations about the kaolin 

application. 

The decision making in PA is usually better understood by mapping the results. The 

results provided in this dissertation can be further used to support the mapping of the 

parameters assessed, i.e., the leaf protective energy dissipation under kaolin application and 

the vines water status. In the case of kaolin application, the mapping could improve the 

application of the product by dosing the adequate quantity in each area and when the 

application should be done. The same thought is valid for the vines water status 

assessment, where a ѱpd mapping could show the differences of water requirements in the 

vineyard and when the irrigation system should be used. 
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Notwithstanding this work has given valuable information regarding potential application 

of RS in PA, specifically focusing vineyards in Douro wine region, these findings should be 

further tested and comprehended before achieving a commercial utilization. The domain of 

the techniques by the users is fundamental to apply these finding in commercial utilization. 

This dissertation analyses data obtained on the ground level, while these results are the 

first step towards applications using other sensors mounted on aerial platforms (e.g. drones 

or satellites). On the other hand, the forthcoming hyperspectral sensors that are planned for 

very soon, will allow for the generation of hyperspectral time-series, giving access to spatial 

and temporal dynamics of crop biophysical parameters. Thus, the results presented in this 

work can be used in support to the development of new technologies for crop monitoring 

based on hyperspectral data.  

  



 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

91 

 

 

References 

Allen, R, Irmak, A, Trezza, R, Hendrickx, J M H, Bastiaanssen, W, and Kjaersgaard, J 

(2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. 

Hydrological Processes 25, 4011-4027. doi:10.1002/hyp.8408 

Allen, R G, Pereira, L S, Raes, D, and Smith, M (1998). FAO Irrigation and Drainage paper 

No. 56, Crop Evapotranspiration. Rome, Italy: FAO.  

Anapalli, S S, Green, T R, Reddy, K N, Gowda, P H, Sui, R, Fisher, D K, Moorhead, J E, and 

Marek, G W (2018). Application of an energy balance method for estimating 

evapotranspiration in cropping systems. Agricultural Water Management 204, 107-

117. doi:10.1016/j.agwat.2018.04.005 

Apan, A, Held, A, Phinn, S, and Markley, J (2004). Detecting sugarcane ‘orange rust’ 

disease using EO-1 Hyperion hyperspectral imagery. International Journal of Remote 

Sensing 25, 489-498. doi:10.1080/01431160310001618031 

Blackburn, G A (1998). Quantifying Chlorophylls and Caroteniods at Leaf and Canopy 

Scales: An Evaluation of Some Hyperspectral Approaches. Remote Sensing of 

Environment 66, 273-285. doi:https://doi.org/10.1016/S0034-4257(98)00059-5 

Blackburn, G A (2007). Hyperspectral remote sensing of plant pigments. J Exp Bot 58, 855-

67. doi:10.1093/jxb/erl123 

Blackburn, G A (2010). Spectral indices for estimating photosynthetic pigment 

concentrations: A test using senescent tree leaves. International Journal of Remote 

Sensing 19, 657-675. doi:10.1080/014311698215919 

Boochs, F, Kupfer, G, Dockter, K, and Kühbauch, W (1990). Shape of the red edge as 

vitality indicator for plants. Remote Sensing 11, 1741-1753.  

Borgogno-Mondino, E, Novello, V, Lessio, A, and de Palma, L (2018). Describing the spatio-

temporal variability of vines and soil by satellite-based spectral indices: A case study 

in Apulia (South Italy). International Journal of Applied Earth Observation and 

Geoinformation 68, 42-50. doi:10.1016/j.jag.2018.01.013 

Broge, N H, and Leblanc, E (2001). Comparing prediction power and stability of broadband 

and hyperspectral vegetation indices for estimation of green leaf area index and 

canopy chlorophyll density. Remote Sensing of Environment 76, 156-172. 

doi:https://doi.org/10.1016/S0034-4257(00)00197-8 

Buitrago Acevedo, M F, Groen, T A, Hecker, C A, and Skidmore, A K (2017). Identifying leaf 

traits that signal stress in TIR spectra. ISPRS Journal of Photogrammetry and 

Remote Sensing 125, 132-145. doi:10.1016/j.isprsjprs.2017.01.014 

https://doi.org/10.1016/S0034-4257(98)00059-5
https://doi.org/10.1016/S0034-4257(00)00197-8


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

92 

 

 

Caicedo, J P R, Verrelst, J, Muñoz-Marí, J, Moreno, J, and Camps-Valls, G (2014). Toward 

a Semiautomatic Machine Learning Retrieval of Biophysical Parameters. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, 

1249-1259. doi:10.1109/JSTARS.2014.2298752 

Campbell, G S, and Norman, J M (1998). The Light Environment of Plant Canopies. In "An 

Introduction to Environmental Biophysics", pp. 247-278. Springer New York, New 

York, NY. doi:10.1007/978-1-4612-1626-1_15 

Carter, G A (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant 

stress. Remote sensing 15, 697-703.  

Chappelle, E W, Kim, M S, and McMurtrey, J E (1992). Ratio analysis of reflectance spectra 

(RARS): An algorithm for the remote estimation of the concentrations of chlorophyll 

A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of 

Environment 39, 239-247. doi:https://doi.org/10.1016/0034-4257(92)90089-3 

Chen, J M (1996). Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal 

Applications. Canadian Journal of Remote Sensing 22, 229-242. 

doi:10.1080/07038992.1996.10855178 

Chen, S, Zhang, F, Ning, J, Liu, X, Zhang, Z, and Yang, S (2015). Predicting the 

anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem 172, 

788-93. doi:10.1016/j.foodchem.2014.09.119 

Cheng, T, Rivard, B, Sánchez-Azofeifa, A G, Féret, J-B, Jacquemoud, S, and Ustin, S L 

(2014). Deriving leaf mass per area (LMA) from foliar reflectance across a variety of 

plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry 

and Remote Sensing 87, 28-38. doi:10.1016/j.isprsjprs.2013.10.009 

Chicati, M L, Nanni, M R, Cezar, E, de Oliveira, R B, and Chicati, M S (2017). Spectral 

classification of soils: A case study of Brazilian flooded soils. Remote Sensing 

Applications: Society and Environment 6, 39-45. doi:10.1016/j.rsase.2017.04.002 

Curran, P J (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment 30, 

271-278. doi:https://doi.org/10.1016/0034-4257(89)90069-2 

Dash, J, and Curran, P J (2004). The MERIS terrestrial chlorophyll index. International 

Journal of Remote Sensing 25, 5403-5413. doi:10.1080/0143116042000274015 

Datt, B (1998). Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total 

Carotenoid Content in Eucalyptus Leaves. Remote Sensing of Environment 66, 111-

121. doi:https://doi.org/10.1016/S0034-4257(98)00046-7 

Datt, B (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus 

leaves. International Journal of Remote Sensing 20, 2741-2759. 

doi:10.1080/014311699211778 

https://doi.org/10.1016/0034-4257(92)90089-3
https://doi.org/10.1016/0034-4257(89)90069-2
https://doi.org/10.1016/S0034-4257(98)00046-7


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

93 

 

 

Daughtry, C S T, Walthall, C L, Kim, M S, de Colstoun, E B, and McMurtrey, J E (2000). 

Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. 

Remote Sensing of Environment 74, 229-239. doi:https://doi.org/10.1016/S0034-

4257(00)00113-9 

Dechant, B, Cuntz, M, Vohland, M, Schulz, E, and Doktor, D (2017). Estimation of 

photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as 

the dominant mechanism. Remote Sensing of Environment 196, 279-292. 

doi:10.1016/j.rse.2017.05.019 

DeMeo, G A, Laczniak, R J, Boyd, R A, Smith, J, and Nylund, W E (2003). "Estimated 

ground-water discharge by evapotranspiration from Death Valley, California, 1997–

2001."  

Draper, N R, and Smith, H (2014). "Applied regression analysis," John Wiley & Sons.  

Elvanidi, A, Katsoulas, N, Ferentinos, K P, Bartzanas, T, and Kittas, C (2018). Hyperspectral 

machine vision as a tool for water stress severity assessment in soilless tomato crop. 

Biosystems Engineering 165, 25-35. doi:10.1016/j.biosystemseng.2017.11.002 

Elvidge, C D, and Chen, Z (1995). Comparison of broad-band and narrow-band red and 

near-infrared vegetation indices. Remote Sensing of Environment 54, 38-48. 

doi:https://doi.org/10.1016/0034-4257(95)00132-K 

Eshel, G, Levy, G J, and Singer, M J (2004). Spectral Reflectance Properties of Crusted 

Soils under Solar Illumination. Soil Science Society of America Journal 68. 

doi:10.2136/sssaj2004.1982 

Feng, S, Itoh, Y, Parente, M, and Duarte, M F (2017). Hyperspectral Band Selection From 

Statistical Wavelet Models. IEEE Transactions on Geoscience and Remote Sensing 

55, 2111-2123. doi:10.1109/tgrs.2016.2636850 

Féret, J B, Gitelson, A A, Noble, S D, and Jacquemoud, S (2017). PROSPECT-D: Towards 

modeling leaf optical properties through a complete lifecycle. Remote Sensing of 

Environment 193, 204-215. doi:10.1016/j.rse.2017.03.004 

Filella, I, and Peñuelas, J (1994). The red edge position and shape as indicators of plant 

chlorophyll content, biomass and hydric status. International Journal of Remote 

Sensing 15, 1459-1470. doi:10.1080/01431169408954177 

Gago, J, Fernie, A R, Nikoloski, Z, Tohge, T, Martorell, S, Escalona, J M, Ribas-Carbo, M, 

Flexas, J, and Medrano, H (2017). Integrative field scale phenotyping for 

investigating metabolic components of water stress within a vineyard. Plant Methods 

13, 90. doi:10.1186/s13007-017-0241-z 

https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1016/S0034-4257(00)00113-9
https://doi.org/10.1016/0034-4257(95)00132-K


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

94 

 

 

Gamon, J A, Peñuelas, J, and Field, C B (1992). A narrow-waveband spectral index that 

tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 

41, 35-44. doi:https://doi.org/10.1016/0034-4257(92)90059-S 

Gandia, S, Fernández, G, García, J, and Moreno, J (2004). Retrieval of vegetation 

biophysical variables from CHRIS/PROBA data in the SPARC campaign. Esa Sp 

578, 40-48.  

Garrity, S R, Eitel, J U H, and Vierling, L A (2011). Disentangling the relationships between 

plant pigments and the photochemical reflectance index reveals a new approach for 

remote estimation of carotenoid content. Remote Sensing of Environment 115, 628-

635. doi:10.1016/j.rse.2010.10.007 

Geladi, P, and Kowalski, B R (1986). Partial least-squares regression: a tutorial. Analytica 

Chimica Acta 185, 1-17. doi:https://doi.org/10.1016/0003-2670(86)80028-9 

Gitelson, A, and Merzlyak, M N (1994). Quantitative estimation of chlorophyll-a using 

reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of 

Photochemistry and Photobiology B: Biology 22, 247-252. 

doi:https://doi.org/10.1016/1011-1344(93)06963-4 

Gitelson, A A, Buschmann, C, and Lichtenthaler, H K (1999). The Chlorophyll Fluorescence 

Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants. 

Remote Sensing of Environment 69, 296-302. doi:https://doi.org/10.1016/S0034-

4257(99)00023-1 

Gitelson, A A, Gritz, Y, and Merzlyak, M N (2003). Relationships between leaf chlorophyll 

content and spectral reflectance and algorithms for non-destructive chlorophyll 

assessment in higher plant leaves. J Plant Physiol 160, 271-82. doi:10.1078/0176-

1617-00887 

Gitelson, A A, Kaufman, Y J, and Merzlyak, M N (1996). Use of a green channel in remote 

sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58, 

289-298. doi:https://doi.org/10.1016/S0034-4257(96)00072-7 

Gitelson, A A, Merzlyak, M, Zur, Y, Stark, R, and Gritz, U (2001). Non-destructive and 

remote sensing techniques for estimation of vegetation status.  

Gitelson, A A, and Merzlyak, M N (1997). Remote estimation of chlorophyll content in higher 

plant leaves. International Journal of Remote Sensing 18, 2691-2697. 

doi:10.1080/014311697217558 

Gorsevski, P V, and Gessler, P E (2009). The design and the development of a 

hyperspectral and multispectral airborne mapping system. ISPRS Journal of 

Photogrammetry and Remote Sensing 64, 184-192. 

doi:10.1016/j.isprsjprs.2008.09.002 

https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.1016/1011-1344(93)06963-4
https://doi.org/10.1016/S0034-4257(99)00023-1
https://doi.org/10.1016/S0034-4257(99)00023-1
https://doi.org/10.1016/S0034-4257(96)00072-7


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

95 

 

 

Guyot, G, and Baret, F (1988). Utilisation de la haute resolution spectrale pour suivre l'etat 

des couverts vegetaux. In "Spectral Signatures of Objects in Remote Sensing", Vol. 

287, pp. 279.  

Haboudane, D, Miller, J R, Tremblay, N, Zarco-Tejada, P J, and Dextraze, L (2002). 

Integrated narrow-band vegetation indices for prediction of crop chlorophyll content 

for application to precision agriculture. Remote Sensing of Environment 81, 416-426. 

doi:https://doi.org/10.1016/S0034-4257(02)00018-4 

Hall, A, Lamb, D W, Holzapfel, B, and Louis, J (2002). Optical remote sensing applications in 

viticulture ‐ a review. Australian Journal of Grape and Wine Research 8, 36-47. 

doi:10.1111/j.1755-0238.2002.tb00209.x 

Hamzeh, S, Naseri, A A, AlaviPanah, S K, Bartholomeus, H, and Herold, M (2016). 

