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Abstract

Cancer is a major public health issue. More than fifty thousand new cases of cancer are

diagnosed in Portugal every year. The population ageing will lead to the increase of the

number of newly cases in the future.

Advances in cancer diagnosis and treatment methods are conducing to improvements

in survival outcomes. These gains may however not be transversal to all population.

Population-based survival analysis is a fundamental tool for the evaluation of the effec-

tiveness of cancer patient care provided to a population as well as to detect its hetero-

geneities.

In survival analysis, the outcome variable is time to an event, being death the event of

interest in the present PhD work. In the context of population-based cancer survival

analysis, cause of death is seldom available or is unreliable precluding the use of cause-

specific survival. The disease-relate survival must be obtained indirectly, assuming that

the observed hazard can be decomposed in two additive parcels: the excess hazard

(disease related) and population hazard (other causes related). The survival directly cal-

culated from the excess hazard is the net survival. This can be defined as the survival

that would be observed if the only possible underlying cause of death was the disease

under study. This measure has the advantage of being independent from background

mortality and thus can be used to compare survival between subgroups with heteroge-

neous all-causes mortality.

The driving research question that motivated this work was the evaluation of socioeco-

nomic inequalities in survival from cancer. Several statistical research questions arose

from this motivating subject. The objectives of the studies performed were to: compare

methods to estimate age-standardised net survival, using non-parametric and paramet-

ric model-based approaches; analyse and extend existing methods to model the excess

hazard function in the presence of missing data on covariates; evaluate the association

between socioeconomic factors and survival from cancer using net survival estimation

and excess hazard modelling; sensitivity analysis of results to different assumptions on

background mortality.

The main contributions of the developed work were:

vii



viii FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

• Methods to age-standardised net survival were studied and an alternative model-

based approach was proposed.

• Multiple imputation methods that guarantee the compatibility between the imputa-

tion and substantive models were extended to accommodate excess hazard mod-

els.

• Deprivation-specific life tables were built for Portugal using multivariable flexible

models.

• The methodology to perform evaluations of socioeconomic inequalities in survival

from cancer for patients was set-up. For the first time, this evaluation was performed

for patients diagnosed in the North region of Portugal.

From the studies developed, the following conclusions were draw:

• The best method to age-standardise net survival is still an open question. It has

been shown that the proposed method can be a valid alternative to the conventional

methods, specially in the presence of sparse data.

• The standard multiple imputation methods to handle missing data in excess hazard

models with missing information on covariates can have a poor performance. The

developed extension of the SMC-FCS algorithm for this context presented higher

performance.

• Persistent socioeconomic inequalities in overall mortality were found for Portugal,

being these larger in men than in women.

• No evidence of consistent socioeconomic inequalities in survival from colorectal

cancer for patients diagnosed in the North region of Portugal were found.

Keywords: Net survival, Excess hazard, Missing data, Multiple Imputation, Age-standardisation,

Population-based, Cancer, Socioeconomic inequalities, Life tables.



Resumo

As doenças oncológicas representam um importante problema de saúde pública. Mais

de cinquenta mil novos casos de cancro são diagnosticados em Portugal por ano. Espera-

se que o crescente envelhecimento da população leve a um aumento deste número no

futuro.

Os avanços nos métodos de diagnóstico e tratamento de cancro têm conduzido a resul-

tados mais favoráveis em termos de sobrevivência à doença. Estes ganhos podem, no

entanto, não ser transversais a toda a população. A análise de sobrevivência de dados

populacionais é uma ferramenta fundamental para a avaliação da eficácia dos cuidados

de saúde prestados aos doentes oncológicos numa população assim como para detetar

as suas heterogeneidades.

Na análise de sobrevivência, a variável resposta é o tempo até um evento, sendo a morte

o evento de interesse no presente trabalho de doutoramento. No contexto da análise de

sobrevivência ao cancro usando dados de base populacional, a causa da morte rara-

mente está disponı́vel ou não é fiável, limitando o uso da sobrevivência por causa es-

pecı́fica. A sobrevivência relacionada com a doença é obtida indiretamente, assumindo

que o risco observado pode ser decomposto em duas parcelas: o excesso de risco (re-

lacionado com a doença) e o risco populacional (relacionado com outras causas). A

sobrevivência calculada diretamente a partir do excesso de risco é a sobrevivência ’net’.

Esta pode ser definida como a sobrevivência que seria observada se a única causa sub-

jacente de morte possı́vel fosse a doença em estudo. Esta medida tem a vantagem de

ser independente da mortalidade de base e, portanto, poder ser usada para comparar a

sobrevivência entre subgrupos com diferente mortalidade global.

A questão de investigação que motivou este trabalho foi a avaliação das desigualdades

socioeconómicas na sobrevivência ao cancro. Diversas questões relativas à metodolo-

gia estatı́stica surgiram do problema prático. Os objetivos dos estudos realizados foram:

comparar métodos para estimar a sobrevivência ’net’ padronizada para a idade, utili-

zando abordagens baseadas em estimadores não paramétricos e modelos paramétricos;

analisar e estender os métodos existentes para modelar a função de excesso de risco na

presença de dados omissos nas covariáveis; avaliação da associação entre fatores so-

ix
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cioeconómicos e a sobrevivência ao cancro utilizando estimativas de sobrevivência ’net’

e modelação de excesso de risco; análise de sensibilidade dos resultados a diferentes

hipóteses sobre mortalidade de base.

As principais contribuições do trabalho desenvolvido foram:

• Métodos para sobrevivência ’net’ padronizada para a idade foram estudados e uma

abordagem alternativa baseada em modelos foi proposta.

• Os métodos de imputação múltipla que garantem a compatibilidade entre os mo-

delos de imputação e os modelos de análise foram adaptados para acomodar mo-

delos de excesso de risco.

• Foram construı́das para Portugal tábuas de mortalidade especı́ficas por nı́vel de

privação usando modelos flexı́veis multivariável.

• A metodologia para realizar avaliações de desigualdades socioeconómicas na so-

brevivência de doentes oncológicos foi montada. Pela primeira vez, esta avaliação

foi realizada para doentes diagnosticados na região Norte de Portugal.

As principais conclusões dos estudos desenvolvidos foram:

• O melhor método para padronizar a sobrevivência ’net’ ainda é uma questão em

aberto. Foi demonstrado que o método proposto pode ser uma alternativa válida

aos métodos convencionais, especialmente na presença de pequenas amostras.

• Os métodos padrão de imputação múltipla para lidar com dados omissos em mo-

delos de excesso de risco com informações omissa em covariáveis podem ter um

desempenho fraco. A adaptação desenvolvida do algoritmo SMC-FCS para este

contexto apresentou um melhor desempenho.

• Foram encontradas desigualdades socioeconómicas persistentes na mortalidade

geral em Portugal, sendo as desigualdades maiores nos homens do que nas mu-

lheres.

• Não foram encontradas evidências de desigualdades socioeconómicas consisten-

tes na sobrevivência ao cancro colorretal em doentes diagnosticados na região

Norte de Portugal.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Survival analysis

Survival analysis is a set of statistical procedures for data analysis that is used when the

outcome variable of interest is time from a well-defined time point until the occurrence of

an event of interest [8]. In medical applications, the time origin corresponds usually to

the recruitment of an individual to a particular study. It can be the date of diagnosis of

a disease, the date of treatment initiation or for instance the beginning of follow-up after

exposure to a certain factor. The final event, the event of interest, can be death, relapse,

disease incidence or other specific event. The necessity of special methods to deal with

this type of data is justified by the existence of censored times. A time is said to be cen-

sored when the event of interest is not observed before the end of follow-up. Another

characteristic that asks for special methods is the typical asymmetric shape of survival

time distributions.

Survival analysis has been used in medical research for a long time. It is possible to

find in the literature a set of books dedicated to this subject [8, 9, 10, 11, 12]. Over

the last decade, a growing number of research studies have been done in Portugal in

the biomedical field where it is possible to find survival analysis for different applications

[13, 14, 15, 16, 17].

1
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Initially, survival methods were developed to deal with overall survival, representing the

probability that an individual is still alive at time t after entering the study. The Kaplan-

Meier non-parametric estimator of survival curves proposed in 1958 [18] and the Pro-

portional Hazards Cox model proposed in 1972 [19] still belong to the current survival

analysis practices of many researchers although many developments in the modelling

approaches have been made meanwhile, namely, in parametric modelling.

In population-based datasets, especially those related to cancer registration, overall sur-

vival is not the most adequate measure to evaluate survival from a specific disease nei-

ther it is adequate to compare different populations. Overall survival depends not only

on cancer mortality but also on other causes of mortality. It is thus necessary to have a

survival measure that is independent from the background mortality. In population-based

cancer survival analysis, the cause of death is seldom available or it is unreliable, turning

necessary to obtain indirectly the mortality attributable to the disease. Berkson intro-

duced the concept of relative survival for the first time in 1942 [20]. The objective was to

estimate survival due to the disease (’net survival’) by comparing observed survival with

the survival of a similar group of individuals (relatively to demographic characteristics)

taken from the general the population. Nowadays, all the methods that use this compari-

son are said to be in the relative survival framework.

Although there are many literature and studies in general survival analysis, the literature

in the relative survival setting is more scarce. There have been many theoretical devel-

opments in the estimation of net survival in the last years. The acknowledgement in the

end of the first decade of this millennium that the net survival estimators used until then

were biased [21] and the introduction of the new net survival estimator by Pohar-Perme

in 2012 [22] had an important impact in cancer survival analysis. Modelling of the excess

hazard, quantity directly related to the net survival, has also evolved in the last years with

the increasing use of flexible parametric models [23, 24, 25].

1.1.2 Cancer survival

Although the survival analysis methods in the relative survival setting can be used in other

types of diseases, cancer is undoubtedly the most common application of this method-
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ology. Cancer is the second leading cause of death worldwide and it is expected that in

2018 will be responsible for about nine and an half million deaths [26]. Its importance

in the public health perspective is growing as life expectancy at birth increases and as

human population is ageing, specially in the more developed countries. The impact of

this group of diseases in the health of populations is substantial and demands for rigor-

ous policies for its management and control. Population-based cancer registries are the

source par excellence of the information needed to plan health care resources to cope

with this burden. In Portugal, these registries were set up in 1988 and since then they

have been providing regularly important cancer statistics for the country.

Several different measures are commonly used to describe cancer statistics, namely, in-

cidence, prevalence, mortality and survival. While incidence is a result of risk factors

acting in a population, survival is the key measure to evaluate cancer patient care. Sur-

vival statistics are of major importance to clinicians and policy makers as well as for the

patients themselves. While clinical studies are usually designed to compare specific treat-

ments in a selected group of patients, evaluating the effectiveness of cancer patient care

in a certain region or country is only possible through population-based studies, since

they produce results that are representative of the entire population. These studies use

data collected by population-based cancer registries, which are responsible for recording

all new cancer cases occurring in the covered area and for doing the respective follow-up

of patients’ condition.

International comparison of survival probabilities from cancer should take into account

differences in patients population age structure since survival from cancer is often age

dependent. This is usually achieved through direct age-standardization using a common

age distribution standard. The direct age-standardization implies the estimation of sur-

vival by age group. For certain cancer sites, the extreme age groups (youngest or oldest,

depending on the cancer) are sparse and their net survival estimates are either very

variable or even impossible few years after diagnosis. When these situations occur, the

unstandardised estimates are presented instead of the standardised survival estimates

leading to incorrect comparisons of survival between different regions. The evaluation

of different strategies to estimate net survival for small datasets, as is the case with rare
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cancers, deserves further developments.

1.1.3 Missing data

Data collected by population-based cancer registries is very often incomplete in some

key explanatory variables of survival, such as stage of disease at diagnosis, morphology

or grade [27]. One of the possible ways of dealing with incomplete data is to exclude from

the analysis all records with missing data on any of the variables (complete-case analy-

sis). This leads to an obvious decrease in sample size and the corresponding decrease

in statistical power. It can also lead to biased results when the data are not missing com-

pletely at random, i.e. the missingness depends on the observed and/or on unobserved

data [28]. Other methods involve single imputation. In these, each missing value is re-

placed by an estimate of it and then the completed dataset is analysed as if the imputed

values were observed ones. This type of approach leads, in most situations, to invalid in-

ferences since it does not account with the uncertainty associated with the fact that those

values were not observed [29]. On the contrary, multiple imputation (MI) is an approach

that considers this uncertainty by imputing multiple values to each missing observation.

The MI approach has been increasingly used in published studies since it is now easily

available in most statistical programme packages. MI consists of building a set of imputed

datasets based on the information available, fit the substantive (analysis) model to each

completed dataset and then combine the estimates from each model to obtain the final

estimate [30].

Multiple imputation has been used in the context of excess hazard models using Gener-

alised linear model (GLM) approach with Poisson error [27] or flexible parametric models

[31]. More recently, Falcaro and colleagues explored multiple imputation using cumula-

tive excess hazard models [32] and non-parametric estimation [33].

In MI the imputation and analysis steps are separate and use different models. This can

lead to incompatibility issues between the imputation and substantive model arising when

the associations between variables in the substantive model are not taken into account in

the imputation models or when the model is itself nonlinear. Bartlett and colleagues pro-

posed a substantive model compatible fully conditional specification methodology [34].
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This methodology has been implemented in survival analysis for the traditional Cox pro-

portional hazards model but not to the type of models mostly used in population-based

survival analysis, i.e. excess hazard models.

1.1.4 Socioeconomic inequalities in cancer survival

Often, cancer survival has been shown to vary with socio-economic group. Kogevinas

and colleagues in 1997 [35] and, later, Woods and colleagues [3], reviewed various stud-

ies for different tumour sites and populations (England, Scotland, Canada, United States,

Australia, Norway, ...), showing evidence for survival differences between socioeconomic

(SE) groups. Differences in distribution of some important prognostic factors, such as

stage and treatment, are often cited as possible reasons for the socio-economic inequal-

ities in cancer survival but insufficient for explaining all the observed differences [36].

In population-based studies, individual information on SE status is seldom. The attri-

bution of SE condition to each patient can alternatively be done based on the patient’s

geographical area of provenance. Each area must be classified according to its status

using an index that reflects its level of deprivation. These ecological measures can be

used as a proxy of individual deprivation if the geographical areas are sufficiently small

and homogeneous regarding the SE conditions [37]. Additionally, they reflect the SE con-

ditions of the area of residence of each patient.

Different indicators of area deprivation have been in use, either simple as education or

unemployment, or composite as the Carstairs or Towsend indices [38, 39]. Recently, a

new ecological SE deprivation index (European Deprivation Index EDI) has been devel-

oped for several European countries (Portugal, Spain, France, Italy, England, Slovenia),

based on the same methodology across all countries [40, 41]. The index was derived

from country-specific census variables that are most associated with the variables of the

survey European Union-Statistics on Income and Living Conditions EU-SILC [42].

Although some studies have already addressed the influence of SE status in health

outcomes in Portugal [43, 44, 45, 46], SE inequalities in cancer related survival using

population-based data remain to the evaluated. To assess correctly the association be-

tween the SE status of patients and their survival from cancer in the relative survival
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framework, the background mortality should also reflect the different SE conditions be-

tween patients. This is achievable by using deprivation-specific life tables, i.e. information

on background mortality stratified by SE status. Since no deprivation-specific life tables

were available for Portugal, this question needed to be addressed.

1.2 Aims of the thesis

The overall aim of the research presented in this thesis was to critically analyse existing

statistical methods and propose new ones in the estimation and modelling of net sur-

vival and excess hazard in the context of population-based cancer data in situations with

scarcity or lack of information, with interest in the evaluation of socioeconomic inequalities

in cancer survival. Specifically, the objectives of the developed work were:

• Comparison of methods to estimate age-standardised net survival in sparse data,

using non-parametric and parametric model-based approaches, proposing an alter-

native approach for this estimation;

• Analyse and extend existing methods to model the excess hazard function in the

presence of missing data on covariates;

• Evaluation of the association between socioeconomic factors and survival from can-

cer using net survival estimation and excess hazard modelling; sensitivity analysis

of results to different assumptions on background mortality.

Four studies have been conducted to achieve these objectives. In Study I, the age-

standardised net survival estimation with sparse data is addressed. Study II deals with

the estimation of net survival and excess hazard in the context of socioeconomic inequal-

ities in cancer survival evaluation. The Study III focus on the modelling of background

mortality and the construction of deprivation-specific life tables. Study IV presents the

study on the missing data on covariates in excess hazard modelling applied to the eval-

uation of socioeconomic factors adjusting for extent of disease. They are presented as

published, submitted or prepared to submit manuscripts. The first objective is addressed
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in Study I, the second objective in Study IV and the third objective is addressed in Studies

II, III and IV.

1.3 Thesis structure

This thesis is organized in four chapters. The first constitutes the introduction, where a

short summary of the background for the research questions of interest are presented.

Also, the aim and objectives of the developed work are presented. In the second Chapter,

the background methodology related to cancer survival analysis, socioeconomic factors,

life tables construction and missing data handling is reviewed. The studies developed

in this thesis are presented in Chapter three. Chapter four concludes the work with a

general discussion, presentation of the limitations of the several studies and specific con-

siderations for further research. The abstracts of the several oral and poster communi-

cations presented within the scope of this thesis are displayed in appendix. The R code

developed for the main analyses described is also presented in appendix.
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Chapter 2

Background

2.1 Cancer

2.1.1 What is cancer

The word cancer is used to denominate not one but more than hundred related dis-

eases. They all have in common being originated by an uncontrolled proliferation of

cells. Many cancers form solid tumours that grow-up in organs such as stomach, lung,

breast, prostate, while the cancers of blood do not form solid tumours (also called liquid

tumours). Cancer cells can spread into nearby tissues or can travel to distant places in

the body through the blood or the lymph system, forming metastasis of the primary tu-

mour [47].

Tumours are characterised by the location in the body where they originate (topography),

by the cell type that constitute the tumour (morphology) and by their behaviour (benign,

in-situ or malignant).

2.1.2 Cancer epidemiology

According to the International Agency for Research on Cancer (IARC) estimates, more

than 17 million cancer cases (excluding non-melanoma skin cancer) will be diagnosed

worldwide during 2018. In the same year, cancer will be responsible for about 9.5 million

deaths. Also, it was estimated that more than 38.6 million people had a cancer less than

9
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5 years ago and were still alive [26].

The distribution of cancer incidence around the globe is not homogeneous (Figure 2.1).

The highest Age-standardised incidence rate (ASR) (world population) can be found in

Oceania (296.7/105), North America (295.6/105) and Europe (266.7/105). Africa (126.7/105),

Asia (163.1/105) and Latin America and the Caribeen (181.3/105), presented lowest inci-

dence rates.

Estimated age-standardized incidence rates (World) in 2018, all cancers, both sexes, all ages

< 106.5
106.5–138.3
138.3–183.8
183.8–253.9
≥ 253.9

No data
Not applicable

ASR (World) per 100 000

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever
on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area
or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for
which there may not yet be full agreement.

Data source: GLOBOCAN 2018  
Graph production: IARC
(http://gco.iarc.fr/today)  
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Figure 2.1: Age-standardized incidence of cancer in the world (2018) [6].

In Portugal, 46724 new cases were diagnosed in 2010, corresponding to an ASR (world

population) of 238.8/100 000 [48]. The most common were prostate, colorectal and lung

cancers, in men, and breast, colorectal and thyroid cancers, in women.

The aetiology of cancer is not fully understood. There are however some known risk

factors that affect the chances of developing cancer. The most important human carcino-

gens include tobacco, asbestos, aflatoxins and ultraviolet light. Almost 20% of cancers

are associated with chronic infections (HBV, HCV, HPV, Helicobacter pylori). There is

increasing recognition of the causative role of lifestyle factors, including diet, physical ac-

tivity, and alcohol consumption. Genetic susceptibility may significantly alter the risk from
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environmental exposures. For most type of cancers, the risk of developing the disease

increases with age [49].

While risk factors relate to the chance of developing cancer, prognostic factors influ-

ence the chances of surviving the disease. Prognostic factors can be divided in tumour-,

patient- and environment-related [50]. The first type includes the major prognostic factor

that is stage of disease at diagnosis, i.e. if the disease is still at an initial point of its

natural development or it is already in a very advanced stage. Histological grade can also

be included in the first group. The patient-related factors include demographic character-

istics as age, sex and ethnicity. Also the performance status, comorbidities or immune

status of the patient can influence their survival. The environmental factors are those that

are external to the patient. Choice and quality of treatment, access to care, health-care

policy are among this group of factors.

2.1.3 Cancer Registries

Cancer registries are organizations for the systematic collection, storage, analysis, inter-

pretation and reporting of data on subjects with cancer [51]. Registries can be hospital- or

population-based. The first type of registry is responsible for collecting information from

a single institution. Data can be used for reviewing clinical performance but can not be

used to produce measures of cancer burden in a population since its catchment area is

not precisely defined. On the other hand, population-based registries collect information

from a well-defined population. These registries can thus produce statistics of incidence

or survival representative of its catchment area. The information produced by population-

based registries can and should be used for monitoring and assessing the effectiveness

of cancer control activities.

The two main cancer burden measures provided by the population-based cancer reg-

istries are incidence rates and survival probabilities. Incidence represents the number

of new cases occurring in a certain well-defined population by period of time and by in-

habitants at risk of developing the disease. The analysis of incidence figures and trends

allows to evaluate the impact of measures of primary prevention, i.e. measures aiming

at preventing the development of the disease. Survival measures the outcome of pa-
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tients already diagnosed with the disease. It thus allow to evaluate the performance of

a healthcare system and the impact of healthcare policies regarding introduction of new

diagnostic procedures, new therapies, innovative drugs, among others. Other cancer bur-

den indicator of major importance is mortality. Information on this indicator is normally

the responsibility of the National Statistics Offices and not of the cancer registries, as is

the case in Portugal [52].

2.1.4 Classification of cancer

Cancer registries use international classification systems in order to allow homogeneity

in registry procedures and enhance the comparability between different regions. The

World Health Organization (WHO) defined the International Classification of Diseases for

Oncology (ICD-O) [53] to code the topography (site of primary tumour) and morphology

(histological type) of the tumours. The fifth digit in the ICD-O morphology codes describes

the behaviour of the tumour: benign, borderline, in situ, malignant. Many cancer registries

use the International Classification of Diseases (ICD) to present their results, namely, its

10th edition [54].

2.1.5 Cancer registration in Portugal

The North Region Cancer Registry of Portugal (RORENO) is a population-based cancer

registry. It is one of the four population-based cancer registries established in Portugal

that together cover the complete area of the country (mainland and the archipelagos of

Azores and Madeira). The catchment area of RORENO corresponds to the North Region

of Portugal. Until 2009, this area corresponded to the districts of Braga, Bragança, Porto,

Viana do Castelo and Vila Real, with approximately 3.2 million inhabitants (around 30%

of the Portuguese population). From 2010 onwards, the catchment area corresponds to

the NUTSII North region (≈ 3.6 million inhabitants). It was established in 1988, and it is

responsible for collecting all new cancer cases occurring in the covered area. It is based

in the Portuguese Oncology Institute of Porto (IPO-Porto). The main public hospitals reg-

ister their cases directly in the RORENO database through a web-based platform. Private

hospitals and pathology laboratories report their cases through spreadsheet files and are
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integrated in the database by the staff in the cancer registry. All registered cases are

controlled for its quality using the IARC rules [55]. RORENO has participated in several

international studies including the European survival study EUROCARE-5 [56] and the

international CONCORD-2 and CONCORD-3 studies [57, 58]. RORENO publishes inci-

dence and survival reports on a regular basis. They are available on-line to the general

public (www.roreno.com.pt). RORENO publishes its results using the ICD-10 classifica-

tion system.

In 2017, a law (53/2017) was published creating the National Cancer Registry (RON)

(Registo Oncológico Nacional) [59]. According to this law, the RON is a centralised reg-

istry based on a single electronic platform, with the purpose of collecting and analysing

data of all cancer patients diagnosed and/or treated in mainland Portugal and in the au-

tonomous regions, allowing the monitoring of the activity performed by the institutions,

the effectiveness of organized screening and therapeutic effectiveness, epidemiological

surveillance, research and to monitor the effectiveness of drugs and medical devices.

2.2 Some concepts of survival analysis

2.2.1 Introduction

Survival analysis includes a set of statistical methods developed for the analysis of sur-

vival data. The variable of interest is commonly designated as survival time. This repre-

sents the time from a specific time point and the occurrence of an event of interest. In

cancer survival analysis, typical examples are time from diagnosis to death due to cancer

or time from date of treatment until relapse or progression. Time-to-event analysis is not

an exclusive of health related problems. In engineering applications, for instance, it can

be used to analyse time from operation start until machine failure.

The necessity of specific methods to analyse survival data comes from the fact that com-

monly the event of interest does not occur for all individuals during the follow-up period

(censored data). For these cases, the actual survival time is unknown. Additionally, sur-

vival times are usually right skewed and so not normally distributed [60].

The main interests in survival analysis are the study of the probability of occurring the
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event of interest and of the rate of its occurrence. Comparison of these quantities be-

tween different groups of individuals or finding variables that can explain them is among

the objectives of a typical survival analysis [8].

2.2.2 Censoring

When the event of interest is not observed for an individual during the duration of the

study, the corresponding time is said to be right censored. This type of censoring can

occur for different reasons: i) the individual does not experience the event by the time

of study end (administrative censoring); ii) the individual is lost to follow-up, i.e. the in-

dividual status is only known until a certain date prior to the study end; iii) the individual

experiences a competing event that precludes the occurrence of the event of interest

[60]. Other types of censoring can occur (left or interval). Left censoring occurs when the

actual survival time is lower than the observed. If the first time the patient is observed

after entering the study the event already occurred. Then, it would only be known an

upper bound of the survival time but not its exact value. In interval-censoring the event is

known to have occurred within an interval of time. For example, a cancer relapse occurs

between two medical appointments and the exact date of the relapse is not known [10].

Only right censoring is dealt with in this thesis and for the sake of simplicity the term

censoring will be used to refer to right censoring, unless explicitly mentioned otherwise.

Censoring can be informative or non-informative. If the actual survival time (t) of an indi-

vidual is independent of the mechanism that leads that time to be censored in a specific

time c (c < t), censoring is said to be non-informative. This means that the individual cen-

sored must be representative of all individuals, sharing the same values of the prognostic

variables, that survived until that censoring time. On the other hand, if censoring time

depends on the probability of the event occurrence then censoring is informative. Most of

the methods used in survival analysis rely on the assumption of non-informative censor-

ing. Administrative censoring can usually be considered non-informative since all patients

still alive are censored at the same time, independently of factors that can influence their

survival.
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2.2.3 Survival function and hazard function

In survival analysis there are two functions of major interest, namely, the survival function

and the hazard function. Their definition, the relationship between them and between

other functions of interest and important mathematical notation are described next.

Let T be a non-negative random variable, absolutely continuous, that represents the

survival time. Considering that the probability distribution of this variable is described by

the density function f(t), the probability of T being lower or equal than a specific time t is

given by the distribution function F (t) (2.1).

F (t) = P (T ≤ t) =

∫ t

0
f(u)du. (2.1)

The survival function is defined as being the probability of T being greater than a specific

time t and is the complement of the distribution function (2.2).

S(t) = P (T > t) = 1− F (t), t ≥ 0. (2.2)

The survival function is a continuous monotonically non-increasing function. Also, S(0) =

1 and limt→∞ S(t) = 0.

Another quantity of interest is the hazard function. This function represents the instanta-

neous event rate conditioned on having survived until time t (2.3).

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

. (2.3)

The hazard function is a non-negative function but, as opposed to the survival function, it

is not necessarily monotonous. Also, it has no upper-bound. This function gives informa-

tion on the evolution with time of the instantaneous event rate while the survival function

reflects the cumulative non-occurrence of the events. Both functions are mathematically

related (Equations: 2.4, 2.5):

S(t) = exp

(
−
∫ t

0
λ(u)du

)
, (2.4)
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and,

λ(t) = − 1

S(t)

dS(t)

dt
. (2.5)

Also, the density, distribution and hazard functions are related by:

λ(t) =
f(t)

1− F (t)
. (2.6)

The cumulative hazard is a non-negative and monotonically increasing function (Equation

2.7).

Λ(t) =

∫ t

0
λ(u)du, t ≥ 0. (2.7)

The survival function can be directly obtained from the cumulative hazard function (Equa-

tion 2.8). Higher cumulative hazards imply lower survival.

S(t) = exp(−Λ(t)). (2.8)

2.2.4 Conditional survival

In clinical applications, the survival function can sometimes be not very informative for

patients who have already survived a certain amount of time, since it is based on all

patients, including the ones with very bad prognosis that have very short survival times.

The probability of surviving a certain additional amount of time conditioned on the fact

that the patient has already survived some time (ti, i > 0), can be more informative (2.9)

and is often presented in cancer survival reports.

St|ti = P (T > t|T > ti) = exp

(
−
∫ t

ti

h(u)du

)
=

S(t)

S(ti)
(2.9)

2.2.5 Measures of survival

Cancer patients may die from the disease itself or they may die from other causes. These

two are competing events since one person that dies from other causes can no longer die
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from cancer. It is assumed that the observed hazard (λOi) of a particular individual can

be decomposed in two additive components: the hazard due to the disease in question

(λEi) and the hazard due to other causes (λPi) (2.10).

λOi(t) = λEi(t) + λPi(t) (2.10)

This decomposition holds if the time to death from the disease and the time to death

from other causes are conditionally independent given a known set of covariates [22].

In the usually designated relative survival setting, it is assumed that the hazard due to

other causes is given by population mortality tables. It is also assumed that the disease-

specific mortality included in the overall mortality is negligible.

In the context of cancer survival analysis, there are several different questions one might

be interested in. For example, estimating the survival of a cohort of patients, indepen-

dently of the cause of death; knowing the proportion of patients that died from cancer

and the proportion that died from other causes; comparing the survival of a cohort of

patients with the survival of a similar group of individuals but cancer-free; comparing

healthcare system’s performance between countries. The measure of survival for each

situation must be chosen according to the objective of the analysis. Four most common

measures are presented below [61], giving special emphasis to net survival which is the

main measure used along this thesis.

Overall survival

Overall survival, also designated as all-cause survival or observed survival, is defined as

the probability that a individual is still alive after a certain time t:

SO(t) = P (T > t) = exp

(
−
∫ t

0
λO(u)du

)
. (2.11)

In this situation, one is not interested in the cause of death of each patient so the survival

is related with the overall hazard rate of death (λO).
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Cause-specific crude mortality

The cause-specific crude mortality gives the probability of dying from one particular cause

up to a time t. It splits the overall mortality (1−overall survival) into the probability of dying

from the specific cause (FE) and the probability of dying up to t from other causes (FP ):

1 − SO(t) = FE(t) + FP (t). The also called cumulative cause-specific mortality (FE) is

given by:

P (T ≤ t, cause = cancer) = FE(t) =

∫ t

0
SO(u−)λE(u)du, (2.12)

meaning that for a patient to die from a specific cause at time t they must have survived

from all causes just until the time immediately before.

Relative survival ratio

Relative survival ratio (SR(t)) compares the observed survival in a group of patients to

the survival that group would experience if they were free of the disease. This second

quantity is called the expected survival (SP (t)) and it is assumed that it can be obtained

from general population life tables. The comparison is made by calculating the quotient

between the two survival:

SR(t) =
SO(t)

SP (t)
. (2.13)

This means that if the relative survival ratio is equal to 1, the survival of the group of

patients under study is equal to the expected survival that a group of individuals free of

the specific disease under study but with the same demographic characteristics would

have.

Net survival

Net survival is obtained from the hazard function related with the disease (λE(t)):

SN (t) = exp

(
−
∫ t

0
λE(u)du

)
. (2.14)
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It represents the survival that would be observed in the hypothetical situation where the

disease under study would be the only possible cause of death [22]. This concept is

further explored below.

2.2.6 Non-parametric estimation

To estimate survival for a group of patients it is necessary to have information not only on

survival times but also on an indicator variable (2.15) that allows to distinguish each sur-

vival time as time to event ti (considering only one event of interest) or time to censoring

ci.

δi =





1 if ti ≤ ci
0 if ti > ci

(2.15)

The non-parametric estimation methods of survival do not assume any specific depen-

dence between survival and time neither between survival and any prognostic factors.

It allows a first description of the data to be analysed but it does not allow adjusting for

potential confounding factors.

The method of estimation depends on the measure of survival being estimated. The four

most common measures described above are considered again.

Overall survival

Overall survival is estimated using equation (2.11). It is thus necessary to estimate the

cumulative hazard increment λO(u)du which can be given by:

λ̂O(u)du =
number of events on a short interval of time

number of individuals at risk
. (2.16)

Two possible non-parametric estimators of overall survival are the Kaplan-Meier and the

Nelson-Aalen estimators.

• Kaplan-Meier estimator

The most widely used estimator of the survival function is the Kaplan-Meier non-
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parametric estimator also called product-limit [18]. Let t1 < t2 < · · · < tk be distinct

times at which k events occur. Since times of each event are assumed to be inde-

pendent from each other, the cumulative survival probability can be obtained by the

product of the probabilities of surviving from one interval to the other:

ŜO(tj) = ŜO(tj−1) · P̂ (T > tj |T ≥ Tj) =

j∏

i=1

(
1− di

ni

)
,

where nj represents the number of individuals at risk just before tj and dj the num-

ber of events at tj . This estimator assumes that the survival function is constant

between any two consecutive events. Each time an event occurs the estimate is

updated. Censored individuals in each interval reduce the number of individuals at

risk of having the event and contrarily to the events affect only the denominator in

the fraction dj/nj .

Variance estimation

The variance of the survival estimate obtained by the Kaplan-Meier estimator can

be given by the Greenwood formula (2.17). This assumes that the number of individ-

uals who survive each time interval follows a binomial distribution with parameters

nj and pj (true probability of survival) and approximates the exact value through a

first-order Taylor series approximation.

σ̂2
SO

(t) ≈ Ŝ2
O(t)

k∑

j=1

dj
nj(nj − dj)

(2.17)

• Nelson-Aalen estimator

The cumulative hazard function can be estimated non-parametrically using the

Nelson-Aalen estimator (2.18) [62, 63].

Λ̂(t) =
∑

tj≤t

dj
nj

(2.18)

This represents the cumulative sum of the estimated probabilities of the event oc-
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currence, where dj and nj have the same meaning as above. The survival is then

obtained by:

ŜO(t) = exp


−

∑

tj≤t

dj
nj


 (2.19)

Variance estimation

The variance of the Nelson-Aalen estimator can be given by [64]:

σ̂2(t) =
∑

tj≤t

(nj − dj)dj
(nj − 1)n2

j

(2.20)

Cause-specific crude mortality

To estimate the cause-specific crude mortality (2.12) it is necessary to estimate the ob-

served survival and the hazard rate related to the disease of interest. The first quantity

can be estimated using the Kaplan-Meier estimator described above and the second by

doing the difference between the observed hazard and the population hazard. Further

details on the estimation method can be found in the literature [65].

Relative survival ratio

The relative survival ratio is calculated as the ratio between the observed survival and the

expected survival. The observed survival can be estimated using the Kaplan-Meier esti-

mator described above. The expected survival is obtained from general population life ta-

bles, calculated from mortality and population data, usually available at the national statis-

tics offices. The Human Mortality Database (available at http://www.mortality.org)

provides life tables for a considerable number of countries including Portugal. These life

tables are at least stratified by sex, age and calendar year. For some countries or regions

it is also possible to obtain life tables stratified by socioeconomic condition, ethnicity or

other demographic variables. It is assumed that the life tables represent the mortality

of individuals free of the disease in study which is an acceptable assumption when the

disease in study is relatively rare [66].
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Three different estimators of the expected survival can be found in the literature. These

estimators are usually referred as Ederer I [66], Ederer II [67] and Hakulinen [68]. They

differ regarding the time each individual is considered to be at risk.

Ederer I

In this method, the general population matched individuals are considered indefi-

nitely at risk. The time at which the correspondent patient dies or is censored does

not affect the expect survival.

Ederer II

In Ederer II estimator, the matched individuals are at risk while the corresponding

individual from the study population is not censored or dies.

Hakulinen

In the Hakulinen estimator the survival time of the matched individual is censored

at the same time as the patient’s survival time but if the patient dies, the matched

individual is at risk until the end of the study. Information about the date of the end

of follow-up is thus necessary in this method.

Net survival

Net survival is described in more detail in the following section since it was the main

measure used over this study.

2.3 Net survival

2.3.1 Introduction

In the analysis of cancer survival data, the interest usually lies on analysing time since

disease diagnosis until death. Since cancer patients can died not only from cancer but

also from other causes, when comparing cancer survival between different periods of

diagnosis, different regions or different socioeconomic groups for instance, it is impor-

tant to have a measure that is independent from background mortality. Overall survival
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is thus not adequate for this type of comparison, especially in elderly patients for which

other cause mortality is higher. Cause-specific survival, where only death caused by the

disease in question is considered an event and all others are censored, depends on the

knowledge of cause of death for all patients. In population-based data sets, this infor-

mation is usually not available or is not reliable. Crude mortality quantifies the actual

contribution of the cancer to overall mortality. However, it is not good for comparing dif-

ferent regions since it also affected by background mortality [61].

Net survival is defined as the survival that would be observed in the hypothetical situation

that the disease is the only cause of death possible. Although this survival is not observ-

able in the real world, it is of interest. It is the only measure that allows comparisons

between different populations (originated from different regions, calendar years or other

factors) since it is independent of other causes mortality [22, 61].

2.3.2 Estimation

Net survival for an individual i is given by the integral of the excess hazard function, i.e.

the hazard due to the specific disease in study (2.21).

SNi(t) = exp

(
−
∫ t

0
λEi(u)du

)
= exp (−ΛEi) (2.21)

The net survival of the overall cohort of n patients is given by the average of the individual

survivals:

SN (t) =
1

n

n∑

i=1

SNi(t) (2.22)

Pohar-Perme and colleagues proposed in 2012 [22] a new estimator (PP) for net survival.

The hazard due to cancer is given by the difference between the observed and the ex-

pected (population) hazard. However, to compensate the early drop off from the sample

of the patients with higher background mortality the counting and the at-risk process of

each individual are weighted using his/her expected survival time distribution.

Let Ni(t) = I(Ti ≤ t, Ti ≤ Ci) and Yi(t) = I(Ti ≥ t, Ci ≥ t) denote the counting process
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and the at-risk process for each individual in the sample, where Ti denotes the time to

death from any cause and Ci the time to censoring. The PP estimator weights these two

processes using the inverse of the population survival probability: Nw
i (t) = Ni(t)/SPi(t)

and Y w
i (t) = Yi(t)/SPi(t). The cumulative excess hazard is thus given by:

Λ̂E(t) =

∫ t

0

dNw(u)

Y w(u)
−
∫ t

0

∑n
i=1 Y

w
i (u)dΛPi(u)

Y w(u)
(2.23)

The variance of this estimator is given by [22]:

σ̂2(t) =

∫ t

0

J(u)
∑n

i=1 dNi(u)/S2
Pi(u)

{∑n
i=1 Yi(u)/SPi(u)

}2 , (2.24)

where J(t) = I{Y (t) > 0}.

2.3.3 Net Survival vs Relative Survival Ratio

Relative survival ratio was used in the past as the main measure reported by cancer

registries and by survival international comparison studies as it was thought to be the

same as net survival. Net survival can be interpreted as the average of the ratio of overall

and population survival (2.25).

SN (t) =
1

n

n∑

i=1

SOi(t)

SPi(t)
(2.25)

The relative survival ratio, however, can be written as the ratio of the average of overall

survival by the average of population survival (2.26), which is different from the quantity

presented above.

SR(t) =
1
n

∑n
i=1 SOi(t)

1
n

∑n
i=1 SPi(t)

(2.26)

Older international studies such as the first edition of the CONCORD study [69] or the

first editions of the European study EUROCARE [70] have used the relative survival ratio

estimated using the Hakulinen method. The author himself, however, noticed that this

method produced biased estimates and inconsistencies and recommended to use other
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available methods [21]. A couple of years later [71], Hakulinen and colleagues proposed

that the method designated by Ederer II, initially developed in the beginning of the sixties

of the twentieth century, should be adopted. This method was later used in EUROCARE-

5 [72]. Maja Pohar-Perme proposed her new estimator of net survival in 2012 [22]. She

has proven that her estimator was the only one that estimated in fact net survival and the

others estimated different quantities. Since the introduction of this new estimator, several

articles have been published comparing the performance of this estimator with the per-

formance of the traditional relative survival ratio estimators. Danieli and colleagues [73]

concluded in a simulation study comparing several approaches that the PP estimator and

a multivariable modelling approach were the only methods that had a good performance

in all tested scenarios. Later, Roche and colleagues [74] compared the estimates ob-

tained by the several traditional methods with the PP estimates using real cancer data.

They concluded with the recommendation that the classical methods should be aban-

doned and the PP estimator should be adopted by cancer registries. This work deserved

some criticism from other authors [75] claiming that the benefits of the new estimator

were overestimated. In 2015, Lambert and colleagues [76] compared several methods

for estimating age-standardised net survival, concluding that the PP estimator does not

present a considerable advantage over the age-standardised Ederer II. Additionally, they

considered this last estimator to have improved precision. Seppa and colleagues [77, 78]

also concluded that the differences between the several approaches are small and that

the PP estimates are prone to random variation for long-term follow-ups. Pohar-Perme

argues that this large variability is a reflection of the lack of information available in the

data and it is a characteristic of the measure and not of the estimator [61].