Assessing the accuracy of hyperspectral and multispectral satellite imagery for 

categorical and Quantitative mapping of salinity stress in sugarcane fields. 

International Journal of Applied Earth Observation and Geoinformation 52, 412-421. 

doi:10.1016/j.jag.2016.06.024 

Harrell, F E (2015). Describing, Resampling, Validating, and Simplifying the Model. In 

"Regression Modeling Strategies", pp. 103-126. Springer.  

Heikkinen, V (2018). Spectral Reflectance Estimation Using Gaussian Processes and 

Combination Kernels. IEEE Trans Image Process 27, 3358-3373. 

doi:10.1109/TIP.2018.2820839 

Hernández-Clemente, R, Navarro-Cerrillo, R M, Suárez, L, Morales, F, and Zarco-Tejada, P 

J (2011). Assessing structural effects on PRI for stress detection in conifer forests. 

Remote Sensing of Environment 115, 2360-2375. doi:10.1016/j.rse.2011.04.036 

Hernández-Clemente, R, Navarro-Cerrillo, R M, and Zarco-Tejada, P J (2012). Carotenoid 

content estimation in a heterogeneous conifer forest using narrow-band indices and 

PROSPECT+DART simulations. Remote Sensing of Environment 127, 298-315. 

doi:10.1016/j.rse.2012.09.014 

Huang, R, and He, M (2005). Band Selection Based on Feature Weighting for Classification 

of Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters 2, 156-159. 

doi:10.1109/lgrs.2005.844658 

Huang, Y, Chen, Z-x, Yu, T, Huang, X-z, and Gu, X-f (2018). Agricultural remote sensing big 

data: Management and applications. Journal of Integrative Agriculture 17, 1915-

1931. doi:10.1016/s2095-3119(17)61859-8 

Huete, A R (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 

25, 295-309. doi:https://doi.org/10.1016/0034-4257(88)90106-X 

https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.1016/0034-4257(88)90106-X


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

96 

 

 

Huete, A R, Liu, H Q, Batchily, K, and van Leeuwen, W (1997). A comparison of vegetation 

indices over a global set of TM images for EOS-MODIS. Remote Sensing of 

Environment 59, 440-451. doi:https://doi.org/10.1016/S0034-4257(96)00112-5 

Hungate, W, Watkins, R, and Borengasser, M (2008). Hyperspectral Remote Sensing; 

Principles and Applications. CRC Press.  

Hunt, E R, Doraiswamy, P C, McMurtrey, J E, Daughtry, C S T, Perry, E M, and Akhmedov, 

B (2013). A visible band index for remote sensing leaf chlorophyll content at the 

canopy scale. International Journal of Applied Earth Observation and Geoinformation 

21, 103-112. doi:10.1016/j.jag.2012.07.020 

INE (2018). "Estatísticas Agrícolas 2017," Lisboa, Portugal.  

Jacquemoud, S, and Baret, F (1990). PROSPECT: A model of leaf optical properties 

spectra. Remote Sensing of Environment 34, 75-91. doi:https://doi.org/10.1016/0034-

4257(90)90100-Z 

Jacquemoud, S, Verhoef, W, Baret, F, Bacour, C, Zarco-Tejada, P J, Asner, G P, François, 

C, and Ustin, S L (2009). PROSPECT+SAIL models: A review of use for vegetation 

characterization. Remote Sensing of Environment 113, S56-S66. 

doi:10.1016/j.rse.2008.01.026 

Jones, H G, and Vaughan, R A (2010). "Remote sensing of vegetation: principles, 

techniques, and applications," Oxford University Press Inc., New York, USA.  

Jordan, C F (1969). Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. 

Ecology 50, 663-666. doi:doi:10.2307/1936256 

Katsoulas, N, Elvanidi, A, Ferentinos, K P, Kacira, M, Bartzanas, T, and Kittas, C (2016). 

Crop reflectance monitoring as a tool for water stress detection in greenhouses: A 

review. Biosystems Engineering 151, 374-398. 

doi:10.1016/j.biosystemseng.2016.10.003 

Khanal, S, Fulton, J, and Shearer, S (2017). An overview of current and potential 

applications of thermal remote sensing in precision agriculture. Computers and 

Electronics in Agriculture 139, 22-32. doi:10.1016/j.compag.2017.05.001 

Kim, M S, Daughtry, C, Chappelle, E, McMurtrey, J, and Walthall, C (1994). The use of high 

spectral resolution bands for estimating absorbed photosynthetically active radiation 

(A par).  

Knipling, E B (1970). "Physical and physiological basis for the reflectance of visible and 

near-infrared radiation from vegetation." doi:10.1016/S0034-4257(70)80021-9 

Kuhn, M (2008). Building Predictive Models in R Using the caret Package. 2008 28, 26. 

doi:10.18637/jss.v028.i05 

https://doi.org/10.1016/S0034-4257(96)00112-5
https://doi.org/10.1016/0034-4257(90)90100-Z
https://doi.org/10.1016/0034-4257(90)90100-Z


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

97 

 

 

le Maire, G, François, C, and Dufrêne, E (2004). Towards universal broad leaf chlorophyll 

indices using PROSPECT simulated database and hyperspectral reflectance 

measurements. Remote Sensing of Environment 89, 1-28. 

doi:10.1016/j.rse.2003.09.004 

le Maire, G, Francois, C, Soudani, K, Berveiller, D, Pontailler, J, Breda, N, Genet, H, Davi, H, 

and Dufrene, E (2008). Calibration and validation of hyperspectral indices for the 

estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf 

area index and leaf canopy biomass. Remote Sensing of Environment 112, 3846-

3864. doi:10.1016/j.rse.2008.06.005 

Lehnert, L W, Meyer, H, and Bendix, J (2017). hsdar: Manage, analyse and simulate 

hyperspectral data in R.  

Li, D, Wang, C, Jiang, H, Peng, Z, Yang, J, Su, Y, Song, J, and Chen, S (2018). Monitoring 

litchi canopy foliar phosphorus content using hyperspectral data. Computers and 

Electronics in Agriculture 154, 176-186. doi:10.1016/j.compag.2018.09.007 

Lichtenthaler, H K, Lang, M, Sowinska, M, Heisel, F, and Miehé, J A (1996). Detection of 

Vegetation Stress Via a New High Resolution Fluorescence Imaging System. Journal 

of Plant Physiology 148, 599-612. doi:10.1016/s0176-1617(96)80081-2 

Lobell, D B, Asner, G P, Law, B E, and Treuhaft, R N (2001). Subpixel canopy cover 

estimation of coniferous forests in Oregon using SWIR imaging spectrometry. Journal 

of Geophysical Research: Atmospheres 106, 5151-5160. doi:10.1029/2000jd900739 

Maccioni, A, Agati, G, and Mazzinghi, P (2001). New vegetation indices for remote 

measurement of chlorophylls based on leaf directional reflectance spectra. Journal of 

Photochemistry and Photobiology B: Biology 61, 52-61. 

doi:https://doi.org/10.1016/S1011-1344(01)00145-2 

Mariotto, I, Thenkabail, P S, Huete, A, Slonecker, E T, and Platonov, A (2013). 

Hyperspectral versus multispectral crop-productivity modeling and type discrimination 

for the HyspIRI mission. Remote Sensing of Environment 139, 291-305. 

doi:10.1016/j.rse.2013.08.002 

Merzlyak, M N, Gitelson, A A, Chivkunova, O B, and Rakitin, V Y (1999). Non-destructive 

optical detection of pigment changes during leaf senescence and fruit ripening. 

Physiologia Plantarum 106, 135-141. doi:doi:10.1034/j.1399-3054.1999.106119.x 

Middleton, E M, Huemmrich, K F, Cheng, Y-B, and Margolis, H A (2012). Spectral Bioindicators of 

Photosynthetic Efficiency and Vegetation Stress. In "Hyperspectral Remote Sensing 

of Vegetation" (P. Thenkabail, J. Lyon and A. Huete, eds.), pp. 265-288. Taylor & 

Francis Group, LLC, Boca Raton.  

https://doi.org/10.1016/S1011-1344(01)00145-2


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

98 

 

 

Mulla, D J (2013). Twenty five years of remote sensing in precision agriculture: Key 

advances and remaining knowledge gaps. Biosystems Engineering 114, 358-371. 

doi:10.1016/j.biosystemseng.2012.08.009 

Oppelt, N, and Mauser, W (2004). Hyperspectral monitoring of physiological parameters of 

wheat during a vegetation period using AVIS data. International Journal of Remote 

Sensing 25, 145-159. doi:10.1080/0143116031000115300 

Orlandi, G, Calvini, R, Pigani, L, Foca, G, Vasile Simone, G, Antonelli, A, and Ulrici, A 

(2018). Electronic eye for the prediction of parameters related to grape ripening. 

Talanta 186, 381-388. doi:10.1016/j.talanta.2018.04.076 

Ortega-Farías, S, Ortega-Salazar, S, Poblete, T, Kilic, A, Allen, R, Poblete-Echeverría, C, 

Ahumada-Orellana, L, Zuñiga, M, and Sepúlveda, D (2016). Estimation of Energy 

Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and 

Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle 

(UAV). Remote Sensing 8. doi:10.3390/rs8080638 

Patrício, D I, and Rieder, R (2018). Computer vision and artificial intelligence in precision 

agriculture for grain crops: A systematic review. Computers and Electronics in 

Agriculture 153, 69-81. doi:10.1016/j.compag.2018.08.001 

Penubag (2012). Electromagnetic spectrum. In "Secondary Electromagnetic spectrum" 

(Secondary Penubag, ed.). Accessed in 19/09/2018 at 

https://et.wikipedia.org/wiki/Fail:Electromagnetic-Spectrum.svg 

Peñuelas, J, Baret, F, and Filella, I (1995a). Semi-empirical indices to assess 

carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31, 

221-230.  

Peñuelas, J, Filella, I, Biel, C, Serrano, L, and Savé, T (1993). The reflectance at the 950-

970 nm as an indicator of plant water status. International Journal of Remote  

Sensing 14, 1887-1905.  

Peñuelas, J, Filella, I, Lloret, P, Muñoz, F, and Vilajeliu, M (1995b). Reflectance assessment 

of mite effects on apple trees. International Journal of Remote Sensing 16, 2727-

2733. doi:10.1080/01431169508954588 

Peñuelas, J, Gamon, J A, Fredeen, A L, Merino, J, and Field, C B (1994). Reflectance 

indices associated with physiological changes in nitrogen- and water-limited 

sunflower leaves. Remote Sensing of Environment 48, 135-146. 

doi:https://doi.org/10.1016/0034-4257(94)90136-8 

Peñuelas, J, Pinol, J, Ogaya, R, and Filella, I (1997). Estimation of plant water concentration 

by the reflectance Water Index WI (R900/R970). International Journal of Remote 

Sensing 18, 2869-2875. doi:10.1080/014311697217396 

https://et.wikipedia.org/wiki/Fail:Electromagnetic-Spectrum.svg
https://doi.org/10.1016/0034-4257(94)90136-8


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

99 

 

 

Petropoulus, G P (2013). Remote Sensing of Surface Turbulent Energy Fluxes. In "Remote 

Sensing of Energy Fluxes and Soil Moisture Content" (G. P. Petropoulus, ed.), pp. 

49-84. CRC Press, Boca Raton, FL.  

Poblete, T, Ortega-Farias, S, and Ryu, D (2018). Automatic Coregistration Algorithm to 

Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the 

Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon 

Vineyard. Sensors (Basel) 18. doi:10.3390/s18020397 

Pôças, I, Cunha, M, Pereira, L S, and Allen, R G (2013). Using remote sensing energy 

balance and evapotranspiration to characterize montane landscape vegetation with 

focus on grass and pasture lands. International Journal of Applied Earth Observation 

and Geoinformation 21, 159-172. doi:10.1016/j.jag.2012.08.017 

Pôças, I, Gonçalves, J, Costa, P M, Gonçalves, I, Pereira, L S, and Cunha, M (2017). 

Hyperspectral-based predictive modelling of grapevine water status in the 

Portuguese Douro wine region. International Journal of Applied Earth Observation 

and Geoinformation 58, 177-190. doi:10.1016/j.jag.2017.02.013 

Pôças, I, Rodrigues, A, Gonçalves, S, Costa, P, Gonçalves, I, Pereira, L, and Cunha, M 

(2015). Predicting Grapevine Water Status Based on Hyperspectral Reflectance 

Vegetation Indices. Remote Sensing 7, 16460-16479. doi:10.3390/rs71215835 

Qi, J, Chehbouni, A, Huete, A R, Kerr, Y H, and Sorooshian, S (1994). A modified soil 

adjusted vegetation index. Remote Sensing of Environment 48, 119-126. 

doi:https://doi.org/10.1016/0034-4257(94)90134-1 

R Core Team (2017). R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria.  

Rapaport, T, Hochberg, U, Shoshany, M, Karnieli, A, and Rachmilevitch, S (2015). 