Nevertheless, despite these different opinions, the PP estimator is the only recognized

consistent estimator of net survival besides an adequate multivariable model. It is pos-

sible to find in the literature an increasing number of publications using this methodol-

ogy [79, 80, 81, 82, 83] including the largest international survival comparison studies -

CONCORD-2 and CONCORD-3 [57, 58] and the SUDCAN study [84]. In this thesis, it

has been used as the non-parametric estimator of net survival.
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2.3.4 Comparison of net survival distributions

Until recently the comparison of net survival distributions over a given period of time was

only possible using modelling approaches. It was possible to compare point estimates

using a Z-test but not a net survival distribution estimated non-parametrically. Graffeo

and colleagues proposed in 2016 a log-rank type test to overcome this limitation [85]. It

allows the comparison of net survival distributions between two or more groups over a

certain follow-up period. The test is similar to the well known log-rank test widely used for

the comparison of observed survival distributions [10].

The null hypothesis of this log-rank type test is:

(H0) : ∀t ∈ [0, T ], ΛE,1(t) = · · · = ΛE,k(t), (2.27)

where k ≥ 2 is the number of groups to be tested. The test compares the k cumulative

hazard distributions with the expected distribution under the null hypothesis. These are

estimated by the Pohar-Perme estimator. The test lies on the following assumptions:

• (TPh,i
, TEh,i

, Ch,i,Xh,i)h,i are mutually independent;

• (TPh,i
, TEh,i

, Ch,i,Xh,i)i have the same distribution;

• TEh,i
and TPh,i

are conditionally independent given Xh,i;

• censoring times Ch,i are independent of pair Th,i,Xh,i.

The variable T represents time to death, the indices P and E represent, respectively, the

population and excess hazards, C the censoring time, X a vector of covariates and h the

index of the groups in comparison. Under these assumptions, it can be shown [85] that

under the null the test statistic follows approximately a chi-square distribution with k − 1

degrees of freedom.

In order to take into account the effect of confounding covariates, a stratified version of

the test was also proposed [85]. This version relaxes the assumption of independence

between TE and X. It is assumed homogeneity within each stratum but heterogeneity is
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allowed between strata. The null hypothesis is in this situation:

(H0) : ∀t ∈ [0, T ], ∀s ∈ ‖1;m‖ΛE,1,s(t) = · · · = ΛE,k,s(t), (2.28)

where m is the number of strata. The test statistic continues to have an asymptotic chi-

square distribution with (k−1) degrees of freedom. According to the authors, the decision

of using or not the stratified version should be based on epidemiological considerations

[85].

2.4 Hazard modelling

2.4.1 Survival models

In the previous section the survival function was discussed and methods to estimate it

non-parametrically were presented as well as a test to compare survival between groups.

This type of analysis is important but it has several limitations. The estimation of survival

curves allows a simple analysis of the influence of one variable in survival but it is much

harder if one is interested in analysing simultaneously the possible confounding effect of

other variables or interaction between them. Also, the test presented to evaluate survival

differences between groups offers no estimate of the actual effect size of the variable

in analysis. The use of statistical models complements the analysis presented before

by allowing the simultaneous investigation of different covariates and by quantifying the

effect of each variable while adjusting for the other covariates effects [86]. In this section,

the most common regression models used in the context of survival analysis, and more

precisely in the context of population-based cancer survival analysis, are discussed.

It is possible to have different outcome variables in the regression models: survival time,

cumulative hazard or hazard. The most common family of models for survival time is the

Accelerated Failure Time (AFT) models. This type of models are however rarely seen in

cancer population-based studies. Much more common are models for the hazard and the

cumulative hazard and these are described below.
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2.4.2 Hazard models

In the relative survival setting it is assumed that the observed hazard can be split in two

additive parts [87]:

λO(t) = λP (t) + λE(t) (2.29)

As explained before, it is assumed that the other causes hazard can be correctly es-

timated from the population hazard. The λE(t) represents thus the excess hazard at-

tributable to the disease in study. Since λP (t) is considered as a known quantity and the

interest lies on the hazard disease related, the excess hazard is the outcome variable

modelled in the regression models. The available models for modelling hazard or the

excess hazard are basically the same. If we assumed λP to be zero, the two would be

the same quantity.

The effect of the covariates in the excess hazard can be considered additive (2.30) or

multiplicative (2.31). In these two formulations λ0(t) represents the baseline excess haz-

ard, i.e. the excess hazard function when all covariates assume the value zero (reference

categories).

λE(t,x) = λ0(t) +

p∑

j=1

βjxj (2.30)

In the first option, the effect of the covariates is supposed additive. For a given covariate,

its effect is always the same independently of the value of the baseline.

λE(t,x) = λ0(t) · exp
{

p∑

j=1

βjxj

}
(2.31)

In the second formulation, the effect of the covariates is supposed to act multiplicatively

on the baseline. Thus, the effect of each covariate depends on the baseline hazard level.

This type of models is the most common and it is the only one mentioned from now on.
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Semi-parametric models

A semi-parametric model with multiplicative covariate effects for the excess hazard can

be written as [88]:

λE(t,x) = λ0(t)︸ ︷︷ ︸
non-parametric

· exp
{

p∑

j=1

βjxj

}

︸ ︷︷ ︸
parametric

(2.32)

In this type of model, using a partial likelihood function in the estimation process, only the

effects of the covariates are estimated leaving the excess hazard baseline unspecified.

This type of model for the hazard function was introduced by Cox in 1972 [19] and is still

one of the most used in the medical literature.

Pohar-Perme proposed in 2009 a new approach for fitting the model (2.32) that makes no

assumptions about the form of the baseline excess hazard and is based on an expectation-

maximization (EM) algorithm with the cause of death treated as missing data [89]. Since

this approach does not make assumptions about the shape of excess hazard baseline, it

can be used to check informally the goodness of fit of a parametric model.

Parametric models

In parametric models the excess hazard function, baseline and covariates effects, are

fully specified. The baseline can be modelled using defined distribution functions such

as exponential, Weibull, Gompertz, log-normal, among others. These types of models

make strong assumptions about the shape of the baseline excess hazard function. They

are either constant or monotonically increasing or decreasing showing low flexibility to

capture the shapes of the functions found in real clinical datasets.

Estève and colleagues [87] proposed a simple model where the baseline was considered

to be a piecewise constant function.

λE(t,x) =
r∑

k=1

τkIk(t) · exp
{

p∑

j=1

βjxj

}
(2.33)
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Besides assuming that the excess hazard function is constant in each time period pre-

defined, it also assumes proportional hazards, i.e. that the effect of each covariate is in-

dependent from time, and assumes the effect of each covariate to be log-linear. Higher or

lower flexibility to capture the baseline shape can be achieved by increasing or decreas-

ing the number of time periods considered. The specification of the likelihood function is

simple since it is possible to obtain analytically the integral of this function.

This model has been extended successively to increase its flexibility. Instead of a piece-

wise constant function for the baseline, regression splines were introduced [90] that al-

lowed to get a more realistic baseline function. Also, time-dependent effects of the covari-

ates were introduced. Later, Remontet and colleagues [23] further extended this model to

incorporate non-linear effects of covariates. Recently, Charvat and colleagues [25] pro-

posed a model (2.34) including random effects in order to take into account the possible

hierarchical structure of the data.

log(λE(t,x)) = log(f(t)) + β(t)x + g(x) + wi, (2.34)

where wi is a random effect and f and β are B-Splines and g can be a linear or non-linear

function of the covariates.

B-splines are a type of regression splines, i.e. piecewise polynomial functions. The

pieces join at points referred to as knots and the greater the number of knots, the higher

the flexibility of the function. Considering a B-spline function of order q, this function and

its first (q − 2) derivatives are continuous at the knots. Considering a total of m interior

knots (t1, · · · , tm) plus two boundary knots (t0 and tm+1) and plus 2(q − 1) additional

boundary knots such that t−(q−1) = · · · = t−1 = t0 and tm+1 = tm+2 = · · · = tm+q. The

basis functions B−(q−1),q(t), · · · , Bm,q(t) are recursively defined by:

Bj,q(t) =
t− tj

tj+q−1 − tj
Bj,q−1(t) +

tj+q − t
tj+q − tj+1

Bj+1,q−1(t), (2.35)
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where j = −(q − 1), · · · ,m, Bj,1(t) = 1 if t ∈ [tj , tj+1[ and Bj,1(t) = 0 otherwise [91]. The

resulting B-spline function is a linear combination of the basis functions:

BS(t) =
m∑

j=−(q−1)

αjBj,q(t), t ∈ (t0, tm−1). (2.36)

Crowther and Lambert [92] proposed a similar model for the excess hazard, also consid-

ering a flexible parametric function for modelling the baseline and time-dependent effects

of the covariates:

log(λEi(t)) = s(log(t)|γ0,k0) + Xiβ +

P∑

p=1

xips(log(t)|γp,kp) (2.37)

In this formulation, restricted cubic splines were proposed. This type of splines imposes

the constraint that the fitted function is linear beyond the boundary knots. A restricted

cubic spline (s(u|γ,k0)) where γ is the parameter vector, k0) is the knot vector and u is

the variable of interest (eg, u = log(t)), is defined by:

s(u|γ,k0) = γ0 + γ1s1 + γ2s2 + · · ·+ γm+1sm+1 (2.38)

The derived variables sj or basis functions are given by:

s1 = u

sj = (u− kj)3
+ − λj(u− kmin)3

+ − (1− λj)(u− kmax)3
+ if j = 2, · · · ,m+ 1 (2.39)

where (u− kj)3
+ is equal to (u− kj)3 if the value is positive and zero otherwise, and

λj =
kmax − kj
kmax − kmin

(2.40)

Other options for a flexible modelling of the excess hazard baseline can be found in the

literature such as the use of fractional polynomials [93].
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Estimation

Hakulinen and Tenkanen [94] and Dickman and colleagues [95] proposed excess hazard

models in the framework of generalized linear models. The first considered a binomial

error structure and the second a Poisson error structure. In both approaches the model

is estimated from subject-band observations, splitting the data in pre-determined time in-

tervals and by combination of covariate values.

With the increasing computational power available nowadays the methods using indi-

vidual data are preferred. Model parameters are estimated using maximum likelihood

methods. When fitting a model to a set of data, one wants to estimate the set of coeffi-

cients (β) that maximizes the likelihood function that is the same to say that maximizes

the log-likelihood function (LogL):

LogL =
n∑

i=1

logLi (2.41)

Considering a general excess hazard model of the form λO = λP + λE , the log-likelihood

contribution of the ith patient for the overall log-likelihood function is (ignoring the terms

that do not depend on β):

logLi(β|ti, δi, xi) = δi·log [λP (ai + ti, yi + ti|D) + λE(ti, xi|β)]−
∫ ti

0
λE(u, xi|β)du, (2.42)

where δi is the censoring indicator, a is the age at diagnosis, y is the year of diagnosis

and D is the set of demographic variables.

In the general case the integral of the excess hazard function does not have a closed-

form. It requires numerical integration techniques to compute it. One possible algorithm,

highly efficient and implemented in several software packages, is the Gauss-Legendre

quadrature of order n approximation. It transforms the integral in a weighted sum of the

function to integrate evaluated at a set of n points called nodes (tk).

∫ t

0
λ(u)du ≈

n∑

k=1

wk · λ(tk) (2.43)
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The knots position and weights do not depend on the integrand. This approximation gives

the exact integral for any polynomial of degree ≤ 2n− 1.

Crowther and Lambert in their proposed model using restricted cubic splines for the base-

line, proposed a refinement in the estimation procedure to improve computation time.

Since beyond the boundary knots the log excess hazard is forced to be a linear function

of the log time, they solve these part of the function analytically and leave the numerical

integration for the interval within the boundary knots. They have shown a reduction on

the number of nodes needed to obtain the same precision [96].

2.4.3 Cumulative hazard models

The flexible parametric models which model in the log cumulative hazard scale were

initially proposed by Royston and Parmar [97] and then extended for the relative survival

setting by Nelson and colleagues [24].

The formulation of the model is inspired in a simple Weibull model:

S(t) = exp(−ξ1t
ξ2), (2.44)

where ξ1 and ξ2 are, respectively, the scale and shape parameters of the model. Using

the relationship between the cumulative hazard and the survival function and taking the

logarithm, this model can be written as:

log[Λ(t)] = log(ξ1) + ξ2log(t). (2.45)

The log cumulative hazard is thus a linear function of log(t) in this model. Adding covari-

ates:

log[Λ(t)] = log(ξ1) + ξ2log(t) + xiβ (2.46)

The idea of Royston and Parmar was to relax the assumption of linearity of log(t) by using

a smooth function to capture the baseline shape. They proposed restricted cubic splines,
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which have been described above. The formulation of the excess hazard model is:

log[ΛEi(t|xi)] = s(log(t)|γ,k0) +
D∑

j=1

s(log(t)|δk,kj)xij + xiβ (2.47)

The s(log(t)|γ,k0) and s(log(t)|δk,kj) represent the restricted cubic splines functions,

respectively for the baseline and for the time-dependent effects. In this formulation they

are allowed to have different degrees of freedom, i.e. different number of knots and also

different location.

Estimation

The contribution to the log-likelihood of the ith individual is given by:

logLi = δi · log


λP (ti) +


 1

ti

ds(ui; γ)

dui
+

D∑

j=1

1

ti

ds(ui|δk,kj)

dui
xij


 exp(ηi)


− exp(ηi),

(2.48)

where u = log(t) and ηi = s(log(t)|γ,k0) +
∑D

j=1 s(log(t)|δk,kj)xij + xiβ. Contrarily

to the log-likelihood function obtained in the excess hazard models written in the non-

cumulative scale, this function does not involve the numerical integration of the hazard.

All functions can be obtained analytically which was pointed out by the authors as being

an advantage since speeds up computation time [24].

Cumulative hazard vs non-cumulative hazard

The flexible parametric models defined in the log-cumulative scale have been proposed

has having several advantages. First, under the PH assumption, the coefficients asso-

ciated with the covariates can also be interpreted as log Hazard Ratios. Second, the

cumulative hazard as function of log time is more stable than the hazard function being

easier to capture its shape. Also, this type of scale does not require numerical integration

to obtain survival or the cumulative hazard, decreasing computation time [98]. However,

when there are several time-dependent effects, the interpretation of the time-dependent
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hazard ratios is not clear as they depend on values of other covariates, even with no in-

teraction between these covariates, which is not the case when modelling on the hazard

scale [99].

2.4.4 Model building strategies

When building an excess hazard regression model, several aspects must be taken into

consideration. First, which type of model is to be used. Additive or multiplicative ef-

fect of covariates? Parametric or semi-parametric model? Cumulative or non-cumulative

excess hazard scale? These different type of models were described previously. Consid-

ering the type of model chosen, then it is necessary to choose which variables must be

included. The model needs to be adjusted, at least, for each life table variable to properly

account for informative censoring. These are typically sex and age. The functional form

of each variable (linear or non-linear) and time-dependent effects are other aspects of

major importance to take into consideration. Also, interactions between variables should

be investigated.

One of the criteria mostly used in model building is the Akaike Information Criterion (AIC).

AIC is a statistics defined for parametric models whose parameters have been obtained

by maximizing a form of likelihood function [100]. AIC values are used to compare a set

of different models relatively to its fit to data. The selection is based on the minimum AIC

criterion, which says that the model with smallest AIC is to be preferred. AIC is given by:

AIC = −2(log − likelihood) + 2K, (2.49)

where K is the number of parameters in the model. AIC is influenced by the log-likelihood

and by the number of parameters in the model. A better goodness-of-fit gives a higher

likelihood and consequently a lower AIC. On the other hand, a higher number of param-

eters penalizes AIC. The lower AIC should thus give the model that neither under-fits nor

over-fits. This criterion allows to choose the ’best’ model from a set of given models but

it is not a measure of goodness-of-fit neither of model quality. The Bayesian Information

Criterion (BIC) is another useful statistic for model comparison. It is closely related to AIC
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but its penalty term (related to the number of parameters) is larger.

One alternative model building strategy is to use a iterative backward elimination pro-

cedure like the one proposed by Wynant and Abrahamowicz in 2004 [101]. First, a

multivariable model including all the variables of interest and considering non-linear and

time-dependent effects for all is built. Second, each of the non-linear and time-dependent

effects of all the covariates are tested using likelihood ratio tests since in each pair of

models being tested one model is nested in the other. At the first iteration of the process,

the effect with the highest p-value is removed. The process continues, removing at each

iteration the least significant of the remaining time-dependent or non-linear effects. The

process ends when all the remaining effects are statistically significant. The algorithm is

outlined below.

For illustration, a model with a single continuous covariate is considered. Four models

can be built considering the different combinations between non-linear/linear effects of

the covariate and time-dependent/proportional hazards assumption. Consider that NL

stands for non-linear effects, LL for linear effects, TD for time-dependent effects, PH

for proportional hazards, LRT for log-likelihood ratio test and α is the significance level

chosen for the hypotheses tests.

• Fit the following models to the full dataset:

– M1: NL + TD

– M2: LL + TD

– M3: NL + PH

– M4: LL + PH

• Test for linearity and proportional hazards:

– Test linearity assuming TD: LRT comparing M1 with M2→ p-value=p12

– Test PH assuming NL: LRT comparing M1 with M3→ p-value=p13

• Eliminate least significant effect :

– If p12 > p13 and p12 > α→ eliminate NL
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∗ Test PH assuming linearity→ choose between M2 and M4

– If p12 < p13 and p13 > α→ eliminate TD

∗ Test linearity assuming PH→ choose between M3 and M4

– If p12, p13 < α→ choose model M1

With more than one covariate, the process is iterative eliminating first the least significant

covariate effect.

2.4.5 Goodness of fit

The goodness of fit, that is, how well a model fits the data is not easy to assess in an ex-

cess hazard regression model. Visual inspection of the model fitness cannot be achieved

by directly plotting the observed vs the predicted values but it is possible to compare the

predicted excess hazard or survival functions with non-parametric estimates.

Two specific points should be checked when analysing the adequacy of an excess hazard

model: the proportional hazards (PH) assumption for the effects of covariates; functional

form (FF) of continuous covariates. In general survival analysis when modelling hazard,

the first can be done using the Schoenfeld residuals and the second using Martingale

residuals [10].

Though very common in hazard models, few methods are available for testing the as-

sumption of proportional hazard assumption and the functional form of covariates in ex-

cess hazard models. Stare and colleagues [102] proposed a test based on Schoenfeld-

like residuals and on Brownian bridges to test the PH assumption. The test is available in

the R statistical package relsurv. A few years later, Cortese and colleagues proposed a

new approach for goodness of fit of excess hazard models, which consisted on statistical

and graphical tests based on cumulative martingale residuals [103]. Recently, Danielli

and colleagues proposed new formal tests to check the proportional hazard assumption

and the functional form of covariates also based in cumulative martingale residuals [104].

These tests were being implemented in the mexhaz package from R, but were not avail-

able yet.
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2.5 Age-standardized net survival

Net survival generally depends on age. The comparison of net survival estimates from

two or more regions or periods can be misleading if the age distributions of the popula-

tions to be compared are very different. It is thus necessary to control for the differences

in the age structure of the populations in comparison, age being implicitly considered as

the only factor influencing net survival.

If two populations observed in two different regions (say A and B) are exposed to the same

age-specific survival probabilities, the age-standardised survival obtained from each re-

gion, SwA(t) and SwB(t) should be equal:

SwA(t) =

∫
w(age)SA(t|age)dH(age)

SwB(t) =

∫
w(age)SB(t|age)dH(age), (2.50)

where H is the distribution function of age. An age-standardised estimate can be inter-

preted as the survival one population would have if its age structure was the same as the

age structure of a standard population. In order to compare different age-standardised

estimates, the standard population used must be the same for all populations in compari-

son. The age-standardised survival does not reflect the actual survival of any population.

It is a measure just useful for comparisons.

The age-standardisation of net survival is usually performed using a discrete version

of the equations presented above (2.50). Using a discrete age distribution, the age-

standardised net survival (ASNS) is given by a weighted mean of age group specific

survival (2.51).

ASNS(t) =

k∑

j=1

wj · SNj(t), (2.51)

where SNj(t) is the net survival estimate of age group j and wj (
∑k

j=1wj = 1) is the

corresponding weight. The standardisation thus requires the estimation of net survival

for each age group.
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Three questions arise from equation (2.51). Which weights to use, what age catego-

rization and how to estimate net survival for each age class. On one hand, a thinner

age categorization would be a better approximation of the integral. On the other hand,

narrower age groups can cause stability issues in the age group-specific net survival es-

timates.

In population-based cancer survival analysis an International Cancer Survival Standard,

proposed in 2004 [1], is used by most of the cancer registries and in international com-

parison studies. Five age groups are considered in these standard populations and the

set of weights depend on the type of cancer (Table 2.1). The standards were derived

from the European survival study EUROCARE-2 dataset and aimed at minimising the

difference between the raw and the standardised estimates.

To estimate ASNS(t) from age group specific net survival estimated non-parametrically,

it is necessary to use equation (2.51). The SNj(t) are calculated using the PP estimator.

The variance of the age-standardised net survival is given by:

V AR(ASNS(t)) =

k∑

j=1

w2
j · V AR(SNj(t)), (2.52)

assuming independence between the age group-specific survival and V AR(SNj(t)) being

the variance of the net survival for age group j.

If net survival is estimated from a multivariable excess hazard model, the age-group

specific net survivals are obtained by averaging the individual net survival predictions

(Si(t)):

SNj(t) =
1

nj

nj∑

i=1

Si(t) (2.53)

where nj is the number of patients in age-group j. The individual net survival are obtained

by integrating the excess hazard function:

Si(t) = exp

{
−
∫ t

0
λEi(u)du

}
(2.54)
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Age group ICSS 1 1 ICSS 2 2 ICSS 3 3

15-44 0.07 0.28 0.60
45-54 0.12 0.17 0.10
55-64 0.23 0.21 0.10
65-74 0.29 0.20 0.10
75+ 0.29 0.14 0.10

Table 2.1: International Cancer Survival Standards for broad age groups [1].

The derivation of the variance for age-standardised net survival based on model predic-

tions was made in the scope of the study presented in Section 3.1. In this Section the

question of age-standardisation is addressed, with special emphasis to situations where

data are sparse.

1Lip, tongue, salivary glands, oral cavity, oropharynx, hypopharynx, head and neck, oesophagus, stom-
ach, small intestine, colon, rectum, liver, biliary tract, pancreas, nasal cavities, larynx, lung, pleura, breast,
corpus uteri, ovary, vagina and vulva, penis, bladder, kidney, choroid melanoma, non-Hodgkin lymphomas,
multiple myeloma, chronic lymphatic leukaemia, acute myeloid leukaemia, chronic myeloid leukaemia,
leukaemia, prostate

2Nasopharynx, soft tissues, melanoma, cervix uteri, brain, thyroid gland, bone
3Testis, Hodgkins disease, acute lymphatic leukaemia
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2.6 Socioeconomic inequalities in cancer survival

Cancer survival has been shown to vary most of the times with socio-economic group.

Kogevinas and Porta in 1997 [35] and, in 2006, Woods and colleagues [3], reviewed

various studies for different tumour sites and populations (England, Scotland, Canada,

United States, Australia, Norway, ...), showing evidence for survival differences between

socio-economic groups. Specifically for colorectal cancer, two review studies done in

2010 and 2014 [4, 5] present a considerable amount of literature favouring the evidence

of worse survival for patients with a lower Socioeconomic status (SES). Other studies,

however, did not find evidence of SES inequalities in survival from cancer [105, 106, 107].

Methodologically, several differences can be found among the literature evaluating SES

inequalities in cancer survival. The measure used as outcome can differ (overall survival,

relative survival, hazard ratio, ...) as well as the indicator of SES. Simple or composite

indices, attributed at individual or area level are options differing from study to study.

2.6.1 Socioeconomic indices

SES indicators can be simple, if based in a single measure, or composite if they are the

result of the combination of different single indicators. Table 2.2 presents some of the

most used single indicators with a brief description and some examples of references of

studies evaluating cancer survival inequalities where they have been used. Some of the

presented indicators are measured at individual level while others are area-based.

The categories used, not only the number but also the cut-offs defined, in each of the

categorical indicators as, for instance, education vary between studies. This hetero-

geneity hampers the comparability between different studies. Single indicators are easy

to calculate but have the disadvantage of reflecting only certain aspects of deprivation.

Composite indices try to condense in a single measure the several dimensions of depri-

vation. Carstairs and Townsend scores are two of the most classical composite indices

[39, 38]. The variables involved in each one are presented in Table 2.3. In both in-

dices, all variables have the same weight for the final score. Gordon [117] argues that

indices that attribute equal weight to their component variables ’are likely to yield inac-
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Indicator Description Cancer survival studies

Education Level of education attained (categorical)
or total number of years of education

Egeberg et al. (2008) [108]
Hussain et al. (2008) [109]
Dejardin et al. (2006) [110]

Income
Usually household income, adjusted or
not for household size. Categories de-
pend on country

Dejardin et al. (2006) [110]
Kim et al. (2011) [111]
Gorey et al. (2011) [112]

Unemployment Lack of employment
Ueda et al. (2006) [113]
Dalton et al. (2008) [114]

Occupation
Different occupational-based indicators
exist. Reflect the type of work the patient
has

Egeberg et al. (2008) [108]
Auvinen et al. (1995) [115]
Kravdal Ø(2000) [116]

Table 2.2: Single indicators of SES most used in cancer survival research (based on
[2, 3, 4, 5]).

curate results’. The author suggests that the components should be weighted to reflect

the different probability that each group has of suffering from deprivation. The Index of

Multiple Deprivation is nowadays most commonly used in the UK for measuring levels of

deprivation. The overall index is a combination of seven indices each measuring different

domains of deprivation. The indices are based on routine administrative data (and not on

census data) and are regularly updated.

The European Deprivation Index (EDI) was first proposed by Pornet and colleagues in

2012 [42]. The index is based on census variables available for each country that are

most associated with variables identified from the European Union Statistics on Income

and Living Conditions (EU-SILC) survey [118]. The index was first developed for France

and then applied to other European countries, namely, England, Italy, Portugal and Spain

[40]. Later, it has been developed also for Slovenia [41]. The index for Portugal was

based on 2001 census and includes percentage of: non-owned households, households

without indoor flushing, residents with low education level (6th grade), household with 5

rooms or less, unemployed looking for a job, female residents aged 65 years or more,

households without bath/shower and percentage of residents employed in manual occu-

pations [46]. A continuous score was obtained for each census tract based on the census

responses of its inhabitants. The index is also available at parish and municipality level.

This score can be categorised in deciles or quintiles.
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Index Description Cancer survival studies

Carstairs Based on four census variables: non-car ownership,
overcrowding, unemployment and social class.

Coleman et al. (2004) [119]
Mitry et al. (2008) [120]

Townsend
Based on four census variables: non-car ownership,
overcrowding, unemployment and non-home owner-
ship.

Pollock et al. (1997) [121]
Lejeune et al. (2010) [122]

Index of Multiple Deprivation (IMD)

Combination of seven distinct dimensions of depri-
vation called Domain Indices: Income; Employment;
Health and disability; Education, skills and training;
Barriers to Housing and Services; Living environ-
ment; Crime.

Fowler et al. (2017) [123]
Abdel-Rahman et al. (2014) [124]
Shafique & Morrison (2013) [125]

European Deprivation Index (EDI)

Weighted combination of aggregated variables from
the national census that are most highly correlated
with a country-specific individual deprivation indica-
tor.

Di Salvo et al. (2017) [126]
Belot et al. (2018) [127]

Table 2.3: Composite indices of SES most used in cancer survival research (based on
[2, 3, 4, 5]).

The single indicators presented (education, income, ...) can be measured at individual

level [108] or based on the area of residence at diagnosis of the cancer patient [110]. The

composite indices presented are built at area level and reflect the condition of geograph-

ical areas.

The level of deprivation that each individual is subjected to is influenced by two factors:

individual and ecological. Sloggett and Joshi [128], when studying the association be-

tween socioeconomic level and health indicators, have shown that even after adjusting

for individual level, the ecological effect is still significant, at least for some indicators.

Diez Roux [129] discusses the importance of considering group-level variables besides

individual level ones since both can reflect different types of health conditioners. However,

in population-based studies, individual information on SES is not commonly available, at

least in Portugal. So, in the absence of individual information, the socioeconomic con-

dition must be attributed according to the condition of the patients geographical area of

provenance. The use of area based indicators or indices as proxies for individual patient

condition when individual measures are not available should be done with caution. To

better reflect the individual condition, the geographical areas should be preferably small

and homogeneous regarding socioeconomic conditions. The estimates of the association

between SES and cancer survival, or in general the health outcome, can be underesti-

mated relatively to the true individual-level effect since all individuals in a certain area are

given the same score diluting possible differences [2].
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The use of different SES indicators or indices can lead to find different associations be-

tween deprivation and the outcome of interest. However, Woods and colleagues [37]

observed, for breast cancer, that the deprivation gap in survival was more influenced by

the population size of the geographic area used for the attribution of the socioeconomic

indices than by the definition of the index.

2.6.2 Attribution of SES to cancer patients

The attribution of a SES condition to a patient using area-based indices can be done

using different geographic units. In England and Wales the smallest units are the Lower-

layer Super Output Areas, with a mean population of 1500 inhabitants [130]. Each unit

has a corresponding postcode making it possible to match the patient area of residence

with the one for which the index is defined using that information. In France, the territory

is divided in areas with a target size of 2000 residents per basic unit designated IRIS

(acronym in French for ’aggregated units for statistical information’) [131].

In Portugal, the smallest geographical unit for which there is statistical information is

called sub-secção estatı́stica. In urban areas corresponds to a city block. The second

smallest unit is termed secção estatı́stica. Corresponds to a census tract with about 300

accommodations [132]. The Portuguese version of the EDI is available for this last geo-

graphic unit. There is no direct correspondence between postcodes and census tracts.

To match the patient’s address with the corresponding geographic unit for which the SES

index is available it is necessary the aid of geographical information software. First, each

address must be geocoded, i.e. XY coordinates must be associated to the address.

Then, the addresses mapping must be overlaid with the deprivation distribution to make

the correspondence between both.

2.6.3 Possible reasons for SES inequalities

Several different reasons can contribute to explain socioeconomic inequalities in survival

from cancer. Health awareness and screening participation can be higher in more affluent

groups leading to an earlier diagnosis of the disease. This advance in diagnosis can have

a real impact on prognosis or not. Earlier diagnosis can just (artificially) increase survival
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time by advancing the time of diagnosis but without delaying time of death (lead-time bias)

[115]. In other more favourable situations, an earlier diagnosis can mean, in fact, that the

disease is diagnosed in an earlier stage making possible different treatment intention that

will favour prognosis.

Differential access to treatment between less and more deprived groups can also justify

inequalities in survival [4]. The type of treatment applied may also be a explanatory

factor. However the type of treatment can be related with other factors such as stage at

diagnosis or comorbidities that can have themselves heterogeneous distributions.

Different tumour characteristics, possibly caused by different aetiology factors, can also

lead to inequalities in the outcomes. Last, host factors can also help explain inequalities,

namely, different comorbidities or health behaviours before or after the disease has been

diagnosed [115].

2.6.4 Survival measures

The outcome used in studies evaluating the association between SES and survival from

cancer is not homogeneous. Some studies used overall survival as measure [112, 133,

111]. Overall survival is not only influenced by the disease in study but also by the other

causes mortality. SES inequalities can be wrongly attributed to cancer when using this

type of survival measure. Cancer-specific survival is another measure that is found on

the literature [134, 135]. This type of measure requires good quality information on cause

of death, which is seldom available in population-based studies. Relative survival has

been used also [108, 136, 120]. In this setting, the survival attributable to the disease

is based on the comparison of the observed survival with the background mortality of a

matched population. Since SES can also affect mortality from other causes, the back-

ground mortality should be adjusted for these factors. Otherwise, overestimation of the

effects of SES in cancer survival inequalities can occur [115].



46 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

2.7 Life tables

Life tables provide information on mortality rates and probabilities of death of specific

populations defined by geographical regions or periods of time. They are an important

demographic tool as they are the basis for the estimation of life expectancy at birth, an

important population health status indicator. Life tables are usually stratified by age, sex

and calendar year. Other factors have been shown to influence also population general

mortality such as deprivation status or ethnicity.

Life tables are fundamental in the estimation of survival in the relative survival setting

[66]. They provide information on background mortality of cancer patients necessary to

estimate the survival attributable to the disease in study. To allow the unbiased estimation

of cancer related survival, these tables should correctly represent the population mortality

from which the patients were drawn from.

Life tables are built using counts of deaths and population at risk stratified by relevant

demographic variables (age, sex, others). This information is usually made available by

the national statistics offices. It is also possible to find some web sites that aggregate

mortality information from several countries. The Global Health Observatory data repos-

itory from WHO [137] and the Human Mortality Database [138] are two examples.

Life tables rely on the analysis of a fictional generation submitted to the mortality rates

observed during a certain specified period. This generation is assumed to be a closed

cohort where drop-outs are only possible by death (no migrations are allowed). Several

variables are typically represented in these tables (2.4).

age mx qx lx dx Lx Tx ex
0 0.00543 0.00541 100000 541.2 99729.4 8061894.2 80.6
1 0.00054 0.00054 99458.8 53.8 99431.9 7962164.9 80.1
2 0.00037 0.00037 99405.0 36.7 99386.7 7862733 79.1
3 0.00037 0.00037 99368.3 37.1 99349.7 7763346.3 78.1
... ... ... ... ... ... ... ...

Table 2.4: Example of a life table.

The quantities in the table are the age-specific mortality rate (mx), the probability of dying

in an age interval x → x + ∆x (qx), the number of persons in age class x of the fictional
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population (lx), the number of deaths in age class x (dx), the number of person years

lived between age x and x + ∆x (Lx), the total number of person years lived after age x

(Tx) and the life expectancy at age x (ex).

In complete life tables ∆x represents single years of age while in abridged life tables it is

usually 5 years. Besides age, life tables are usually stratified by sex and calendar year

but can also be stratified by any variable that affects background mortality. It is possible

to find for regions, such as US or UK, life tables stratified by socioeconomic condition and

ethnicity.

Information necessary to build life tables include number of births, number of deaths by

age and population distribution by age. Each of these variables stratified by relevant vari-

ables (eg. sex, calendar year, region, · · · ).
Considering that the mortality rate by age class is known, the other quantities in the table

can be calculated as follows.

Assuming that the instantaneous mortality rate remains constant throughout the age in-

terval from x to x + ∆x, the probability of death can be derived from the mortality rate

using:

q(x) = 1− exp[−mx] (2.55)

The number of survivors at age x (lx) is given by:

lx = lx−1(1− qx−1) (2.56)

Life tables are built assuming a closed population (i.e. no migrations) and with fictitious

starting population (l0) of 100,000. The distribution of the number of deaths by age (dx)

is given by:

dx = lx · qx (2.57)



48 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

The total number of years (Lx) lived by survivors lx on the interval [x, x+ ∆x[ is given by:

Lx = lx −
1

2
dx, (2.58)

assuming that deaths occur uniformly on the age interval [x, x + ∆x[. The total number

of years lived by the population after age x, can be obtained by:

Tx =
w−1∑

t=0

Lx+t, (2.59)

where w represents the maximum age attainable on the life table. Life expectancy at age

x is calculated by the ratio of this quantity and the number of survivors:

ex =
Tx
lx

(2.60)

Life expectancy at birth is obtained making x = 0.

To first calculate death rates, it is necessary to have information on deaths and popula-

tion at risk stratified by the relevant variables. This information is not always available in

single year intervals neither is available until the last age of the life table (100 years or

more). Interpolation, or extrapolation for the oldest ages, needs to be used to obtain mor-

tality rates by intervals of one year. Several methods for building complete life tables from

abridged data have been in use, namely, Elandt-Johnson, Kostaki, Brass logit, and Akima

spline methods [139]. More recently, Rachet and colleagues [140] suggested a modelling

approach to estimate smoothed mortality rates using flexible Poisson multivariable mod-

els. Death counts are modelled in the generalised linear model framework, considering

a Poisson error and using splines to capture the effect of age. Considering just the effect

of age, the model is given by

log(dx) = β0 + f(x) + log(pyrsx), (2.61)

where dx represents the number of deaths for age x and pyrsx the person-years at risk

for the same age. Men and women are typically modelled separately since the mortality
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rates of both sexes are significantly different. This method can use complete or abridged

raw data allowing the estimation of complete life tables. This type of models was consid-

ered recommendable because it derives robust and unbiased estimates without making

strong assumptions about age-specific mortality profiles. Also, a simulation study has

shown that this method had better goodness-of-fit performance than other implemented

methods [140, 141].

In Portugal, no deprivation-specific life tables are available precluding the correct estima-

tion of deprivation-specific survival. This question was addressed in Section 3.3.

2.8 Missing data

2.8.1 The issue with missing data

In epidemiological studies a set of collected data usually consists in a number of rows

representing subjects or cases and a number of columns each corresponding to a differ-

ent variable measured for each case. If this matrix is not totally filled then it means that

there are missing data. That is to say that for certain subjects, some values of one or

more variables were not recorded for some reason.

Missing information is a very common issue in observational studies. This missingness

can have multiple causes. People may not answer all questions in a questionnaire, a

registrar can forget to record some information, some periodic evaluations can be missed

in longitudinal studies due to patient absence, records can be lost, clinical characteristics

can not be measured due to patient condition, besides many other examples. In these

situations the values are not observed/recorded but could have been if there were no fail-

ures in the information collection process. Missing data can thus be defined as data that

actually exists but was not observed. A broader definition of missing data can be thought

including non-observable potential outcomes. For example, what would be the outcome

of a patient in a clinical trial had they been chosen to a different arm of treatment. The

present study deals with missing data in the sense of the first definition.

The easiest way of dealing with this issue is to ignore all the cases that have at least one

variable with missing information. In datasets with large number of different variables, this
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can lead to a substantial reduction of the sample size available for analysis and a large

waste of information. The obvious consequence is a reduction of statistical power, that

is, the ability to find differences when they exist. Also, depending on the reasons why the

data are missing, performing the analysis using only the fully observed cases may lead

to biased results.

2.8.2 Missing data in cancer survival analysis

In the context of survival analysis, missing data can occur both in the outcome of inter-

est (survival time, status) as well as on the variables that help explain survival (covari-

ates). These can include morphology, grade, stage, biomarkers status, comorbidities,

socioeconomic status among many others [27, 142]. In population-based cancer survival

analysis, the existence of missing information in key prognostic factors is also a general

issue [143, 144, 145]. Stage of disease at diagnosis, one of the most important cancer

prognostic factor, is a variable that has usually a considerable proportion of missing in-

formation. Stage of disease can be missing from the cancer registries because it has

not been actually assessed or because it was assessed but not properly recorded. Sev-

eral studies that analysed the causes of stage missingness can be found in the literature

[144, 146, 147, 148]. The proportion of cases with unknown stage can vary consider-

ably between cancer registries but also between different tumour sites. Gurney and col-

leagues [146] analysed factors that affected the chances of stage being missing from the

records of the New Zealand Cancer Registry for 18 different tumour sites. A range from

almost no missing cases for testis cancer up to 73% for prostate cancer was observed. A

similar study in the United States, found much lower stage missingness percentages, with

a maximum below 30%. The tumour sites with the highest proportion were bad prognosis

cancers such as liver, pancreas and oesophagus [149]. Due to clinical reasons, staging

can be more or less difficult to evaluate and also more or less useful depending on the

tumour site. Tumour sites for which surgery is the primary treatment can be less likely

to have missing stage. It has been observed that patients with higher level of comor-

bidities and poor health status have higher chance to have unknown stage although its

effect depends on cancer site [146, 149]. Socioeconomic condition, area of residence,
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ethnicity and type of Health Service where diagnosis is performed were factors that have

also been found to influence the likelihood of stage recording. Completeness of tumour

staging information seems to generally decline with age [144, 146, 147, 148]. Worthing-

ton and colleagues [147] found that in the US African Americans colorectal patients had

less chances of having known stage. In New Zealand the same was observed for Maori

patients diagnosed with lung and cervical cancers but not for other cancers [146].

The reasons for having missing information are therefore multifactorial. The impact of

the missing data on the results of statistical analysis depends on the mechanism which

caused the data to be missing. The terminology used in the classification of the missing

data mechanisms is presented below.

2.8.3 Missing data patterns

Missing data patterns concerns to the way missingness occurs in the variables of a cer-

tain dataset. It has implications in the methods that are employed for handling that miss-

ingness. The pattern of missing data is designated by monotone if it is possible to re-order

the, say p, variables in a matrix such that for every line (case) i and column (variable) j:

• for case i, the variable j was observed (j = 2, · · · , p), and for this case all variables

j′ < j where also observed, and

• for case i, the variable j is missing (j = 2, · · · , p), and for this cases all variables

j′ > j are also missing.

This often occurs in longitudinal studies, when there is drop-out. In cancer survival anal-

ysis settings, it is more natural to find non-monotone missing data patterns.

2.8.4 Missing data mechanisms

The mechanisms that lead to data being missing concerns with the relationship between

missingness and the values of variables [28]. It has direct implication on the way missing

data should be handled. The concept of missing data mechanism was first formalized

by Rubin in 1976 [150]. Rubin considered the missing-data indicators as random vari-

ables and assigned them a distribution. Three different missing data mechanisms are
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nowadays commonly accepted in the literature: Missing completely at random (MCAR),

Missing at random (MAR) and Missing not at random (MNAR) [28]. To formally dis-

tinguish between these three mechanisms, let us first introduce some notation. Let

Yi = (Yi,1, Yi,2, · · · , Yi,p)T denote the set of p variables that are intended to be collect

for case i. Let Yi,obs denote the subset of the p variables that was observed for each

case (i = 1, · · · , n). Let Yi,mis denote the subset of the p variables that are missing.

The set of observed and missing variables can thus be different from case to case. Let

Ri = (Ri,1, · · · , Ri,p)T denote the missing indicator such that Ri,j = 1 if Yi,j is observed

and Ri,j = 0 if Yi,j is missing [151]. The missing data mechanism, defined as the condi-

tional probability P (Ri|Yi), is classified as:

• Missing Completely At Random (MCAR)

If the probability of having a missing value is not dependent on the observed or on

the missing values, i.e.

P (Ri|Yi) = P (Ri)

• Missing At Random (MAR)

If conditional on the observed data, the probability distribution of Ri is independent

of the unobserved data, i.e,

P (Ri|Yi) = P (Ri|Yi,obs)

• Missing Not At Random (MNAR)

If the missing data mechanism is neither MCAR nor MAR, then it is classified as

MNAR. This means that, even conditional on the observed values, the probability

of a value being missing depends on the unobserved value itself:

P (Ri|Yi) 6= P (Ri|Yi,obs).

It is not possible from the observed data to infer which type of mechanism caused a set

of data to have missing data. When dealing with missing data methods it is necessary to
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make assumptions regarding the missingness mechanism that are not testable. Never-

theless, the available data can be used to help in the formulation of plausible assumptions

and on the choice of methods to handle the missing data.

2.8.5 Methods for dealing with missing data

A brief overview of several common approaches to deal with missing data are presented

next.

Avoid missing data

The obvious way of not having to deal with missing data is not having them. Unfortu-

nately, in most of the electronic health records data sets it is very difficult to fully observe

all variables. In the context of population-based cancer survival analysis, this is even

harder. Population-based cancer registries collect information from a wide set of different

sources, namely, public and private hospitals and pathology laboratories, making infor-

mation recovery a difficult task.

Complete-case analysis

Complete-case analysis consists in limiting the analysis to the cases for which all vari-

ables were observed. This is the most simple approach to deal with the occurrence of

missing data and is the one most statistical packages adopt by default (listwise deletion).

In situations of non-monotone missing data pattern, with missing information in several

variables, this can result in a substantial sample size decrease. This loss of informa-

tion has two consequences. First a decrease in statistical power due to the reduction of

the number of cases available for analysis. Second, if the missing data mechanism is

not MCAR, bias in the results of the analysis [152]. For some specific situations, under

MAR or MNAR the complete-case analysis can be unbiased [153], although the practi-

cal application of that result is limited since in real world situations the true missingness

mechanism is not know.

Complete-case analysis can be a reasonable approach if the proportion of incomplete
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information is small (some authors say 5%), although there are no rules of thumb on

the maximum acceptable proportion of missing cases since the impact on the analysis is

dependent on several factors [28].

Inverse Probability Weighting

In the Inverse probability weighting (IPW) approach, the analysis model is fitted only to

complete cases, but different weights are given to each case. The weight is inversely

proportional to the probability of a case being observed. That is to say that cases with

higher probability of being missing have a higher weight in the model in order to correct

for the bias that the complete-case analysis would introduce. The probabilities of miss-

ingness are obtained from the data, not only from the outcome and the set of covariates

that one includes in the analysis model but also from any further variables available. Al-

though IPW performs worse than other methods, Seaman and White [154] argued that it

can be a valuable approach in certain settings as long as care is taken to ensure that the

missingness model is correctly specified and that weights are not unstable.

Indicator method

In this approach, no subjects are excluded from the analysis. For each variable that is not

fully observed, an extra indicator variable is created. This new variable takes the value

1 for the cases in which the original variable is missing and 0 otherwise. Let X be the

original variable and M the missing indicator variable. Then in the analysis model, the

original variable should be replaced by (1 −Mi) · Xi and the extra Mi. For categorical

covariates this is equivalent to create an additional ’missing’ category for that variable.

These categories can group a set of very heterogeneous classes into a single group. This

method can produce severe biased results and has been criticised and discouraged [155,

156]. In some situations, however, such as missing data in randomised trials baseline

covariates, the method can produce unbiased estimates [157]
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Single imputation

A simple approach for handling missing data is the single imputation method. It consists

in filling each missing value with a likely value. Different single imputation techniques ex-

ist. One of the most simple and common technique is the mean imputation, for continuous

variables with missing values, or the mode imputation for categorical variables. The mean

can be estimated conditional on other variables or it can be simply the mean (uncondi-

tional) of the variable with missing values. This method has the advantage of being easy

to implement, produces stable imputed values and does not require any distributional as-

sumption [158]. It requires the assumption that the missing data mechanism is MCAR.

After imputing the missing data, the completed dataset is treated in the analysis step as

if all data has been observed. The uncertainty related to the imputed values is not taken

into account. This results in an underestimation of the variance of the analysis model

coefficients and consequently too narrow confidence intervals or too small p-values. On

the other side, imputing the overall mean in covariates will dilute its association with the

outcome and bias regression coefficients towards the null [159].

Another single imputation technique is hot-deck imputation. In this approach, the imputed

value is randomly selected from the set of fully observed values that share the same co-

variate values [28]. Relatively to the mean imputation, it introduces more variability since

two missing values in a certain variable that have the same values of all other variables

can be imputed with different values. It has also the advantage of imputing only possible

values for each variable as the imputed value is selected from the set of observed values.

It does not make assumptions about the distributional form of the missing values although

it is necessary to select which variables are used to match cases.

In all the single imputation techniques presented, the uncertainty of the imputations is not

taken into account. The imputed values are indistinguishable from the observed ones. To

take this uncertainty in consideration, several imputations are needed for each missing

value. This is what is done in the multiple imputation approach presented next.



56 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

Multiple imputation

The approaches presented above are simple to apply but will generally result in mislead-

ing conclusions. Multiple imputation has become in the last years a popular approach for

accommodating incomplete information in statistical analysis. This method is not exempt

of its limitations and inherent assumptions. When misused, it can also lead to biased con-

clusions. In the present study, attention has been focused on this approach for dealing

with missing data. The method is discussed in more detail below.

2.8.6 Multiple imputation methods

Multiple imputation (MI) was first introduced by Rubin in 1978 [160]. Initially, MI was

developed in the framework of survey nonresponse but has nowadays been expanded to

a broader set of different fields, including survival analysis [151].

In MI several imputations are generated for each missing value, as opposed to single

imputation where each missing value is replaced by a single value. This creates several

completed datasets, as many as the number of imputations performed. Each completed

dataset is analysed using standard methods for complete data. The results from the

several analyses are then combined to produce single estimates and confidence intervals

that incorporate missing-data uncertainty. The objective in MI is not to estimate the values

that are missing but to obtain valid inference from the completed datasets.

The process can be divided in three main steps: the imputation, the analysis and the

combination steps. The models related to the first step are commonly designated as

imputation models and the ones used in the second step, as substantive (or analysis)

models [29]. One of the advantages of MI is that the imputation model can include more

variables than the substantive model. Independently of the imputation and substantive

models used, briefly the algorithm goes like this (Figure 2.2):

i. Using the imputation model, generate M > 1 values for each missing value, obtaining

M completed datasets;

ii. Fit the substantive model independently to each one of the M completed datasets;
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iii. Combine the results obtained from each analysis performed in the previous step using

Rubin’s rules (defined below).

Initial 
Dataset 

D1 

D2 

D3 

DM 

Imputation step 

M imputed datasets 

R1 

R2 

R3 

RM 

M analysis results 

Analysis step 

Final 
Results 

Pooling 

Figure 2.2: Schematic representation of the MI method (adapted from [7])

Multiple imputation uses Bayesian inference to sample the missing values from their pos-

terior predictive distribution. Assuming that Y = (Yobs, Ymis) has a parametric model

P (Y |θ), that θ has a priori distribution P (θ) and that the missing mechanism can be

considered MAR, i.e. the probability of missingness does not depend on unobserved

information, then since by the Bayes theorem:

P (θ|Y )︸ ︷︷ ︸
posterior

αP (Y |θ)︸ ︷︷ ︸
model

×P (θ)︸︷︷︸
prior

,

to obtain imputations for the missing values:

i. First, draw a sample of the unknown parameters from their observed-data posterior

distribution:

θ∗ ∼ P (θ|Yobs)
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ii. Second, given θ∗, draw a random sample of the missing observation from the condi-

tional predictive distribution:

Y ∗mis ∼ P (Ymis|Yobs, θ∗)

To draw samples from the observed-data posterior which is not typically a standard dis-

tribution, Markov chain Monte Carlo (MCMC) methods can be used. MCMC methods

comprise a class of algorithms for sampling from a probability distribution.

MCMC is used to generate pseudorandom draws from multidimensional probability dis-

tributions via Markov chains that would be otherwise intractable. A Markov chain is a

sequence of random variables in which the distribution of each element depends on the

value of the previous one. By constructing a Markov chain that has the desired distribu-

tion as its equilibrium distribution, a sample of the desired distribution can be obtained by

observing the chain after a number of steps. The process of building the Markov chain

is iterative. In the first step, the missing values are sampled from the conditional pre-

dictive distribution Y
(t)
mis ∼ P (Ymis|Yobs, θ(t−1)). Then, in the second step, the unknown

parameters are sampled from a simulated complete-data posterior θ(t) ∼ P (θ|Yobs, Y (t)
mis).

The first step is repeated using the new estimates of θ. The iterative process starts with

given initial values (θ(0)), creating a Markov chain (Y
(1)
mis, θ

(1)), (Y
(2)
mis, θ

(2)), .... This should

converge in distribution to P (Ymis, θ|Yobs). After a certain number of initial iterations, nec-

essary to stabilise the estimates, random samples of the missing values can be drawn

from the built chain [161].

After obtaining the M imputed datasets, each is analysed using a substantive model and

M different estimates of the parameter of interest (β̂j) and its corresponding variance (s2
j )

are obtained. To combined these results into an overall MI estimate and standard errors

to provide valid statistical results, Rubin [30] developed a set of rules, now commonly

designated as Rubin’s rules. The MI estimator of the parameter of interest is given by

averaging the individual estimators:

β =
1

M

M∑

j=1

β̂j
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The estimated variance combines two sources of variation. The within variability, obtained

by averaging the individual variance estimates:

U =
1

M

M∑

j=1

ŝ2
j ,

and the between-imputation variability that represents the variation across imputations

and is related to the uncertainty caused by the missing values:

B =
1

M − 1

M∑

j=1

(
β̂j − β

)2
.

The total variance is given by the sum of both variances. The multiplier (1 + M−1) is a

bias adjustment for small M :

T = U + (1 +M−1)B

This estimator standardised follows, approximately, a tν distribution:

β̂ − β√
T
≈ tν

where the degrees of freedom (ν) are given by:

ν = (M − 1)

(
1 +

U

B

)2

.

Thus, inference on the parameters can be made using this distribution.

Multiple imputation approaches can be divided into two general frameworks: joint model

(JM) imputation and fully conditional specification (FCS) imputation, also known as Mul-

tiple Imputation Chained Equations (MICE) or sequential regression multivariate impu-

tation. Both frameworks assume that a multivariate joint distribution for the data exists.

While JM draws missing values for all incomplete variables in a single step from that joint

distribution, the FCS approach imputes each variable at a time, drawing missing observa-

tions from a series of univariate distributions without specifying the joint distribution [162].
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Using the JM strategy, a joint distribution for all variables of interest in the data must be

specified. Imputations for variables with missing data are drawn from the corresponding

conditional distributions, given all other variables. The method can be difficult to imple-

ment when the number of variables is large and different types of variables exist (contin-

uous, categorical). Most software that have this strategy implemented, assume that the

data follows a multivariate normal distribution [163].

To overcome some limitations and difficulties of the JM approach, an alternative method

to perform MI was introduced in the late 90’s and is now very popular [162]. The fully

conditional specification approach splits a k-dimensional problem into k one-dimensional

problems. For each variable with missing values, a distribution conditional on all other

variables is specified (P (Yj |Y−j , θj)), where Y−j = {Y1, · · · , Yj−1, Yj+1, · · · , Yk}. This has

the advantage of being possible to specify different models for each variable, offering a

greater flexibility in the choice of models. The main issue with FCS is that the implied joint

distributions may not exist theoretically and convergence criteria are ambiguous [164].

One iteration (say the tth) of the FCS approach for multivariate missing data consists on

the following successive steps [164]. For the first variable with missing values, a draw

of the parameters (θ1) and the missing value is made from the conditional distribution

P (Y1|Y−1):

θ
∗(t)
1 ∼ P (θ1|yobs1 , yt−1

2 , · · · , yt−1
k ),

y∗1(t) ∼ P (ymis1 |yobs1 , yt−1
2 , · · · , yt−1

k , θ
∗(t)
1 ).

To impute values for the variable y1 in this iteration, the values imputed to the other vari-

ables in the previous iteration are used. The same procedure is executed to all variables

with missing values, what constitutes one iteration. The process follows, starting again

in the first variable and repeating the procedure for all. A number of iterations are run for

the algorithm to ’converge’. This gives one set of imputed values. All the process must

then be repeated to obtain further imputations.

The FCS approach only corresponds to imputation from a well defined joint model in

some special situations. It is possible that the univariate specified models are incompati-
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ble with each other.

Some studies can be found in the literature comparing both methods. Van Buuren [165]

concluded that FCS is a useful and easily applied flexible alternative to JM when no

convenient and realistic joint distribution can be specified. Lee and Carlin [166] found

similar behaviour between FCS and JM using multivariate normal distributions, even in

the presence of binary and ordinal variables.

Number of imputations needed

Rubin [30] argued that a small number of imputations (2 to 5) is needed to obtain efficient

estimates of the parameters of interest. Rubin shows that the relative variance of using

only M imputations instead of an infinite number is approximately (1 + λ/M), where λ

is the fraction of missing information. However, this relates only to the point estimates

of the parameters and not to the precision of the standard error estimates. Carpenter

and Kenward [151] advocate to do at least M = 100 imputations to obtain acceptable

errors. Nowadays, as computers evolved and allow much faster calculations than what

was possible when these methods were first proposed, a large number of imputations is

preferred.

Imputation models

Multiple imputation provides valid estimates under the MAR assumption and provided

that imputations are drawn from an appropriate distribution. To increase the chance that

the missingness depends only on observed data, the maximum possible number of pre-

dictors of missingness should be included even if they are not to be included in the final

analysis. If a variable is predictive of missingness in another variable that is being im-

puted, that variable should also be included in the imputation model. Even if a variable

is not predictive of missingness, but it is predictive of the partially observed variables, it

should be included in the imputation model in order to reduce the uncertainty in imputing

missing values, thus increasing statistical efficiency [167]. Also, all variables included in

the substantive model should be included in the imputation model [168]. The outcome

variables must also be included, to ensure that the imputed covariate values have the
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correct association with the outcome [169, 170].

Incompatibility between imputation and substantive models

When substantive models include non-linear covariate effects, interactions, or are them-

selves non-linear (as hazard models), default imputation model do not assure compatibil-

ity between the substantive and the imputation model. To present this issue the notation

presented in [171] was followed. Lets consider that the interest lies in modelling a fully

observed outcome Y dependent on a single partially observed covariate X and a set of

fully observed covariates Z = (Z1, · · · , Zq). The substantive model is characterised by

the function f(Y |X,Z, ψ), where ψ ∈ Ψ represents the substantive model parameters.

Assuming MAR, the imputation model is characterised by f(X|Z, Y, ω), where ω ∈ Ω rep-

resents the imputation model parameters. The imputation model is said to be compatible

with the substantive model if there exists a joint model g(Y,X|Z, θ), θ ∈ Θ and surjective

maps t1 : Θ→ Ω and t2 : Θ→ Ψ such that:

• for ω ∈ Ω, and θ ∈ t−1
1 (ω) = {θ : t1(θ) = ω}, f(X|Z, Y, ω) = g(X|Z, Y, θ);

• for ψ ∈ Ψ, and θ ∈ t−1
2 (ψ) = {ψ : t2(θ) = ψ}, f(Y |X,Z, ψ) = g(Y |X,Z, θ).

The two models are said to be semi-compatible if, by setting certain parameters in one

or both models to zero, they can be made compatible. Incompatibility between the impu-

tation and substantive models implies that, assuming the substantive model is correctly

specified, the imputation model is mis-specified.

Substantive model compatible fully conditional specification

To overcome the problem of incompatibility between imputation and substantive models,

Bartlett and colleagues [34] developed an algorithm based on rejection sampling that has

been named Substantive model compatible-Fully conditional specification (SMC-FCS).

Bartlett starts by noting that to specify an imputation model that is compatible with the
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substantive model:

f(Xj |X−j , Z, Y ) =
f(Y,Xj , X−j , Z)

f(Y,X−j , Z)

αf(Y |X,Z)f(Xj |X−j , Z) (2.62)

So, in the algorithm SMC-FCS, a model f(Xj |X−j , Z, φj) must be specified, together

with noninformative priors f(φj). Given values of ψ and φ, the missing values in Xj are

imputed from the density proportional to:

f(Y |X,Z, ψ)f(Xj |X−j , Z, φj) (2.63)

Since generally this density does not belong to a standard parametric family, draw-

ing samples from it is non-trivial [171]. Bartlett and Morris proposed a rejection sam-

pling procedure that involves repeatedly drawing samples from a candidate distribution

f(Xj |X−j , Z, φj) until the drawn value Xj satisfies the condition:

U ≤
f(Y |X∗j , X−j , Z, ψ)

c(Y,X−j , Z, ψ)
, (2.64)

where U is a random draw from an uniform distribution on (0,1) and c(Y,X−j , Z, ψ) is an

upper bound (in Xj) of f(Y |Xj , X−j , Z, ψj) that does not involve Xj .

Diagnostics for imputations

Diagnostic techniques of the imputation procedures tend to be neglected. Most of the

imputation methods rely on the MAR assumption. Since this assumption is untestable

from observed data, this control tends to be ignored [172]. Diagnostic techniques can be

characterised as external, if they involve outside knowledge, or internal if they depend on

the observed data and the modelling process.

The first recommended approach is to check the imputed values. This can be done by

comparing the distributions of the observed and imputed values graphically by means of

histograms, boxplots, density curves, cumulative distribution plot, quantile-quantile plots

or by means of descriptive measures [173]. The imputed distribution must not be, nec-
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essarily, similar to the observed values under MAR but extreme deviations should be

assessed. Also, the plausibility of the imputed values should be checked given subject

matter knowledge. Other possible diagnostic technique is checking the goodness-of-fit of

the imputation models.

Sensitivity analysis

Multiple imputation relies on the MAR assumption. However, the true mechanism that

led to data being missing can be MNAR, i.e. the probability of a variable being missing

can be dependent on the missing value itself. The conclusions obtained under the MAR

assumption should thus be tested to check how much sensitive they are to plausible

deviations from that assumption.

There are essentially two approaches for performing sensitivity analysis: pattern mixture

models and selection models [151]. In pattern mixture models, first the imputation model

is fitted using the complete cases. Then, the values of the imputation model parameters

are changed in order to reflect the deviations from MAR assumed as plausible (based on

external knowledge). Third, the missing values are imputed using the imputation model

with modified parameter values. Fourth, the substantive model is fitted to each completed

dataset and the results combined using Rubin’s rules [29].

The alternative approach is to use selection models. In this framework there are two

models. The model of interest and a model for the chance of observations being missing.

Both need to be fitted jointly.

2.8.7 Multiple imputation in survival analysis

Survival data is characterised by the fact that the variable of interest (time to event) is not

observed for all individuals. This fact occurs due to censoring, as discussed above, and

can be regarded as a missing data problem. However, the subject of this thesis does not

focus on that situation but rather on the situation of having missing data on the covariates,

i.e. in the variables that influence survival time. Multiple imputation was first applied to

deal with missing covariates in survival analysis by van Buuren and colleagues in 1999

[162].
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In covariate missing data problems, it is consensual that the outcome should be included

in the imputation model. However, different ways of including the survival outcome can be

found in the literature: D and T [174]; D and log(T ) [175, 176]; D, T and log(T ) [162] (D

- censoring indicator; T - survival time). In 2009, White and Royston [177] recommended

the inclusion of the cumulative baseline hazard (H0(t)) besides the censor indicator. In

spite of these recommendations, it is possible to find recent studies that did not use any

outcome in the imputation model [178].

In 2015, Bartlett and colleagues implemented the SMC-FCS algorithm described above

to Cox proportional hazards model [34]. In relative survival framework, Giorgi and col-

leagues were the first to introduce MI to deal with missing values on the covariates [31].

They performed a simulation study for different missing mechanisms and different miss-

ingness proportions, where they considered the proportional hazards assumption and

that missing values occurred only on binary covariates. The MICE algorithm was used

for imputation but the variables used in the imputation model were not clearly specified.

They conclude that MICE performs well in estimating the hazard ratios and the baseline

hazard function when the missing mechanism is MAR conditionally on the vital status.

Multiple imputation has then been applied in the context of excess hazard estimation by

different authors [107, 179] but without giving much detail in its application. Nur and col-

leagues published in 2010 a tutorial on handling missing data in relative survival analysis

[27]. There they advocate the use of the MICE algorithm, the inclusion of the vital status

and follow-up time in the imputation models as well as all the variables that are included

in the analysis model, together with any interactions. Also, they recommend including

as many predictors as possible in the imputation model to make the assumption of MAR

more reasonable. In that work, the excess hazard was modelled using a generalised lin-

ear model with Poisson error where piecewise constant hazards are assumed.

Since then, the application of MI to deal with missing values in covariates can be found

in some relative survival analysis literature [180, 181, 182, 183, 184].

Recently, Falcaro and colleagues evaluated the use of MI in the context of net survival

problems with missing information on categorical covariates (stage of disease at diag-

nosis), first in the excess hazard modelling using flexible parametric proportional haz-
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ards models [32] and then in the non-parametric net survival estimation [33]. In the first

study, the performance of different imputation strategies was evaluated using simulated

incomplete datasets. The results obtained suggested that a multinomial logistic imputa-

tion model for stage should be used, instead of an ordered logistic model, and that the

Nelson-Aalen cumulative hazard estimate and the event indicator should be included in

the imputation models, as had been already suggested by White and Royston in the con-

text of the Cox model [177]. The study had the limitation of considering only predictors

whose effect was assumed to be constant over time. In the second, a resampling study

was performed to evaluate the non-parametric estimation of net survival using the PP es-

timator after MI. Low bias and acceptable coverage rates for stage-specific net survivals

were obtained after combining the estimates obtained for each completed dataset.

Although all the results found in these studies point MI as a valuable approach for deal-

ing with covariate missing data in net survival and excess hazard modelling problems,

the issue of compatibility between the imputation and substantive models still lacks some

research when the substantive model is an excess hazard model.



Chapter 3

Studies

3.1 Study I: Age-standardised net survival estimation

Estimation of age-standardised net survival with sparse data: taking advantage of

regression models

Luis Antunes, Denisa Mendonça, Aurélien Belot, Hadrien Charvat and Bernard Rachet

In this section, a study on the evaluation of methods to estimate age-standardised

net survival is presented. Age-standardisation of net survival is common practice on

research studies using population-based data to compare outcomes between different

periods or regions. The direct standardisation method implies the estimation of age

group-specific survival estimates. When dealing with small samples, common situation

for cancers with low incidence, in small regions and/or for narrow time periods, the

number of cases by age group can be insufficient to obtain reliable estimates.

Using a model-based approach to estimate net survival, i.e. fitting an excess hazard

model to the data and then predicting survival from it, the performance of two different

methods to obtain predictions were compared using a simulation study. The classical

model-based approach consists in using the sample age structure to obtain age group

specific predictions. This is dependent on the availability of cases and its age distribution.

Alternatively the predictions were done for single reference ages in each age group.

67



68 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

This eliminates the variability induced by variations in the samples age structure. The

formulas for the calculation of the variance and respective confidence intervals of the

model-based age-standardised net survival were derived.

In the simulation study it was observed that the model fitting is the problematic step of

the process. A high variability in age-specific model predictions between samples was

obtained bringing up the difficulties in fitting more complex models to small datasets.

Next, the resulting manuscript of this study is presented.
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Abstract: Cancer survival comparisons between different regions or periods are per-

formed using an age-standardised net survival measure to account for heterogeneity in

population age structures, age being the main confounder. Direct age-standardisation

requires the estimation of survival by age group. When comparing less frequent tu-

mours or smaller populations, often data are sparse, turning the estimation of age-

standardised survival impossible or unreliable. The aim of this study was to evaluate

the performance of the conventional parametric and non-parametric approaches to

estimate this measure comparing with an alternative approach for standardisation,

where the age group-specific survival estimates are independent from the sample age

structure. A simulation study was performed to compare the different approaches.

The alternative proposed method presented similar or higher performance results as

the conventional approaches. It was shown to be a valid alternative mainly when age

group specific estimates are not possible to estimate. As illustration, the estimation

of age-standardised net survival from vagina cancer for a set of patients diagnosed

in the North region of Portugal was performed using the different methods. While

using the proposed method allowed the estimation of age-standardised net survival

for all the individual years of diagnosis, using the conventional model-based and the

non-parametric approach this was only possible in less than half of those subgroups.

Key words: net survival, age standardisation, excess hazard model, sparse data
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1 Introduction

Population-based cancer survival analysis is of major importance in the evaluation of

cancer care practices provided to populations. The measure of survival used in these

evaluations should be related to mortality from the cancer under study and not to

all-cause mortality. One of the key indicators is net survival, i.e., the survival that

would be observed in the absence of other causes of death. Net survival is estimated

from observed mortality after taking into account background (all-causes) mortality

obtained from population life tables.

Net survival is, for most cancers, age-dependent. International comparison of net sur-

vival probabilities should thus take into account differences in patient´s population

age structure. This is usually achieved through direct age-standardisation using a

common age-distribution set of standards such as the International Cancer Survival

Standards (Corazziari et al. (2004)). The direct age-standardisation implies the es-

timation of net survival by age group. In some situations, the extreme age groups

(youngest or oldest, depending on the cancer) are sparse and as a consequence, the

age group-specific net survival may not be estimated because of no observations or

no observations remaining after a short follow-up time. Cancer survival studies (e.g.,

EUROCARE (De Angelis et al. (2014)), CONCORD (Allemani et al. (2015, 2018))

face this issue when estimating net survival for small countries and/or for rarer can-

cers. When age-group specific estimates are not possible or are unreliable, contiguous

age-groups are aggregated and the common estimate is assigned to both age groups.

Otherwise, only unstandardised estimates are presented. Using non-parametric esti-

mators this means calculating a survival estimate for the entire sample without strat-

ifying by age groups. In both situations, the comparison with other age-standardised
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estimates is less reliable.

An alternative approach of age-standardising survival has been proposed by Bren-

ner in 2004 in which weights are attributed directly to individual patients instead of

weighting age-group specific survival estimates (Brenner et al. (2004)). The unreli-

ability of estimates within age-groups with sparse data remained though a concern

using this alternative method (Gondos et al. (2006)).

Net survival can be estimated using the non-parametric Pohar-Perme estimator (Perme

et al. (2012)) or using a modelling approach (Danieli et al. (2012)). If the model is

correctly specified both methods should produce asymptotically similar estimates.

When age is considered as a continuous variable and the excess hazard is modelled

with flexible functions (e.g. splines), net survival of each individual can be thinly pre-

dicted for any time since diagnosis. The net survival of a given age group is obtained

as the mean of the individual net survival predictions of the subjects in this age group.

Although a flexible modelling approach is used, estimates of age group-specific net

survival depend on the observed number of subjects in each age group at the time of

diagnosis, as well as their observed age-distribution in each age group. When the data

are sparse, this will lead to unstable net survival estimates even if the model allows

to smoothly predict exact individual net survivals. Furthermore, it is possible that

some age groups have no observations making it impossible to estimate age group

specific survival. Estimates given by the non-parametric Pohar-Perme estimator are

also very unstable or impossible in these situations.

The main aim of this study was to evaluate and compare the methods classically used

for the estimation of age-standardised net survival (model-based and non-parametric)

with an alternative proposed approach when data are sparse. In this alternative,

besides the conventional external standardisation using the Corazziari weights, net
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survival within each age group is estimated for a reference age corresponding to a

complementary external standardisation.

The manuscript is organized as follows: in Section 2, the statistical methods used to

estimate age-standardised net survival, both parametrically and non-parametrically,

are summarised. Also, the alternative approach for estimating age-standardised net

survival is described. The simulation study and its results are presented in Section 3

followed by a real-world illustration in Section 4. Section 5 concludes the manuscript

with a discussion.

2 Estimation of age-standardised net survival

2.1 Net survival estimation

Net survival is defined as the survival that would be observed in the hypothetical

situation that the disease is the only cause of death possible. In the relative survival

setting it is assumed that the overall hazard for patient i (λOi
(t)) can be decomposed

in two additive components:

λOi
(t) = λPi

(t) + λEi
(t) (2.1)

where λPi
(t), the expected hazard, is given by the general population mortality as-

suming this to be a reasonable approximation of other causes of mortality and λEi
(t)

is the excess hazard due to the disease in study. The population mortality (λPi
(t))

is obtained from life tables, usually made available by the National Statistics Offices,

stratified by relevant demographic variables (e.g., sex, age). The survival obtained by

exponentiating minus the integral of the excess hazard is our measure of interest, the
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net survival. This survival can be estimated non-parametrically or using model-based

approaches.

2.1.1 Pohar-Perme estimator

A consistent and unbiased non-parametric estimator of net survival, the so-called

Pohar-Perme (PP) estimator, was proposed in 2012 (Perme et al. (2012)). This esti-

mator accounts for the bias due to informative censoring by weighting the individuals

still contributing to the parameter estimation. The weights correspond to the inverse

of the individual-specific expected survival probabilities provided by the general pop-

ulation life tables. In this way the early drop off from the sample of the patients with

higher expected mortality is compensated through a higher contribution (weight) to

the group survival. Let Ni(t) = I(Ti ≤ t, Ti ≤ Ci) and Yi(t) = I(Ti ≥ t, Ci ≥ t)

denote the counting process and the at-risk process for each individual in the sample,

where Ti denotes the time to death from any cause and Ci the time to censoring

for patient i. The PP estimator weights these two processes using the inverse of the

population survival probability: Nw
i (t) = Ni(t)/SPi(t) and Y w

i (t) = Yi(t)/SPi(t), thus

providing an estimate of the cumulative excess hazard:

Λ̂E(t) =

∫ t

0

dNw(u)

Y w(u)
−
∫ t

0

∑n
i=1 Y

w
i (u)dΛPi(u)

Y w(u)
, (2.2)

where the subscript i represents each patient, n is the total number of patients in the

group, Nw(t) =
∑
Nw

i (t) and Y w(t) =
∑
Y w
i (t). The net survival for the group of

patients is then obtained by N̂S(t) = e−Λ̂E(t).
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2.1.2 Model-based estimation

Net survival can also be estimated from a multivariable regression model (Perme et al.

(2012); Danieli et al. (2012)). The excess hazard function is modelled as a function of

a set of covariates, including at least the demographic variables which the estimation

of the expected mortality is stratified on. Considering a flexible parametric model

for the excess hazard function, where the baseline excess hazard is flexibly modelled

using splines, non-linear and time-dependent effects of covariates are allowed and can

be modelled using B-spline function (Giorgi et al. (2003); Remontet et al. (2007);

Charvat et al. (2016)). The model can be written as:

log[λE(t, x)] = log[λ0(t)] + g(X) + X · h(t), (2.3)

where log[λ0] and h are B-spline functions and g can be a linear or non-linear function

of the covariates X. We used the implementation of this model following the work of

Charvat and colleagues (Charvat et al. (2016)). The net survival of a patient can be

predicted from the model integrating the excess hazard:

Si(t, x) = exp

{
−
∫ t

0

λEi
(u, x)du

}
(2.4)

The net survival in each age group is obtained by averaging the individual survivals

of the patients within each group.

NSj(t, x) =
1

nj

nj∑

i=1

Si(t, x) (2.5)
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where nj is the number of patients in age group j. We will further refer this method

as the classical approach. The net survival in each age group thus depends not only

on the individual survival but, being survival age-dependent, depends also on the age

distribution of patients within each group.

2.2 Age-standardised net survival

The aim of standardising survival probabilities according to an age distribution is to

make the estimation of this quantity comparable between two populations with differ-

ent age-structures, age being implicitly considered the main confounder. If two pop-

ulations observed in two different countries are exposed to the same age-specific sur-

vival probabilities, the age-standardised survival obtained from each country should

be equal. A way to do so is to standardise on a user-defined external distribution:

ASNS(t) =
∫
z
S(t|z)dG(z), where G represents that external distribution. This

standard population is usually approximated by a discrete distribution. The age-

standardised estimate is thus given by a weighted average of age group-specific net

survival estimates (NSj(t)):

ASNS(t) =
k∑

j=1

wj ·NSj(t) (2.6)

where k is the number of age groups considered and wj are the respective weights

(
∑
wj = 1). In population-based cancer research, to allow comparability between

different studies, common weights are used as defined by the International Cancer

Survival Standard (Corazziari et al. (2004)). In this standard, five age groups are

considered (for most cancers: 15-44, 45-54, 55-64, 65-74, 75+). For cancers with

increasing incidence by age (most cancer sites) the standard weights are 0.07, 0.12,

0.23, 0.29, 0.29, respectively for the age groups defined above.
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The variance for the non-parametric estimate of age-standardised survival can be

given by:

V AR(ASNS) =
k∑

j=1

w2
j · SE2

Sj
(2.7)

assuming independence between the age group-specific survival estimates, and SE2
Sj

being the variance of the net survival for age group j.

The estimation of the variance of the model-based age-standardised net survival needs

to account for the correlation between two individuals’ net survival prediction since

they are derived from the same regression coefficients. The derivation of an ap-

proximate formula to estimate this variance using the delta method is presented in

Supplementary Material S1.

2.3 Alternative approach for age-standardised net survival

estimation

Although a flexible modelling approach is used in the model-based method described

above, estimates of age group-specific net survival depend on the number of subjects

in each age group at the time of diagnosis, as well as their age distribution in each

age group. The comparability between different populations can be compromised

due to this dependence of the own sample age structure. Also, in the presence of

sparse data, some age groups may contain no observation turning it impossible to es-

timate age-group-specific survival in those age groups. To circumvent the variability

induced by sample variations in the age distribution and the impossibility of esti-

mating age-standardised net survival estimates, we propose an alternative approach

for the estimation of a survival measure that allows comparison between different

populations or time periods, even in these situations of sparse data. Instead of av-
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eraging model-based individual net survival predictions within each age group, we

propose to estimate survival for each group at a pre-specified reference age value. We

further refer to this approach as the alternative approach. Having the fitted model,

the predicted net survival for each age group would no longer be dependent on the

age distribution neither on the existence of observations within each group since it is

calculated at a reference age, externally defined, instead of being given by the average

of the individual net survival predictions. This approach uses thus an external stan-

dardisation to estimate survival within each age group. Considering that the excess

hazard is only dependent on age, the net survival for each age group j is given by:

NS∗
j (t) = exp

{
−
∫ t

0

λE(u, agerefj)du

}
(2.8)

The reference age can be an international standard to be defined specific for each

cancer site.

3 Simulation study

3.1 Study description

A simulation study was performed in order to compare the performances of the meth-

ods described for estimating age-standardised net survival. Data were generated based

on real datasets. These were extracted from the North Region Cancer Registry of

Portugal (RORENO) database, a population-based registry which covered until 2010

a population of around 3.2 million inhabitants. Survival was considered as being de-
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pendent solely on age at diagnosis and year of diagnosis. To test the performance of

the methods in a broad range of situations, similarly to what is found in real-world

data, three scenarios of different complexity were considered, using information on

three different cancer sites as starting datasets. The three scenarios considered in the

simulation study were:

• Scenario A (Stomach cancer): Non-linear and time-dependent effect of age, no

effect of year of diagnosis;

• Scenario B (Breast cancer): Non-linear and time-dependent effect of age, linear

and proportional effect of year of diagnosis;

• Scenario C (Colon cancer): Non-linear and time-dependent effect of age, linear

and time-dependent effect of year of diagnosis plus interaction age × year.

Generation of time to cancer related death

The covariates used in this simulation study were age and year of diagnosis. The

proportion of patients in each age group was obtained from the real datasets. Within

each age group, age was drawn from a uniform distribution. Year of diagnosis was

generated from a uniform distribution. For scenarios A and C only male patients

were considered and for scenario B (breast cancer), only female patients. A period of

ten years of diagnosis was considered: 2001-2010.

In order to avoid using exactly the same model in the data generation and in the data

fitting steps, an excess cumulative hazard model using fractional polynomials for the

baseline was used in the data generation step (Lambert et al. (2005)). This models

was fitted to each real dataset and the estimated parameters were used to generate

the survival times from cancer.
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Generation of time to other causes death

Times to death from other causes were generated using a piecewise exponential dis-

tribution and following the same scheme used in similar studies (Rutherford et al.

(2012); Charvat et al. (2016)).

The final observed survival time was taken as the minimum between time to death

from cancer, time to death from other causes or a censoring time due to the end

of follow-up (pre-set on the 31st December 2015). One million observations were

generated for each scenario from which 1000 samples of two different sizes (n=200

and n=2000) were randomly selected. The number of simulations chosen allows the

estimation of the quantity of interest with an error margin lower than 1% (Burton

et al. (2006)).

Modelling approaches

For the estimation of age-standardised net survival using model-based approaches,

a general flexible parametric model for the excess hazard function was considered

(Charvat et al. (2016)):

log[λE(age, year, t)] = log[λ0(t)] + s(age) + year + age · g(t) + year · g(t) + age× year

A B-spline function of third degree with two fixed internal knots for the log-baseline

hazard was considered. Non-linear effect of age was considered using a truncated

power basis spline with one knot. Time-dependent effects of age and year of diagnosis

modelled by introducing interaction terms between these variables and the same B-
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spline as the one used to model the logarithm of the baseline hazard (g). Interaction

between age and year of diagnosis was also considered.

Two strategies were used for model selection. The first, considered that the population

model best describing the data to be fitted is known. Since with real datasets, this

model is unknown, we tested also a second model selection strategy where for each

sample the most parsimonious model was chosen for each sample:

1. FixedMod : Fixed type of model (according to specific scenario) for all samples

(only coefficients re-estimated);

2. BestMod : Choose ’best’ model for each sample based on a backward selection

algorithm (described in Supplementary Material S2);

For each sample, age-standardised net survival at 5 years was estimated for the all

period (2001-2010) and by year of diagnosis (using the model fitted to the all period).

Model-based predictions were calculated by averaging the individuals net survival in

each age group (classical - equation 2.5) and by calculating survival for a reference

age in each age group (alternative - equation 2.8). Furthermore, the non-parametric

estimates were also calculated using the Pohar-Perme (PP) estimator. Whenever the

model-based predictions using the classical method, or the PP estimator, were not

possible for any age group, the unstandardised net survival was estimated instead,

i.e. estimated for the full sample without stratifying by age group.

To evaluate and compare the performance of the several approaches in estimating the

age-standardised net survival (ASNS), the estimates obtained in each scenario were

compared with the population values. These true (population) values were obtained

from the full dataset generated. Two population values were considered. One for the
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evaluation of the performance of the non-parametric approach and of the classical

model-based approach, and another for the evaluation of the alternative approach.

In the first case, each age group-specific population value was calculated using an

internal standardisation, i.e. considering the population age structure. In the second

case, age group-specific values were obtained by predicting survival at a reference

ages, i.e. using an external standardisation. In this simulation study, in the absence

of defined reference standards, the reference ages have been considered as being the

average age within each age group of the population where samples were drawn from.

The following performance measures were calculated for each situation: (i) the bias

(mean difference between estimates and true value); (ii) the percentage bias (bias

divided by the true value times 100); (iii) the empirical coverage probability (CP)

(proportion of 95% estimated confidence intervals that included the true value of the

ASNS; (iv) the root mean square error (RMSE) (square root of the average of the

squared differences between the estimated values and the true value). According to

Burton and colleagues (Burton et al. (2006)), for 1000 simulations, between 936 and

964 of the confidence intervals should include the true value.

Before running the simulations with the enumerated modelling strategies, we first

evaluated the variability solely induced by variations on the sample age distribution.

Net survival as function of age was assumed to be known (the model fitted to the

full dataset was used). Random samples were drawn from the full dataset and age-

standardised net survival was calculated using the classical approach. In this setting,

the predictions obtained with the alternative approach were constant since the model

used for predictions was always the same for all samples.

In the data generation step, the statistical software STATA (StataCorp (2011)) was

used with the packages survsim and stpm2. In the data analysis step, R software was
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used (R Core Team (2017)), namely, the package mexhaz (Charvat and Belot (2017))

for excess hazard model fitting and the package relsurv (Maja Pohar Perme (2016))

for the Pohar-Perme estimator.