Combining leaf physiology, hyperspectral imaging and partial least squares-

regression (PLS-R) for grapevine water status assessment. ISPRS Journal of 

Photogrammetry and Remote Sensing 109, 88-97. 

doi:10.1016/j.isprsjprs.2015.09.003 

Ray, M, Ray, A, Dash, S, Mishra, A, Achary, K G, Nayak, S, and Singh, S (2017). Fungal 

disease detection in plants: Traditional assays, novel diagnostic techniques and 

biosensors. Biosens Bioelectron 87, 708-723. doi:10.1016/j.bios.2016.09.032 

Rivera, J, Verrelst, J, Delegido, J, Veroustraete, F, and Moreno, J (2014). On the Semi-

Automatic Retrieval of Biophysical Parameters Based on Spectral Index 

Optimization. Remote Sensing 6, 4927-4951. doi:10.3390/rs6064927 

Rodríguez-Pérez, J R, Ordóñez, C, González-Fernández, A B, Sanz-Ablanedo, E, 

Valenciano, J B, and Marcelo, V (2018). Leaf water content estimation by functional 

https://doi.org/10.1016/0034-4257(94)90134-1


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

100 

 

 

linear regression of field spectroscopy data. Biosystems Engineering 165, 36-46. 

doi:10.1016/j.biosystemseng.2017.08.017 

Rodríguez-Pérez, J R, Riaño, D, Carlisle, E, Ustin, S, and Smart, D R (2007). Evaluation of 

hyperspectral reflectance indexes to detect grapevine water status in vineyards. 

American Journal of Enology and Viticulture 58, 302-317.  

Rondeaux, G, Steven, M, and Baret, F (1996). Optimization of soil-adjusted vegetation 

indices. Remote Sensing of Environment 55, 95-107. 

doi:https://doi.org/10.1016/0034-4257(95)00186-7 

Roosjen, P P J, Bartholomeus, H M, and Clevers, J G P W (2015). Effects of soil moisture 

content on reflectance anisotropy — Laboratory goniometer measurements and RPV 

model inversions. Remote Sensing of Environment 170, 229-238. 

doi:10.1016/j.rse.2015.09.022 

Roujean, J-L, and Breon, F-M (1995). Estimating PAR absorbed by vegetation from 

bidirectional reflectance measurements. Remote Sensing of Environment 51, 375-

384. doi:https://doi.org/10.1016/0034-4257(94)00114-3 

Samborski, S M, Gozdowski, D, Stępień, M, Walsh, O S, and Leszczyńska, E (2016). On-

farm evaluation of an active optical sensor performance for variable nitrogen 

application in winter wheat. European Journal of Agronomy 74, 56-67. 

doi:10.1016/j.eja.2015.11.020 

Schellberg, J, Hill, M J, Gerhards, R, Rothmund, M, and Braun, M (2008). Precision 

agriculture on grassland: Applications, perspectives and constraints. European 

Journal of Agronomy 29, 59-71. doi:10.1016/j.eja.2008.05.005 

Schmitt, R (2002). 1 - Introduction and Survey of the Electromagnetic Spectrum. In 

"Electromagnetics Explained" (R. Schmitt, ed.), pp. 1-24. Newnes, Burlington. 

doi:https://doi.org/10.1016/B978-075067403-4/50002-1 

senseFly (2015). Filling The Gap (Infographic) – Drones vs Other Geospatial Data Sources. 

In "Secondary Filling The Gap (Infographic) – Drones vs Other Geospatial Data 

Sources" (Secondary senseFly, ed.). Accessed in 30/08/2018 at 

https://waypoint.sensefly.com/infographic-geospatial-data-collection-drones-satellite-

manned/ 

SEOS (2018). Classification Algorithms and Methods. In "Secondary Classification 

Algorithms and Methods" (Secondary SEOS, ed.). Accessed in 10/09/2018 at 

http://www.seos-project.eu/modules/classification/classification-c01-p05.html 

Sepulcre-Cantó, G, Zarco-Tejada, P, Jiménez-Muñoz, J, Sobrino, J, De Miguel, E, and 

Villalobos, F (2006). Detection of water stress in an olive orchard with thermal remote 

sensing imagery. Agricultural and Forest Meteorology 136, 31-44.  

https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/0034-4257(94)00114-3
https://doi.org/10.1016/B978-075067403-4/50002-1
https://waypoint.sensefly.com/infographic-geospatial-data-collection-drones-satellite-manned/
https://waypoint.sensefly.com/infographic-geospatial-data-collection-drones-satellite-manned/
http://www.seos-project.eu/modules/classification/classification-c01-p05.html


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

101 

 

 

Serrano, L, Peñuelas, J, and Ustin, S L (2002). Remote sensing of nitrogen and lignin in 

Mediterranean vegetation from AVIRIS data: Decomposing biochemical from 

structural signals. Remote Sensing of Environment 81, 355-364. 

doi:https://doi.org/10.1016/S0034-4257(02)00011-1 

Shellie, K, and Glenn, D M (2008). Wine Grape Response to Foliar Particle Film under 

Differing Levels of Preveraison Water Stress. HORTSCIENCE 43, 1392–1397.  

Shellie, K C, and King, B A (2013). Kaolin Particle Film and Water Deficit Influence Malbec 

Leaf and Berry Temperature, Pigments, and Photosynthesis. American Journal of 

Enology and Viticulture 64, 223-230. doi:10.5344/ajev.2012.12115 

Sims, D A, and Gamon, J A (2002). Relationships between leaf pigment content and spectral 

reflectance across a wide range of species, leaf structures and developmental 

stages. Remote Sensing of Environment 81, 337-354. 

doi:https://doi.org/10.1016/S0034-4257(02)00010-X 

Smith, R, Adams, J, Stephens, D, and Hick, P (1995). Forecasting wheat yield in a 

Mediterranean-type environment from the NOAA satellite. Australian Journal of 

Agricultural Research 46, 113-125. doi:https://doi.org/10.1071/AR9950113 

Suárez, L, Zarco-Tejada, P J, Sepulcre-Cantó, G, Pérez-Priego, O, Miller, J R, Jiménez-

Muñoz, J C, and Sobrino, J (2008). Assessing canopy PRI for water stress detection 

with diurnal airborne imagery. Remote Sensing of Environment 112, 560-575. 

doi:10.1016/j.rse.2007.05.009 

Thenkabail, P S, Smith, R B, and De Pauw, E (2000). Hyperspectral Vegetation Indices and 

Their Relationships with Agricultural Crop Characteristics. Remote Sensing of 

Environment 71, 158-182. doi:https://doi.org/10.1016/S0034-4257(99)00067-X 

Tian, Y-C, Gu, K-J, Chu, X, Yao, X, Cao, W-X, and Zhu, Y (2014). Comparison of different 

hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in 

rice. Plant and Soil 376, 193-209. doi:10.1007/s11104-013-1937-0 

Tibshirani, R (1996). Regression Shrinkage and Selection via the Lasso. Journal of the 

Royal Statistical Society. Series B (Methodological) 58, 267-288.  