3.2 Results

3.2.1 Constant model

At first, we aimed to evaluate the variability in ASNS estimates induced by variations

on the sample age distribution. Due to lack of observations in at least one age group

when considering only one year of diagnosis (2001), it was not possible to calculate

age-standardised net survival in 29.7%, 11.9% and 55.9% of the samples for scenarios

A, B and C, respectively. In these situations, the ASNS was replaced by the unstan-

dardised measure. Figure 1 shows the variability of the 1000 ASNS estimates for the

all period of diagnosis and the one obtained when estimating only for one specific

year (2001). In scenarios B and C the median of the survival results for 2001/10 and

2001 are different since survival was considered year dependent. These results show

that even using always the same model, there is a considerable variability caused by

the variation in the samples age distribution.

3.2.2 Model fitted to each sample

Next, we fitted a model for each of the thousand samples randomly drawn for the

population. The two strategies for choosing the model, described above, were used.

Net survival by 1-year age-group was predicted using the retained model fitted to

each sample. The 1000 predicted net survivals as function of age, their mean and
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the comparison with the true values are presented in figure 2 for scenarios A, B and

C. The graphs on the left hand side of the figure correspond to the FixedMod model

fitting strategy and on the right hand side to the BestMod strategy. In scenario A,

survival does not depend on year of diagnosis. For scenarios B and C, where it does,

the presented results correspond to the reference year of diagnosis (2005). For sample

size of 200, a large variability in the age-specific predictions was observed especially in

younger ages (below 40) and older ages (above 80). For scenarios A (no effect of year)

and B (proportional effect of year), using the strategy FixedMod, a good agreement

between the mean of the simulations and the true value was observed except for very

young ages where survival tended to be slightly underestimated. In scenario C (time-

dependent effects of age and year of diagnosis plus interaction age × year) there was

a small but systematic bias between the estimated values and the true value.

When not assuming that the type of model is known (BestMod), the agreement be-

tween the mean of simulated values and the true value was lower than when using the

FixedMod strategy. However, the interquartile range of the model-based predictions

was much narrower in the age extremes. Due to small sample sizes, the simplest

model (linear effect of covariates and proportional hazard assumption) was chosen by

the algorithm most of the times: 81.0% (A), 65.6% (B) and 51.4% (C). The results

obtained for samples of size 2000 are presented in the Supplementary Material S3.

As expected, for this sample size, the variability was much lower and the agreement

between the mean and the true values for the BestMod strategy increased.
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3.2.3 Comparison of ASNS estimation approaches

Finally, we aimed at comparing the performance of the classical and the alternative

approaches for each of the model selection strategies. For the classical model-based

approach, whenever there were no observations in a specific age group, the unstan-

dardised net survival was estimated instead. Using the non-parametric estimator,

besides those situations, age-standardised net survival was not possible to calculate

also when there were an insufficient number of events to estimate net survival by age

group at 5-years. Table 1 presents the percentage of samples for which it was possi-

ble to estimate the age-standardised measure. The lowest values were obtained with

the non-parametric estimator when trying to estimate for specific years of diagnosis

(10.3%, 66.7%, 18.5% for scenarios A, B and C, respectively).

For each of the situations studied, the performance measures obtained, namely, bias,

percentage bias, empirical coverage probability and RMSE, are presented in Table

2. Model convergence was attained for all samples, except on scenario B (FixedMod)

where convergence was attained for 98.6% of the samples. In general, bias in the

estimation of age-standardised net survival was lower when the type model that best

described the data was assumed to be known (FixedMod). When estimating net

survival for the all period of diagnosis, the bias obtained with the classical and the

alternative approaches were similar. But, when estimating for smaller sets, that is,

for a specific year of diagnosis, the bias achieved with the alternative approach was

in general lower than with the classical one. The empirical coverage probability was

inside the expected range for scenarios A and C, except when using the classical

approach in situation B-BestMod, where it was 91.9%. For scenario B, all values were

below the expected, ranging from 88.9% to 91.5%. There were no major differences
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between the values of RMSE obtained for the classical and alternative approaches

for all scenarios and model choosing strategies. The values estimated for 2001 with

the PP estimator presented in general higher bias and higher RMSE than the model-

based results, but the empirical coverages were similar. These results for samples of

n = 2000 are presented as Supplementary Material S3.

4 Trends in age-standardised net survival from vagina

cancer

To illustrate the application of the proposed method and compare it with the estab-

lished methods, the estimation of age-standardised net survival was performed for a

real dataset of vagina cancer patients diagnosed in the North region of Portugal. This

is a rare cancer topography with less than 15 new cases per year diagnosed in the

region considered.

4.1 Data and methods description

The data were extracted from RORENO. All patients diagnosed with vagina cancer

(ICD10: C52) in the period 2001-2010 and followed-up until the end of 2015, with

residence in the area covered by the registry were considered for analysis. A total

of 122 cases were considered eligible. After excluding patients with unknown age or

unknown survival time, 116 patients were included in the analysis. The median age

at diagnosis (P25-P75) was 68 (56-77).

The objective of the analysis was to estimate age-standardised net survival by year

86



Estimation of age-standardised net survival 19

of diagnosis. Net survival was estimated by age group, considering the same five age

groups described in the simulation study. Age-standardisation was calculated as the

weighted sum of the age group specific survivals using the ICSS weights described in

section 2.2.

A model building strategy as described in Supplementary Material S2 was followed

to fit a model to the ten-year period, considering age and year of diagnosis as co-

variates. Net survival was then predicted for each individual in the sample using the

fitted model. The age group and year of diagnosis specific net survival was estimated

by averaging the individual predicted survival in each group. For each year of diag-

nosis, when there was at least one observation by age group, age-standardised net

survival was calculated. Otherwise, only unstandardised net survival was calculated

for those years. Furthermore, age-standardised net survival was estimated using the

proposed alternative approach. The reference age considered for each age group was

its mean age for the all ten years period. Non-parametric net survival estimates were

also obtained using Pohar-Perme estimator. Whenever possible, age-standardised net

survival was calculated.

4.2 Results

The final model obtained considered only linear effects of age and year of diagnosis

and assumed proportional hazards for both variables. Using the classical approach it

was only possible to calculate age-standardised net survival for four of the ten different

years of diagnosis. For the years for which it was possible, the difference between the

values obtained by this and by the alternative approaches was minimal. Estimating

year-specific age-standardised net survival using the non-parametric estimator was
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only possible for one of the years. On the contrary, the alternative method allowed

the estimation of survival for all individual years, showing a smooth trend in survival

along the years. The unstandardised net survival was also possible to estimate for all

years but showing an unstable trend overtime (Figure 3).

5 Discussion

When comparing net survival between two populations, it is desirable to have a mea-

sure that produces the same estimate if both populations have the same age-specific

survival. Since age distribution between populations can vary, standardized mea-

sures are used when performing this type of comparisons. However, the commonly

used standardisation methods do not guarantee the correct comparability of survival

between populations. Standardisation is calculated by weight-averaging age group-

specific estimates of survival. The conventional non-parametric and model-based

approaches for estimating those are dependent on the sample age structure within

each age group. This dependence is minimal if age groups are narrow but can have a

non-negligible impact when using broader age classes as the five age groups usually

used in population-based cancer survival analysis. Also, with sparse data, direct stan-

dardisation can be difficult or impossible due to low number of cases/events especially

in the extreme age groups. The aim of this study was to compare the conventional

age standardisation methods with a proposed alternative approach where age group-

specific survival is estimated using external weights.

We first studied the performance of the proposed approach in the unrealistic assump-

tion that the model that best described the full population was known. Forcing a
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relatively complex model to be fitted to small datasets led to unstable model-based

predictions, especially in younger ages (below 40) and older ages (above 80). Allowing

a different model to be selected for each sample based on a backward elimination al-

gorithm retaining only the significant effects, resulted in narrower interquartile ranges

of age-specific survival predictions. This was mainly due to the selection in a consid-

erable proportion of cases of a simple proportional hazards model with linear effect

of age. The sharp asymmetrical distribution of age-specific predicted survivals in

extreme age groups, especially in scenario B, led to higher deviation between the

simulated mean and the true value. Using samples of larger size, the variability in

the prediction was much smaller as well as the difference between the simulated mean

and true (population) values.

The proposed alternative approach, using an external standardisation complemen-

tary to the conventional external standardisation using the Corazziari weights aimed

at solving two issues of the classical approach. Lack of observations in specific age

groups and differences in age-standardised net survival between populations, with

the same survival function, induced by variations in age distribution. The simulation

results shown that the variability of the results obtained with the classical and the

alternative approaches did not differ much. This variability has two sources: variabil-

ity of the model fitted to the data; variability due to variations in age distribution.

The alternative approach eliminates the second but not the first source. If the model

fitted is then used to predict survival in subsets of data as by year of diagnosis in our

study, the advantage in terms of variability using the alternative approach is more

evident. Nonetheless, in all the situations the proposed method allows estimating

survival for any subset even if there are none or low number of cases in specific age

groups while using the classical approach this was possible in less than 50% of the
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situations and using the non-parametric estimator this percentage dropped to less

than 20%.

The practical application presented further illustrated the advantages of the proposed

approach. With this, it was possible to estimate an age-standardised measure for all

years of diagnosis of interest while using the classical model-based method it was only

possible for less than half of the years and using the Pohar-Perme just for 10%. To

obtain more non-parametric estimates, we had to combine adjacent age groups.

In the proposed approach, age group-specific estimates were obtained from model-

based predictions at reference ages. In the simulation study performed, these corre-

sponded to the age population mean for each age group. In real-life applications, this

mean would be unknown. Other alternative ways of estimating survival for each age

group could be thought. Using the mean of each age class, an average of age-specific

survival within age group or the use of any standard population externally defined are

possible alternatives. In the SUDCAN study, Uhry and colleagues (Uhry et al. (2017))

used model-based predictions to estimate year- and country-specific age-standardised

net survival. Prior to the usual external age-standardisation using the ICSS weights,

the age class-specific survival was calculated by averaging the annual age-specific net

survivals predicted from the model using the age weights within the age-class as ob-

served over the entire data (country and site specific). By fixing the age structure,

this approach had the purpose of preventing variations in ASNS estimates induced

by age distribution changes over time within the age groups (especially in the older

ones). Our approach sets a fixed age-structure also by considering a reference age for

each age group, constant over time, suitable even when the number of observations in

the entire data is sparse in extreme age groups. Also, we used five groups since it is

the most common in international survival studies De Angelis et al. (2014); Allemani
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et al. (2015, 2018). The ICSS also defines weights for 5-year age groups. This would

be suitable for model-based predictions but not for non-parametric estimation. The

use of narrower age groups would increase the frequency of the issues we are trying

to solve, namely, the low number of cases by age group. Model-based estimation

can be an alternative to non-parametric estimators but have also its difficulties. A

correctly specified model can be difficult to fit and also it relies in more assumptions

than non-parametric estimation.

The issue of age-standardisation has been addressed in this study in the context of

sparse data. The question of what is the best method to age-standardise an age

dependent measure can however be addressed on a broader context of large sam-

ples. In either contexts, the standardisation should guarantee that the standardise

measure does not depend on the internal age structure. Two aspects need to be

considered when choosing a standardisation method: how to discretize the age distri-

bution and how to estimate age group-specific survival. Age groups can be wider or

narrower (eventually individual ages). Age group-specific survivals can be estimated

non-parametrically or parametrically. In the last case, different alternatives for the

point(s) for which survival is predicted can be considered. Further studies are needed

to evaluate the different approaches in terms of their performance.
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Figure 1: Age-standardised net survival by period of diagnosis (scenarios A, B, C) -

predictions using population model.
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Table 1: Percentage of samples for which it was possible to estimate age-standardised

net survival (n = 200).

Scenarios 2001-2010 2001

classical PP classical PP

A 100.0 99.9 70.8 10.3

B 100.0 100.0 88.5 66.7

C 100.0 99.9 45.4 18.5
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Model fitted to samples of n = 200
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Estimation of age-standardised net survival with sparse data:

taking advantage of regression models.

Supplementary Material S1: Estimation of age-standardised net survival

variance

Age-standardised net survival (ASNS) is calculated as a weighted average of age

group specific net survivals (NSj(t)):

ASNS(t) =
k∑

j=1

wj ·NSj(t)

where k is the number of age groups considered and wj are the respective weights

(
∑
wj = 1).

The age group specific net survival is obtained by averaging the individual NS pre-

dictions (Si(t)):

NSj(t) =
1

nj

nj∑

i=1

Si(t)

where nj is the number of patients in age group j.

The individual net survivals are obtained by integrating the excess hazard function:

Si(t) = exp

{
−
∫ t

0

λEi(u)du

}

We assumed a general flexible parametric model for the excess hazard function with a

B-spline function for the log-baseline hazard, J variables with a time fixed-effect (X =

{X1, X2, · · · , XJ}) and L variables with a time-dependent effect (Z = {Z1, Z2, · · · , ZL}):

λEi(t, β) = exp




D∑

d=1

βd ·Bsplined(t)
︸ ︷︷ ︸

log-baseline hazard

+
J∑

j=1

βj ·Xj

︸ ︷︷ ︸
time-fixed effect

+
L∑

l=1

Zl ·
(

D∑

d=1

βld ·Bsplined(t)
)

︸ ︷︷ ︸
time-dependent effect




= exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · Zl
)
·Bsplined(t) +

J∑

j=1

βj ·Xj

)
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The vectors X and Z can share common covariates or interactions between covariates.

The age-standardised net survival is thus given by:

ASNS(t, β) =
k∑

j=1

wj ·NSj(t, β)

=
k∑

j=1

(
wj ·

1

nj

nj∑

i=1

Si(t, β)

)

=
k∑

j=1

(
wj
nj
·
nj∑

i=1

Si(t, β)

)

The variance of the age-standardised net survival can be obtained using the delta

method1:

V AR
(
ASNS(t, β̂)

)
=

[
∂ASNS(t, β)

∂β

]

β=β̂

×
[
V AR(β̂)

]
×
[
∂ASNS(t, β)

∂β

]T

β=β̂

where

[
∂ASNS(t, β)

∂β

]
=

[
∂

∂β

k∑

j=1

(
wj
nj
·
nj∑

i=1

Si(t, β)

)]
=

[
k∑

j=1

(
wj
nj
·
nj∑

i=1

∂Si(t, β)

∂β

)]

So, to estimate the variance of the age-standardised net survival at a specific time t1,

considering a model with a total of P (= J + L + D) parameters, it is necessary to

solve the following product of matrices:

V AR(ASNS(t, β)) =

[
∂(ASNS(t,β))

∂β1
(t1) ∂(ASNS(t,β))

∂β2
(t1) . . . ∂(ASNS(t,β))

∂βP
(t1)

]
×

1 Delta method

V AR(g(X)) =

(
∂g(X)

∂X

)2

· V AR(X)

If dimension of X is greater than 1:

V AR(g(X)) =

[
∂g(X)

∂X

]
× [V AR(X)]×

[
∂g(X)

∂X

]T
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×




V AR(β1) COV (β1, β2) . . . COV (β1, βP )

COV (β2, β1) V AR(β2) . . . COV (β2, βP )

...
...

. . .
...

COV (βP , β1) COV (βP , β2) . . . V AR(βP )




×

×
[
∂(ASNS(t,β))

∂β1
(t1) ∂(ASNS(t,β))

∂β2
(t1) . . . ∂(ASNS(t,β))

∂βP
(t1)

]T

The partial derivatives of the survival function with respect to each regression pa-

rameter of the time-fixed effects are given by:

∂Si(t, β)

∂βk
=

=
∂

∂βk

(
exp

{
−
∫ t

0

λEi(u, β)du

})

=
∂

∂βk

(
exp

{
−
∫ t

0

exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

})

= Si(t, β) · ∂

∂βk

{
−
∫ t

0

exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

}

= −Si(t, β) ·
∫ t

0

∂

∂βk

{
exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

}

= −Si(t, β) ·
∫ t

0

Xk · λEi(u, β)du

With respect to each regression parameter of the baseline hazard, the derivatives are
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given by:

∂Si(t, β)

∂βdk
=

=
∂

∂βdk

(
exp

{
−
∫ t

0

λEi(u, β)du

})

=
∂

∂βdk

(
exp

{
−
∫ t

0

exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · Zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

})

= −Si(t, β) ·
∫ t

0

∂

∂βdk

{
exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · Zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

}

= −Si(t, β) ·
∫ t

0

Bsplinedk(u) · λEi(u, β)du

And with respect to each regression parameter of the time-dependent effect are given

by:

∂Si(t, β)

∂βlk
=

=
∂

∂βlk

(
exp

{
−
∫ t

0

λEi(u, β)du

})

=
∂

∂βlk

(
exp

{
−
∫ t

0

exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · Zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

})

= −Si(t, β) ·
∫ t

0

∂

∂βdk

{
exp

(
D∑

d=1

(
βd +

L∑

l=1

βld · Zl
)
·Bsplined(u) +

J∑

j=1

βj ·Xj

)
du

}

= −Si(t, β) ·
∫ t

0

Bsplinelk(u) · Zlk · λEi(u, β)du

Using again the delta method, the variance of the log(−log(ASNS)) is given by:

V AR
(
log(−log(ASNS(t, β)))

)
=

[
∂

∂β

(
log(−log(ASNS(t, β)))

)]

β=β̂

×
[
V AR(β̂)

]
×
[
∂

∂β

(
log(−log(ASNS(t, β)))

)]T

β=β̂
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where

[
∂

∂β

(
log(−log(ASNS(t, β)))

)]
=




∂
∂β

(
ASNS(t,β)

)

ASNS(t,β)

log(ASNS(t, β))


 =




∑k
j=1

(
wj
nj
·∑nj

i=1
∂Si(t,β)
∂β

)

ASNS(t, β) · log(ASNS(t, β))




So,

V AR
(
log(−log(ASNS(t, β)))

)
=

V AR(ASNS(t, β))

ASNS(t, β)2 · log(ASNS(t, β))2

Assuming normality of log(−log(ASNS)), the confidence interval for the age-standardised

net survival (ASNS) is given by:

CI100(1−α)% :exp
(
−exp

(
log(−log(ASNS))± Zα/2 · σ̂log(−log(ASNS))

))

exp

(
−exp

(
log(−log(ASNS))± Zα/2 ·

σ̂ASNS
ASNS · log(ASNS)

))
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Estimation of age-standardised net survival with sparse data:

taking advantage of regression models.

Supplementary Material S2: Model selection algorithm

In the second modelling strategy used in the simulation study, a backward model-

building algorithm based on the one proposed by Wynant and Abrahamowicz (Wynant

and Abrahamowicz (2014)) was used.

In scenario A no effect of year of diagnosis was considered. The list of potential

models from which the final model was selected was:

MA1 log[λE(a, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3 + a · f(t)

MA2 log[λE(a, t)] = log(λ0(t)) + a+ a · f(t)

MA3 log[λE(a, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3

MA4 log[λE(a, t)] = log(λ0(t)) + a

where a represents age (centred and scaled) and k is a fixed knot.

Model-building strategy:

i Test linearity of age assuming time-dependent effect and test time-dependent

effect assuming non-linearity of age by comparing MA1/MA2 (p-value → p12)

and MA1/MA3 (p-value → p13), using likelihood ratio tests:

ii If p12 < α and p13 < α, choose MA1.

iii If p12 > p13 and p12 ≥ α, test time-dependent effect assuming linearity of age by

comparing MA2/MA4 (p-value → p24):
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• if p24 ≥ α, choose MA4;

• if p24 < α, choose MA2.

iv If p13 > p12 and p13 ≥ α, test linearity of age assuming proportional hazards by

comparing MA3/MA4 (p-value → p34):

• if p34 ≥ α, choose MA4;

• if p34 < α, choose MA3.

In scenario B and C, a linear effect of year of diagnosis was always considered. Time-

dependent effect of year and interaction between age and year were considered in the

list of potential models from which the final model was selected:

M1 log[λE(a, y, t)] = log(λ0(t))+a+a2+a3+I(a > k)·(a−k)3+y+a∗y+(a+y)·f(t)

M2 log[λE(a, y, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3 + y+ (a+ y) · f(t)

M3 log[λE(a, y, t)] = log(λ0(t))+a+a2+a3+I(a > k) ·(a−k)3+y+a∗y+(a) ·f(t)

M4 log[λE(a, y, t)] = log(λ0(t))+a+a2+a3+I(a > k) ·(a−k)3+y+a∗y+(y) ·f(t)

M5 log[λE(a, y, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3 + y + a ∗ y

M6 log[λE(a, y, t)] = log(λ0(t)) + a+ y + a ∗ y + (a+ y) · f(t)

M7 log[λE(a, y, t)] = log(λ0(t)) + a+ y + a ∗ y + (a) · f(t)

M8 log[λE(a, y, t)] = log(λ0(t)) + a+ y + a ∗ y + (y) · f(t)

M9 log[λE(a, y, t)] = log(λ0(t)) + a+ y + a ∗ y

M10 log[λE(a, y, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3 + y + (a) · f(t)
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M11 log[λE(a, y, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3 + y + (y) · f(t)

M12 log[λE(a, y, t)] = log(λ0(t)) + a+ a2 + a3 + I(a > k) · (a− k)3 + y

M13 log[λE(a, y, t)] = log(λ0(t)) + a+ y + (a+ y) · f(t)

M14 log[λE(a, y, t)] = log(λ0(t)) + a+ y + (a) · f(t)

M15 log[λE(a, y, t)] = log(λ0(t)) + a+ y + (y) · f(t)

M16 log[λE(a, y, t)] = log(λ0(t)) + a+ y

The model-building strategy used in these scenarios was as follows:

i Test interaction between age and year of diagnosis by comparing models M1/M2

(p12):

• if p12 < α, choose models with interaction.

• if p12 ≥ α, choose models without interaction.

ii Test time-dependent effect of year, assuming time-dependent effect of age (M1/M3

or M2/M10), test time-dependent effect of age, assuming time-dependent effect of

year (M1/M4 or M2/M11) and test non-linearity of age assuming time-dependent

effect of age (M1/M6 or M2/M13);

• If all effects are significant, choose model M1 (interaction) or model M2 (no

interaction);

• If any p− value ≥ α, remove least significant effect;

iii Continue removing the least significant effects of the successively simpler models

until finding a model with only significant effects;
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iv The simplest possible model assumes linear effect of age and year of diagnosis and

proportional hazards of both variables.
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Estimation of age-standardised net survival with sparse data:

taking advantage of regression models.

Supplementary Material S3: Results for samples n = 2000
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Figure 1: Predicted survival by age: a) Scenario A; b) Scenario B; c) Scenario C.

Model fitted to samples of size n = 2000
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3.2 Study II: Socioeconomic inequalities in survival from can-

cer

No inequalities in survival from colorectal cancer by education and socioeconomic

deprivation - a population-based study in the North Region of Portugal, 2000-2002

Luis Antunes, Denisa Mendonça, Maria José Bento, Bernard Rachet

BMC Cancer 2016 16:608

Survival from cancer has been shown to be frequently associated to socioeconomic

factors. Although most of the published studies point to a more favourable prognosis to

less deprived patients, there are also some studies that did not find any association. In

this study, an evaluation of the association of socioeconomic status of cancer patients

with their survival from the disease was for the first time in Portugal performed. The

study focused on colorectal cancer patients diagnosed in the period 2000-2002 in the

North region of Portugal.

Area-based variables were used for the attribution of socioeconomic condition. A single

indicator (education) and a composite index (European Deprivation Index) were used

as socioeconomic variables. The geographical unit considered was the section tract

(Secção estatı́stica). All the patient’s addresses were geocoded and after matched with

the relevant census area using a Geographical Information System.

Age-standardised net survival was estimated using the Pohar-Perme non-parametric

estimator, by socioeconomic group, stratifying by sex. Excess hazard ratios were

estimated using flexible parametric models, considering time-dependent effects of the

socioeconomic variable.

In this study, general life tables were used since no deprivation-specific life tables were

available at the time the study was performed. Subsequent sensitivity analysis to so-

cioeconomic differences in background mortality was performed. Although some cancer

survival inequalities were found for men when using general lifetimes, the sensitivity

analysis showed that small deprivation gaps in background mortality cancelled out the
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inequalities observed in the survival from the disease.

Next, the resulting manuscript of this study is presented. This has been published in BMC

Cancer in 2016.



RESEARCH ARTICLE Open Access

No inequalities in survival from colorectal
cancer by education and socioeconomic
deprivation - a population-based study in
the North Region of Portugal, 2000-2002
Luís Antunes1,2,3, Denisa Mendonça4,5, Maria José Bento1,2,6 and Bernard Rachet7*

Abstract

Background: Association between cancer survival and socioeconomic status has been reported in various countries
but it has never been studied in Portugal. We aimed here to study the role of education and socioeconomic
deprivation level on survival from colorectal cancer in the North Region of Portugal using a population-based
cancer registry dataset.

Methods: We analysed a cohort of patients aged 15–84 years, diagnosed with a colorectal cancer in the North
Region of Portugal between 2000 and 2002. Education and socioeconomic deprivation level was assigned to
each patient based on their area of residence. We measured socioeconomic deprivation using the recently
developed European Deprivation Index. Net survival was estimated using Pohar-Perme estimator and age-adjusted
excess hazard ratios were estimated using parametric flexible models. Since no deprivation-specific life tables
were available, we performed a sensitivity analysis to test the robustness of the results to life tables adjusted
for education and socioeconomic deprivation level.

Results: A total of 4,105 cases were included in the analysis. In male patients (56.3 %), a pattern of worse 5- and 10-year
net survival in the less educated (survival gap between extreme education groups: -7 % and -10 % at 5 and
10 years, respectively) and more deprived groups (survival gap between extreme EDI groups: -5 % both at 5 and 10 years)
was observed when using general life tables. No such clear pattern was found among female patients. In both
sexes, when likely differences in background mortality by education or deprivation were accounted for in the
sensitivity analysis, any differences in net survival between education or deprivation groups vanished.

Conclusions: Our study shows that observed differences in survival by education and EDI level are most likely
attributable to inequalities in background survival. Also, it confirms the importance of using the relevant life
tables and of performing sensitivity analysis when evaluating socioeconomic inequalities in cancer survival.
Comparison studies of different healthcare systems organization should be performed to better understand its
influence on cancer survival inequalities.
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* Correspondence: bernard.rachet@lshtm.ac.uk
7Cancer Survival Group, London School of Hygiene and Tropical Medicine,
Keppel Street, London WC1E 7HT, UK
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Antunes et al. BMC Cancer  (2016) 16:608 
DOI 10.1186/s12885-016-2639-9

115



Background
Colorectum is the second most common cancer site in
the North Region of Portugal, only surpassed by prostate
in men and breast in women [1]. Age-standardized inci-
dence rates of both colon and rectal cancers have been
recently rising in this region of Europe and are predicted
to continue rising, at least until 2020 [2, 3]. Five-year sur-
vival from colorectal cancer (CRC) in Portugal was gener-
ally higher than in Eastern European countries, the UK,
Denmark and Spain, and lower than in The Netherlands,
France, Italy and the Nordic countries among others [4].
Association between survival from colon or rectal

cancer and socioeconomic status (SES) has been repeat-
edly reported in various countries [5, 6]. Socioeconomic
condition can be attributed to each patient using individ-
ual measures [7–9]. However, population-based cancer
registries rarely collect individual data on socioeconomic
factors. Alternatively, ecological (area-based) measures are
used [10–12]. Although not reflecting the individual con-
dition of each patient, ecological measures are informative
enough to evaluate the association between SES and
survival from cancer, as long as the population size of
the areas considered is sufficiently small and homoge-
neous relatively to the SES measure [13]. The SES can
be measured using single indicators (e.g., income, edu-
cation) [9, 14] or composite indices (e.g., Townsend,
Indices of Multiple Deprivation) [10, 11, 15]. Because
the large number of different indicators found in the
literature can hamper comparisons between studies, a
new ecological socioeconomic deprivation index (European
Deprivation Index – EDI) has been recently developed for
several European countries (Portugal, Spain, France,
Italy, England), based on the same methodology across
all countries [16]. The index is derived from country-
specific census variables that are most associated with
the variables of the survey European Union-Statistics
on Income and Living Conditions EU-SILC [17].
Independently of the SES measure, patients with a

lower SES are generally found to present a worse sur-
vival compared to patients with a higher SES. Potential
reported causes for SES inequalities in survival include
variations in stage of disease at presentation, type of
treatment delivered or patient characteristics [6, 18].
The National Health Service (SNS) functions in

Portugal since 1979 and aims to provide the population
with complete and high-quality care, independently of
their social or economic condition. Cancer patients
were totally exempt of paying moderating fees until the
end of 2011. In an evaluation of the Portuguese situ-
ation regarding CRC, Pinto and colleagues suggested
that one of the major problems in the management of
the diagnosis and treatment of colorectal cancer pa-
tients were regional disparities in access to health [19].
However, to the best of our knowledge, socioeconomic

inequalities in cancer survival in Portugal have not been
assessed yet.
In the present study we aimed at evaluating the associ-

ation between up-to-10-year survival from colorectal
cancer and two indicators: the recently developed area-
based socioeconomic indicator EDI and education level
based on census information. We used population-based
data from the North Region Cancer Registry of Portugal
(RORENO).

Methods
Cancer registry
Cancer data were provided by RORENO, a population-
based cancer registry established in 1988. The analyses
were performed according to RORENO guidelines en-
suring the anonymity of the information used. Its catch-
ment area corresponds to the North Region of Portugal,
with 3.2 million inhabitants (around 30 % of the national
population). All incident cancer cases occurring in the
area were recorded by the registry either directly from
the main public hospitals through a web-based platform,
or based on the hard copies of the medical reports for
the private hospitals and pathology laboratories. Regis-
tration quality follows IARC rules [20].

Data
We considered for analysis all malignant, invasive tu-
mours of the colon and rectum (ICD-10 [21] codes
C18-20) diagnosed in adults resident in the North Re-
gion of Portugal in the period 2000 to 2002. For pa-
tients diagnosed with more than one tumour during
the study period, only the first primary tumour contrib-
uted to the analysis. Follow-up of each patient was both
active (by contacting the institutions where the patient
was diagnosed and/or treated) and, when necessary,
passive (by obtaining the vital status from the National
Health Service database or the Civil Registration Of-
fices). The end of follow-up was 31st December 2012,
allowing over 10 years of potential follow-up for all pa-
tients. Because 10-year net survival is meaningless for
very old patients, the study was restricted to patients
aged 15 to 84 years.

Education and EDI level
No information on education or other SES indicator at
individual level is systematically registered by cancer
registries in Portugal. Education level and the socioeco-
nomic deprivation index (EDI) were assigned to each
patient based on their census area of residence at diag-
nosis. When not available, patient’s address was com-
pleted using the National Health Service database. The
residence of each patient was geocoded using a web-
based service [22] and then confirmed manually. The co-
ordinates of each patient’s address were then matched
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with the relevant census area using a Geographical In-
formation System (Arc GIS 10.2).
Education level was measured as the proportion of

inhabitants in each census area aged 15 years or plus
with at least 9 years of education (compulsory level of
education in Portugal until 2009). This information was
retrieved from the 2001 national census and the census
area (in Portuguese: secção estatística) corresponds to
the area of a census taker [23] (median population size:
665; range: 13 – 3123; number of sections: 4651). Edu-
cation level was then categorized in five levels accord-
ing to the quintiles of the regional distribution of all
area-level education proportions. The distribution was
weighted by the population size in each census area so
that each level corresponds to 20 % of the total popula-
tion (and not to 20 % of the number of sections). The
first category corresponds to the census areas with the
lowest proportion of residents with at least the compul-
sory level of education (proportion lower than 18.0 %)
and the fifth category to areas with the highest propor-
tion (proportion equal or higher than 48.9 %). The EDI
was attributed to the census areas and categorized in
five groups from q1 (the most deprived) to q5 (the least
deprived).

Statistical analysis
Age distribution between groups was compared using
Kruskall-Wallis or Mann–Whitney non parametric tests,
as applicable. Survival time was considered as the time
between diagnosis and death from any cause or end of
study period, whichever occurred first. Up-to-10-year
net survival was estimated using the Pohar-Perme non-
parametric estimator [24]. Net survival is the survival
that would be observed if cancer was the only possible
cause of death and can be interpreted as the survival
from the cancer. To this purpose, it accounts for the
other causes of death or expected mortality. Within the
relative survival setting, i.e., when the individual cause of
death is not reliably known, the background or ex-
pected mortality is provided by life tables for the gen-
eral population, here of the North Region of Portugal.
The tables were built by the Cancer Survival Group
(London School of Hygiene and Tropical Medicine) for
the CONCORD-2 programme [25], using a multivari-
able flexible Poisson model [26]. The population and
death counts to derive the life tables were provided by
the national statistics office (Statistics Portugal). Life
tables were stratified by sex, single year of age and
calendar year.
Excess (i.e., cancer-related) hazards of death are also of

interest. Univariable excess hazard models were used to
test significance of potential prognostic variables (sex,
age group, cancer site). Multivariable flexible parametric
models [27] were used to estimate the hazard ratios of

excess mortality for education and EDI levels, adjusted
for potential confounders. Men and women were ana-
lysed separately. Education level and deprivation were
kept in the model as categorical variables. Different
models for the effect of age on the excess hazard were
tested, considering age as categorical or continuous vari-
able, with possible non-linear effect using restricted
cubic splines. Time-dependent effects for age, education
and EDI level were tested. The model with the lowest
Akaike Information Criterion (AIC) was chosen.
All analyses were performed using STATA commands

stns [28] and stpm2 [29]. Results were considered statis-
tically significant for p-value < 0.05.

Sensitivity analysis
Socioeconomic condition can affect the mortality of a
cancer patient from both their cancer and other causes.
Assessing socioeconomic inequalities in cancer survival
should therefore account for socioeconomic differences
in mortality from other causes (the expected or back-
ground mortality) [30]. Ignoring such differences leads
to over-estimate the inequalities in cancer survival. Since
no education-specific neither EDI-specific life tables are
available in Portugal, we performed a sensitivity analysis
to test the robustness of the results to the choice of the
life tables. We built a series of hypothetical SES-specific
life tables for Portugal according to various scenarios of
inequalities in background mortality. Under the worst
case scenario, we mimicked the wide gap in background
mortality observed between socioeconomic categories in
England, as illustrated by the English (2001) deprivation-
specific life tables (http://csg.lshtm.ac.uk/). We further
refer to this scenario as S5, and the scenario with no gap
as S0. The worst case scenario (S5) corresponded to a
difference in life expectancy between extreme groups of
7.7 years in men and of 4.1 years in women. In scenario
S4, we reduced the difference in background mortality
between SES groups by 20 %, obtaining a gap in life ex-
pectancy of 6.2 and 3.3 years in men and women, re-
spectively. We continue reducing the gap in 20 % steps
to produce the other life table sets (S3, S2, S1 with cor-
responding differences in life expectancy at 4.6, 3.1 and
1.5 years in men, and 2.5, 1.7 and 0.8 years in women)
until the gap vanishes (S0). We then re-ran the survival
analysis using each of these life tables.

Results
We identified 4,243 cases of colorectal cancer eligible
for analysis over the period 2000-2002. After excluding
cases with missing information on their vital status at
the end of follow-up (n = 113) or on their residence ad-
dress (n = 25), 4,105 cases (96.7 %) were included in the
analysis (Table 1). More than half (56.3 %) were male.
Distribution of age at diagnosis was similar in both sexes
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(median 68 years, interquartile range 59-74). Colon can-
cer patients represented nearly two thirds of the cases
(64.0 %) and were slightly older than rectal cancer pa-
tients (median 68 versus 67 years, p-value = 0.002). The
proportion of colorectal cancer patients increased to-
wards the more educated groups. The distribution of pa-
tients by EDI level was in the opposite direction, with a
higher proportion in the more deprived groups. Median
age ranged from 67 to 68 years in the highest and least
educated groups (p-value = 0.176), and from 66 to
68 years between the least and most EDI deprived
groups (p-value = 0.056).
Net survival at 1, 5 and 10 years since diagnosis was

81.5 % (95%CI: 80.3–82.8), 57.5 % (95%CI: 55.7–59.3)
and 51.6 % (95%CI: 49.4–53.8), respectively. No sig-
nificant differences in net survival were found by sex
(p-value = 0.460) or cancer site (p-value = 0.209). Net
survival was significantly lower in elderly patients
(aged 75-84 years) than in the youngest age group (p-
value < 0.001) while no significant differences were
found among all other age groups. This pattern was
similar in both genders and for both cancer sites (data
not shown).
For male patients, 1-year net survival estimated using

general life tables was similar across education categor-
ies, ranging from 80 % to 83 % (Table 2). However, there
was an education-related pattern for longer-term sur-
vival. The gap in 5- and 10-year survival widened
(Fig. 1a), with differences between the two extreme edu-
cation groups at 7 % and 10 %, respectively. The gradi-
ent in net survival by EDI category was not as clear as
by education quintile (Fig. 1b). Nevertheless, male pa-
tients coming from the least deprived group presented

Table 1 Description of the cases included in the analysis
stratified by sex

Variable Male Female

n % n %

All 2310 100 1795 100

Age group

15–44 114 4.9 125 7.0

45–54 268 11.6 209 11.6

55–64 548 23.7 364 20.3

65–74 876 37.9 616 34.3

75–84 504 21.8 481 26.8

Education level

Higher education 516 22.3 434 24.2

q4 543 23.5 422 23.5

q3 475 20.6 366 20.4

q2 400 17.3 328 18.3

Lower education 376 16.3 245 13.6

EDI

Least deprived 377 16.3 289 16.1

q4 403 17.4 310 17.3

q3 459 19.9 334 18.6

q2 490 21.2 393 21.9

Most deprived 581 25.2 469 26.1

Cancer site

Colon 1421 61.5 1206 67.2

Rectum 889 38.5 589 32.8

Table 2 Net survival by education and EDI level at 1, 5 and 10 years after diagnosisa

Male Female

1-year 5-years 10-years 1-year 5-years 10-years

% 95 % CI % 95 % CI % 95 % CI % 95 % CI % 95 % CI % 95 % CI

Education level

Higher education 81 77 – 85 61 56 – 66 56 49 – 62 82 78 – 85 59 53 – 64 57 50 – 63

q4 80 77 – 84 59 54 – 64 52 46 – 58 83 79 – 86 54 49 – 60 50 44 – 56

q3 82 78 – 86 56 50 – 61 47 40 – 54 83 79 – 87 57 51 – 63 55 48 – 61

q2 82 78 – 86 55 50 – 61 46 39 – 53 85 80 – 89 65 59 – 71 56 48 – 63

Lower education 83 79 – 87 54 48 – 60 46 39 – 53 73 68 – 79 51 44 – 58 46 38 – 54

EDI

Least deprived 81 77 – 85 60 54 – 66 53 46 – 60 83 78 – 88 60 54 – 67 58 50 – 65

q4 80 76 – 84 58 52 – 64 57 49 – 64 79 74 – 83 60 53 - 66 53 46 – 60

q3 82 78 – 85 59 54 – 65 48 41 – 54 81 77 – 86 56 50 – 62 49 42 – 56

q2 80 77 – 84 56 51 – 62 46 40 – 53 84 80 – 88 56 50 – 61 52 45 – 58

Most deprived 84 80 – 87 55 50 – 60 48 41 – 54 80 76 – 84 57 52 – 62 54 48 – 60
aNet survival estimated using general life tables
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at 5 and 10 years a better net survival than patients
coming from the most deprived groups.
By contrast, the pattern in survival across the five edu-

cation levels was not gradual among women (Fig. 2a).
Female patients coming from areas with the lowest edu-
cation level presented always the lowest net survival over
time. However, net survival hardly differed between the
other education groups. Female net survival was also
very similar between EDI groups, and not even the most
deprived group detached from the remaining (Fig. 2b).
Age-standardization of net survival estimates did not
modify the survival pattern between education and EDI
groups (Additional file 1: Table S1).
Adjusted excess hazard ratios (EHR) were computed

from flexible parametric models with time-dependent

effects for age and education and for age and EDI. We
first used general life tables (i.e., not SES-specific). For
male patients, the model confirmed the trend in increas-
ing age-adjusted excess hazard across the education
groups, more marked at longer term (Table 3). The ex-
cess hazard of death became significantly higher in the
lowest educated group than in the highest educated (ref-
erence) group at 5 years (EHR = 1.40; 95 % CI: 1.06–
1.84) and at 10 years (EHR = 1.51; 95 % CI: 1.08–2.11).
For female patients, although the excess hazard in the
lowest educated group was higher than the reference
group, no statistically significant differences were found
at 5 and 10 years since diagnosis (Table 3).
For male patients, the age-adjusted excess hazards for

the more deprived groups were almost always higher

Fig. 1 Net survival for male patients: a by group of education level and b by EDI group (general Life Tables)
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than the one observed for the reference group (least de-
prived). However, the EDI-related pattern of changes in
excess hazard ratios was not as clear as with education.
Again, no clear association between EDI and excess haz-
ard was found among women.
To evaluate the sensitivity of the results, the excess

hazard ratios by education and EDI level were re-
estimated using different sets of life tables.
Overall, among men, the effect of education level vari-

able was no longer significant in the excess hazard
model as soon as fairly small inequalities in background
mortality were considered (scenario S2). Figure 3 pre-
sents the excess hazard ratios at 5 (Fig. 3a) and 10
(Fig. 3b) years since diagnosis for the lowest education

group, compared to the highest education group. Excess
hazard at 5 and 10 years remained significantly different
between the two extreme education groups only for nar-
row disparities in background mortality of the general
population (scenarios S0 and S1). The excess hazard at
10 years of the least educated group was 51 % higher
than the excess hazard of the group with highest educa-
tion when using general life tables (S0). This difference
reduced to 11 % when considering the English gap in
background mortality (S5). For the EDI (Fig. 4a), the ex-
cess hazard ratio at 5 years between the most deprived
group and the least deprived one reduced from 1.25 (S0)
to less than one (S5). A similar behaviour was observed
at 10 years (Fig. 4b).

Fig. 2 Net survival for female patients: a by education level and b by EDI group (general Life Tables)
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Among women, as expected, the initial lack of inequal-
ities observed with the general life tables remained for
all scenarios (Additional file 2: Figures S1, S2).

Discussion
When the expected (or background) mortality of the
cancer patients was provided by general life tables, net
survival from colorectal cancer tended to decrease with
decreasing education level in men. These inequalities
however occurred only for long-term survival, i.e., at 5
and 10 year since diagnosis. No clear gradient was ob-
served for women, in spite of a general worse survival in
the less educated group.
Inequalities in survival were in general smaller by EDI

level than by education. This was true for both genders.
General life tables assume that the patients have the

same (age-, sex- and calendar year-specific) expected
mortality, regardless their education or EDI level, which
is unlikely. It may result in an overestimation of the sur-
vival gap [30], in particular as time since diagnosis is in-
creasing, as illustrated by our results. In the absence of
education-specific or EDI-specific life tables in Portugal,
we performed a sensitivity analysis, using hypothetical
life tables adjusted for the respective SES measure. This
analysis revealed that differences in expected mortality
reduced considerably the observed inequalities in net
survival. Fairly small education-related differences in ex-
pected mortality (scenario S2 – Fig. 3a) were sufficient
to cancel the inequalities in net survival between edu-
cation groups initially observed (S0). Scenario S2 cor-
responds to a difference in life expectancy as small as
3.1 years between the most educated and least edu-
cated categories in the general population, a difference
which is likely to underestimate the real disparities in

background mortality between socioeconomic or edu-
cation groups in Portugal (i.e., still to overestimate the
cancer survival gap). The gap in life expectancy in that
scenario is for example smaller than the difference
(3.6 years) observed between the North Region and the
Portuguese islands (Madeira and Azores) [31], where
the lowest life expectancy at birth in Portugal is ob-
served. Disparities in background mortality are plaus-
ible since there is also strong evidence of worse health
status in more deprived classes. Higher prevalence of
cardiovascular disease, stroke, ischemic heart disease,
hypertension, diabetes, obesity and low physical in-
activity has been associated with lower socioeconomic
status in Portugal [32]. In the Metropolitan Area of
Porto, increased early mortality rates have been shown
in more deprived parishes [33].
Although the general conclusions were similar, results

obtained with education and EDI differed. The analysis
of the area typology reveals that education level seems
to be more related to a rural/urban distinction than EDI.
While about 40 % of the patients coming from the least
educated areas live in rural areas, only 13 % of the pa-
tients living in the more deprived areas correspond to
rural zones. Since the major treatment centres are in
urban areas, this suggests that the least educated pa-
tients have a worse accessibility to treatment centres.
This is in accordance with Pinto et al. [19] that identified
regional disparities in access to health care facilities as
one of the major problems in the management of diag-
nosis and treatment of colorectal cancer patients.
Differential participation rate in screening programmes

by socioeconomic condition is a source of inequalities in
survival. In the region considered in this study however,
no organized CRC screening programme existed during

Table 3 Excess Hazard Ratio estimates (and 95 % Confidence Intervals) by education level and EDI (adjusted for age)a

Male Female

1-year 5-years 10-years 1-year 5-years 10-years

HR 95 % CI HR 95 % CI HR 95 % CI EHR 95 % CI EHR 95 % CI EHR 95 % CI

Education level

Higher education 1 1 1 1 1 1

q4 1.10 0.88 – 1.36 1.16 0.89 – 1.50 1.18 0.86 – 1.62 1.04 0.83 – 1.32 1.21 0.92 – 1.59 1.29 0.90 – 1.83

q3 1.15 0.92 – 1.43 1.27 0.97 – 1.65 1.32 0.95 – 1.82 1.02 0.81 – 1.30 1.05 0.78 – 1.41 1.06 0.73 – 1.55

q2 1.13 0.90 – 1.42 1.27 0.97 – 1.67 1.34 0.96 – 1.87 0.84 0.65 – 1.09 0.88 0.64 – 1.21 0.90 0.60 – 1.35

Lower education 1.16 0.92 – 1.46 1.40 1.06 – 1.84 1.51 1.08 – 2.11 1.33 1.03 – 1.71 1.27 0.93 – 1.75 1.25 0.83 – 1.87

EDI

Least deprived 1 1 1 1 1 1

q4 1.20 0.93 – 1.53 0.93 0.68 – 1.26 0.84 0.58 – 1.22 1.15 0.87 – 1.52 1.05 0.75 – 1.48 1.01 0.65 – 1.55

q3 1.04 0.81 – 1.33 1.07 0.80 – 1.43 1.08 0.76 – 1.55 1.10 0.83 – 1.44 1.26 0.91 – 1.74 1.33 0.88 – 2.01

q2 1.19 0.94 – 1.51 1.30 0.98 – 1.71 1.34 0.95 – 1.88 1.06 0.81 – 1.39 1.14 0.83 – 1.57 1.18 0.79 – 1.76

Most deprived 1.14 0.90 – 1.43 1.25 0.96 – 1.64 1.30 0.93 – 1.82 1.15 0.89 – 1.48 1.02 0.75 – 1.40 0.97 0.65 – 1.45
aExcess hazard ratios estimated using general life tables
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the period of diagnosis analysed, neither is yet imple-
mented at the present. In Portugal, an official pilot CRC
screening programme was initiated in 2009 in the centre
region. In 2014, CRC screening programmes covered
only 3.7 % of the Portuguese population [34]. Participa-
tion in opportunistic screening remained also low: a
questionnaire study performed in Porto municipality in
2009 showed that about two thirds of the inquired
(mean age 60 years-old) had never performed any type

of CRC screening exam [35]. This study found no asso-
ciation between the knowledge of CRC risk factors and
education level.
The association between CRC and socioeconomic fac-

tors has been evaluated in different countries with differ-
ent health care systems [5, 6]. Some methodological
differences in published studies can be pointed out. First,
socioeconomic condition is defined either at individual
level [7–9] or using an ecological measure [11, 12, 14].

Fig. 3 Sensitivity analysis – Excess Hazard Ratios for the least educated group (compared with most educated group) at a 5 years and b 10 years
since diagnosis (male patients)
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Second, the metric to measure socioeconomic condition
varies. Third, the outcome used is not homogeneous.
Overall [36–38], cancer-specific [39, 40] or relative sur-
vival [7, 9, 41] have been used as outcome measures.
Beyond these differences, most studies found an associ-
ation between socioeconomic condition and survival
from colorectal cancer.
A Danish study found a lower relative survival at 1

and 5 years for colon and rectum cancer patients with

basic or high school, relatively to patients with voca-
tional or higher education, for both genders [7]. Im-
proved survival for more highly educated men was
observed in Sweden for both colon and rectum cancers,
compared with men with less than 9 years of completed
education, while for women this difference was observed
only for colon cancer [8]. Another study in Sweden
found also a clear pattern of better survival for more
highly educated groups [9]. Socioeconomic inequalities

Fig. 4 Sensitivity analysis – Excess Hazard Ratios for the most deprived group (compared with least deprived group) at a 5 years and b 10 years
since diagnosis (male patients)
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in colon and/or rectum cancer survival have also been
found in England [11] and Japan [12]. Gorey and co-
workers evaluated the association between income and
colon cancer survival in San Francisco (US) and Toronto
(Canada) [36]. Survival in San Francisco was signifi-
cantly worse among people living in lower-income
neighbourhoods. For Toronto though, no association
was found between income and survival. Systemic
health care issues, such as different health insurance
coverage, were pointed out as the most plausible expla-
nations for their findings. By contrast, still in the US,
no evidence of racial (very much associated with SES in
the US) inequalities were found within the Veterans
Administration system in the US, a health care system
with universal access [42]. Other studies found no asso-
ciation between socioeconomic condition and cancer
outcome when comparing patients that had been
offered treatment of the same type and same quality
[43, 44]. In France, a small association was found be-
tween material deprivation and colorectal cancer sur-
vival [10]. However, the deprivation gap might have
been overestimated since no deprivation-specific life
tables were used. Other studies were inconclusive be-
cause they were based on overall survival or relative
survival without deprivation-specific life tables [14, 37, 45].
Contrarily to these studies, we took in consideration
the impact of plausible disparities in background mor-
tality. The universal access nature of our healthcare sys-
tem and the existence of a major public cancer
reference centre which treats an important proportion
of cancer patients of the north region could help ex-
plain the lack of association found between SES and
survival. Nevertheless, further studies are needed to
better understand between countries differences in the
patients’ pathway and healthcare organization that explain
the existence or not of cancer survival inequalities.
Net survival was estimated in this study using the

recently proposed estimator by Pohar-Perme [24].
This is an unbiased non-parametric estimator of the
quantity of interest [46], when high quality informa-
tion on cause of death is not available. Cancer data
were provided by a population-based cancer registry
(RORENO) that has been shown to have high com-
pleteness [47].
This study has some limitations that should be

pointed out. We used area-based variables due to the
absence of individual information. This can lead to
some dilution of the effect. The education and the EDI
levels attributed to each patient represent though the
environment of his/her residence and not necessarily
the individual condition. Furthermore, many other
studies on the association between SES and survival
from cancer have used ecological socioeconomic indi-
ces and still were able to find significant associations

[11, 12, 14]. It has been shown that the size of the geo-
graphic unit is a key element for detecting inequalities
[13]. The geographic unit we used to attribute the edu-
cation level to each patient had a median population
of 660 inhabitants, which correspond to a size compar-
able or lower than what has been used in those other
similar studies. Another limitation of the study is the
lack of information on stage of disease at diagnosis.
Also information on comorbidities and treatment was
not available.
Education level was measured as the proportion of

individuals with at least nine years of education, i.e.,
the compulsory level of education in Portugal until re-
cently. We have also used four years of education as
cut-off, since this was the former compulsory level of
education, and the results were similar (data not
shown).
Patients analysed in this study were diagnosed in the

period 2000-2002 which allowed for a long-term
follow-up. These years correspond though to a period
well before the economic crisis that began in 2008 and
which affected Europe and particularly south European
countries including Portugal. The National Health Ser-
vice has been subject in recent years to budgetary con-
straints which may have led to inequalities in access to
healthcare. Evaluations similar to the one presented in
this study should be performed in the near future to
access the impact of recent health policies in cancer
survival inequalities. Other cancer sites should be ana-
lysed also to confirm, or not, the findings in this study.
The EDI is a recently developed indicator of socioeco-

nomic deprivation. For Portugal the main variables used
in the construction of this index were overcrowding, no
indoor flushing, education, unemployment and not own-
ing a house, reflecting though different domains of
deprivation. Our study is one of the first studies to use
this index. It would be interesting to compare SES in-
equalities in cancer survival across countries using this
same index.

Conclusions
To the best of our knowledge, this is the first
population-based study to address the question of so-
cioeconomic inequalities in survival from colorectal
cancer in Portugal. We found some inequalities in net
survival by education level, but less by EDI, when using
general life tables. However, the sensitivity analysis per-
formed showed that these inequalities in cancer sur-
vival were most likely absent and were better explained
by differences in background mortality. Our study con-
firms the importance of using the relevant life tables, or
of performing sensitivity analysis, when evaluating so-
cioeconomic inequalities in cancer survival.
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3.3 Study III: Building deprivation-specific life tables

Deprivation-specific life tables using multivariable flexible modelling - trends from

2000-2002 to 2010-2012, Portugal

Luı́s Antunes, Denisa Mendonça, Ana Isabel Ribeiro, Camille Maringe, Bernard Rachet

(Submitted)

The correct evaluation of net survival by deprivation group demands using deprivation-

specific life tables to correctly adjust for the background mortality. The lack of these

tables for Portugal led to the need of building them. Mortality and population information,

necessary to accomplish this objective, were obtained from the Statistics Portugal officce

(INE). The smallest area for which this information was available, stratified by age group

and sex was parish. All parishes were classified in deprivation quintiles according to the

European Deprivation Index developed for Portugal. Number of deaths and population

of all parishes in the same quintile were summed up. The mortality rates were then

modelled using a multivariable flexible Poisson model. The age dependence was mod-

elled using cubic regression splines. Besides age, deprivation group, calendar period

and interactions age*deprivation, age*period and deprivation*period were considered in

the model. Men and women were modelled separately. Using the predicted mortality

rates from the model, the life tables were built and life expectancy at birth, stratified by

age, sex, deprivation group and calendar period. Mortality rate ratios and corresponding

confidence intervals were obtained from the fitted models. The formulas for calculating

the variance of the model-based predicted mortality rate ratios were derived.

Persistent differences in mortality and life expectancy were observed according to

ecological socioeconomic deprivation. The differences were larger among men and

decreased with age for both sexes. Mortality decreased significantly between the two

periods leading to an improvement in life expectancy between two and three years.

Deprivation gaps in mortality/life expectancy remained nearly constant over the ten-year

period analysed.
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Next, the resulting manuscript of this study is presented.
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Abstract 

Background: Completing mortality data by information on possible socioeconomic inequalities in 

mortality is crucial for policy planning. The aim of this study was to build deprivation-specific life 

tables using the Portuguese version of the European Deprivation Index (EDI) as a measure of area-

level socioeconomic deprivation, and to evaluate mortality trends between the periods 2000-2002 

and 2010-2012. 

Methods: Statistics Portugal provided the counts of deaths and population by sex, age group, 

calendar year and area of residence (parish). A socioeconomic deprivation level was assigned to each 

parish according to the quintile of their national EDI distribution. Death counts were modelled within 

the generalised linear model framework as a function of age, deprivation level and calendar period. 

Mortality Rate Ratios (MRR) were estimated to evaluate variations in mortality between deprivation 

groups and periods. 

Results: Life expectancy at birth increased from 74.0 and 80.9 years in 2000-2002, for men and 

women, respectively, to 77.6 and 83.8 years in 2010-2012. Yet, life expectancy at birth differed by 

deprivation, with, compared to least deprived population, a deficit of about 2 (men) and 1 (women) 

years among most deprived in the whole study period. The higher mortality experienced by most 

deprived groups at birth (in 2010-2012, mortality rate ratios of 1.74 and 1.29 in men and women, 

respectively) progressively disappeared with increasing age. 

Conclusions: Persistent differences in mortality and life expectancy were observed according to 

ecological socioeconomic deprivation. These differences were larger among men and mostly marked 

at birth for both sexes.  

 

Keywords: life-tables, deprivation, multivariable modelling, socioeconomic factors, health 

inequalities.  
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Introduction 

 

Life tables provide information on mortality rates and probabilities of death for specific populations 

defined by geographical regions and/or periods of time. They are important demographic tools as 

they are the basis for the estimation of life expectancy at birth, an important indicator of population 

health and development. Many factors are known to influence overall mortality, such as age, sex, 

geographical region, socioeconomic deprivation or ethnicity 1–4. While the effect of, for example, age 

is largely unavoidable, the gap in mortality due to socioeconomic characteristics could be reduced 

with policies oriented to improve population living conditions and to change the social and economic 

structures 5. 

Many studies showed the existence of socioeconomic inequalities in health outcomes including 

mortality 6–9. These inequalities can result from different lifestyle behaviours, namely, smoking, 

alcohol, physical activity and dietary habits, different health literacy or access to health care, among 

other factors. However, no life tables have been constructed by socioeconomic level in Portugal yet. 

An ecological measure of socioeconomic deprivation, the European Deprivation Index (EDI) 10,11 has 

recently become available in Portugal. The first aim of this study was thus to build deprivation-

specific life tables using the Portuguese version of the EDI. The second aim was to evaluate mortality 

ratios between deprivation groups and trends in inequalities between 2000-2002 and 2010-2012 in 

Portugal. 
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Methods 

 

Socioeconomic deprivation 

The Portuguese version of the European Deprivation Index was used as deprivation indicator. This 

index was built using a methodology first proposed by Pornet and colleagues in 2012 12 and then 

applied to several European countries including Portugal 10,11. The index is based on census variables 

available for each country that are most associated with variables identified from the European 

Union Statistics on Income and Living Conditions (EU-SILC) survey 13. The index for Portugal based on 

2001 census includes percentage of: non-owned households, households without indoor flushing, 

residents with low education level (≤6th grade), household with 5 rooms or less, unemployed looking 

for a job, female residents aged 65 years or more, households without bath/shower and percentage 

of residents employed in manual occupations 11. A score was obtained for each parish based on the 

census responses of its inhabitants. This score was then categorized in five quintiles from the least 

deprived (q1) to the most deprived (q5) such that each quintile corresponded to 20% of the 

Portuguese population. Each deceased was assigned with the deprivation quintile corresponding to 

his/her parish of residence at the time of death.  

 

Mortality and population data 

Mortality rates in life tables require counts of deaths (numerator of the rates) and population 

(denominator) stratified by demographic variables (age, sex, others). This information is usually 

made available by the national statistics offices. The number of deaths by sex, age group (0, 1-4, 5-9, 

…, 85+), year of death and area of residence (parish) was obtained by special request to the Statistics 

Portugal (Instituto Nacional de Estatística). As common practice, to increase estimates’ stability, 

three years of data were considered centred on each census year for which the life tables were 
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estimated (2000-2002 and 2010-2012). Population data was retrieved from the Statistics Portugal 

website (www.ine.pt). Number of residents by sex, age group (0, 1-4, 5-9, …, 85+) and parish was 

only available for census years (2001, 2011) so that the population was considered constant over the 

three years of each studied period. There were 4,241 parishes in Portugal in 2001, with a median 

population of 969 inhabitants (min-max: 39-81,845), while in 2011 this number increased to 4,260 

(median population: 892, min-max: 31-66,250).  

In this study, both the numbers of deaths and people (residing in the parishes) were summed up 

across the parishes for each period by sex, age group and level of deprivation. 

 

Statistical analysis 

When at subnational level, the counts of deaths and population produced by the national statistics 

offices are often available only by age groups (e.g. abridged) rather than by single years of age (e.g. 

complete) 14. Several methods for building complete life tables from abridged data have been in use, 

namely, Elandt–Johnson, Kostaki, Brass logit, and Akima spline methods 15. More recently, Rachet 

and colleagues 14 suggested a modelling approach to estimate smoothed mortality rates using 

flexible Poisson multivariable models. Death counts are modelled in the generalised linear model 

framework, considering a Poisson error and using splines to capture the effect of age. This method 

can use complete or abridged raw data allowing the estimation of complete life tables. This type of 

models was considered recommendable because it derives robust and unbiased estimates without 

making strong assumptions about age-specific mortality profiles. Also, a simulation study has shown 

that this method had better goodness of fit performance than other implemented methods 14. The 

age-group specific death counts were here modelled within this generalised linear model framework, 

considering a Poisson error with a log link function. The offset was considered the person-years at 

risk. Male and female death counts were modelled separately. Covariates considered in the model 
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were age (using the mid-age of each age group), quintile of deprivation (dep), period (2000-2002 vs 

2010-2012) and interactions between deprivation and age, deprivation and period and period and 

age. The model can be written as: 

log(𝑑𝑎𝑔𝑒,𝑖,𝑗) = 𝛽0 + 𝑓(𝑎𝑔𝑒) + ∑ 𝛽𝑑𝑖
∙ 𝑑𝑒𝑝𝑖

5

𝑖=2

+ 𝑔1(𝑎𝑔𝑒 ∗ 𝑑𝑒𝑝𝑖) 

+ 𝛽𝑝𝑒𝑟𝑗
⋅ 𝑝𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑔2(𝑎𝑔𝑒 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑗) + ∑ 𝛽𝑑𝑒𝑝_𝑝𝑒𝑟𝑘

∙ 𝑑𝑒𝑝𝑘 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑗

5

𝑘=2

+ log(𝑝𝑦𝑟𝑠𝑎𝑔𝑒,𝑖,𝑗), 

 

where dage,i,j denotes the number of deaths and pyrsage,i,j the number of person-years at risk for each 

age, deprivation group i and period j. The functions f, g1 and g2 represent restricted cubic splines. The 

knots positions were fixed a priori at ages 0, 1, 2 and 88 (for men) or 89 (for women). Although 

Rachet and colleagues considered further five knot positions selected from a set of 100 randomly 

simulated locations, here, we opted to consider knots at ages 10 to 50 at 10 years intervals since the 

other approach produced unrealistic predicted values. From these predefined knots position, the 

final number of knots was selected based on the Akaike Information Criterion (AIC). 

Mortality rates were predicted from the fitted models by individual year of age (0-99), for each sex, 

period and quintile of deprivation. Life expectancies at birth were calculated from the fitted life 

tables. Mortality rate ratios (MRR) in terms of age were calculated from the predicted mortalities. 

MRR by EDI were calculated using the least deprived group as reference and the MRR by period using 

the period 2000-2002 as reference. The 95% confidence intervals (CI) for MRR were built assuming a 

normal distribution of log MRR and using the delta method. The derivations of the expressions for 

the CIs are presented as Supplementary Material (S1).  

All calculations were performed using STATA v13.1 and R v3.4.0. The STATA command mvrs was used 

for fitting the flexible Poisson model 16.  
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Results 

 

In the period 2000-2002 a total of 316,714 deaths were observed from which 219 (0.07%) were 

excluded due to unknown parish of residence at the time of death. In the period 2010-2012, the total 

number of deaths was 316,410 and only 75 deaths (0.02%) were excluded due to unknown parish or 

unknown age. 

Both deprivation and period were found statistically significantly associated with mortality and all 

final fitted models included interactions between age and deprivation, period and age and period 

and deprivation, which were also found to be statistically significant. Higher mortality rates 

increasing with higher deprivation levels and decreasing with time periods were observed. The 

predicted mortality rates by age, sex, period and deprivation quintiles are presented in 

Supplementary Tables S1 to S4 and in Figure 1 and Figure 2. For all combinations period-sex-EDI 

analysed, the mortality rate first decreased with age reaching a minimum around 8-10 years-old and 

then steadily increased with age. For all deprivation quintiles q2 to q5, the mortality rates were in 

general significantly higher than the mortality rates of the least deprived group (q1) (Figure 3). In 

men, at birth, the MRR between the most and the least deprived group was 1.62 (95%CI: 1.54-1.70) 

and 1.74 (95%CI: 1.65-1.83) in periods 2000-2002 and 2010-2012, respectively. The MRRs decreased 

with age and from age 81 onwards the ratio was no longer significantly different from 1 in the first 

period and from age 93 onwards for the most recent period (Figure 3, top). In women, the MRRs 

were lower than the ones observed for men: at birth, the MRR between the two extreme deprivation 

groups was 1.26 (1.18-1.35) and 1.29 (1.20-1.38) in 2000-2002 and 2010-2012, respectively. The 

MRRs decreased with age but remained always significantly above one (Figure 3, bottom). A 

reduction in the mortality rates was observed from the period 2000-2002 to the most recent period, 

2010-2012. This reduction was significant for all ages (Figure 4) and for both men and women. 
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However, it was observed that the relative decrease in mortality was between 40% and 60% in less 

than 40 year olds but only 20% in older ages (over 60 year old) in men. This age gradient in the 

relative decrease between the two periods is less marked in women. For men, the reduction of 

mortality over time was less favourable for the most deprived group. 

Life expectancy at birth increased from 74.0 years in 2000-2002 to 77.6 years in 2010-2012 in men 

and from 80.9 to 83.8 years in women. The gap in life expectancy at birth between the least and the 

most deprived group for men in the first period was 1.8 years. This gap slightly increased, over the 

ten-year period, to 2.1 years. For women, a smaller gap in life expectancy compared to men was 

observed. In 2000-2002 it was 1.0 year and it remained almost nearly constant over time (0.9 years in 

2010-2012). The gap in life expectancy at 65 years was lower than at birth in both sexes. For men: 0.3 

and 0.7 years for 2000-2002 and 2010-2012, respectively. In women, it was 0.5 years for both 

periods.  

 

Discussion 

 

Persistent differences in mortality and life expectancy were observed according to ecological 

socioeconomic deprivation. These differences were larger among men and decreased with age for 

both sexes. Although mortality decreased significantly between the two periods, the deprivation 

gaps in mortality/life expectancy remained nearly constant from the period 2000-2002 to 2010-2012. 

The smaller socioeconomic inequalities in mortality found in women have also been observed in 

other countries 17–19. Several factors can contribute for this different pattern, including health 

behaviours and occupation. According to the last national health surveys made in Portugal, the 

prevalence of smoking was higher in men with low socioeconomic status while in women the 

prevalence was higher among individuals of high socioeconomic status 20. Ribeiro and colleagues 21 
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found no influence of deprivation on longevity after 75 for men and a weak association for women in 

Portugal. We observed here a decrease in the mortality rate ratios between deprivation groups with 

age. Similarly to Ribeiro and colleagues findings, the difference between mortality rates ceased to be 

significant after ages around 80 years in men, while in women a slight but still significant difference 

remained at all ages.  

Richardson and colleagues analysed the evolution in regional gap in life expectancy at birth from 

1991 to 2008 within European Union countries 22. No reduction in life expectancy gaps over the two 

decades analysed was observed, similarly to what has been observed in this study.  

EUROSTAT publishes estimates of life expectancy by age, sex and educational attainment level for 

several countries of the European Union including Portugal 23. The difference in the estimates of life 

expectancy at birth between the two extreme education groups, “Less than primary”, “primary and 

lower secondary education” and “Tertiary education”, presents a high variability between countries. 

While this difference, for males in 2011, was 19.3 years in Czech Republic, it was as low as 3.6 years 

in Turkey. In Portugal, this gap was 4.5 years, the third lowest within the 17 EU countries with 

published information. For women, the gaps were generally lower, ranging from 1.7 (Italy and Malta) 

to 8.7 years (Bulgaria). In Portugal it was 2.0 years. The smaller gap for women is in accordance with 

our findings. While we found smaller gaps between extreme deprivation groups, this can be justified 

by our use of an ecological indicator versus the individual information on education used by 

EUROSTAT. The use of an ecological index can introduce some dilution effect due to the 

socioeconomic heterogeneity within the geographical regions considered. Nevertheless, we used the 

smallest geographical area for which mortality data stratified by age groups and sex are available. 

In this study we used a modelling approach to predict the mortality rate profiles by age. The flexible 

Poisson models have already been shown useful and valid to build life tables. They were used to 

build region-specific life tables within the CONCORD study 24 and by region, deprivation and ethnicity 
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in England 4,25 . The multivariable model allowed incorporating the deprivation and period effects, as 

well as interactions between them and with age, in a single model. Also it allowed obtaining 

complete life tables from abridged raw data. 

Inference based on model predictions must have in consideration the correlation between the 

estimated parameters of the model. Ignoring this dependence and using the classical variance 

formulas as if the predicted values were observed ones would result in an underestimation of the 

confidence intervals range. We thus derived and presented the variance estimators for the model-

based mortality rate ratios taking into account this dependence. 

This study is very relevant for the surveillance and monitoring of health inequalities, but it is 

important to highlight that these specific life tables are crucial tools to obtain reliable estimates of 

cancer survival within the relative survival data setting. In this setting, information on the cause of 

death is not available or not reliable. The disease-related survival (net survival) is then obtained 

indirectly by comparing the all-cause mortality of the cohort of patients with the mortality that 

would be experienced by individuals with the same demographic characteristics but free of the 

disease 26. The information on this expected (also called background) mortality is obtained from 

population life tables, assuming that the mortality due to the disease in question is negligible 

relatively to the overall mortality 27. To obtain valid net survival estimates, the population mortality 

should correctly reflect the expected mortality for each patient. The use of general life tables in the 

estimation of net survival for subgroups of the population with different overall mortality can lead to 

biased estimates of net survival. Estimation of net survival by deprivation is a situation where the use 

of general life tables can lead to overestimation of net survival in affluent groups, if these groups 

have a lower overall mortality than the general population, and the underestimation of net survival 

in the deprived groups, if these groups have a higher mortality than the general population 28,29. 
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These questions arise also when stratifying by other factors that can influence overall mortality such 

as ethnicity 30. 

 

Conclusion 

 

In conclusion, this study has shown the existence of persistent socioeconomic inequalities in overall 

mortality in Portugal. Deprivation-specific life tables were built for Portugal. These life tables can 

therefore be used for monitoring inequalities and in future studies that require background mortality 

information in the estimation of deprivation-specific net survival from any specific disease. 
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Figures 

 

Figure 1 – Predicted mortality rates (log scale) according to quintiles of socioeconomic deprivation 

2000-2002 for Men (top) and Women (bottom). 

 

Figure 2 – Predicted mortality rates (log scale) according to quintiles of socioeconomic deprivation 

2010-2012 for Men (top) and Women (bottom). 

 

Figure 3 – Mortality Rate Ratio as function of age between deprivation quintiles q2, q3, q4 and q5 

and least deprived quintile (q1) for Men (top) and Women (bottom). 

 

Figure 4 – Mortality Rate Ratio as function of age between period 2010-2012 and 2000-2002 

(reference) according to deprivation quintile for men (left) and women (right). 
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Figure 1 – Predicted mortality rates (log scale) according to quintiles of socioeconomic deprivation 

2000-2002 for Men (top) and Women (bottom). 
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Figure 2 – Predicted mortality rates (log scale) according to quintiles of socioeconomic deprivation 

2010-2012 for Men (top) and Women (bottom). 
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Figure 3 – Mortality Rate Ratio as function of age between deprivation quintiles q2, q3, q4 and q5 

and least deprived quintile (q1) for Men (top) and Women (bottom). 
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Figure 4 – Mortality Rate Ratio as function of age between period 2010-2012 and 2000-2002 

(reference) according to deprivation quintile for men (left) and women (right). 

 

FCUP and ICBAS 153
Statistical models in cancer survival

Application to study of prognostic factors in the presence of incomplete data



Deprivation-specific life tables using multivariables flexible modelling - trends

from 2000-2002 to 2010-2012, Portugal

Luis Antunes, Denisa Mendonça, Ana Isabel Ribeiro, Camille Maringe, Bernard Rachet

Supplementary Material S1

Estimation of confidence intervals for model-based predicted mortality rate

ratios

Considering a GLM model with Poisson error for the number of deaths by age, deprivation

quintile and period:

log(dage,i,j) = β0 + f(age) +
5∑

k=2

βdk · depk + g1(age ∗ depi) + βperiodj · periodj+

+

5∑

k=2

βdep periodk · periodj ∗ depk + g2(age ∗ periodj) + log(pyrsage,i,j)

Reference categories:

Deprivation: first quintile (least deprived)

Period: 2000-02

Considering linear interaction between age and deprivation:

g1(age ∗ depi) =
5∑

i=2

βage depi · age ∗ depi

Considering interaction of period with splines for age with 1 internal knot:

g2(age ∗ periodj) = βperiod age1 · (periodj ∗ age)S + βperiod age2 · v(periodj ∗ age),

where (periodj∗age)S represents the standardised period∗age variable and v(periodj∗age)
represents the orthogonalised spline basis.

Mortality rate:

log(Rage,i,j) = β0 + f(age) +

5∑

k=2

βdk · depk + g1(age ∗ depi) + βperiodj · periodj+

+
5∑

k=2

βdep periodk · periodj ∗ depi + g2(age ∗ periodj)
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where

log(Rage,i,j) = log(dage,i,j)− log(pyrsage,i,j) = log

(
dage,i,j

pyrsage,i,j

)

Mortality rate ratio between two different deprivation groups, same period:

log

(
Rage,i=a,j
Rage,i=b,j

)
=

= β0 + f(age) + βdi=a
+ βage dep=a · age+ βperiodj · periodj + βdep period=a · periodj+

+ g2(age ∗ periodj)−

[β0 + f(age) + βdi=b
+ βage dep=b · age+ βperiodj · periodj + βdep period=b · periodj+

+ g2(age ∗ periodj)] =

= βdi=a
+ βage dep=a · age+ βdep period=a · periodj − (βdi=b

+ βage dep=b · age+ βdep period=b · periodj)

= (βdi=a
− βdi=b

) + (βage dep=a − βage dep=b) · age+ (βdep period=a − βdep period=b) · periodj

Calculate Confidence Interval assuming normality of log(RR).

The variance of the log(RR) can be estimated using the delta method:

V AR[log(RR)(β)] '
[
∂log(RR)

∂β

]

β=β̂

× V AR[β̂]×
[
∂log(RR)

∂β

]T

β=β̂

[
∂log(RR)

∂β

]

β=β̂

=
[
1 −1 age −age period −period

]

V AR[β̂] =




V AR[βdi=a ] COV [βdi=a , βdi=b ] · · · ·
· V AR[βdi=b ] · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · COV [βdep period=b, βdep period=a] V AR[βdep period=b]




The 95% confidence interval for the mortality rate ratio is then given by:

exp

[
log

(
Rage,i=a,j
Rage,i=b,j

)
± 1.96×

√
V AR[log(RR)]

]

Considering that the deprivation group i = b is the reference group, the expressions above

simplify to:
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log

(
Rage,i=a,j
Rage,i=b,j

)
=

= βdi=a
+ βage dep=a · age+ βdep period=a · periodj

[
∂log(RR)

∂β

]

β=β̂

=
[
1 age period

]

V AR[β̂] =




V AR[βdi=a
] COV [βdi=a

, βage dep=a] ·
· V AR[βage dep=a] ·
· COV [βage dep=a, βdep period=a] V AR[βdep period=a]




Mortality rate ratio between two different periods (period = 1/period = 0), same depri-

vation group:

log

(
Rage,i,j=1

Rage,i,j=0

)
=

= β0 + f(age) + βdi + βage dep=i + βperiod1 + βdep period=i1 + g2(age ∗ period1)−

− (β0 + f(age) + βdi + βage dep=i + g2(age ∗ period0)) =

= βperiod1 + βdep period=i1 + g2(age ∗ period1)− g2(age ∗ period0)

Assuming only one knot for the interaction age*period as stated above:

log

(
Rage,i,j=1

Rage,i,j=0

)
= βperiod1 + βdep period=i1 + βperiod age1 · ((period1 ∗ age)S − (period0 ∗ age)S) +

+ βperiod age2 · (v(period1 ∗ age)− v(period0 ∗ age))

Again, the variance of the log(RR) can be estimated using the delta method:

V AR[log(RR)(β)] '
[
∂log(RR)

∂β

]

β=β̂

× V AR[β̂]×
[
∂log(RR)

∂β

]T

β=β̂

[
∂log(RR)

∂β

]

β=β̂

=
[
1 1 (period1 ∗ age)S − (period0 ∗ age)S v(period1 ∗ age)− v(period0 ∗ age)

]
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V AR[β̂] =




V AR[βperiod1 ] COV [βperiod1 , βdep period=i1] · ·
· V AR[βdep period=i1] · ·
· · · ·
· · COV [βperiod age2 , βperiod age1 ] V AR[βperiod age2 ]




The 95% confidence interval for the mortality rate ratio is then given by:

exp

[
log

(
Rage,i,j=1

Rage,i,j=0

)
± 1.96×

√
V AR[log(RR)]

]

157



m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

0 496,1 75,1 628,8 74,0 638,1 73,8 712,8 73,6 802,9 73,3

1 72,8 74,5 92,0 73,5 93,4 73,3 104,2 73,1 117,1 72,9

2 40,5 73,5 51,0 72,5 51,8 72,3 57,7 72,2 64,7 72,0

3 32,3 72,6 40,6 71,6 41,2 71,4 45,8 71,2 51,4 71,0

4 26,7 71,6 33,5 70,6 34,0 70,4 37,8 70,3 42,3 70,1

5 23,0 70,6 28,8 69,6 29,2 69,4 32,3 69,3 36,1 69,1

6 20,5 69,6 25,6 68,7 26,0 68,5 28,7 68,3 32,0 68,1

7 19,0 68,6 23,7 67,7 24,0 67,5 26,5 67,3 29,5 67,1

8 18,3 67,7 22,8 66,7 23,1 66,5 25,5 66,4 28,3 66,2

9 18,4 66,7 22,8 65,7 23,1 65,5 25,5 65,4 28,2 65,2

10 19,2 65,7 23,7 64,7 24,1 64,5 26,5 64,4 29,3 64,2

11 20,8 64,7 25,7 63,7 26,1 63,5 28,6 63,4 31,6 63,2

12 23,4 63,7 28,8 62,8 29,2 62,5 32,0 62,4 35,3 62,2

13 27,0 62,7 33,1 61,8 33,6 61,6 36,8 61,5 40,5 61,3

14 31,7 61,7 38,9 60,8 39,5 60,6 43,1 60,5 47,4 60,3

15 37,8 60,8 46,2 59,8 46,9 59,6 51,1 59,5 56,1 59,3

16 45,3 59,8 55,2 58,8 56,1 58,6 61,0 58,5 66,8 58,4

17 54,2 58,8 65,9 57,9 66,9 57,7 72,7 57,6 79,5 57,4

18 64,3 57,8 78,0 56,9 79,2 56,7 85,9 56,6 93,8 56,4

19 75,2 56,9 91,0 56,0 92,4 55,8 100,0 55,7 109,1 55,5

20 86,0 55,9 103,7 55,0 105,4 54,8 113,9 54,7 124,0 54,5

21 95,6 55,0 115,1 54,1 117,0 53,9 126,2 53,8 137,1 53,6

22 103,8 54,0 124,6 53,1 126,6 52,9 136,4 52,8 147,9 52,7

23 110,3 53,1 132,1 52,2 134,3 52,0 144,4 51,9 156,3 51,8

24 115,3 52,1 137,8 51,3 140,0 51,1 150,3 51,0 162,5 50,8

25 119,0 51,2 141,9 50,3 144,2 50,1 154,5 50,1 166,8 49,9

26 121,9 50,3 144,9 49,4 147,3 49,2 157,6 49,1 169,8 49,0

27 124,2 49,3 147,4 48,5 149,8 48,3 160,0 48,2 172,1 48,1

28 126,7 48,4 149,9 47,5 152,4 47,3 162,5 47,3 174,4 47,2

29 129,7 47,4 153,1 46,6 155,6 46,4 165,7 46,4 177,6 46,3

30 133,9 46,5 157,7 45,7 160,3 45,5 170,4 45,4 182,3 45,3

31 139,9 45,6 164,3 44,8 167,0 44,6 177,2 44,5 189,3 44,4

32 147,7 44,6 173,0 43,8 175,9 43,6 186,3 43,6 198,7 43,5

33 157,3 43,7 183,9 42,9 187,0 42,7 197,7 42,7 210,5 42,6

34 168,9 42,8 196,9 42,0 200,2 41,8 211,3 41,8 224,6 41,7

35 182,2 41,8 212,0 41,1 215,5 40,9 227,2 40,9 241,0 40,8

36 197,5 40,9 229,1 40,1 233,0 40,0 245,1 39,9 259,6 39,9

37 214,4 40,0 248,2 39,2 252,4 39,1 265,1 39,0 280,3 39,0

38 232,9 39,1 268,9 38,3 273,5 38,2 286,8 38,1 302,7 38,1

39 252,7 38,2 291,0 37,4 296,0 37,3 309,9 37,2 326,5 37,2

40 273,3 37,2 314,0 36,5 319,4 36,4 333,8 36,4 351,1 36,3

41 294,3 36,4 337,3 35,7 343,1 35,5 358,0 35,5 376,0 35,4

42 315,7 35,5 360,9 34,8 367,1 34,6 382,4 34,6 400,9 34,6

43 337,5 34,6 384,9 33,9 391,5 33,7 407,2 33,7 426,1 33,7

44 359,8 33,7 409,3 33,0 416,4 32,9 432,3 32,9 451,7 32,8

45 382,8 32,8 434,5 32,2 442,0 32,0 458,1 32,0 477,8 32,0

46 406,8 31,9 460,5 31,3 468,6 31,1 484,9 31,2 504,8 31,1

47 432,0 31,1 487,9 30,4 496,4 30,3 512,9 30,3 533,1 30,3

48 458,9 30,2 517,0 29,6 526,0 29,4 542,5 29,5 562,9 29,5

49 487,8 29,3 548,2 28,7 557,8 28,6 574,4 28,6 595,0 28,6

Table S1 - Life tables by deprivation quintile (1-Least deprived) for men in the period 2000-2002 (m_x - 

mortality rate; e_x - life expectancy at age x).

age
EDI = 1 EDI = 2 EDI = 3 EDI = 4 EDI = 5
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m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