Tucker, C J (1979). Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sensing of Environment 8, 127-150. 

doi:https://doi.org/10.1016/0034-4257(79)90013-0 

Usha, K, and Singh, B (2013). Potential applications of remote sensing in horticulture—A 

review. Scientia Horticulturae 153, 71-83. doi:10.1016/j.scienta.2013.01.008 

Veraverbeke, S, Dennison, P, Gitas, I, Hulley, G, Kalashnikova, O, Katagis, T, Kuai, L, 

Meng, R, Roberts, D, and Stavros, N (2018). Hyperspectral remote sensing of fire: 

https://doi.org/10.1016/S0034-4257(02)00011-1
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1071/AR9950113
https://doi.org/10.1016/S0034-4257(99)00067-X
https://doi.org/10.1016/0034-4257(79)90013-0


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

102 

 

 

State-of-the-art and future perspectives. Remote Sensing of Environment 216, 105-

121. doi:10.1016/j.rse.2018.06.020 

Verhoef, W (1984). Light scattering by leaf layers with application to canopy reflectance 

modeling: The SAIL model. Remote Sensing of Environment 16, 125-141. 

doi:https://doi.org/10.1016/0034-4257(84)90057-9 

Verhoef, W (1985). Earth observation modeling based on layer scattering matrices. Remote 

Sensing of Environment 17, 165-178. doi:https://doi.org/10.1016/0034-

4257(85)90072-0 

Verrelst, J, Camps-Valls, G, Muñoz-Marí, J, Rivera, J P, Veroustraete, F, Clevers, J G P W, 

and Moreno, J (2015a). Optical remote sensing and the retrieval of terrestrial 

vegetation bio-geophysical properties – A review. ISPRS Journal of Photogrammetry 

and Remote Sensing 108, 273-290. doi:10.1016/j.isprsjprs.2015.05.005 

Verrelst, J, Malenovský, Z, Van der Tol, C, Camps-Valls, G, Gastellu-Etchegorry, J-P, Lewis, 

P, North, P, and Moreno, J (2018). Quantifying Vegetation Biophysical Variables from 

Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in 

Geophysics. doi:10.1007/s10712-018-9478-y 

Verrelst, J, Muñoz, J, Alonso, L, Delegido, J, Rivera, J P, Camps-Valls, G, and Moreno, J 

(2012). Machine learning regression algorithms for biophysical parameter retrieval: 

Opportunities for Sentinel-2 and -3. Remote Sensing of Environment 118, 127-139. 

doi:http://dx.doi.org/10.1016/j.rse.2011.11.002 

Verrelst, J, Rivera, J, Alonso, L, and Moreno, J (2011). ARTMO: an Automated Radiative 

Transfer Models Operator toolbox for automated retrieval of biophysical parameters 

through model inversion. In "Proc. EARSeL 7th SIG-Imag. Spectrosc. Workshop", pp. 

11-13.  

Verrelst, J, Rivera, J P, van der Tol, C, Magnani, F, Mohammed, G, and Moreno, J (2015b). 

Global sensitivity analysis of the SCOPE model: What drives simulated canopy-

leaving sun-induced fluorescence? Remote Sensing of Environment 166, 8-21. 

doi:10.1016/j.rse.2015.06.002 

Verrelst, J, Rivera, J P, Veroustraete, F, Muñoz-Marí, J, Clevers, J G P W, Camps-Valls, G, 

and Moreno, J (2015c). Experimental Sentinel-2 LAI estimation using parametric, 

non-parametric and physical retrieval methods – A comparison. ISPRS Journal of 

Photogrammetry and Remote Sensing 108, 260-272. 

doi:10.1016/j.isprsjprs.2015.04.013 

Vincini, M, Frazzi, E, and D’Alessio, P (2006). Angular dependence of maize and sugar beet 

VIs from directional CHRIS/Proba data. In "Proc. 4th ESA CHRIS PROBA 

Workshop", Vol. 2006, pp. 19-21.  

https://doi.org/10.1016/0034-4257(84)90057-9
https://doi.org/10.1016/0034-4257(85)90072-0
https://doi.org/10.1016/0034-4257(85)90072-0
http://dx.doi.org/10.1016/j.rse.2011.11.002


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

103 

 

 

Vogelmann, J E, Rock, B N, and Moss, D M (1993). Red edge spectral measurements from 

sugar maple leaves. International Journal of Remote Sensing 14, 1563-1575. 

doi:10.1080/01431169308953986 

Wang, M, Wan, Y, Ye, Z, Gao, X, and Lai, X (2017). A band selection method for airborne 

hyperspectral image based on chaotic binary coded gravitational search algorithm. 

Neurocomputing. doi:10.1016/j.neucom.2017.07.059 

Wang, W, Yao, X, Yao, X, Tian, Y, Liu, X, Ni, J, Cao, W, and Zhu, Y (2012). Estimating leaf 

nitrogen concentration with three-band vegetation indices in rice and wheat. Field 

Crops Research 129, 90-98. doi:10.1016/j.fcr.2012.01.014 

Wold, S, Esbensen, K, and Geladi, P (1987). Principal component analysis. Chemometrics 

and Intelligent Laboratory Systems 2, 37-52. doi:https://doi.org/10.1016/0169-

7439(87)80084-9 

Wu, C, Niu, Z, Tang, Q, and Huang, W (2008). Estimating chlorophyll content from 

hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest 

Meteorology 148, 1230-1241. doi:10.1016/j.agrformet.2008.03.005 

Wu, W (2014). The Generalized Difference Vegetation Index (GDVI) for Dryland 

Characterization. Remote Sensing 6, 1211-1233. doi:10.3390/rs6021211 

Zarco-Tejada, P, Hubbard, N, and Loudjani, P (2014). Precision Agriculture: An Opportunity 

for EU Farmers—Potential Support with the CAP 2014-2020. Joint Research Centre 

(JRC) of the European Commission.  

Zarco-Tejada, P J, González-Dugo, V, Williams, L E, Suárez, L, Berni, J A J, Goldhamer, D, 

and Fereres, E (2013a). A PRI-based water stress index combining structural and 

chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the 

CWSI thermal index. Remote Sensing of Environment 138, 38-50. 

doi:10.1016/j.rse.2013.07.024 

Zarco-Tejada, P J, Guillén-Climent, M L, Hernández-Clemente, R, Catalina, A, González, M 

R, and Martín, P (2013b). Estimating leaf carotenoid content in vineyards using high 

resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). 

Agricultural and Forest Meteorology 171-172, 281-294. 

doi:10.1016/j.agrformet.2012.12.013 

Zarco-Tejada, P J, and Miller, J R (1999). Land cover mapping at BOREAS using red edge 

spectral parameters from CASI imagery. Journal of Geophysical Research: 

Atmospheres 104, 27921-27933. doi:10.1029/1999jd900161 

Zarco-Tejada, P J, Miller, J R, Mohammed, G H, Noland, T L, and Sampson, P H (2002). 