50 519,3 28,5 582,2 27,9 592,4 27,7 609,0 27,8 629,7 27,8

51 554,0 27,6 619,5 27,1 630,4 26,9 647,0 26,9 667,9 27,0

52 592,2 26,8 660,7 26,2 672,4 26,1 688,9 26,1 709,9 26,1

53 634,4 25,9 706,0 25,4 718,6 25,2 735,0 25,3 756,2 25,3

54 681,1 25,1 756,1 24,6 769,6 24,4 785,8 24,5 807,1 24,5

55 732,6 24,2 811,3 23,8 825,8 23,6 841,9 23,7 863,2 23,7

56 789,6 23,4 872,3 22,9 887,9 22,8 903,7 22,9 925,0 22,9

57 852,7 22,6 939,6 22,1 956,6 22,0 971,9 22,1 993,1 22,1

58 922,6 21,8 1014,1 21,3 1032,4 21,2 1047,3 21,3 1068,3 21,3

59 1000,0 21,0 1096,5 20,6 1116,4 20,4 1130,5 20,5 1151,2 20,6

60 1085,8 20,2 1187,7 19,8 1209,3 19,6 1222,6 19,7 1242,9 19,8

61 1181,1 19,4 1288,8 19,0 1312,3 18,9 1324,5 19,0 1344,2 19,0

62 1287,0 18,6 1400,9 18,2 1426,5 18,1 1437,4 18,2 1456,3 18,3

63 1404,7 17,9 1525,3 17,5 1553,3 17,4 1562,5 17,5 1580,3 17,5

64 1535,7 17,1 1663,4 16,8 1694,0 16,6 1701,3 16,7 1717,7 16,8

65 1681,5 16,4 1816,9 16,0 1850,4 15,9 1855,3 16,0 1870,0 16,1

66 1844,1 15,6 1987,6 15,3 2024,4 15,2 2026,3 15,3 2038,9 15,4

67 2025,3 14,9 2177,6 14,6 2218,1 14,5 2216,5 14,6 2226,5 14,7

68 2227,7 14,2 2389,3 13,9 2433,9 13,8 2428,1 13,9 2434,8 14,0

69 2453,7 13,5 2625,3 13,2 2674,4 13,1 2663,6 13,2 2666,4 13,3

70 2706,4 12,8 2888,5 12,6 2942,7 12,5 2925,9 12,6 2924,0 12,7

71 2989,0 12,2 3182,3 11,9 3242,2 11,8 3218,4 12,0 3210,8 12,1

72 3305,4 11,5 3510,5 11,3 3576,8 11,2 3544,6 11,3 3530,2 11,4

73 3659,8 10,9 3877,4 10,7 3950,8 10,6 3908,8 10,7 3886,2 10,8

74 4057,1 10,3 4287,8 10,1 4369,2 10,0 4315,5 10,1 4283,3 10,2

75 4502,8 9,7 4747,1 9,5 4837,5 9,4 4770,1 9,5 4726,4 9,7

76 5002,9 9,1 5261,4 9,0 5361,9 8,9 5278,4 9,0 5221,2 9,1

77 5564,6 8,6 5837,7 8,4 5949,5 8,3 5847,2 8,5 5773,9 8,6

78 6195,6 8,0 6483,8 7,9 6608,4 7,8 6483,9 7,9 6391,6 8,0

79 6905,0 7,5 7208,5 7,4 7347,4 7,3 7197,0 7,4 7082,5 7,5

80 7703,0 7,0 8021,7 6,9 8176,8 6,8 7996,1 6,9 7855,4 7,1

81 8600,8 6,5 8934,7 6,4 9107,9 6,4 8891,8 6,5 8720,5 6,6

82 9611,5 6,1 9960,2 6,0 10153,8 5,9 9896,4 6,0 9689,2 6,2

83 10749,7 5,6 11112,4 5,6 11329,0 5,5 11023,5 5,6 10774,2 5,7

84 12032,0 5,2 12407,4 5,2 12650,0 5,1 12288,4 5,2 11990,0 5,3

85 13477,0 4,8 13863,4 4,8 14135,3 4,7 13708,4 4,8 13352,6 4,9

86 15105,9 4,5 15500,8 4,4 15805,7 4,3 15302,9 4,5 14880,3 4,6

87 16942,6 4,1 17342,8 4,1 17685,0 4,0 17093,9 4,1 16593,4 4,2

88 19014,0 3,8 19415,3 3,7 19799,5 3,7 19105,9 3,8 18514,9 3,9

89 21348,6 3,5 21745,7 3,4 22177,2 3,4 21364,8 3,5 20668,5 3,6

90 23972,1 3,2 24358,1 3,1 24842,8 3,1 23892,9 3,2 23074,8 3,3

91 26918,0 2,9 27284,3 2,9 27828,8 2,8 26720,3 2,9 25761,3 3,0

92 30226,0 2,6 30562,1 2,6 31173,7 2,6 29882,2 2,7 28760,5 2,7

93 33940,4 2,4 34233,6 2,4 34920,7 2,3 33418,2 2,4 32108,9 2,5

94 38111,3 2,2 38346,1 2,1 39118,0 2,1 37372,7 2,2 35847,2 2,3

95 42794,8 1,9 42952,8 1,9 43819,8 1,9 41795,2 2,0 40020,6 2,0

96 48053,8 1,7 48112,8 1,7 49086,8 1,7 46741,0 1,7 44679,9 1,8

97 53959,1 1,4 53892,8 1,4 54986,8 1,4 52272,0 1,4 49881,7 1,5

98 60590,1 1,0 60367,1 1,0 61596,0 1,0 58457,5 1,1 55689,1 1,1

99 68036,0 0,5 67619,1 0,5 68999,6 0,5 65375,0 0,5 62172,7 0,5

Table S1 (cont.) - Life tables by deprivation quintile (1-Least deprived) for men in the period 2000-2002 

(m_x - mortality rate; e_x - life expectancy at age x).
EDI = 5

age
EDI = 1 EDI = 2 EDI = 3 EDI = 4
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m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

0 407,7 81,6 429,3 81,0 458,9 80,8 482,9 80,8 515,3 80,6

1 44,1 80,9 46,4 80,4 49,6 80,2 52,1 80,2 55,6 80,0

2 27,8 79,9 29,3 79,4 31,3 79,2 32,9 79,3 35,0 79,1

3 26,5 78,9 27,9 78,4 29,7 78,2 31,2 78,3 33,2 78,1

4 24,3 78,0 25,6 77,5 27,3 77,3 28,7 77,3 30,5 77,1

5 21,9 77,0 23,0 76,5 24,6 76,3 25,7 76,3 27,4 76,2

6 19,5 76,0 20,5 75,5 21,8 75,3 22,9 75,3 24,3 75,2

7 17,3 75,0 18,3 74,5 19,4 74,3 20,3 74,4 21,6 74,2

8 15,6 74,0 16,5 73,5 17,5 73,3 18,3 73,4 19,4 73,2

9 14,4 73,0 15,2 72,5 16,2 72,3 16,9 72,4 17,9 72,2

10 13,8 72,0 14,5 71,5 15,4 71,4 16,1 71,4 17,1 71,2

11 13,7 71,1 14,5 70,6 15,4 70,4 16,0 70,4 17,0 70,2

12 14,2 70,1 15,0 69,6 15,9 69,4 16,6 69,4 17,6 69,3

13 15,2 69,1 16,1 68,6 17,0 68,4 17,7 68,4 18,7 68,3

14 16,7 68,1 17,6 67,6 18,6 67,4 19,4 67,5 20,5 67,3

15 18,6 67,1 19,6 66,6 20,8 66,4 21,6 66,5 22,8 66,3

16 21,0 66,1 22,1 65,6 23,4 65,4 24,3 65,5 25,6 65,3

17 23,7 65,1 25,0 64,6 26,4 64,4 27,4 64,5 28,9 64,3

18 26,7 64,1 28,1 63,6 29,7 63,5 30,8 63,5 32,5 63,3

19 29,7 63,2 31,3 62,7 33,0 62,5 34,2 62,5 36,1 62,4

20 32,4 62,2 34,2 61,7 36,1 61,5 37,3 61,6 39,3 61,4

21 34,6 61,2 36,5 60,7 38,4 60,5 39,8 60,6 41,8 60,4

22 36,1 60,2 38,1 59,7 40,1 59,5 41,5 59,6 43,6 59,4

23 37,1 59,2 39,2 58,7 41,2 58,6 42,6 58,6 44,7 58,5

24 37,7 58,3 39,8 57,8 41,9 57,6 43,2 57,6 45,4 57,5

25 38,1 57,3 40,2 56,8 42,3 56,6 43,6 56,7 45,7 56,5

26 38,4 56,3 40,5 55,8 42,6 55,6 43,9 55,7 46,0 55,5

27 38,9 55,3 41,0 54,8 43,0 54,7 44,3 54,7 46,4 54,6

28 39,6 54,3 41,8 53,9 43,8 53,7 45,1 53,7 47,2 53,6

29 40,9 53,4 43,1 52,9 45,2 52,7 46,5 52,8 48,6 52,6

30 42,9 52,4 45,3 51,9 47,5 51,7 48,7 51,8 50,9 51,6

31 46,0 51,4 48,6 50,9 50,9 50,8 52,2 50,8 54,5 50,7

32 50,3 50,4 53,0 50,0 55,5 49,8 56,9 49,8 59,4 49,7

33 55,7 49,5 58,8 49,0 61,5 48,8 63,0 48,9 65,7 48,7

34 62,5 48,5 65,9 48,0 68,9 47,8 70,5 47,9 73,5 47,8

35 70,6 47,5 74,5 47,0 77,8 46,9 79,5 46,9 82,9 46,8

36 80,0 46,6 84,4 46,1 88,1 45,9 90,0 46,0 93,8 45,8

37 90,7 45,6 95,7 45,1 99,9 44,9 101,9 45,0 106,1 44,9

38 102,5 44,6 108,2 44,2 112,8 44,0 115,0 44,1 119,6 43,9

39 115,0 43,7 121,4 43,2 126,4 43,0 128,8 43,1 133,9 43,0

40 127,6 42,7 134,7 42,3 140,2 42,1 142,8 42,2 148,3 42,0

41 139,6 41,8 147,4 41,3 153,4 41,2 156,1 41,2 162,0 41,1

42 150,9 40,8 159,4 40,4 165,7 40,2 168,4 40,3 174,7 40,2

43 161,4 39,9 170,4 39,4 177,1 39,3 179,9 39,4 186,5 39,2

44 171,2 39,0 180,7 38,5 187,7 38,4 190,5 38,4 197,3 38,3

45 180,3 38,0 190,4 37,6 197,5 37,4 200,3 37,5 207,4 37,4

46 189,0 37,1 199,6 36,6 207,0 36,5 209,7 36,6 216,9 36,4

47 197,6 36,2 208,7 35,7 216,2 35,6 218,9 35,6 226,3 35,5

48 206,4 35,2 218,0 34,8 225,8 34,6 228,4 34,7 236,0 34,6

49 215,9 34,3 228,1 33,9 236,0 33,7 238,6 33,8 246,3 33,7

Table S2 - Life tables by deprivation quintile (1-Least deprived) for women in the period 2000-2002 (m_x 

- mortality rate; e_x - life expectancy at age x).

age
EDI = 1 EDI = 2 EDI = 3 EDI = 4 EDI = 5

160



m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

50 226,6 33,4 239,4 32,9 247,6 32,8 250,0 32,9 257,9 32,8

51 239,0 32,5 252,4 32,0 260,9 31,9 263,3 32,0 271,4 31,9

52 253,2 31,5 267,5 31,1 276,3 31,0 278,6 31,0 287,1 30,9

53 269,7 30,6 285,0 30,2 294,1 30,0 296,3 30,1 305,1 30,0

54 288,6 29,7 304,9 29,3 314,5 29,1 316,6 29,2 325,7 29,1

55 310,2 28,8 327,7 28,3 337,8 28,2 339,8 28,3 349,4 28,2

56 334,8 27,9 353,8 27,4 364,5 27,3 366,3 27,4 376,4 27,3

57 362,9 27,0 383,5 26,5 394,8 26,4 396,4 26,5 407,1 26,4

58 394,9 26,1 417,4 25,6 429,4 25,5 430,8 25,6 442,1 25,5

59 431,4 25,2 456,0 24,7 468,8 24,6 470,0 24,7 482,0 24,6

60 473,0 24,3 500,0 23,9 513,7 23,7 514,6 23,8 527,3 23,7

61 520,4 23,4 550,2 23,0 564,9 22,9 565,3 23,0 579,0 22,9

62 574,5 22,5 607,3 22,1 623,1 22,0 623,1 22,1 637,7 22,0

63 636,1 21,6 672,5 21,2 689,6 21,1 689,0 21,2 704,7 21,1

64 706,4 20,8 746,9 20,4 765,3 20,3 764,1 20,4 780,9 20,3

65 786,6 19,9 831,8 19,5 851,8 19,4 849,7 19,5 867,8 19,4

66 878,3 19,0 928,7 18,7 950,4 18,6 947,3 18,7 966,9 18,6

67 983,0 18,2 1039,5 17,8 1063,1 17,7 1058,7 17,8 1079,9 17,8

68 1102,6 17,4 1166,1 17,0 1191,8 16,9 1185,9 17,0 1208,8 17,0

69 1239,4 16,6 1310,8 16,2 1338,8 16,1 1331,1 16,2 1355,8 16,2

70 1395,7 15,8 1476,3 15,4 1506,8 15,3 1496,9 15,4 1523,7 15,4

71 1574,5 15,0 1665,5 14,6 1698,8 14,6 1686,2 14,7 1715,3 14,6

72 1779,0 14,2 1881,9 13,9 1918,2 13,8 1902,5 13,9 1934,0 13,8

73 2012,7 13,5 2129,3 13,1 2169,0 13,1 2149,4 13,2 2183,5 13,1

74 2279,9 12,7 2412,2 12,4 2455,5 12,3 2431,3 12,4 2468,3 12,4

75 2585,3 12,0 2735,4 11,7 2782,7 11,6 2753,0 11,7 2793,0 11,7

76 2934,0 11,3 3104,6 11,0 3156,2 10,9 3120,0 11,0 3163,1 11,0

77 3332,0 10,6 3526,0 10,3 3582,2 10,3 3538,2 10,4 3584,7 10,3

78 3786,0 10,0 4006,6 9,7 4067,9 9,6 4014,5 9,7 4064,6 9,7

79 4303,2 9,3 4554,3 9,1 4620,8 9,0 4556,5 9,1 4610,2 9,1

80 4891,8 8,7 5177,6 8,5 5249,8 8,4 5172,5 8,5 5229,9 8,5

81 5560,8 8,1 5886,2 7,9 5964,3 7,9 5871,6 7,9 5932,8 7,9

82 6320,2 7,6 6690,4 7,3 6774,7 7,3 6663,9 7,4 6728,9 7,4

83 7180,6 7,0 7601,7 6,8 7692,4 6,8 7560,4 6,9 7629,0 6,8

84 8153,8 6,5 8632,5 6,3 8729,7 6,3 8572,9 6,4 8644,8 6,3

85 9252,3 6,0 9796,2 5,8 9899,9 5,8 9714,0 5,9 9789,0 5,9

86 10489,5 5,6 11106,8 5,4 11217,0 5,4 10997,3 5,4 11074,8 5,4

87 11879,5 5,1 12579,4 5,0 12695,9 4,9 12437,0 5,0 12516,1 5,0

88 13437,1 4,7 14229,8 4,6 14352,0 4,5 14047,8 4,6 14127,7 4,6

89 15177,6 4,3 16074,0 4,2 16201,4 4,2 15844,8 4,2 15924,3 4,2

90 17121,4 4,0 18133,8 3,8 18265,5 3,8 17848,8 3,9 17926,2 3,9

91 19309,1 3,6 20452,2 3,5 20587,1 3,5 20100,9 3,5 20174,6 3,5

92 21776,3 3,3 23067,0 3,2 23203,9 3,1 22637,2 3,2 22704,9 3,2

93 24558,8 3,0 26016,1 2,8 26153,2 2,8 25493,5 2,9 25552,5 2,9

94 27696,8 2,6 29342,3 2,5 29477,4 2,5 28710,2 2,6 28757,4 2,6

95 31235,8 2,3 33093,7 2,2 33224,1 2,2 32332,8 2,3 32364,1 2,3

96 35227,0 2,0 37324,7 1,9 37447,1 1,9 36412,4 1,9 36423,3 1,9

97 39728,1 1,6 42096,7 1,6 42206,8 1,6 41006,9 1,6 40991,5 1,6

98 44804,4 1,1 47478,8 1,1 47571,6 1,1 46181,0 1,1 46132,7 1,1

99 50529,3 0,5 53548,9 0,5 53618,2 0,5 52008,0 0,5 51918,7 0,5

Table S2 (cont.) - Life tables by deprivation quintile (1-Least deprived) for women in the period 2000-

2002 (m_x - mortality rate; e_x - life expectancy at age x).
EDI = 1 EDI = 2 EDI = 3 EDI = 4

age
EDI = 5
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m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

0 185,4 78,8 238,7 77,8 243,9 77,5 273,5 77,4 322,3 76,7

1 27,7 77,9 35,5 76,9 36,3 76,7 40,6 76,6 47,8 76,0

2 15,6 76,9 20,0 76,0 20,5 75,7 22,9 75,6 26,9 75,0

3 12,7 75,9 16,2 75,0 16,6 74,7 18,5 74,6 21,7 74,0

4 10,7 75,0 13,6 74,0 13,9 73,7 15,5 73,6 18,1 73,0

5 9,3 74,0 11,9 73,0 12,1 72,7 13,5 72,7 15,8 72,1

6 8,5 73,0 10,7 72,0 11,0 71,7 12,2 71,7 14,2 71,1

7 8,0 72,0 10,1 71,0 10,3 70,8 11,4 70,7 13,3 70,1

8 7,8 71,0 9,9 70,0 10,1 69,8 11,2 69,7 13,0 69,1

9 8,0 70,0 10,0 69,0 10,3 68,8 11,3 68,7 13,2 68,1

10 8,5 69,0 10,6 68,0 10,9 67,8 12,0 67,7 13,9 67,1

11 9,3 68,0 11,7 67,1 12,0 66,8 13,2 66,7 15,2 66,1

12 10,7 67,0 13,3 66,1 13,6 65,8 15,0 65,7 17,3 65,1

13 12,5 66,0 15,6 65,1 15,9 64,8 17,5 64,7 20,1 64,1

14 14,9 65,0 18,6 64,1 19,0 63,8 20,8 63,7 23,9 63,1

15 18,1 64,0 22,4 63,1 22,9 62,8 25,1 62,8 28,8 62,2

16 22,0 63,0 27,2 62,1 27,8 61,8 30,4 61,8 34,8 61,2

17 26,7 62,1 33,0 61,1 33,7 60,9 36,8 60,8 42,1 60,2

18 32,2 61,1 39,7 60,1 40,6 59,9 44,1 59,8 50,4 59,2

19 38,2 60,1 46,9 59,2 48,0 58,9 52,2 58,8 59,5 58,3

20 44,3 59,1 54,4 58,2 55,6 57,9 60,3 57,9 68,7 57,3

21 50,1 58,1 61,2 57,2 62,6 57,0 67,8 56,9 77,1 56,3

22 55,1 57,2 67,3 56,3 68,8 56,0 74,4 55,9 84,4 55,4

23 59,4 56,2 72,3 55,3 74,0 55,0 79,9 55,0 90,5 54,4

24 63,0 55,2 76,5 54,3 78,3 54,1 84,3 54,0 95,4 53,5

25 66,0 54,3 79,9 53,4 81,8 53,1 87,9 53,1 99,3 52,5

26 68,5 53,3 82,7 52,4 84,7 52,2 90,9 52,1 102,5 51,6

27 70,8 52,3 85,3 51,5 87,3 51,2 93,6 51,2 105,3 50,6

28 73,1 51,4 87,9 50,5 90,0 50,2 96,3 50,2 108,2 49,7

29 75,9 50,4 91,0 49,5 93,1 49,3 99,5 49,3 111,6 48,7

30 79,3 49,5 94,9 48,6 97,1 48,3 103,6 48,3 116,0 47,8

31 83,9 48,5 100,1 47,6 102,5 47,4 109,2 47,4 122,0 46,8

32 89,7 47,5 106,8 46,7 109,3 46,4 116,2 46,4 129,6 45,9

33 96,7 46,6 114,8 45,7 117,6 45,5 124,8 45,5 139,0 45,0

34 105,0 45,6 124,4 44,8 127,3 44,5 134,9 44,5 150,0 44,0

35 114,6 44,7 135,5 43,8 138,7 43,6 146,7 43,6 162,9 43,1

36 125,6 43,7 148,0 42,9 151,6 42,7 160,1 42,6 177,4 42,2

37 137,8 42,8 162,1 42,0 166,0 41,7 175,0 41,7 193,6 41,2

38 151,3 41,8 177,5 41,0 181,7 40,8 191,3 40,8 211,3 40,3

39 165,8 40,9 194,0 40,1 198,7 39,9 208,8 39,9 230,2 39,4

40 181,1 40,0 211,4 39,2 216,5 38,9 227,1 38,9 250,0 38,5

41 196,8 39,0 229,2 38,3 234,8 38,0 245,9 38,0 270,2 37,6

42 213,0 38,1 247,5 37,3 253,5 37,1 265,0 37,1 290,7 36,7

43 229,7 37,2 266,2 36,4 272,7 36,2 284,6 36,2 311,6 35,8

44 246,9 36,3 285,4 35,5 292,4 35,3 304,7 35,3 333,1 34,9

45 264,8 35,4 305,4 34,6 312,8 34,4 325,5 34,4 355,2 34,0

46 283,6 34,5 326,2 33,7 334,1 33,5 347,1 33,5 378,1 33,1

47 303,3 33,5 348,0 32,8 356,6 32,6 369,8 32,6 402,1 32,2

48 324,4 32,6 371,3 32,0 380,4 31,7 393,8 31,8 427,5 31,4

49 347,1 31,8 396,3 31,1 406,0 30,8 419,7 30,9 454,8 30,5

EDI = 5
age

Table S3 - Life tables by deprivation quintile (1-Least deprived) for men in the period 2010-2012 (m_x - 

mortality rate; e_x - life expectancy at age x).
EDI = 1 EDI = 2 EDI = 3 EDI = 4
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m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

50 371,8 30,9 423,5 30,2 433,9 30,0 447,7 30,0 484,4 29,6

51 398,9 30,0 453,3 29,3 464,5 29,1 478,5 29,2 516,8 28,8

52 428,9 29,1 486,1 28,5 498,1 28,2 512,3 28,3 552,3 27,9

53 461,9 28,2 522,2 27,6 535,2 27,4 549,5 27,4 591,4 27,1

54 498,3 27,3 562,0 26,7 576,0 26,5 590,4 26,6 634,4 26,2

55 538,5 26,5 605,9 25,9 621,0 25,7 635,5 25,7 681,7 25,4

56 583,0 25,6 654,3 25,0 670,7 24,8 685,1 24,9 733,7 24,6

57 632,1 24,8 707,8 24,2 725,5 24,0 739,9 24,1 791,0 23,8

58 686,6 23,9 766,8 23,4 786,1 23,2 800,4 23,2 854,2 22,9

59 746,9 23,1 832,1 22,5 853,1 22,3 867,1 22,4 923,8 22,1

60 813,8 22,2 904,4 21,7 927,2 21,5 941,0 21,6 1000,8 21,3

61 888,0 21,4 984,5 20,9 1009,4 20,7 1022,6 20,8 1085,7 20,5

62 970,4 20,6 1073,2 20,1 1100,4 19,9 1113,0 20,0 1179,7 19,8

63 1062,0 19,8 1171,6 19,3 1201,4 19,1 1213,1 19,2 1283,6 19,0

64 1163,9 19,0 1280,9 18,6 1313,5 18,4 1324,1 18,5 1398,7 18,2

65 1277,3 18,2 1402,3 17,8 1438,1 17,6 1447,2 17,7 1526,1 17,5

66 1403,7 17,5 1537,2 17,0 1576,6 16,8 1584,0 17,0 1667,5 16,7

67 1544,6 16,7 1687,4 16,3 1730,7 16,1 1735,9 16,2 1824,3 16,0

68 1701,8 16,0 1854,6 15,6 1902,3 15,4 1904,9 15,5 1998,4 15,3

69 1877,4 15,2 2040,9 14,8 2093,5 14,7 2092,8 14,8 2191,9 14,6

70 2073,6 14,5 2248,6 14,1 2306,7 14,0 2302,1 14,1 2407,0 13,9

71 2292,9 13,8 2480,4 13,4 2544,6 13,3 2535,3 13,4 2646,3 13,2

72 2538,4 13,1 2739,1 12,8 2810,2 12,6 2795,3 12,7 2912,7 12,6

73 2813,2 12,4 3028,2 12,1 3107,0 12,0 3085,4 12,1 3209,4 11,9

74 3121,1 11,8 3351,4 11,5 3438,7 11,3 3409,2 11,4 3540,2 11,3

75 3466,3 11,1 3712,9 10,8 3809,9 10,7 3770,9 10,8 3909,1 10,7

76 3853,5 10,5 4117,6 10,2 4225,4 10,1 4175,2 10,2 4320,8 10,1

77 4288,1 9,9 4570,7 9,6 4690,6 9,5 4627,2 9,6 4780,4 9,5

78 4776,2 9,3 5078,5 9,1 5212,0 8,9 5132,9 9,1 5293,8 9,0

79 5324,5 8,7 5647,6 8,5 5796,4 8,4 5699,1 8,5 5867,6 8,4

80 5941,0 8,2 6286,0 8,0 6452,0 7,9 6333,1 8,0 6509,2 7,9

81 6634,2 7,6 7002,3 7,5 7187,6 7,3 7043,4 7,5 7227,0 7,4

82 7414,3 7,1 7806,4 7,0 8013,4 6,9 7839,6 7,0 8030,2 6,9

83 8292,3 6,6 8709,5 6,5 8940,9 6,4 8732,4 6,5 8929,4 6,5

84 9281,0 6,2 9724,0 6,0 9982,9 5,9 9733,9 6,1 9936,5 6,0

85 10394,7 5,7 10864,1 5,6 11154,0 5,5 10857,8 5,6 11064,8 5,6

86 11649,6 5,3 12145,8 5,2 12470,7 5,1 12119,2 5,2 12329,2 5,2

87 13064,1 4,9 13587,1 4,8 13951,3 4,7 13535,6 4,8 13746,7 4,8

88 14658,9 4,5 15208,3 4,4 15616,9 4,3 15126,4 4,5 15336,0 4,4

89 16456,0 4,1 17030,9 4,1 17489,4 4,0 16911,9 4,1 17116,9 4,1

90 18475,1 3,8 19073,5 3,7 19588,1 3,7 18909,8 3,8 19106,4 3,7

91 20741,9 3,5 21361,2 3,4 21938,8 3,4 21143,9 3,4 21327,2 3,4

92 23286,8 3,2 23923,3 3,1 24571,5 3,1 23641,8 3,1 23806,1 3,1

93 26144,0 2,8 26792,6 2,8 27520,1 2,8 26434,9 2,8 26573,1 2,8

94 29351,8 2,6 30006,1 2,5 30822,6 2,5 29557,9 2,5 29661,7 2,5

95 32953,1 2,2 33605,1 2,2 34521,4 2,2 33049,9 2,3 33109,3 2,3

96 36996,3 1,9 37635,6 1,9 38664,0 1,9 36954,4 1,9 36957,6 1,9

97 41535,6 1,6 42149,7 1,6 43303,8 1,5 41320,3 1,6 41253,2 1,6

98 46631,9 1,1 47205,1 1,1 48500,4 1,1 46201,9 1,1 46048,1 1,1

99 52353,4 0,5 52866,8 0,5 54320,6 0,5 51660,2 0,5 51400,4 0,5

Table S3 (cont.) - Life tables by deprivation quintile (1-Least deprived) for men in the period 2010-2012 

(m_x - mortality rate; e_x - life expectancy at age x).

age
EDI = 1 EDI = 2 EDI = 3 EDI = 4 EDI = 5
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m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

0 263,6 84,3 278,3 83,8 301,2 83,6 316,3 83,6 339,4 83,4

1 28,5 83,6 30,1 83,1 32,5 82,8 34,1 82,9 36,6 82,7

2 18,0 82,6 19,0 82,1 20,5 81,8 21,5 81,9 23,1 81,7

3 17,1 81,6 18,1 81,1 19,5 80,8 20,4 80,9 21,9 80,7

4 15,7 80,6 16,6 80,1 17,9 79,9 18,8 79,9 20,1 79,8

5 14,1 79,6 14,9 79,1 16,1 78,9 16,8 79,0 18,0 78,8

6 12,6 78,6 13,3 78,2 14,3 77,9 15,0 78,0 16,0 77,8

7 11,2 77,7 11,8 77,2 12,8 76,9 13,3 77,0 14,2 76,8

8 10,1 76,7 10,7 76,2 11,5 75,9 12,0 76,0 12,8 75,8

9 9,3 75,7 9,8 75,2 10,6 74,9 11,0 75,0 11,8 74,8

10 8,9 74,7 9,4 74,2 10,1 73,9 10,5 74,0 11,2 73,8

11 8,9 73,7 9,4 73,2 10,1 72,9 10,5 73,0 11,2 72,8

12 9,2 72,7 9,7 72,2 10,4 71,9 10,9 72,0 11,6 71,8

13 9,8 71,7 10,4 71,2 11,2 70,9 11,6 71,0 12,3 70,8

14 10,8 70,7 11,4 70,2 12,2 70,0 12,7 70,0 13,5 69,9

15 12,0 69,7 12,7 69,2 13,6 69,0 14,1 69,1 15,0 68,9

16 13,6 68,7 14,3 68,2 15,4 68,0 15,9 68,1 16,9 67,9

17 15,3 67,7 16,2 67,2 17,3 67,0 18,0 67,1 19,0 66,9

18 17,2 66,7 18,2 66,3 19,5 66,0 20,2 66,1 21,4 65,9

19 19,2 65,8 20,3 65,3 21,7 65,0 22,4 65,1 23,8 64,9

20 21,0 64,8 22,2 64,3 23,7 64,0 24,5 64,1 25,9 63,9

21 22,4 63,8 23,7 63,3 25,3 63,0 26,1 63,1 27,6 62,9

22 23,4 62,8 24,7 62,3 26,4 62,1 27,2 62,1 28,8 62,0

23 24,1 61,8 25,4 61,3 27,1 61,1 27,9 61,2 29,5 61,0

24 24,5 60,8 25,9 60,3 27,6 60,1 28,4 60,2 30,0 60,0

25 24,7 59,8 26,1 59,4 27,8 59,1 28,6 59,2 30,2 59,0

26 24,9 58,9 26,4 58,4 28,1 58,1 28,8 58,2 30,4 58,0

27 25,2 57,9 26,7 57,4 28,4 57,1 29,1 57,2 30,7 57,1

28 25,7 56,9 27,2 56,4 28,9 56,2 29,7 56,2 31,3 56,1

29 26,6 55,9 28,1 55,4 29,9 55,2 30,6 55,3 32,2 55,1

30 28,0 54,9 29,6 54,4 31,4 54,2 32,1 54,3 33,8 54,1

31 30,0 53,9 31,7 53,4 33,7 53,2 34,4 53,3 36,2 53,1

32 32,8 52,9 34,7 52,5 36,8 52,2 37,6 52,3 39,5 52,1

33 36,4 52,0 38,5 51,5 40,8 51,2 41,7 51,3 43,8 51,2

34 40,9 51,0 43,2 50,5 45,8 50,3 46,7 50,4 49,0 50,2

35 46,2 50,0 48,9 49,5 51,7 49,3 52,8 49,4 55,3 49,2

36 52,5 49,0 55,5 48,6 58,7 48,3 59,8 48,4 62,7 48,2

37 59,6 48,0 63,1 47,6 66,6 47,3 67,8 47,4 71,0 47,3

38 67,4 47,1 71,4 46,6 75,3 46,4 76,7 46,5 80,2 46,3

39 75,8 46,1 80,2 45,6 84,6 45,4 86,0 45,5 89,9 45,3

40 84,2 45,1 89,2 44,7 94,0 44,4 95,5 44,5 99,8 44,4

41 92,4 44,2 97,8 43,7 103,0 43,5 104,6 43,6 109,2 43,4

42 100,1 43,2 105,9 42,8 111,5 42,5 113,1 42,6 118,0 42,5

43 107,2 42,3 113,5 41,8 119,4 41,6 121,0 41,7 126,2 41,5

44 114,0 41,3 120,6 40,8 126,9 40,6 128,4 40,7 133,8 40,6

45 120,3 40,4 127,4 39,9 133,8 39,7 135,4 39,8 141,0 39,6

46 126,4 39,4 133,9 38,9 140,6 38,7 142,1 38,8 147,9 38,7

47 132,5 38,4 140,3 38,0 147,2 37,8 148,7 37,9 154,7 37,7

48 138,8 37,5 147,0 37,1 154,1 36,8 155,6 36,9 161,7 36,8

49 145,6 36,6 154,2 36,1 161,6 35,9 162,9 36,0 169,2 35,9

Table S4 - Life tables by deprivation quintile (1-Least deprived) for women in the period 2010-2012 (m_x 

- mortality rate; e_x - life expectancy at age x).

age
EDI = 1 EDI = 2 EDI = 3 EDI = 4 EDI = 5
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m_x e_x m_x e_x m_x e_x m_x e_x m_x e_x

50 153,2 35,6 162,2 35,2 169,9 34,9 171,2 35,1 177,7 34,9

51 162,0 34,7 171,6 34,2 179,6 34,0 180,8 34,1 187,5 34,0

52 172,2 33,7 182,4 33,3 190,8 33,1 191,9 33,2 198,9 33,0

53 184,0 32,8 194,9 32,3 203,7 32,1 204,7 32,2 212,0 32,1

54 197,5 31,8 209,2 31,4 218,5 31,2 219,4 31,3 227,1 31,2

55 212,9 30,9 225,6 30,5 235,5 30,3 236,3 30,4 244,4 30,2

56 230,6 30,0 244,3 29,5 254,9 29,3 255,5 29,4 264,1 29,3

57 250,8 29,0 265,7 28,6 277,0 28,4 277,5 28,5 286,7 28,4

58 273,9 28,1 290,2 27,7 302,3 27,5 302,6 27,6 312,4 27,5

59 300,2 27,2 318,1 26,8 331,3 26,6 331,3 26,7 341,7 26,5

60 330,3 26,3 350,1 25,8 364,3 25,6 364,0 25,8 375,2 25,6

61 364,8 25,3 386,6 24,9 402,0 24,7 401,4 24,9 413,5 24,7

62 404,1 24,4 428,4 24,0 445,1 23,8 444,1 24,0 457,2 23,8

63 449,2 23,5 476,1 23,1 494,4 22,9 492,9 23,1 507,1 22,9

64 500,8 22,6 530,8 22,2 550,9 22,1 548,7 22,2 564,1 22,1

65 559,8 21,7 593,5 21,3 615,5 21,2 612,5 21,3 629,3 21,2

66 627,5 20,9 665,3 20,5 689,5 20,3 685,6 20,4 703,9 20,3

67 705,1 20,0 747,6 19,6 774,3 19,4 769,3 19,6 789,3 19,4

68 794,1 19,1 842,1 18,7 871,5 18,6 865,2 18,7 887,1 18,6

69 896,3 18,3 950,5 17,9 983,1 17,7 975,1 17,9 999,1 17,8

70 1013,6 17,4 1074,9 17,1 1111,0 16,9 1101,1 17,0 1127,5 16,9

71 1148,2 16,6 1217,7 16,2 1257,9 16,1 1245,7 16,2 1274,6 16,1

72 1302,8 15,8 1381,8 15,4 1426,4 15,3 1411,4 15,4 1443,2 15,3

73 1480,3 15,0 1570,2 14,6 1619,8 14,5 1601,4 14,6 1636,5 14,5

74 1684,1 14,2 1786,4 13,9 1841,7 13,7 1819,3 13,8 1857,8 13,8

75 1918,0 13,4 2034,6 13,1 2096,2 13,0 2069,0 13,1 2111,4 13,0

76 2186,2 12,7 2319,4 12,4 2388,0 12,2 2355,0 12,4 2401,7 12,3

77 2493,8 12,0 2645,9 11,6 2722,3 11,5 2682,5 11,6 2733,9 11,6

78 2846,2 11,3 3019,9 10,9 3105,1 10,8 3057,2 10,9 3113,6 10,9

79 3249,5 10,6 3448,1 10,3 3543,0 10,2 3485,4 10,3 3547,4 10,2

80 3710,6 9,9 3937,6 9,6 4043,3 9,5 3974,4 9,6 4042,4 9,6

81 4237,2 9,2 4496,7 9,0 4614,4 8,9 4532,0 9,0 4606,4 8,9

82 4837,7 8,6 5134,3 8,4 5265,2 8,3 5166,9 8,4 5248,2 8,3

83 5521,4 8,0 5860,3 7,8 6005,7 7,7 5888,8 7,8 5977,4 7,7

84 6298,4 7,5 6685,5 7,2 6846,8 7,1 6708,0 7,2 6804,4 7,2

85 7179,7 6,9 7621,5 6,7 7800,3 6,6 7635,8 6,7 7740,3 6,7

86 8177,2 6,4 8680,9 6,2 8878,7 6,1 8684,4 6,2 8797,3 6,2

87 9303,5 5,9 9877,3 5,7 10095,6 5,6 9866,5 5,7 9988,1 5,7

88 10572,0 5,4 11224,7 5,2 11465,3 5,2 11195,9 5,3 11326,2 5,2

89 11996,5 5,0 12738,1 4,8 13002,5 4,7 12686,5 4,8 12825,6 4,8

90 13595,6 4,5 14436,9 4,4 14726,8 4,3 14357,1 4,4 14504,8 4,4

91 15403,7 4,1 16358,0 4,0 16675,5 3,9 16243,4 4,0 16399,5 4,0

92 17452,2 3,7 18534,7 3,6 18882,0 3,6 18377,6 3,6 18541,7 3,6

93 19773,2 3,3 21001,0 3,2 21380,4 3,2 20792,2 3,2 20963,7 3,2

94 22402,9 3,0 23795,6 2,9 24209,4 2,8 23524,0 2,9 23702,1 2,9

95 25382,3 2,6 26962,0 2,5 27412,8 2,5 26614,7 2,5 26798,2 2,5

96 28758,0 2,2 30549,7 2,1 31040,0 2,1 30111,5 2,1 30298,8 2,1

97 32582,6 1,7 34614,9 1,7 35147,2 1,7 34067,7 1,7 34256,6 1,7

98 36915,8 1,2 39220,9 1,2 39797,8 1,2 38543,8 1,2 38731,4 1,2

99 41825,3 0,5 44439,9 0,5 45063,8 0,5 43607,9 0,5 43790,8 0,5

Table S4 (cont.) - Life tables by deprivation quintile (1-Least deprived) for women in the period 2010-

2012 (m_x - mortality rate; e_x - life expectancy at age x).
EDI = 5EDI = 1 EDI = 2 EDI = 3 EDI = 4

age

165
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3.4 Study IV: Methods to deal with missing data in excess haz-

ard model covariates

Dealing with missing information on covariates of excess hazard models - making

the imputation model compatible with the substantive model

Luı́s Antunes, Denisa Mendonça, Maria José Bento, Edmund-Njeru Njagi, Aurélien

Belot, Bernard Rachet

A large proportion of cases in the population-based cancer datasets have missing

information on stage of disease at diagnosis. Ignoring the cases with missing information

can lead to biased results and conclusions especially if the mechanism of missingness

is not completely at random. Among the different ways of dealing with missing data,

multiple imputation has become more available in common statistical software packages

and is increasingly used. However careful should be given to its proper use. The

incompatibility between the imputation and substantive model, which can arise when

the associations between variables in the substantive model are not taken into account

in the imputation models or when the substantive model is itself nonlinear, can lead to

invalid inference. Motivated by the analysis of population-based cancer survival analysis,

the multiple imputation substantive model compatible fully conditional specification

(SMC-FCS) approach, proposed by Bartlett and colleagues in 2015, was extended in this

study to accommodate excess hazard models. The proposed approach was compared

with the standard fully conditional (FCS) multiple imputation procedure and with the

complete-case analysis (CCA) using a simulation study. The SMC-FCS approach

produced unbiased estimates in all scenarios tested, while the standard FCS produced

biased estimates and poor empirical coverages probabilities. CCA only produced biased

estimates for missingness mechanism dependent on the outcome.

The three approaches were then used in a study which aimed at evaluating socioeco-

nomic inequalities in survival from cancer (more specifically for a cohort of colorectal
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cancer patients diagnosed in the North region of Portugal). The socioeconomic effects

were adjusted for age, sex and extent of disease at diagnosis. This last covariate had

missing information for around 40% of the cases. Deprivation-specific life tables were

used to adjust for background mortality.

Although statistically significant differences in crude net survival were observed between

socioeconomic groups, after adjusting for the extent of disease using an excess hazard

model, the inequalities diminished and were no longer significant. These conclusions

were transversal to the three approaches used.

Although the distribution of imputed values was similar between the two MI approaches,

the effect of extent of disease on the excess hazard seemed to be diluted in the

SMC-FCS approach. Further research is warranted to analyse the performance of this

approach when imputing categorical variables.

Next, the resulting manuscript of this study is presented.
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Abstract 

 

Missing data is a common issue in epidemiological databases. Ignoring the cases with 

missing information can lead to biased results and conclusions especially if the 

mechanism of missingness is not completely at random. Among the different ways of 

dealing with missing data, multiple imputation has become more available in common 

statistical software packages and is increasingly used. However attention should be 

given to its proper use. The incompatibility between the imputation and substantive 

model, which can arise when the associations between variables in the substantive 

model are not taken into account in the imputation models or when the model is itself 

nonlinear, can lead to invalid inference. 