Vegetation Stress Detection through Chlorophyll + Estimation and Fluorescence 

https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

104 

 

 

Effects on Hyperspectral Imagery. Journal of Environment Quality 31. 

doi:10.2134/jeq2002.1433 

Zarco-Tejada, P J, Pushnik, J C, Dobrowski, S, and Ustin, S L (2003). Steady-state 

chlorophyll a fluorescence detection from canopy derivative reflectance and double-

peak red-edge effects. Remote Sensing of Environment 84, 283-294. 

doi:https://doi.org/10.1016/S0034-4257(02)00113-X 

Zeng, C, Richardson, M, and King, D J (2017). The impacts of environmental variables on 

water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-

based spectrometer system. ISPRS Journal of Photogrammetry and Remote 

Sensing 130, 217-230. doi:10.1016/j.isprsjprs.2017.06.004 

zhang, C, Guo, C, Liu, F, Kong, W, He, Y, and Lou, B (2016). Hyperspectral imaging 

analysis for ripeness evaluation of strawberry with support vector machine. Journal of 

Food Engineering 179, 11-18. doi:10.1016/j.jfoodeng.2016.01.002 

Zhang, C, and Kovacs, J M (2012). The application of small unmanned aerial systems for 

precision agriculture: a review. Precision Agriculture 13, 693-712. 

doi:10.1007/s11119-012-9274-5 

Zhang, N, Wang, M, and Wang, N (2002). Precision agriculture—a worldwide overview. 

Computers and electronics in agriculture 36, 113-132.  

 

 

https://doi.org/10.1016/S0034-4257(02)00113-X


 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

A 

 

 

Attachments 

Attachment 1.  Vegetation indices 

Name Formula Reference 

ARI 
1

𝑅550
−

1

𝑅700
 (Gitelson et al., 2001) 

Boochs 𝐷703 (Boochs et al., 1990) 

Boochs2 𝐷720 (Boochs et al., 1990) 

CARI 

𝑎 = (𝑅700 − 𝑅550)/150 

𝑏 =  𝑅550 − (𝑎 ∗ 550) 

𝑅700 ∗
𝑎𝑏𝑠(𝑎 ∗ 670 +  𝑅670 + 𝑏)

𝑅670 ∗ (𝑎2 + 1)0.5
 

(Kim et al., 1994) 

Carter 𝑅695/𝑅420 (Carter, 1994) 

Carter2 𝑅695/𝑅760 (Carter, 1994) 

Carter3 𝑅605/𝑅760 (Carter, 1994) 

Carter4 𝑅710/𝑅760 (Carter, 1994) 

Carter5 𝑅695/𝑅670 (Carter, 1994) 

Carter6 𝑅550 (Carter, 1994) 

CI 𝑅675 ∗ 𝑅690/𝑅683
2  (Zarco-Tejada et al., 2003) 

CI2 
𝑅760

𝑅700
− 1 (Gitelson et al., 2003) 

ClAInt ∫ 𝑅
735𝑛𝑚

600𝑛𝑚

 (Oppelt and Mauser, 2004) 

CRI1 1 𝑅515⁄ − 1 𝑅550⁄  (Gitelson et al., 2003) 

CRI2 1 𝑅515⁄ − 1 𝑅770⁄  (Gitelson et al., 2003) 

CRI3 1 𝑅515⁄ − 1 𝑅550 ∗ 𝑅770⁄  (Gitelson et al., 2003) 

CRI4 1 𝑅515⁄ − 1 𝑅700⁄ ∗ 𝑅770 (Gitelson et al., 2003) 

D1 𝐷730 𝐷706⁄  (Zarco-Tejada et al., 2003) 

D2 𝐷705 𝐷722⁄  (Zarco-Tejada et al., 2003) 

Datt (𝑅850 − 𝑅710)/(𝑅850 − 𝑅680) (Datt, 1999) 

Datt2 𝑅850 𝑅710⁄  (Datt, 1999) 

Datt3 𝑅754 𝑅704⁄  (Datt, 1999) 

Datt4 𝑅672/(𝑅550 ∗ 𝑅708) (Datt, 1998) 

Datt5 𝑅672 𝑅550⁄  (Datt, 1998) 

Datt6 (𝑅860)/(𝑅550 ∗ 𝑅708) (Datt, 1998) 
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DD (𝑅749 − 𝑅720) − (𝑅701 − 𝑅672) (le Maire et al., 2004) 

DDn 2 ∗ (𝑅710 − 𝑅660 − 𝑅760) (le Maire et al., 2008) 

DPI (𝐷688 ∗ 𝐷710)/𝐷697
2  (Zarco-Tejada et al., 2003) 

DVI 𝑅800 − 𝑅675 (Jordan, 1969) 

DWSI4 𝑅550 𝑅680⁄  (Apan et al., 2004) 

EGFN 
(max(𝐷650:750) − max (𝐷500:550))

(max(𝐷650:750) + max (𝐷500:550))
 (Peñuelas et al., 1994) 

EGFR max(𝐷650:750) /max (𝐷500:550) (Peñuelas et al., 1994) 

EVI 2.5 ∗ (
(𝑅800 − 𝑅670)

(𝑅800 − (6 ∗ 𝑅670) − (7.5 ∗ 𝑅475) + 1)
) (Huete et al., 1997) 

GDVI (𝑅800
𝑛 − 𝑅680

𝑛 ) (𝑅800
𝑛 + 𝑅680

𝑛 )⁄ ∗
 (Wu, 2014) 

GI 𝑅554 𝑅667⁄  (Smith et al., 1995) 

Gitelson 1 𝑅700⁄  (Gitelson et al., 1999) 

Gitelson2 (𝑅750 − 𝑅800/𝑅695 − 𝑅740) − 1 (Gitelson et al., 2003) 

GMI1 𝑅750 𝑅550⁄  (Gitelson et al., 2003) 

GMI2 𝑅750 𝑅700⁄  (Gitelson et al., 2003) 

Green NDVI (𝑅800 − 𝑅550)/(𝑅800 + 𝑅550) (Gitelson et al., 1996) 

LNC Tian (𝑅605 − 𝑅521 − 𝑅682) (𝑅605 + 𝑅521 + 𝑅682)⁄  (Tian et al., 2014) 

LNC Wang (𝑅924 − 𝑅703 + 2 ∗ 𝑅423) (𝑅924 + 𝑅703 − 2 ∗ 𝑅423)⁄  (Wang et al., 2012) 

Maccioni (𝑅780 − 𝑅710)/(𝑅780 + 𝑅710) (Maccioni et al., 2001) 

MCARI 
((𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550))

∗ (𝑅700 𝑅670⁄ ) 
(Daughtry et al., 2000) 

MCARI/ 

OSAVI 
𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼 (Daughtry et al., 2000) 

MCARI2 
((𝑅750 − 𝑅705) − 0.2 ∗ (𝑅750 − 𝑅550))

∗ (𝑅750 𝑅705⁄ ) 
(Wu et al., 2008) 

MCARI2/OS

AVI2 
𝑀𝐶𝐴𝑅𝐼2/𝑂𝑆𝐴𝑉𝐼2 (Wu et al., 2008) 

mND705 (𝑅750 − 𝑅705)/(𝑅750 + 𝑅705 − 2 ∗ 𝑅445) (Sims and Gamon, 2002) 

mNDVI (𝑅800 − 𝑅680)/(𝑅800 + 𝑅680 − 2 ∗ 𝑅445) (Sims and Gamon, 2002) 

MPRI (𝑅515 − 𝑅530)/(𝑅515 + 𝑅530) 
(Hernández-Clemente et 

al., 2011) 

mREIP Red-edge inflection point using Gaussain fit  

MSAVI 
0.5 ∗ (2 ∗ 𝑅800 + 1 − ((2 ∗ 𝑅800 + 1)2 − 8

∗ (𝑅800 − 𝑅670))2) 
(Qi et al., 1994) 

mSR (𝑅800 − 𝑅445)/(𝑅680 − 𝑅445) (Sims and Gamon, 2002) 
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mSR2 (𝑅750 𝑅705⁄ ) − 1/(𝑅750 𝑅705 + 1⁄ )0.5 (Chen, 1996) 

mSR705 (𝑅750 − 𝑅445)/(𝑅705 − 𝑅445) (Sims and Gamon, 2002) 

MTCI (𝑅754 − 𝑅709)/(𝑅709 − 𝑅681) (Dash and Curran, 2004) 

MTVI 1.2 ∗ (1.2 ∗ (𝑅800 − 𝑅550) − 2.5 + (𝑅670 − 𝑅550))  

NDVI (𝑅800 − 𝑅680)/(𝑅800 + 𝑅680) (Tucker, 1979) 

NDVI2 (𝑅750 − 𝑅705)/(𝑅750 + 𝑅705) 
(Gitelson and Merzlyak, 

1994) 

NDVI3 (𝑅682 − 𝑅553)/(𝑅682 + 𝑅553) (Gandia et al., 2004) 

NPCI (𝑅680 − 𝑅430)/(𝑅680 + 𝑅430) (Peñuelas et al., 1994) 

OSAVI (1 + 0.16) ∗ (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670 + 0.16) (Rondeaux et al., 1996) 

OSAVI2 (1 + 0.16) ∗ (𝑅750 − 𝑅705)/(𝑅750 + 𝑅705 + 0.16) (Wu et al., 2008) 

PARS 𝑅746 𝑅513⁄  (Chappelle et al., 1992) 

PRI (𝑅531 − 𝑅570)/(𝑅531 + 𝑅570) (Gamon et al., 1992) 

PRI*CI2 𝑃𝑅𝐼 ∗ 𝐶𝐼2 (Garrity et al., 2011) 

PRI_norm 𝑃𝑅𝐼 ∗ (−1)/(𝑅𝐷𝑉𝐼 ∗ 𝑅700 𝑅670)⁄  
(Zarco-Tejada et al., 

2013a) 

PSND (𝑅800 − 𝑅470)/(𝑅800 − 𝑅470) (Blackburn, 1998) 

PSRI (𝑅678 − 𝑅500)/𝑅750 (Merzlyak et al., 1999) 

PSSR 𝑅800 𝑅635⁄  (Blackburn, 1998) 

RDVI (𝑅800 − 𝑅670) √𝑅800 + 𝑅670⁄  (Roujean and Breon, 1995) 

REP_LE Red-edge position through linear extrapolation  

REP_Li 

𝑅𝑟𝑒 = (𝑅670 + 𝑅780)/2 

700 + 40 ∗ (
𝑅𝑟𝑒 − 𝑅700

𝑅740 − 𝑅700
) 

(Guyot and Baret, 1988) 

SAVI (1 + 𝐿) ∗ (𝑅800 − 𝑅670)/(𝑅800 + 𝑅670 + 𝐿) (Huete, 1988) 

SIPI (𝑅800 − 𝑅445)/(𝑅800 − 𝑅680) 
(Peñuelas et al., 1995a; 

Peñuelas et al., 1995b) 

SPVI 
0.4 ∗ 3.7 ∗ (𝑅800 − 𝑅670) − 1.2

∗ ((𝑅530 − 𝑅670)2)0.5 
(Vincini et al., 2006) 

SR 𝑅800 𝑅680⁄  (Jordan, 1969) 

SR1 𝑅750 𝑅700⁄  
(Gitelson and Merzlyak, 

1997) 

SR2 𝑅752 𝑅690⁄  
(Gitelson and Merzlyak, 

1997) 

SR3 𝑅750 𝑅550⁄  
(Gitelson and Merzlyak, 

1997) 



 FCUP 
 Monitoring of biophysical parameters in vineyards through hyperspectral reflectance 

techniques 

D 

 

 

SR4 𝑅700 𝑅670⁄   

SR5 𝑅675 𝑅700⁄  (Chappelle et al., 1992) 

SR6 𝑅750 𝑅710⁄  
(Zarco-Tejada and Miller, 

1999) 

SR7 𝑅440 𝑅690⁄  (Lichtenthaler et al., 1996) 

SR8 𝑅515 𝑅550⁄  
(Hernández-Clemente et 

al., 2012) 

SRPI 𝑅430 𝑅680⁄  (Peñuelas et al., 1995a) 

SRWI 𝑅850 𝑅1240⁄  (Zarco-Tejada et al., 2003) 

Sum_Dr1 ∑ 𝐷1𝑖

795

𝑖=626
 (Elvidge and Chen, 1995) 

Sum_Dr2 ∑ 𝐷1𝑖

780

𝑖=680
 

(Filella and Peñuelas, 

1994) 

TCARI 
3 ∗ ((𝑅700 − 𝑅670) − 0.2 ∗ (𝑅700 − 𝑅550)

∗ (𝑅700 𝑅670))⁄  
(Haboudane et al., 2002) 

TCARI/OSA

VI 
𝑇𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼 (Haboudane et al., 2002) 

TCARI2 
3 ∗ ((𝑅750 − 𝑅705) − 0.2 ∗ (𝑅750 − 𝑅550)

∗ (𝑅750 𝑅705))⁄  
(Wu et al., 2008) 

TCARI2/OSA

VI2 
𝑇𝐶𝐴𝑅𝐼2/𝑂𝑆𝐴𝑉𝐼2 (Wu et al., 2008) 

TGI 
−0.5 ∗ (190 ∗ (𝑅670 − 𝑅550) − 120

∗ (𝑅670 − 𝑅480)) 
(Hunt et al., 2013) 

TVI 
0.5 ∗ (120 ∗ (𝑅750 − 𝑅550) − 200

∗ (𝑅670 − 𝑅550)) 
(Broge and Leblanc, 2001) 

Vogelmann 𝑅740 𝑅720⁄  (Vogelmann et al., 1993) 

Vogelmann2 (𝑅734 − 𝑅747)/(𝑅715 + 𝑅726) (Vogelmann et al., 1993) 

Vogelmann3 𝐷715 𝐷705⁄  (Vogelmann et al., 1993) 

Vogelmann4 (𝑅734 − 𝑅747)/(𝑅715 + 𝑅720) (Vogelmann et al., 1993) 

WI 𝑅900 𝑅970⁄  (Peñuelas et al., 1997) 

*For GDVI n must be defined appending an underscore and the intended exponent to the 

index 

 