Aiming at analysing population-based cancer survival data, we extended the multiple 

imputation substantive model compatible fully conditional specification (SMC-FCS) 

approach, proposed by Bartlett and colleagues in 2015, to accommodate excess hazard 

models. The proposed approach was compared with the standard fully conditional 

(FCS) multiple imputation procedure and with the complete-case analysis (CCA) using a 

simulation study. The SMC-FCS approach produced unbiased estimates in all scenarios 

tested, while the standard FCS produced biased estimates and poor empirical 

coverages probabilities. The SMC-FCS algorithm was then used in the evaluation of 

socioeconomic inequalities in survival from cancer. A cohort of colorectal cancer 

patients diagnosed in the North Region of Portugal was analysed. No major differences 

were observed in the estimated effects of deprivation level between the three 
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approaches analysed. In none of the scenarios were observed significant adjusted 

effects of the deprivation level. The SMC-FCS tended to bias effect of extent of disease 

towards the null. Further research is warranted to better evaluate the performance of 

the SMC-FCS algorithm in the imputation of categorical variables and to extend it to 

cope with time-dependent effects.   

 

Keywords: Missing data, multiple imputation, substantive model compatible, excess 

hazard, socioeconomic inequalities 
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1. Introduction 

 

Missing data is an almost unavoidable issue in observational studies. Due to multiple 

possible reasons, incomplete information on the outcomes or in the covariates is likely 

to occur. Multiple imputation (MI) has become in the last years one of the most 

common methodologies for handling missing data [1,2]. Its increasing availability in 

common statistical packages made the application of MI more attractive to a larger 

spectrum of users. This broader application of the methodology was not necessarily 

followed by a correct application or reporting of the same. Rezvan and colleagues 

systematically reviewed manuscripts published during six years in two important 

medical journals in which multiple imputation was carried out [2]. From the 103 

articles identified, only 37% described the imputation model, only two compared the 

imputed with the observed values and only three performed sensitivity analysis.   

Also, the problem of incompatibility between imputation model and the substantive 

(or analysis) model can lead to invalid inference. This problem can occur when the 

substantive model includes nonlinear covariate effects, interactions or when the 

model itself is nonlinear (e.g. hazard models). 

When the outcome of interest is survival time and there is missing information on 

covariates, it is consensual that the outcome should be included in the imputation 

model. However, different ways of including the survival outcome can be found in the 

literature: the censoring indicator () and the survival time (T) [3];  and log(T) [4,5];  ,  

log(T) and T [6]. In 2009, White and Royston [7] recommended the inclusion of the 
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cumulative baseline hazard (0(t)) besides the censor indicator in the imputation 

model when the substantive model of interest is a Cox hazard model and showed that 

the result is exact in the case of a single binary covariate and in other cases 

approximately valid for small covariate effects and/or small cumulative incidence. In 

2015, Bartlett and colleagues developed an algorithm for MI that ensures the 

compatibility between both models and designated it as Substantive Model 

Compatible Fully Conditional Specification (SMC-FCS) [8]. This method has been 

implemented in STATA and R but only a limited number of substantive models are 

available [9]. Recently, Keogh and Morris [10] extended this approach to hazard 

models with time-varying effects of covariates. 

In population-based cancer survival analysis, the interest normally lies on the excess 

hazard modelling. Excess hazard represents the hazard due to the disease and is now 

commonly modelled using flexible parametric models [11,12]. In this relative survival 

framework, multiple imputation has also been used to deal with missing information 

on excess hazard model covariates [13–18]. In 2015, Falcaro and colleagues evaluated 

the use of MI in the context of net survival problems with missing information, more 

specifically, in the excess hazard modelling using flexible parametric proportional 

hazards models with missing data on categorical covariates (stage of disease at 

diagnosis) [19]. The results obtained suggested that a multinomial logistic imputation 

model for stage should be used and that the Nelson-Aalen cumulative hazard estimate 

and the event indicator should be included in the imputation models, as already 

suggested by White and Royston in the context of the Cox model. The issue of 
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compatibility between the imputation and substantive models when these are excess 

hazard models has however still not been properly addressed. 

The main aim of this work was to extend the SMC-FCS algorithm developed by Bartlett 

and colleagues to accommodate excess hazard models. The performance of the 

extension proposed was compared with the standard fully conditional specification 

(FCS) approach and with a complete-case analysis (CCA), using a simulation study. The 

three methods were then applied to a survival dataset from a cohort of colorectal 

cancer patients extracted from the North Region of Portugal Cancer Registry 

(RORENO). 

The article is organised as follows. In Section 2, an overview of the methods used in 

this study is given and the proposed extension of the SMC-FCS algorithm for excess 

hazard models is presented. A simulation study evaluating the performance of the 

SMC-FCS algorithm is presented in Section 3. The motivating dataset is characterised in 

Section 4 and then analysed in Section 5 with the aim of evaluating socioeconomic 

inequalities in survival from cancer when adjusting for extent of disease at diagnosis. 

The article finishes with a discussion in Section 6. 

 

2. Methods 

2.1 Excess hazard modelling 

 

In population-based cancer survival analysis, since cause of death is usually unknown 

or unreliable, the analysis is performed in the relative survival setting. It is considered 
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that the observed hazard (O) can be decomposed in two additive parcels, the cancer 

related hazard (excess hazard) (E) and the other causes hazard (P), estimated by the 

general population mortality: O = P + E. The excess hazard function is modelled as a 

function of a set of covariates. A flexible parametric model for the excess hazard 

function is considered here: 

𝜆𝐸(𝑡, 𝑿) = 𝜆0(𝑡) ∙ exp(𝑔(𝑿)),     

where 0(t) is the excess hazard baseline. Following the formulation of Charvat and 

colleagues [20], the baseline was  modelled using B-spline functions. Covariate effects 

can be considered linear or non-linear and time-dependent effects can also be easily 

added in this formulation. 

 

2.2 Multiple imputation 

 

Multiple imputation (MI) was first introduced by Rubin in 1978 [21]. Initially, MI was 

developed in the framework of survey nonresponse but has nowadays been expanded 

to broader set of different fields, including survival analysis [22]. 

In MI several imputations are generated for each missing value, as opposed to single 

imputation where each missing value is replaced by a single value. This creates several 

completed datasets, as many as the number of imputations performed. Each 

completed dataset is analysed using standard methods for complete data. The results 

from the several analyses are then combined to produce single estimates and 

confidence intervals that incorporate missing-data uncertainty. 
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The process can be divided in three main steps: the imputation, the analysis and the 

combination steps. The models related to the first step are commonly designated as 

imputation models and the ones used in the second step, as substantive models [23]. 

Briefly the algorithm goes like this: 

i. Using the imputation model, generate M>1 values for each missing value, 

obtaining M completed datasets; 

ii. Fit the substantive model independently to each one of the M completed 

datasets; 

iii. Combine the results obtained from each analysis performed in the previous 

step using Rubin's rules [24]. 

The MI algorithm typically relies on the assumption that the data are missing at 

random (MAR). This means that the probability of having a missing observation is 

random conditioned on the observed information, i.e. does not depend on unobserved 

data. 

In MI the imputation phase is separated from the analysis phase. The imputation 

models used may thus be incompatible with the substantive model. This means that 

there is no joint model for which the conditionals equal the imputation and 

substantive conditional models.    
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2.3 Compatibility between imputation and substantive model 

 

To overcome the problem of incompatibility between imputation and substantive 

models in multiple imputation, Bartlett and colleagues [8] developed an algorithm that 

ensures that each covariate with missing observations is imputed from a model 

compatible with the substantive model. The algorithm is referred as Substantive 

Model Compatible-Fully Conditional Specification (SMC-FCS).  

The rational of the method is described briefly. Let Y represent the outcome, X a 

vector of p partially observed covariates and Z a vector of fully observed covariates. 

For each partially observed covariate Xj, X-j represents the vector of covariates 

excluding that covariate (X1, …,Xj-1, Xj+1, …, Xp). Bartlett starts by noting that the 

imputation model for Xj, conditioned on the remaining covariates and the outcome is 

proportional to the product of the substantive model and the imputation model for Xj 

not involving the outcome: 

𝑓(𝑋𝑗|𝑋−𝑗, 𝑍, 𝑌) =
𝑓(𝑌, 𝑋𝑗, 𝑋−𝑗, 𝑍)

𝑓(𝑌, 𝑋−𝑗, 𝑍)
 

∝ 𝑓(𝑌|𝑋, 𝑍) ∙ 𝑓(𝑋𝑗|𝑋−𝑗, 𝑍) 

So, in the algorithm SMC-FCS, a model f(Xj|X-j,Z,j) must be specified for each j=1,…,p, 

together with noninformative priors f(j). Given values of the parameters of the 

imputation and substantive model (j and , respectively) the missing values of Xj are 

imputed from a density proportional to: 

𝑓(𝑌|𝑋, 𝑍, 𝜓) ∙ 𝑓(𝑋𝑗|𝑋−𝑗, 𝑍, 𝜙𝑗) 
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Since generally this density does not belong to a standard parametric family, drawing 

samples from it is non-trivial [8]. Bartlett and colleagues proposed a rejection sampling 

procedure that involves repeatedly drawing samples from a candidate distribution, 

f(Xj|X-j,Z,j), until the drawn value Xj satisfies the condition: 

𝑈 ≤
𝑓(𝑌|𝑋𝑗

∗, 𝑋−𝑗, 𝑍, 𝜓)

𝑐(𝑌, 𝑋−𝑗, 𝑍, 𝜓)
 

where U follows an uniform distribution on (0,1) and c(Y, X-j, Z, ) is an upper bound 

(in Xj) for f(Y|Xj,X-j,Z,) that does not involve Xj. 

 

2.4 SMC-FCS in excess hazard models 

 

The SMC-FCS algorithm was extended here to accommodate excess hazard models. A 

detailed description on the derivation of the conditions in which the rejection sampling 

must be done is presented in the Supplementary Material (Section S1). 

We consider that the substantive model of interest is an excess hazard model with p 

partially observed variables X = (X1, …,Xp) and a fully observed vector of variables Z=(Z1, 

…, Zq): 

𝜆𝐸(𝑿, 𝒁, 𝑡; 𝜷, 𝜸) = 𝜆0(𝑡; 𝜸) ∙ exp⁡(𝑔(𝑿, 𝒁))    

The algorithm to generate the mth imputed data set is as follows (adapted from [10]): 

1) Calculate using the population mortality, the population hazard (P) and the 

cumulative population hazard (P) given the demographic variables. This does not 

depend on the imputed values so it must be done only once. 
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2) Fill in all missing values for the incomplete variables with a starting arbitrary value 

(for example, mean or mode of observed values). 

3) Fit the excess hazard model of interest to the current complete dataset to obtain 

estimates of the model parameters (�̂�, 𝛾) and of the respective variance-

covariance matrix Σ̂. Draw values 𝛽(𝑚) and 𝛾(𝑚) from a joint normal distributions 

with means �̂� and 𝛾 and variance-covariance matrices Σ̂. 

4) Calculate the estimate of the baseline excess hazard 𝜆0
(𝑚)

(𝑡) and of the baseline 

cumulative excess hazard Λ0
(𝑚)

(𝑡) using parameter values 𝛾(𝑚). 

5) Fit a regression model (linear, logistic, multinomial, as appropriate) of Xj on X-j and 

Z to the current completed data set. Draw a value * from the approximate joint 

posterior distribution of . 

6) For each individual for whom Xj is missing, (i) draw a value of Xj
* from the 

distribution f(Xj|X-j,Z;*) and, (ii) draw a value U from a uniform distribution on 

[0,1]. Accept the value X* if: 

𝑈 ≤ 𝑒𝑥𝑝[−Λ𝑃(𝑡)] ∙ 𝑒𝑥𝑝 [−Λ0
(𝑚)

(𝑡) ∙ 𝑒𝑔(𝑋𝑗
∗,𝑋−𝑗,𝑍,𝛽)]    for  = 0 

 

𝑈 ≤
[𝜆𝑃(𝑡) + 𝜆0

(𝑚)
(𝑡) ∙ 𝑒𝑔(𝑋𝑗

∗,𝑋−𝑗,𝑍,𝛽)] ∙ 𝑒𝑥𝑝 [−Λ𝑃(𝑡) − Λ0
(𝑚)

(𝑡) ∙ 𝑒𝑔(𝑋𝑗
∗,𝑋−𝑗,𝑍,𝛽)]

𝜆0(𝑡)
Λ0(𝑡)

∙ 𝑒𝑥𝑝 [−Λ𝑃(𝑡) − 1 +
Λ0(𝑡) ∙ 𝜆𝑃(𝑡)

𝜆0(𝑡)
]

 

          for  = 1 

Repeat (i) and (ii) until a value of Xj
* is accepted. 

7) Return to step 3 until one cycle is done for all variables with missing data. 
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8) Repeat steps 3-7 a certain number of iterations so that the imputed values of X 

convergence to a stationary distribution. The obtained values form the mth 

imputed data set. Repeat the process M times to obtain M imputed datasets. 

 

3. Simulation study 

 

A simulation study was first performed to evaluate the performance of the SMC-FCS 

algorithm when the substantive model of interest is an excess hazard model. This 

example was adapted from the one presented by Bartlett and colleagues for the Cox 

model [8]. Two covariates were simulated, one binary variable X1~Be(p=0.5) and one 

continuous X2|X1~N(µ=X1, =1). Times to death from cancer were simulated from the 

excess hazard model: 𝜆𝐸(𝑡|𝑋) = 0.002exp⁡(𝛽1𝑋1 + 𝛽2𝑋2) considering⁡𝛽1 = 𝛽2 = 1. 

Times to death from other causes were generated from an exponential distribution 

with hazard 0.001. Censoring times were also generated from an exponential 

distribution but with hazard 0.002. Each of the 1000 simulated datasets had n=1000 

subjects. Data on X2 were made missing considering a MCAR mechanism such that the 

probability of missingness was 0.3. Missingness in X1 was imposed considering three 

different scenarios: A) MCAR with probability of missingness 0.3; B) MAR independent 

of outcome such that logit (P(X1 miss)) = 0.11 - 0.1X2; C) MAR dependent on outcome 

such that logit (P(X1 miss)) = - 0.30 + 0.01T (where T represents survival time). In the 

two last scenarios the coefficients were chosen so that the proportion of missingness 

in X1 was also around 0.3. 
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For each simulated dataset, three approaches for handling missing data were 

compared: i) Complete-case analysis (CCA), where all the cases with at least one 

variable missing were discarded; ii) Multiple imputation using fully conditional 

specification (FCS), including in the imputation models the Nelson-Aalen cumulative 

hazard estimates, the event indicator and X1 when imputing X2 or X2 when imputing X1: 

a logistic regression model was used for imputing X1 and a linear regression model for 

X2; iii) Multiple imputation using the substantive model compatible- fully conditional 

specification algorithm (SMC-FCS) as described above. Again, a logistic regression 

model was used for imputing X1 and a linear regression model for imputing X2. In this 

algorithm, the outcomes are not included as covariates in the imputation models. 

The results obtained for the three simulated scenarios are presented in Table 1. As 

expected, the CCA produced unbiased estimates of the two model parameters and 

empirical coverages close to the nominal level of 95% except when the missingness 

depended on the outcome (Scenario C). The conventional multiple imputation 

approach (FCS) produced biased estimates for both parameters and empirical 

coverages below 95% for all scenarios. On the contrary, the SMC-FCS algorithm 

produced unbiased estimates in all situations, with lower variability than CCA 

estimates (lower standard deviations) and with empirical coverages within the 

expected values. 
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4. Motivating dataset 

 

Colorectal cancer in the North region of Portugal 

The North Region Cancer Registry of Portugal (RORENO) is a population-based cancer 

registry responsible for collecting information on all incidence cancer cases occurring 

in the North region of Portugal (~3.6 million inhabitants). The registry was setup in 

1988 and in 2018 was integrated in the National Cancer Registry (RON).  

A previous study [25] evaluated the existence of socioeconomic inequalities in net 

survival from colorectal cancer diagnosed in the period 2000-2002 in the area covered 

by RORENO. In that study, we found inequalities in net survival when using general life 

tables but that disappeared when inducing relatively small socioeconomic differences 

in background mortality. In the present study, we intended to update that evaluation 

for a more recent period, using deprivation-specific life tables recently built 

[submitted] and considering extent of disease at diagnosis as a confounder. Extent of 

disease is a classification defined by the European Network of Cancer Registries (ENCR) 

based on the TNM classification [26]. The classification is as follows: Tumour localised 

(T1-2N0M0); Tumour with local spread (T3-4N0M0); Tumour with regional spread 

(anyTN+M0); Advanced cancer (anyTanyNM1).  

More specifically, all new cancer cases of colorectal cancer (ICD10: C18-C20), 

diagnosed in the period 2010-2012, in patients with age at diagnosis aged at least 15 

years-old and below 95, residing in the North region of Portugal, were considered 

eligible for analysis. Only the first tumour occurring during the analysed period was 
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considered. Second primary colorectal cancers, either synchronous or metachronous 

were excluded.  

Survival time was considered as time between diagnosis and death from any cause or 

end of follow-up (31st December 2017).  

 

Deprivation indicator 

The Portuguese version of the European Deprivation Index was used as deprivation 

indicator. This index was built using a methodology first proposed by Pornet and 

colleagues in 2012[27] and then applied to five European countries: France, England, 

Italy, Spain and Portugal [28]. The index is based on census variables available for each 

country that are most associated with variables identified from the European Union 

Statistics on Income and Living Conditions (EU-SILC) survey [29]. The index for Portugal 

based on 2001 census includes percentage of: non-owned households, households 

without indoor flushing, residents with low education level (≤6th grade), household 

with 5 rooms or less, unemployed looking for a job, female residents aged 65 years or 

more, households without bath/shower and percentage of residents employed in 

manual occupations [30]. A score was obtained for each parish based on the census 

responses of its inhabitants. This score was then categorized in five quintiles from the 

least deprived (q1) to the most deprived (q5) such that each quintile corresponded to 

20% of the Portuguese population. Each deceased was assigned with the deprivation 

quintile corresponding to his/her parish of residence at the time of death. 
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Data description 

A total of 8108 new cancer cases was considered eligible for analysis. After excluding 

patients with unknown status at the end of follow-up and zero survival time (n=154; 

1.9%), a total of 7954 patients was included in the analysis. Distribution of cases by age 

group, cancer site, deprivation quintile and extent of disease at diagnosis was 

calculated by sex (Table 2). Male patients represented 58.6% of the cohort. Women 

presented a higher median age compared to men: 71 vs 69 years (p<0.001). The 

proportion of rectum cancer cases was higher in men (p=0.035). No differences were 

found in the distribution by deprivation groups between male and female patients 

(p=0.208). Also, the distribution of extent of disease at diagnosis was similar between 

both sexes (p=0.206). 

 

Missing data   

A very low proportion of cases had missing information on deprivation quintile (0.5%) 

being extent of disease at diagnosis the main prognostic variable with a considerable 

proportion of missing data (40.4%). No differences were found between male and 

female patients regarding proportion of missing extent. All other variables analysed 

were significantly associated with extent missingness, even after adjusting for the 

effect of the other variables using a multivariable logistic regression model (Table 3). 

Older, colon cancer and least deprived patients had increased odds of having extent of 

disease at diagnosis unknown. Patients without microscopically verified diagnosis and 
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patients dying in less than 30 days after diagnosis were also associated with increased 

odds of missing extent.   

Age-standardised net survival (ASNS) at 1-year of the patients with known extent 

(84.2%; 95%CI: 83.1-85.2) was significantly higher than ASNS of patients with missing 

extent information (80.7%; 95%CI: 79.4-82.1). On the contrary, ASNS at 5-years was 

higher in patients with unknown extent (67.1%; 95%CI: 65.2-69.1) than with known 

extent (63.9%; 95%CI: 62.3-65.6). 

 

5. Socioeconomic inequalities in survival from colorectal cancer 

 

The main aim of the analysis performed was to evaluate the existence of 

socioeconomic inequalities in net survival from colorectal cancer in the cohort of 

patients described above. Possible confounder variables considered were age, sex and 

extent of disease at diagnosis. The proportion of cases with missing extent was around 

40%.  

First, net survival by SE group was estimated for the full dataset using the non-

parametric Pohar-Perme estimator [31]. Differences between net survival curves were 

assessed using the log-rank-type test developed by Grafféo and colleagues [32]. 

The unadjusted net survival curves (Figure 1) showed a better net survival for patients 

living in least deprived areas (p=0.010). Five-year net survival was 66.9% for the least 

deprived group and 62.0% for the most deprived one. 
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Second, excess hazard ratios were estimated. Missing data was handled using 

complete-case analysis and multiple imputation using the standard FCS and the 

adapted SMC-FCS approach. Covariates considered in the model were age, deprivation 

index (EDI), sex and extent of disease at diagnosis. All covariates were assumed to have 

no time-dependent effects. The excess hazard baseline was modelled using B-splines 

with one knot at one year of follow-up. 

In this example, only one covariate had missing data (extent). The imputation model in 

the standard FCS approach included as covariates age, sex, EDI, tumour site and basis 

of diagnosis besides the event indicator and the cumulative excess hazard estimated 

by the Nelson-Aalen estimator. In the SMC-FCS approach, the same variables were 

used in the imputation model except the outcome, namely the cumulative excess 

hazard baseline and the event indicator. In both MI approaches, extent of disease was 

imputed using a multinomial logistic regression model. Fifty imputations were used in 

each approach. 

The distribution of the imputed extent of disease values was investigated and 

compared with the distribution of extent in the complete cases (Supplementary 

Material S2). The distribution of the values imputed by the standard FCS approach was 

very similar to the observed using the SMC-FCS. In both, the proportion of cases in the 

“Advanced” extent was slightly higher (+3.3%) than the proportion observed for the 

complete cases. On the contrary, for all other three categories, the proportion of 

imputed cases was lower than the one in the complete cases. We further investigated 

the relationship between the imputed values and the survival time (Table S2.2). While 
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for the imputed values using the FCS approach, higher extent consistently resulted in 

lower mean survival time, for the imputed values using SMC-FCS the association 

between survival time and extent (for the extents “Local” to “Regional”) seems to have 

been lost.  

The results obtained for the excess hazard ratios (EHR) using the three different 

approaches are presented in Table 4. The estimated EHRs using the complete-case 

analysis and the FCS approach were similar. Using SMC-FCS, there was attenuation on 

the differences in hazard between the several categories and the reference category 

(“Local”). 

Independently of the approach used, no significant effects of socioeconomic factors 

were observed when adjusting for age, sex and extent of disease at diagnosis. 

 

6. Discussion 

 

The SMC-FCS approach to MI was first proposed by Bartlett and colleagues to ensure 

the compatibility of the imputation models with the substantive model [8]. The 

algorithm relies on a rejection sampling scheme. The conditions of acceptance of a 

proposed imputation value depend on the substantive model of interest. These 

conditions were derived in this study for the situation where the substantive model is 

an excess hazard model. This type of models is very common in population-based 

cancer survival analysis.  
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The proposed adaptation of the SMC-FCS algorithm to cope with excess hazard models 

was tested in a simulation study for three different scenarios of missingness. When 

missingness was MCAR or MAR outcome independent, the complete-case analysis 

produced unbiased estimates as expected. In the third scenario, where missingness 

was dependent on the outcome (survival time), the model parameters estimates 

obtained were biased, including the parameter of the variable for which missing 

mechanism was MCAR.  The standard FCS multiple imputation approach produced 

biased estimates and poor empirical coverages for both parameters. These results 

were observed in all the three missingness scenarios analysed. Due to the non-linear 

nature of the substantive model considered (excess hazard model), the FCS approach 

does not guarantee the compatibility between the imputation and substantive models. 

On the contrary, the SMC-FCS approach to MI produced unbiased estimates of both 

parameters in all scenarios. Also, the standard errors of the estimates were lower than 

for the complete-case analysis. These results confirm that also when the substantive 

model is an excess hazard model, the SMC-FCS approach has a higher performance 

relatively to the other two approaches. 

One of the advantages associated with multiple imputation is the possibility of using 

variables in the imputation model that are not of interest in the substantive model, to 

increase the plausibility of the MAR assumption and the efficiency of the imputation 

process. In the SMC-FCS algorithm, to draw imputations that are compatible with the 

substantive model the variables considered in both imputation and substantive models 

must be the same. In the analysis step one can however use fewer variables. In the 
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example analysed, two auxiliary variables were used in the imputation step (basis of 

diagnosis and tumour site) since that have been shown to be related with the chance 

of extent being missing but were not included in the substantive model.       

No major differences in the estimated adjusted effects of socioeconomic condition on 

the excess hazard were observed between the CCA and both MI approaches. There 

were however differences between the estimated effects of extent of disease between 

the SMC-FCS approach and the other two approaches, which suggest an attenuation of 

the extent effect. Further research is warranted to better evaluate the performance of 

the SMC-FCS algorithm in the imputation of categorical variables (with more than 2 

categories). 

In MI the missing values are imputed using imputation models dependent on a set of 

covariates. The efficiency of these imputations depends if there are variables available 

that are both associated with the probability of missingness and with the missing 

variable. In this study, the number of variables used in the imputation model was low 

and their association with extent of disease was weak which can have diminished the 

efficiency of the imputations performed.      

In this study, the proportional hazards assumption was assumed for all variables. We 

acknowledge that the effect of some covariates can typically be time-dependent. A 

first approach for extending the SMC-FCS approach to cope with excess hazard models 

was presented. Further research must be developed to include time-dependent effects 

in excess hazard models following the work that Keogh and Morris have done for the 

Cox models [10].   
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Table 1 – Comparison of excess hazard models parameters estimates for different 

approaches of missing data handling. Results from n=1000 simulations. 

    CCA   FCS   SMC-FCS 

    Mean SD Cov   Mean SD Cov   Mean SD Cov 

Scenario A 
           

 
β1 = 1 1.001 0.143 95.2 

 
0.929 0.124 93.4 

 
1.003 0.126 95.6 

 
β2 = 1 1.004 0.069 95.7 

 
0.858 0.053 50.7 

 
1.004 0.057 95.8 

Scenario B                       

 
β1 = 1 1.002 0.155 94.0 

 
0.753 0.122 55.5 

 
1.003 0.127 95.2 

  β2 = 1 0.999 0.136 94.7   0.885 0.055 69.5   1.009 0.061 95.1 

Scenario C     
         

 
β1 = 1 0.855 0.128 89.4 

 
0.895 0.128 89.5 

 
1.008 0.128 95.4 

  β2 = 1 0.819 0.068 44.7   0.880 0.051 62.5   1.001 0.058 95.5 

Scenario A: X1, X2 MCAR 
    

CCA – Complete-case analysis 

Scenario B: X1 MAR independent of outcome, X2 MCAR FCS – Fully conditional specification 

Scenario C: X1 MAR dependent of outcome, X2 MCAR SMC-FCS – Substantive model compatible FCS 
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Table 2 - Sociodemographic and clinical characteristics of the colorectal cancer 

patients (2010-2012).  

Variable 
Male Female Total 

n % n % n % 

Total by sex 4664 58.6 3290 41.4 7954 100.0 

Age group             

 
15-44 177 3.8 153 4.7 330 4.1 

 
45-54 460 9.9 334 10.2 794 10.0 

 
55-64 1072 23.0 662 20.1 1734 21.8 

 
65-74 1415 30.3 845 25.7 2260 28.4 

  75+ 1540 33.0 1296 39.4 2836 35.7 

Tumour site 
      

 
Colon 3060 65.6 2234 67.9 5294 66.6 

 
Rectum 1604 34.4 1056 32.1 2660 33.4 

Deprivation (EDI)             

 
q1 (least deprived) 444 9.5 337 10.2 781 9.8 

 
q2 609 13.1 415 12.6 1024 12.9 

 
q3 1074 23.0 693 21.1 1767 22.2 

 
q4 1233 26.4 894 27.2 2127 26.7 

 
q5 (most deprived) 1280 27.4 939 28.5 2219 27.9 

  unknown 24 0.5 12 0.4 36 0.5 

Tumour extent at diagnosis             

 
Localised 486 10.4 327 9.9 813 10.2 

 
Local spread 782 16.8 510 15.5 1292 16.2 

 
Regional spread 879 18.8 617 18.8 1496 18.8 

 
Advanced 636 13.6 502 15.3 1138 14.3 

  Unknown 1881 40.3 1334 40.5 3215 40.4 
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Table 3 - Sociodemographic characteristics of patients with known extent vs patients 

with unknown extent. Odds ratio of having missing extent (uni and multivariable 

analysis). 

Variable 

Extent of disease at diagnosis 

Known Unknown 
 

non-adjusted adjusted 

n % n %   OR 95%CI OR 95%CI 

Total by extent 4739 59.6 3215 40.4 
     

Sex                   

 
Male 2783 58.7 1881 58.5 

 
1 

   
  Female 1956 41.3 1334 41.5   1.01 0.92 - 1.11     

Age group                   

 
15-44 225 4.7 105 3.3 

 
1 

 
1 

 

 
45-54 512 10.8 282 8.8 

 
1.18 0.90 - 1.55 1.19 0.90 - 1.56 

 
55-64 1088 23.0 646 20.1 

 
1.27 0.99 - 1.64 1.23 0.96 - 1.59 

 
65-74 1362 28.7 898 27.9 

 
1.41 1.10 - 1.81 1.34 1.04 - 1.72 

  75+ 1552 32.7 1284 39.9   1.77 1.39 - 2.26 1.58 1.23 - 2.02 

Tumour site                   

 
Colon 2966 62.6 2328 72.4 

 
1 

 
1 

 
  Rectum 1773 37.4 887 27.6   0.64 0.58 - 0.70 0.65 0.59 - 0.72 

Deprivation (EDI)                   

 
q1 (least deprived) 430 9.1 351 10.9 

 
1 

 
1 

 

 
q2 631 13.3 393 12.2 

 
0.76 0.63 - 0.92 0.72 0.60 - 0.87 

 
q3 1055 22.3 712 22.1 

 
0.83 0.70 - 0.98 0.79 0.66 - 0.93 

 
q4 1258 26.5 869 27.0 

 
0.85 0.72 - 0.99 0.80 0.68 - 0.95 

 
q5 (most deprived) 1351 28.5 868 27.0 

 
0.79 0.67 - 0.93 0.75 0.63 - 0.88 

  unknown 14 0.3 22 0.7   a) 

Basis of diagnosis                   

 
Microscopically verified 4628 97.7 2925 91.0 

 
1 

 
1 

 
  Non-micros. verified 111 2.3 290 9.0   4.13 3.31 - 5.17 3.60 2.86 - 4.53 

Death within 30 days of diagnosis                 

 
No 4604 97.2 2994 93.1 

 
1 

 
1 

 
  Yes 135 2.8 221 6.9   2.52 2.02-3.13 1.72 1.36 - 2.16 

a) Due to small proportion of cases, this group has been excluded from the logistic regression model. 
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Table 4 - Excess hazard ratios (CCA; FCS MI; SMC-FCS MI) 

Variable 
CC   FCS MI   SMC-FCS MI 

EHRa) 95%CI   EHRa) 95%CI   EHRa) 95%CI 

EDI 
        

 
q1 1 

  
1 

  
1 

 

 
q2 1,01 0,80 - 1,26 

 
1,00 0,82 - 1,22 

 
0,97 0,61 - 1,55 

 
q3 1,03 0,84 - 1,28 

 
1,10 0,93 - 1,31 

 
1,01 0,66 - 1,55 

 
q4 1,11 0,91 - 1,35 

 
1,08 0,91 - 1,28 

 
1,03 0,70 - 1,51 

 
q5 1,09 0,90 - 1,34 

 
1,16 0,98 - 1,37 

 
1,08 0,71 - 1,65 

Extent                 

 
Localized 1 

  
1 

  
1 

 

 
Local spread 2,69 1,72 - 4,18 

 
2,46 1,61 - 3,75 

 
0,66 0,30 - 1,43 

 
Regional spread 5,41 3,54 - 8,24 

 
5,14 3,52 - 7,53 

 
1,59 0,83 - 3,01 

  Advanced 33,7 22,3 - 51,1   31,6 21,7 - 46,1   10,5 6,20 - 17,7 

a) Adjusted for age, sex and EDI or Extent. 
      

 

Figure 1 – Net survival by EDI category for the full cohort. 
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Dealing with missing information on covariates of excess hazard models -

making the imputation model compatible with the substantive model

S1 - Supplementary Material

Excess hazard model with missing data on covariates

The work of Bartlett and colleagues [1] on multiple imputation using substantive model

compatible fully conditional specification (SMC-FCS) was extended here to cope with

excess hazard models.

We suppose that the interest lies in the time T to death from any cause. Considering TE

to be time to death from cancer and TP the time to death from other causes, T will be the

minimum between both, T = min(TE , TP ). We consider that this time T can be censored,

meaning that the event of interest is not observed for all patients during the follow-up

period. Let C denote the censoring time. Let W = min(T,C) and δ = 1(T < C)

the event indicator. We assume that TE depends on a set of fully observed variables

Z = (Z1, · · · , Zq) and a set of partially observed variables X = (X1, · · · , Xp) and that TP

depends on a set of fully observed demographic variables D, considered here as a subset

of Z. We assume TE and TP to be conditionally independent given D. Also, censoring is

assumed to be noninformative.

In this relative survival setting, it is assumed that the observed hazard for one patient

(λOi) can be split in two additive hazards, the expected mortality (λPi) and the excess

hazard due to the disease in analysis (λEi):

λOi(t) = λPi(t) + λEi(t)

The information on expected mortality can be obtained from population life tables. The

survival function for time to death from any cause is related to the observed hazard by:

S(t) = P (T > t) = exp

[
−
∫ t

0
λO(u)du

]

= exp [−ΛP (t|D)− ΛE(t|X,Z)]

A flexible parametric excess hazard model is assumed as the substantive model of interest:

λE(t|X,Z) = λ0(t; γ) · exp[g(Xj , X−j , Z;β)]
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where λE(t|X,Z) represents the excess hazard at time t, λ0(t; γ) represents the excess

hazard baseline parametrically defined and parametrised by a set of parameters γ, and

g(X,Z;β) a function of the covariates parametrised by parameters β. The set of param-

eters that characterize the excess hazard function is ψ = (β, γ). The method proposed

by Bartlett uses a rejection sampling algorithm to draw imputations that are compatible

with the substantive model. Considering first how to sample Xj for a patient for whom

δ = 0, assuming the time to event to be independent from time to censoring conditioned

on X and Z, we have:

f(W = t, δ = 0|Xj , X−j , Z, ψ) = f(T > t,C = t|Xj , X−j , Z, ψ)

= P (T > t|Xj , X−j , Z, ψ) · f(C = t|Xj , X−j , Z)

= P (T > t|Xj , X−j , Z, ψ) · f(C = t|Z)

≤ f(C = t|Z)

The values of X∗j are drawn from f(Xj |X−j , Z, φj) and U from an uniform distribution

U(0, 1). X∗j should be accepted when:

U ≤
f(W = t, δ = 0|X∗j , X−j , Z, ψ)

f(C = t|Z)

= P (T > t|X∗j , X−j , Z, ψ)

= exp
[
−ΛP (t|D)− ΛE(t|X∗j , X−j , Z)

]

= exp

[
−ΛP (t|D)−

∫ t

0

(
λ0(u; γ) · eg(X∗

j ,X−j ,Z;β)
)
du

]

Assuming no time-dependent effects on covariates, this simplifies to:

U ≤ exp
[
−ΛP (t|D)− eg(X∗

j ,X−j ,Z;β) · Λ0(t; γ)
]

= exp [−ΛP (t|D)] · exp
[
−eg(X∗

j ,X−j ,Z;β) · Λ0(t; γ)
]

For a patient who is not censored (δ = 1), we have:

f(W = t, δ = 1|Xj , X−j , Z, ψ) = f(T = t, C > t|Xj , X−j , Z, ψ)

= f(T = t|Xj , X−j , Z, ψ) · P (C > t|Xj , X−j , Z)

= f(T = t|Xj , X−j , Z, ψ) · P (C > t|Z)

= λ(t|Xj , X−j , Z, ψ) · P (T > t|Xj , X−j , Z, ψ) · P (C > t|Z)
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and, since T represents time to death from any cause:

f(W = t, δ = 1|Xj , X−j , Z, ψ)

= [λP (t|D) + λE(t|Xj , X−j , Z)] · P (T > t|Xj , X−j , Z, ψ) · P (C > t|Z)

= [λP (t|D) + λE(t|Xj , X−j , Z)] · exp [−ΛP (t|D)− ΛE(t|Xj , X−j , Z)] · P (C > t|Z)

=
[
λP (t|D) + λ0(t; γ) · eg(Xj ,X−j ,Z;β)

]
·

exp
[
−ΛP (t|D)− Λ0(t; γ) · eg(Xj ,X−j ,Z;β)

]
· P (C > t|Z)

To find the maximum the expression

[
λP (t|D) + λ0(t; γ) · eg(Xj ,X−j ,Z;β)

]
· exp

[
−ΛP (t|D)− Λ0(t; γ) · eg(Xj ,X−j ,Z;β)

]

can take, we differentiated the expression with respect to g and set it to zero, resulting

that the maximum of the expression is obtained when:

exp(g(Xj , X−j , Z;β)) =
1

Λ0(t; γ)
− λP (t|D)

λ0(t; γ)

Therefore,

f(W = t, δ = 1|Xj , X−j , Z, ψ) ≤λ0(t; γ)

Λ0(t; γ)
· exp

[
−ΛP (t|D)− 1 +

Λ0(t; γ) · λP (t|D)

λ0(t; γ)

]

· P (C > t|Z)

We can thus draw X∗j from f(Xj |X−j , Z, φj) and U ∼ U(0, 1), and accept X∗j when

U ≤
f(W = t, δ = 1|X∗j , X−j , Z, ψ)

λ0(t;γ)
Λ0(t;γ) · exp

[
−ΛP (t|D)− 1 + Λ0(t;γ)·λP (t|D)

λ0(t;γ)

]
· P (C > t|Z)

=

[
λP (t|D) + λ0(t; γ) · eg(X∗

j ,X−j ,Z;β)
]
· exp

[
−ΛP (t|D)− Λ0(t; γ) · eg(X∗

j ,X−j ,Z;β)
]

λ0(t;γ)
Λ0(t;γ) · exp

[
−ΛP (t|D)− 1 + Λ0(t;γ)·λP (t|D)

λ0(t;γ)

]
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Localised Local spread Regional spread Advanced

observed 17,2% 27,3% 31,5% 24,0%

FCS 16,6% 26,6% 29,5% 27,3%

SMC-FCS 16,3% 27,0% 29,4% 27,3%

5,43 4,79

5,07 5,08

4,59 4,76

1,70 1,88

Localised

Local spread

Regional spread

Advanced

FCS

Table S2.2 - Mean survival time (in years) by imputed extent of disease 

for FCS and SMC-FCS approaches.

SMC-FCSImputed extent

Dealing with missing information on covariates of excess hazard models - making the imputation model 

compatible with the substantive model

S2 - Supplementary Material

Table S2.1 - Comparison of observed extent of disease distribution vs. 

distribution of Imputed values for FCS and SMC-FCS approaches.
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Chapter 4

Discussion and Conclusions

4.1 Discussion

The real world application that motivated the studies presented in this thesis was the eval-

uation of socioeconomic inequalities in survival from cancer. Several statistical method-

ological questions arose from this research question. Figure 4.1 summarises the integra-

tion between the several questions analysed. The evaluation of the association between

observed 
all-cause 
survival  

by SE status 

background 
mortality 

by SE status 

net survival/ 
excess hazard 
by SE status 

Age as 
 confounder 

Not  
available 

Match 

Stage/extent as 
 confounder 
(partially observed) 

Age- 
-standardise 

Missing 
data 

SE 
measure 

Figure 4.1: Schematic representation of the research questions analysed in this thesis.
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patient’s socioeconomic (SE) status and survival from cancer was performed in the rela-

tive survival framework. This approach was justified by the use of population-based data

for which cause of death was not known or was unreliable. In this setting, the observed

quantity is the all-cause survival/hazard. It is assumed that this observed hazard can be

decomposed in two additive components, the hazard due to the disease under study and

the hazard due to other causes. The hazard due to other causes is estimated from the

population mortality, assuming that the specific disease contribution to the overall mor-

tality is negligible. The quantity of interest, the excess hazard, can thus be estimated

being the all-cause and the background hazard known. Net survival is directly related to

the excess hazard. The correct estimation of the excess hazard relies on the assumption

that the matched population shares the same demographic characteristics as the pa-

tients under study. Failure to meet this assumption can lead to biased excess hazard and

consequently net survival estimates. In this thesis, we emphasise that when evaluating

the excess hazard/net survival by SE condition, the background mortality should also be

considered stratified by SE since these factors can affect both excess and other causes

hazard. Since SE-specific life tables were not available for Portugal, this question had

to be addressed. In the first study evaluating SE inequalities presented in Section 3.2,

a sensitivity analysis to the choice of life tables was performed. Life tables stratified by

SE status were then built for Portugal (Section 3.3) and applied in the estimation of net

survival from cancer in Section 3.4.

Net survival from most cancers depends on age. When comparing two different popu-

lations (corresponding to different regions, periods or, for instance, SE subgroups of the

same population) that have the same age-specific survival probabilities, the crude net

survival in both populations can differ due to differences in the age-structure between

them. To allow comparability between those populations age-standardised measures

should be used. This question was addressed with special focus on situations where

data are sparse in Section 3.1.

Socioeconomic inequalities in survival from cancer can partially be explained by earlier

diagnosis in some SE groups relatively to others. It was thus important to adjust for

stage/extent of disease at diagnosis when evaluating the association between SE factors
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and cancer survival. The information on this key prognostic factor had a considerable

proportion of missing information in the database used in these studies. Several factors

contributed to this missingness and could be related to patient’s characteristics or to the

registration process itself. Population-based cancer registries receive information from a

large number of sources making most of the times hard to retrieve this type of information

retrospectively. Statistical methods were then needed to deal with missing data that could

take advantage of the available information and not only of the information from complete

cases. Existing methods to deal with missing information on covariates were extended to

be used with excess hazard models (Section 3.4).

No information on SE factors at individual level was available for the patients analysed.

How to attribute SE status to the cancer patients and how to stratify background mortality

by SE status were questions that also needed to be addressed along the several studies

presented.

Summarizing, and considering the motivating application, the main research questions

identified and analysed in this thesis were: evaluation of methods to estimate age-

standardised net survival; analysis and extension of methods to model the excess haz-

ard function in the presence of missing data on covariates; development of deprivation-

specific life-tables to allow comparability of background mortality between the cancer

cohort and the population comparison group; assessment of socioeconomic inequalities

in survival from cancer. Below, some considerations regarding the several studies are

addressed.

In population-based cancer survival, age standardisation is performed using a discreti-

sation of the age distribution into age groups. The calculation of the standardised net

survival results thus from a weighted average of age group-specific net survivals. These

specific estimates can be obtained using a non-parametric estimator or using a model-

based predictions. Either way, the age group estimates will depend on the age distribu-

tion within each age group of the cancer patients in the cohort being analysed. When

age is considered as a continuous variable and the excess hazard is modelled with flex-

ible functions, net survival of each individual can be thinly predicted. The net survival of

a given age group is a weighted average of age-specific predicted survivals where the
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weights are given by the sample age distribution itself. When the data are sparse, this

leads to unstable net survival estimates even if the model allows to smoothly predict ex-

act individual net survivals. Furthermore, it is possible that some age groups have no

observations making it impossible to estimate age group specific survival. An alterna-

tive model-based approach to estimate survival for each age group, prior to performing

the classical age-standardisation, was thus proposed and evaluated. In this approach,

instead of using the sample age distribution, survival was predicted from the model in a

reference age, external to the sample age distribution. In this way, the estimate was no

longer dependent on the sample age distribution or availability of data in each subgroup

of patients. Considering the age group-specific survival given by these predictions in ref-

erence ages corresponds to making an external standardisation complementary to the

classical standardisation using the Corazziari weights. In the study developed, the com-

mon number of age groups and weights were used. Other alternative ways of estimating

an age-standardised measure can however be thought. The number of age groups or

the age point (or points) where survival is estimated in each age group can be different.

In the SUDCAN study, the net survival within each age group was calculated by averag-

ing the net survivals predicted from the model for each annual age using the age weights

within the age-class as observed over the entire data (country and site specific) [84]. This

standardisation allowed comparisons between years of diagnosis since the age structure

was constant over time. Nevertheless, it was a standardisation specific of that particular

study directed at analysing trends in survival in each country and not at making survival

comparisons between regions.

As alternative, considering that the model that allows age specific survival probabilities

to be predicted is known (after having been fitted to the data), one might consider a stan-

dard population finely specified by individual age. This would use the entire information

that could be extracted from the model (by considering the full survival by age profile).

Also, only one weighted average would be used instead of standardising in two steps

(within each group and then over age groups). Simulations are still needed to evaluate if

this approach would lead to an estimator of age-standardised net survival with better per-

formance in terms of bias, empirical coverage and mean square error than the proposed
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approach in Section 3.1.

Although net survival predictions can be obtained from an excess hazard model for any

age, even for ages not observed in a particular sample, prior to making predictions the

model has to be fitted to the data. When samples are small or the data are sparse, spe-

cially for low or high ages, the model fit can be poor. In the simulation study performed, a

large variability in the models fitted was obtained. Consequently, a large variability in the

survival predictions was observed. Also, using a stepwise algorithm to select the model

that best fits the data, a simpler model than the ’true’ one tended to be chosen. Due to

small sample sizes and consequently low power of the test involved, statistically signifi-

cant non-linear or time-dependent effects were hard to detect. This issue of poor model

fitness in small samples is however transversal to any approach that could be used for

producing model-based age-standardised net survival estimates.

The association between socioeconomic status and net survival from colorectal cancer

was evaluated in studies II and IV. In the first study a cohort of patients diagnosed in

the North region of Portugal in the period 2000-2002 was analysed. In the last study,

the cohort analysed was from patients diagnosed a decade later (2010-2012). Since in-

dividual information on SES is not routinely available in Portuguese Cancer Registries,

neither it was possible to link cancer patients to any data source with that type of individ-

ual information, area-level indicators were used. In the first of these two studies, a simple

indicator (education) and a composite index (EDI) were used. Surprisingly, although ed-

ucation also contributed to the construction of the EDI, education alone seemed to better

discriminate results in survival in the different deprivation groups. In Study II, the SES ef-

fect was only adjusted for age and sex. When this study was performed, the adjusted life

tables were not yet available. Instead, general life tables, i.e. not stratified by SES, were

used. Having the conscience that this option could result in overestimation of the depriva-

tion gap, a sensitivity analysis to variations in background mortality was performed. In this

analysis, the deprivation specific life tables built for England were used as basis. Although

the SES disparities in overall mortality in England can differ from the ones in Southern

countries as Portugal, those were used since this type of information is not available for

most European countries. This sensitivity analysis showed that the inequalities in sur-
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vival from cancer vanished even if the differences in mortality between SES groups in

Portugal was a relatively small fraction of the differences observed in England. To allow a

finer adjustment of the background mortality, deprivation-specific life tables were built for

Portugal (Study III). Again, no information at the individual level on SES was available for

each deceased person. To allow comparability between cancer patients and population

mortality, the same index that was used to classify cancer patients was used to discrim-

inate between different SES groups in the general population. In studies III and IV, the

option fell in using only the European Deprivation Index. This has the advantage of being

an index available for different European countries, allowing larger comparability between

the studies developed and other studies done for different regions.

Socioeconomic inequalities in overall mortality were found for Portugal. These were larger

in men than in women. When evaluating SES inequalities in cancer survival, it was thus

expectable that the use of deprivation-specific life tables (instead of the general ones)

would have a larger impact in men than in women.

In study IV, the evaluation of SES in survival from cancer used the deprivation-specific life

tables built in the previous study. In this case, each patient was matched to a population

subgroup that shared the same socioeconomic condition, enabling a more exact estima-

tion of their net survival. Besides adjusting for age and sex, the effect of SES in survival

was also adjusted for extent of disease at diagnosis. This variable is the major prognostic

factor of cancer survival. It was thus important to adjust for it to understand if potential

SES inequalities are explained (or at least partially explained) by earlier diagnosis in one

SES groups relatively to others.

The extent of disease at diagnosis had a large proportion of missing data. In the cohort

analysed this proportion was around 40%. With the developments in the cancer regis-

tration processes that are foreseen for the future, it is expectable that the proportion of

missing data will tend to reduce. But for the moment, and for retrospective analysis the

occurrence of missing data remains an important issue.

The most common method to handle missing data in the context of cancer survival anal-

ysis is multiple imputation. Although the application of this method using standard ap-

proaches can be found in the literature, when the substantive model of interest is an
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excess hazard model this can produce biased results as shown in the simulation study

presented in Section 3.4.

Three approaches were used to handle with the missing information on extent of disease

in the evaluation of SE inequalities. The complete-case analysis produces unbiased esti-

mates if the missing mechanism is MCAR. This assumption is however untestable so it is

not possible to know in advance if that type of approach is valid for the data in hand. The

multiple imputation approach lies on the assumption that the missing mechanism is MAR.

Including in the imputation models as many predictors as possible increases the plausi-

bility of the assumption that missingness only depends on observed information [27]. In

the application analysed, the number of variables available for being both predictors of

values being missing and of the underlying unseen values was limited. If more variables

associated with extent of disease were available, the efficiency of the imputation process

could have increased.

In the standard FCS algorithm, the outcome variables must be included in the imputation

model. Otherwise the association between the outcome and the explanatory variables

will be biased towards the null [170]. In the SMC-FCS approach, the outcome variables

are not included in the imputation models. The algorithm draws proposal imputed values

from the imputation model and then the specified outcome model is used to reject or

accept each proposed imputed values. While in the standard MI approach there is still

some arguing on how the outcome of a survival model should be included in the imputa-

tion model, this is not an issue in the SMC-FCS approach.

The practical use of the SMC-FCS algorithm may be hampered due to its high com-

putational time. Since each imputed value must be checked for compatibility with the

substantive model the process is slow specially if the proportion of rejected values is

high.

4.2 Data considerations

The major limitations identified in the studies developed in this thesis are related to data

availability. The evaluation of socioeconomic inequalities in survival from colorectal can-



210 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

cer (Study II) implied a major effort on getting patient’s addresses and its subsequent

geocoding. The years of diagnosis of the patients included in this study (2000-2002)

reported to a period where the completeness and quality of the information on patient’s

addresses registered in the Cancer Registry (CR) was inferior to what is available for

more recent periods. In order to complete the information available in the CR records,

an exhaustive search in the National Health Service database (RNU - Registo Nacional

de Utentes) was performed. Some misclassification of patient’s addresses could have

occurred since not all patient’s used to timely report address changes.

The construction of deprivation-specific life tables relied on the distribution of deaths and

population by parish. The matching of the SE condition and the number of deceased indi-

viduals were based in this geographical unit. More accurate results could have been ob-

tained with smaller geographical units. Due to the high population size of some parishes

and the possible heterogeneity of SE distribution within each parish, some dilution ef-

fect could have occurred leading to some underestimation of overall mortality differences

between socioeconomic groups. However, this was the smallest geographical area for

which the national statistics office (INE - Instituto Nacional de Estatı́stica) made the data

available and it was not possible to obtain more disaggregated data.

The SES index used in both studies II and IV was the Portuguese version of the EDI.

This was built based on information from the 2001 Census. An update of this index using

information from the 2011 Census is being built. However, by the time Study IV (which

period of diagnosis was 2010-2012) was performed, it was not available. Nevertheless,

the classification of each geographical area in deprivation quintiles is not expected to

undergo significant changes.

4.3 Future work

The question of age-standardisation of net survival was analysed with particular empha-

sis on situations with sparse data. This analysis can be extended to a broader setting

with ’infinite’ data. Different alternatives for standardising, as discussed above, should be

tested and compared in order to evaluate which approach presents better performance.
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Also, according to the methodology chosen, international standards for the age distribu-

tion and respective weights should be proposed to allow a broad use of the proposed

methodology.

Concerning the methods to handle missing data, the substantive model compatible

methodology was extended for excess hazard models when the covariates have linear

and proportional hazards effects. This methodology should be further extended to ac-

commodate non-linear and time-dependent effects in excess hazard models.

Socioeconomic inequalities were evaluated for colorectal cancer patients diagnosed in

the North region of Portugal. The analysis can be extended to other pathologies. Al-

though no SE disparities were found for the disease studied, the reality can be different

for other cancers.

4.4 Final conclusions

Several methodological questions regarding the statistical analysis of population-based

cancer survival were addressed in this thesis. Also, a real world question regarding the

evaluation of socioeconomic inequalities in survival from cancer was analysed. Sum-

marising, the main contributions of the developed work were:

• Methods to age-standardised net survival were studied and an alternative model-

based approach was proposed.

• Multiple imputation methods that guarantee the compatibility between the imputa-

tion and substantive models were extended to accommodate excess hazard mod-

els.

• Deprivation-specific life tables were built for Portugal using multivariable flexible

models. These life tables can be used for monitoring inequalities and in future stud-

ies that require background mortality information in the estimation of deprivation-

specific net survival from any specific disease.

• The methodology to perform evaluations of socioeconomic inequalities in survival

from cancer for patients was set-up. For the first time, this evaluation was performed
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for patients diagnosed in the North region of Portugal.

From the studies developed, the following main conclusions were draw:

• The best method to age-standardise net survival is still an open question. It has

been shown that the proposed method can be a valid alternative to the conventional

methods, specially in the presence of sparse data.

• The standard multiple imputation methods to handle missing data in excess hazard

models with missing information on covariates can have a poor performance. The

developed extension of the SMC-FCS algorithm for this context presented higher

performance.

• Persistent socioeconomic inequalities in overall mortality were found for Portugal,

being these larger in men than in women.

• No evidence of consistent socioeconomic inequalities in survival from colorectal

cancer for patients diagnosed in the North region of Portugal were found.

The research developed along this thesis can and should be used as starting points for

further research.
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[87] Estève J, Benhamou E, Croasdale M, Raymond L. Relative survival and the esti-

mation of net survival: Elements for further discussion. Statistics in Medicine. 1990

may;9(5):529–538.

[88] Sasieni P. Proportional excess hazards. Biometrika. 1996 mar;83(1):127–141.

[89] Perme MP, Henderson R, Stare J. An approach to estimation in relative survival

regression. Biostatistics. 2009;10(1):136–146.

[90] Giorgi R, Abrahamowicz M, Quantin C, Bolard P, Esteve J, Gouvernet J, et al. A rel-

ative survival regression model using B-spline functions to model non-proportional

hazards. Statistics in Medicine. 2003 sep;22(17):2767–2784.

[91] De Boor C. A practical guide to splines. Springer; 2001.

[92] Crowther MJ, Lambert PC. stgenreg: A stata package for general parametric sur-

vival analysis. Journal of Statistical Software. 2013;53(12):1–17.

[93] Lambert PC, Smith LK, Jones DR, Botha JL. Additive and multiplicative covariate

regression models for relative survival incorporating fractional polynomials for time-

dependent effects. Statistics in Medicine. 2005 dec;24(24):3871–3885.

[94] Hakulinen T, Tenkanen L. Regression Analysis of Relative Survival Rates. Apllied

Statistics. 1987;36(3):309–317.



FCUP and ICBAS 223
Statistical models in cancer survival

Application to study of prognostic factors in the presence of incomplete data

[95] Dickman PW, Sloggett A, Hills M, Hakulinen T. Regression models for relative

survival. Statistics in Medicine. 2004;23(1):51–64.

[96] Crowther MJ, Lambert PC. A general framework for parametric survival analysis.

Statistics in Medicine. 2014;33(30):5280–5297.

[97] Royston P, Parmar MKB. Flexible parametric proportional-hazards and

proportional-odds models for censored survival data, with application to prognos-

tic modelling and estimation of treatment effects. Statistics in Medicine. 2002

aug;21(15):2175–2197.

[98] Lambert PC, Royston P, Lambert PC, Royston P. Further development of exible

parametric models for survival analysis. Stata Journal. 2009;9(2):265–290.

[99] Royston P, Lambert PC. Flexible parametric survival analysis using Stata : beyond

the Cox model. Stata Press; 2011.

[100] Findley DF. Model Selection: Akaike’s Information Criterion. In: Encyclopedia of

Statistical Sciences. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006. .

[101] Wynant W, Abrahamowicz M. Impact of the model-building strategy on inference

about nonlinear and time-dependent covariate effects in survival analysis. Statistics

in Medicine. 2014;33(19):3318–3337.

[102] Stare J, Pohar M, Henderson R. Goodness of fit of relative survival models. Statis-

tics in Medicine. 2005;24(24):3911–3925.

[103] Cortese G, Scheike TH. Dynamic regression hazards models for relative survival.

Statistics in Medicine. 2008 aug;27(18):3563–84.

[104] Danieli C, Bossard N, Roche L, Belot A, Uhry Z, Charvat H, et al. Performance of

two formal tests based on martingales residuals to check the proportional hazard

assumption and the functional form of the prognostic factors in flexible parametric

excess hazard models. Biostatistics. 2017 jul;77(3):147–160.



224 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

[105] Rabeneck L, Souchek J, El-Serag HB. Survival of colorectal cancer patients hos-

pitalized in the Veterans Affairs Health Care System. The American Journal of

Gastroenterology. 2003 may;98(5):1186–1192.

[106] Lyratzopoulos G, Sheridan GF, Michie HR, McElduff P, Hobbiss JH. Absence of

socioeconomic variation in survival from colorectal cancer in patients receiving

surgical treatment in one health district: cohort study. Colorectal Disease. 2004

nov;6(6):512–517.

[107] Nur U, Rachet B, Parmar MKB, Sydes MR, Cooper N, Lepage C, et al. No socioe-

conomic inequalities in colorectal cancer survival within a randomised clinical trial.

British Journal of Cancer. 2008;99(11):1923–1928.

[108] Egeberg R, Halkjær J, Rottmann N, Hansen L, Holten I. Social inequality and inci-

dence of and survival from cancers of the colon and rectum in a population-based

study in Denmark, 19942003. European Journal of Cancer. 2008 sep;44(14):1978–

1988.

[109] Hussain SK, Altieri A, Sundquist J, Hemminki K. Influence of education level on

breast cancer risk and survival in Sweden between 1990 and 2004. International

Journal of Cancer. 2008;122(1):165–169.

[110] Dejardin O, Remontet L, Bouvier aM, Danzon A, Trétarre B, Delafosse P, et al.

Socioeconomic and geographic determinants of survival of patients with digestive

cancer in France. British Journal of Cancer. 2006;95(7):944–9.

[111] Kim J, Artinyan A, Mailey B, Christopher S, Lee W, McKenzie S, et al. An interaction

of race and ethnicity with socioeconomic status in rectal cancer outcomes. Annals

of Surgery. 2011;253(4):647–654.

[112] Gorey KM, Luginaah IN, Bartfay E, Fung KY, Holowaty EJ, Wright FC, et al. Effects

of socioeconomic status on colon cancer treatment accessibility and survival in

Toronto, Ontario, and San Francisco, California, 1996-2006. American Journal of

Public Health. 2011;101(1):112–119.



FCUP and ICBAS 225
Statistical models in cancer survival

Application to study of prognostic factors in the presence of incomplete data

[113] Ueda K, Kawachi I, Tsukuma H. Cervical and corpus cancer survival disparities

by socioeconomic status in a metropolitan area of Japan. Cancer Science. 2006

apr;97(4):283–291.

[114] Dalton SO, Steding-Jessen M, Gislum M, Frederiksen K, Engholm G, Schüz J.
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Appendix A

Oral and Posters communications

In this appendix, the abstracts of the oral and posters communications that have been

done during this thesis development are presented. The title of the communications

and respective conference are presented in chronological order, starting with the oral

communications and followed by the poster presentations.

A.1 Oral communications

Imputação múltipla - Uma aplicação ao tratamento de dados omissos em análise

de sobrevivẽncia de doentes oncológicos

Luı́s Antunes, Maria José Bento, Denisa Mendonça

XIX Congresso Anual da Sociedade Portuguesa de Estatstica - Nazaré, Portugal - 2011

Socio-economic inequalities in stomach cancer survival: the importance of ac-

counting properly for missing data

Luı́s Antunes, Bernard Rachet, Maria José Bento, Denisa Mendonça

XXXVII GRELL Meeting - Porto, Portugal - 2012
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Region of Portugal

Luı́s Antunes, Bernard Rachet, Maria de Fátima Pina, Maria José Bento, Denisa

Mendonça

European Congress of Epidemiology - Porto, Portugal - 2012

Abstract published in: European Journal of Epidemiology (2012) 27:S1S197

Socioeconomic inequalities in bladder cancer survival in the North Region of Por-

tugal, 1999-2006

Luı́s Antunes, Maria José Bento, Clara Castro, Bernard Rachet, Denisa Mendonça

XXXVIII GRELL Meeting - Siracusa, Italy - 2013

Estimation of age-standardized net survival in sparse data using a modelling ap-

proach

Luı́s Antunes, Denisa Mendonça, Aurélien Belot, Bernard Rachet

One-day Workshop on Survival Analysis, Lisbon, Portugal - 2017

Deprivation-specific life tables using multivariable flexible modelling - trends from

2000-2002 to 2010-2012

Luı́s Antunes, Denisa Mendonça, Ana Isabel Ribeiro, Camille Maringe, Bernard Rachet

III Encontro Luso-Galaico de Biometria, Aveiro, Portugal - 2018

A.2 Poster communications

Desigualdades sócio-económicas na sobrevivẽncia de doentes oncol’ogicos na

presença de informação incompleta

Luı́s Antunes, Bernard Rachet, Maria de Fátima Pina, Maria José Bento, Denisa

Mendonça

XX Congresso Anual da Sociedade Portuguesa de Estatstica - Porto, Portugal - 2012

Desigualdades sócio-económicas na sobrevivẽncia de doentes diagnosticados
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Luı́s Antunes, Bernard Rachet, Maria José Bento, Denisa Mendonça
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Imputação múltipla - Uma aplicaç̃ao ao tratamento de dados
omissos em ańalise de sobreviv̂encia de doentes oncológicos
Lu ı́s Antunes1, Maria José Bento1 e Denisa Mendonça2

1 RORENO - Registo Oncológico Regional do Norte,{luis.antunes, mjbento}@ipoporto.min-
saude.pt
2 ICBAS/ISPUP - Universidade do Porto,dvmendon@icbas.up.pt

Resumo: A exist̂encia de informaç̃ao incompletáe um problema comum em muitos estudos na
área da sáude. A forma mais comum de lidar com a ocorrência de dados omissos consiste em não
considerar na ańalise os registos com informação incompleta. Esta restrição na ańalise pode levar a
inferências com diferenças substanciais daquelas que seriam obtidas se não houvesse dados omis-
sos. A imputaç̃ao ḿultipla tem sido uma das formas de lidar com dados omissos no pressuposto
que os dados em falta dependam apenas de informação observada. Neste trabalho apresenta-se uma
aplicaç̃ao da imputaç̃ao ḿultipla a um problema de análise de sobreviv̂encia de doentes com cancro
do pulm̃ao.

Palavras–chave:Imputaç̃ao ḿultipla, ańalise de sobreviv̂encia, cancro do pulm̃ao

Introduç ão

A exist̂encia de varíaveis com informaç̃ao incompletáe um problema recorrente em registos on-
cológicos de base populacional. A extensão da doençàa data de diagńostico, factor de progńostico
de maior import̂ancia,é uma varíavel para a qual a percentagem de casos sem informação tende
a ser elevada. Numa análise de sobreviv̂encia, a consideração apenas dos casos para os quais
existe informaç̃ao completa, pode introduzir enviesamentos nas conclusões que se retiram dessa
mesma ańalise, especialmente se o mecanismo de omissão ñao for completamente aleatório. No
pressuposto de que a falta de informação depende apenas de informação observada, a imputação
múltipla é uma das formas propostas para lidar com este problema em estudos de sobrevivência
com informaç̃ao incompleta nas covariáveis [2].

Métodos

Aplicou-se a imputaç̃ao ḿultipla por equaç̃oes em cadeia [3] para gerar as observações das variáveis
em falta, iterativamente, a partir da distribuição de cada uma dessas variáveis condicionada aos da-
dos observados para outras variáveis. V́arios conjuntos de dados completados foram gerados. Para
cada um destes conjuntos foi ajustado um modelo de sobrevivência relativa. Neste modelo, com
estrutura de modelo linear generalizado com erro de Poisson, considera-se que o risco de morte de
cada paciente resulta da soma de duas componentes: uma relacionada com orisco esperado (esti-
mado a partir de tábuas de mortalidade para a população em geral) e uma componente de excesso de
risco relacionado com a doença [1]. O resultado do modelo são estimativas para razões de excesso
de risco para cada covariável, ajustadas para as restantes. Os resultados obtidos para cada conjunto
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completado s̃ao combinados para produzir as estimativas finais. Na variância final das estimativas
dos coeficientes do modelo,é tida em conta a incerteza associada aos valores estimados no processo
de imputaç̃ao [2].

Aplicação

Pretendeu-se estudar os factores de prognóstico mais importantes na sobrevivência de doentes de
cancro do pulm̃ao. Consideraram-se os pacientes diagnosticados no perı́odo 2000 a 2006, com
idade igual ou superior a 15 anos, residentes na região Norte de Portugal̀a data de diagńostico e
registados no RORENO (Registo Oncológico Regional do Norte). O estadio da doençaà data do
diagńostico ñao era conhecido em cerca de metade dos casos e a morfologia do tumor encontrava-se
mal especificada em cerca de 26% dos casos. Neste trabalho, apresentam-se os resultados obtidos na
modelaç̃ao da sobreviv̂encia, tendo sido usada a imputação ḿultipla para completar a informação
nas covaríaveis com informaç̃ao em falta. Varíaveis como estado vital, tempo de sobrevivência,
idade, sexo, fonte de informação, ano de diagńostico, base de diagnóstico, entre outras, foram usadas
nos modelos de imputação. Foi efectuada uma análise comparativa entre os resultados obtidos e
aqueles que se obtiveram usando apenas os casos completos.
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[1] Dickman, P.W., Sloggett, A., Hills, M. e Hakulinen, T (2004). Regressionmodels for relative
survival.Statistics in Medicine, 23, 51-64.
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INTRODUCTION  
Socio-economic inequalities in cancer survival have been reported in different countries. 
Tumour stage may play an important role in these inequalities, but is often missing in high 
proportions.  
 

OBJECTIVES  
To estimate net survival from stomach cancer by deprivation, adjusted for stage and 
accounting for missing stage information.  
 

MATERIAL AND METHODS  
Various ecological socio-economic measures were allocated to stomach cancer patients 
registered by the Portuguese Institute of Oncology (Porto) in 2005-06. Up-to-five-year net 

survival was estimated using a flexible modelling approach enabling to model the effects of 
sex, age, socio-economic condition and stage. Missing data were handled using multiple 
imputation. We compared complete-case and imputation-based findings.  
 

RESULTS  
The analysis included 593 patients (60% male). Tumour stage was missing for about 20% of 
the patients, but this proportion was higher in elderly and in palliative care group. Advanced 
disease was more frequent in male patients, those aged 55-64 and those coming from more 
deprived areas. Survival of patients with known stage was significantly higher than survival 

in patients with unknown stage (gap: 12%).  

Preliminary results show that education level was associated with inequalities in survival, 
although the trend was not completely clear. The difference in 5-year relative survival 
between the groups coming from areas with lower and higher level of education was 10%. 
Adjusting for tumour stage attenuated these differences. Following multiple imputation, 
sensitivity analysis will be performed to test the MAR assumption.  
 

DISCUSSION AND CONCLUSIONS 
This study represents one of the first attempts to study socio-economic inequalities in cancer 

survival in Portugal. Further studies using socio-economic indices more complete than simple 
indicators will be carried out. The role of stage tumour and treatment on socio-economic 
inequalities will be further investigated. Multiple imputations allows the use of all available 
information, including variables not directly considered in the analysis model, resulting in 
less biased and more precise estimates.  
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working in average 136 weeks until censoring. Socioeconomic factors

were found to be associated with retirement but not with sickness

absence and return to work. Contrary, previous episodes of unem-

ployment and sickness absence were associated with the risk for

sickness absence and resuming of work. Stage of disease, type of

operation, ASA score and post-operative complication were all

associated with the outcomes under study.

Conclusions Stage of disease, general health state of the individual

(ASA score), post-operative complications and the history of sickness

absence and unemployment had an impact on the transition between

work, sickness absence and pension among survivors of colorectal

cancer. This leads to an increased focus on the more vulnerable

persons who have a history of work related problems.

OC 3.3.2

Malignant melanoma in the Arkhangelsk region, Russia
in 2000–2010: epidemiology and survival

Anna Subbotina, Mikhail Valkov, Mikhail Levit, Andrej Grjibovski

International School of Public Health, Northern State Medical

University, Arkhangelsk, Russia; Department of radiology and

radiation oncology, Northern State Medical University, Arkhangelsk,

Russia; Norwegian Institute of Public Health, Oslo, Norway

Background The incidence of malignant melanoma is increasing

worldwide. The increase of incidence rates of melanoma in higher

latitudes is a complex phenomenon associated with changes in both

physical and lifestyle factors.

Objectives To describe incidence, mortality in Arkhangelsk region,

Northwest Russia as well as to estimate survival and associated fac-

tors using the data from the Arkhangelsk Regional Cancer Registry

(ARCR).

Methods Data were extracted from the ARCR. Information on pop-

ulation size was obtained from the Regional Bureau of Statistics. In

97 % of cases diagnosis was histologically confirmed. Mortality and

incidence were estimated using all new cases registered in

2000–2010. Age-standardized mortality and incidence rates were

calculated using Standard World Population. Stratified Cox Regres-

sion analysis was used for estimating survival. The potential

predictors were age, sex, setting, site and stage by TNM system.

Results Altogether, 716 new cases of melanoma occurred in

2000–2010. Age of diagnosis ranged from 18 to 87 (mean 56.0) years.

Women constituted 66 % and men 34 % of cases. The most common

site was trunk (56 %) and legs (19 %) for men and legs (36 %) and

trunk (32 %) for women. The stage distribution was: T1 15 %, T2

29 %, T3 26 %, T4 30 %; N1 10 %, N2 8 %, N3 5 % and M1 9 %.

Crude incidence rate per 100,000 increased from 4.23 to 4.62 for men,

and from 4.67 to 9.40 for women, and standardized incidence rate for

both sexes increased from 3.82 to 5.63 from 2000 to 2010. Mortality

was probably underestimated as only part of cases before 2010 were

included in the registry. Standardized mortality rate increased from

0.57 to 2.23 per 100 000 in 2000–2010. The stratified Cox Regression

model included age, setting, and TNM stage (stratified by sex). Sig-

nificant predictors were urban setting compared to rural (HR = 0.65,

95 % CI = 0.44–0.96), stage T4 compared to T0 (HR = 2.50, 95 %

CI = 1.29–4.81), stages N1 (HR = 4.00, 95 % CI = 2.47–6.48), N2

(HR = 2.95, 95 % CI = 1.64–5.30), N3 (HR = 4.31, 95 %

CI = 2.03–9.18) compared to N0, and stage M1 (HR = 4.86, 95 %

CI = 2.68–8.80) compared to M0.

Conclusions Incidence of malignant melanoma has increased in

2000–2010, particularly among women. Setting and stage by TNM

system were significantly associated with survival when adjusted for

other variables. Gender and setting differences in survival can

possibly been explained by differences in lifestyle warranting further

investigation.

OC 3.3.3

Assessment of socioeconomic inequalities in stomach cancer
survival in the North Region of Portugal

Luis Antunes, Bernard Rachet, Maria de Fátima Pina, Maria José

Bento, Denisa Mendonça

Registo Oncológico Regional do Norte, Instituto Português de

Oncologia, Porto (RORENO); Cancer Survival Group, London

School of Hygiene and Tropical Medicine (LSHTM); Faculdade de

Medicina da Universidade do Porto (FMUP); Instituto Ciências

Biomédicas Abel Salazar (ICBAS); Instituto Saúde Pública da

Universidade do Porto (ISPUP); Instituto Nacional de Engenharia

Biomédica (INEB)

Background Cancer survival is known to be associated with socio-

economic factors. Several studies performed in different countries

have demonstrated socioeconomic inequalities. They are more evi-

dent for cancers that have a better prognosis and for which treatment

and possibility of cure exists. Several factors can contribute for

explaining those differences in survival. However, information on

some of these factors, such as stage or morphology, is commonly,

incomplete. Regional cancer registries collect information from many

different hospitals and pathology laboratories, which make informa-

tion recovery difficult.

The aim of this study is to assess socioeconomic inequalities in

stomach cancer survival in the North Region of Portugal, adjusted for

stage, sex and age and accounting for missing stage information.

Materials and methods All stomach cancer patients registered in the

Portuguese Institute of Oncology, diagnosed in the period 2005–2006,

aged 15 years or older, were considered for analysis. Various eco-

logical socio-economic measures were allocated to the patients, by

matching patient’s addresses with information from the National

Statistics Office. Up-to-five-year net survival was estimated using a

flexible modelling approach enabling to model the effects of sex, age,

socio-economic condition and stage. Missing data were handled using

multiple imputation procedures.

Results The analysis included 591 patients (60 % male). Tumour

stage was missing for less than 20 % of the patients, but this pro-

portion was higher in elderly and in palliative care group. Preliminary

results showed that patients coming from areas with the lowest pro-

portion of persons with compulsory education level had a lower

survival than the remaining patients. Adjusting for tumour stage

attenuated these differences.

Discussion This study represents one of the first attempts to study

socio-economic inequalities in cancer survival in Portugal. We used

simple socioeconomic indicators, such as education. Further studies

using more complete deprivation indices should be considered in the

future. The role of stage tumour and treatment on socioeconomic

inequalities will be further investigated. Multiple imputation allows

the use of all available information, including variables not directly

considered in the survival analysis model, resulting in less biased and

more precise estimates.

OC 3.3.4

Survival analysis of second primary cancers in North Portugal:
a population-based registry evaluation

Luis Figueiredo, Luis Antunes, Maria José Bento, Nuno Lunet
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Introduction 

Socioeconomic conditions are known to affect cancer survival although for bladder cancer, results obtained in 
different studies are not consensual.   
 
Objectives 

To describe the survival from bladder cancer patients diagnosed in the period 1999 to 2006 in the North Region of 
Portugal and to study the influence of socioeconomic conditions in survival. 
 
Material and Methods 

All malignant invasive bladder cancer patients, registered by the North Region of Portugal Cancer Registry 
(RORENO), with residence at diagnosis in its area of influence, diagnosed in the period 1999 to 2006, aged 15 
years or older, were considered for analysis. Socioeconomic categories were assigned to each patient using 
ecological variables. Relative survival was calculated using Ederer II method and excess hazards were estimated 
using parametric flexible models. 
 
Results 

A total of 4143 patients (78% male) were diagnosed in the period of interest. After excluding cases with no follow-
up information (4.3%) and with incomplete residence (2.9%), 3845 cases were included for analysis. Overall 5-
year relative survival was 72.8%. Period of diagnosis was divided in two groups (1999-2002 and 2003-2006). An 
increase in survival was observed from the first to the more recent period (70.3% to 74.5%). Five-year relative 
survival ranged from 89.5% for the younger age group (15-44) to 65.0% for the oldest (75+). Women presented a 
worse survival (71.5%) compared to men (73.2%), although after adjusting for age, women presented a lower 
hazard (HR=0.84; CI95: 0.72-0.99). Patients from areas with lower level of education, higher illiteracy, higher 
indices of rurality and lower levels of accessibility to goods and services presented a lower survival. After 
adjusting for age, sex and period of diagnosis, patients from areas with the highest quintile of rurality had a 
hazard ratio of 1.34 (CI95: 1.08-1.66) when compared to the lowest quintile. 
 
Discussion and conclusions 

An increase in survival has been observed in the last decade for bladder cancer patients in the North Region of 
Portugal. Some inequalities in cancer survival were observed, specially related to the rurality of patients’ area of 
residence. The reasons for these differences need to be further investigated.  
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Summary:  

Cancer survival analysis is of major importance in the evaluation of cancer care practices 

provided to populations. International comparison of survival probabilities from cancer should 

take into account differences in patient’s population age structure since survival from cancer is 

often age dependent. This is usually achieved through direct age-standardization using a 

common age distribution standard such as the International Cancer Survival Standards. The 

direct age-standardization implies the estimation of survival for each age group. Often, the 

extreme age groups (youngest or oldest, depending on the cancer) are sparse and their net 

survival estimates are either very unstable or even impossible to obtain a few years after 

diagnosis. 

Net survival, the survival that would be observed in the absence of causes of death not related to 

the disease in study, can be estimated using the Pohar-Perme estimator or a modelling approach. 

If the model is correctly specified, both methods should produce the same estimate. When age is 

considered as a continuous variable and the excess hazard is modelled with flexible functions 

(e.g. splines), net survival of each individual can be thinly predicted for any time since 

diagnosis. The net survival of a given age group is obtained as the mean of the individual net 

survival of the subjects in this age group. Although a flexible modelling approach is used, net 

survival estimate of each age group depends on the observed number of subjects in each group 

as well as on their observed age-distribution. This will again lead to unstable net survival 

estimates when the data are sparse even if the model allows to smoothly predict exact individual 

net survivals. Age group-specific estimates given by the non-parametric Pohar-Perme estimator 

are also very unstable on such datasets. 

An alternative approach to the estimation of age-standardized net survival would be to predict 

survival (model-based) for a reference age in each age group or for a reference age instead of 

averaging the individual’s survival.  

The main aim of this study was to evaluate and compare methods for the estimation of age-

standardized net survival when data are sparse. We compared three different approaches. Two 

model-based estimators of survival and the non-parametric estimator proposed by Pohar-Perme. 

In the first model-based approach, net survival was estimated averaging individual survivals 

within each age group. In the second, survival was estimated at a reference age in each age 

group. A flexible parametric model on the log hazard scale was used to model the excess 

hazard. We compared empirically the three approaches on small randomly selected samples 

from a large simulated dataset under different scenarios of age and year of diagnosis 

dependence. 
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ABSTRACT

Mortality data are an important indicator of population health and development.
Information on socioeconomic inequalities in mortality is crucial for policy deci-
sions. The aim of this study was to build deprivation-specific life tables using
the Portuguese version of the European Deprivation Index (EDI) as a measure
of area socioeconomic deprivation, and to evaluate its trends between the periods
2000-2002 and 2010-2012.
Statistics Portugal provided the counts of deaths and population by sex, age group,
calendar year and area of residence (parish). A deprivation level was assigned to
each parish according to the quintile of their national EDI distribution. Death
counts were modelled within the generalised linear model framework, considering
a Poisson error with a log link function, using as offset the person-years at risk.
Age effect was modelled using restricted cubic splines. Deprivation level, period
and interaction between variables were included in the models.
Life expectancy at birth was 74.0 and 80.9 years in 2000 − 2002, for men and
women, respectively, and increased to 77.6 and 83.8 years in 2010-2012. Yet,
we observed differences by socioeconomic deprivation: 1.8 and 1.0 years between
most and least deprived men and women in 2000-2002. In 2010-2012, the depriva-
tion gap in life expectancy at birth remained similar, at 2.0 and 0.9 years among
men and women, respectively. Compared to least deprived, most deprived groups
experienced an excess mortality at birth (in 2010-2012, mortality rate ratios of
1.65 and 1.34 in men and women, respectively) which progressively vanished with
increasing age.
Substantial and persistent differences in mortality and life expectancy were ob-
served according to area based socioeconomic deprivation. These differences were
larger among men and decreased with age for both sexes. No decrease in the
deprivation gap was observed between the two periods.

Keywords and key sentences: Life-tables, multivariable modelling, Poisson regression,
splines, socioeconomic inequalities in health.
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Abstract: A existência de desigualdades sócio-económicas na sobrevivência de doentes com cancro
foi já observada em estudos realizados em diferentes páıses como Inglaterra, França, Estados Unidos
ou Austrália. Que seja do nosso conhecimento, nunca foi realizado nenhum estudo para dados por-
tugueses. Neste trabalho pretendeu-se mostrar uma metodologia para avaliar essas desigualdades,
ajustando com factores com informação incompleta, aplicando a metodologia a uma amostra de
doentes registados no Registo Oncológico Regional do Norte. A condição sócio-económica de cada
doente foi obtida com base na respectiva área de residência. A modelação da sobrevivência baseou-
se em modelos paramétricos flex́ıveis e a estimação de valores omissos na utilização de modelos de
imputação múltipla.

1 Introdução

Vários estudos mostraram existir associação entre a sobrevivência de doentes oncológicos e a sua
condição sócio-económica [1]. Esta associação foi verificada para diferentes localizações topográficas
sendo, no entanto, mais evidente em tumores que têm melhor prognóstico e para os quais existe
tratamento e possibilidade de cura. Diversos factores podem ajudar a explicar as desigualdades
sócio-ecónomicas na sobrevivência, nomeadamente, diferenças no avanço da doença aquando do
diagnostico, tratamentos, comorbilidades, entre outros. A informação relativa a estes factores é, no
entanto, muitas vezes incompleta, especialmente em registos de base populacional.

2 Métodos

Os registos oncológicos não possuem, habitualmente, informação a um ńıvel individual sobre as
condições sócio-económicas dos doentes registados. A atribuição de uma determinada condição a
cada doente teve que ser efectuada usando variáveis a ńıvel ecológico, baseada na zona de residência
de cada doente. Utilizou-se a informação disponibilizada pelo Instituto Nacional de Estat́ıstica rel-
ativa aos Censos de 2001. O cruzamento da informação da morada do doente com as regiões
geográficas para os quais existe informação censitária foi efectuada utilizando um sistema de in-
formação geográfica. Na modelação da sobrevivência relativa, ajustando com os diferentes factores
de prognóstico, foram considerados modelos paramétricos flex́ıveis [3]. Os valores em falta na
extensão da doença, covariável no modelo de sobrevivência, foram estimados usando técnicas de
imputação múltipla [4].
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3 Aplicação

Pretendeu-se, neste trabalho, avaliar a existência de desigualdades sócio-económicas na sobre-
vivência de doentes oncológicos. Considerou-se um conjunto de doentes registados no Registo
Oncológico Regional do Norte (RORENO). A amostra corresponde a doentes com idade igual ou
superior a 15 anos, diagnosticados com tumores malignos do estômago nos anos de 2005 e 2006. A
análise incluiu cerca de 590 doentes, dos quais 60% eram do sexo masculino. A extensão da doença
encontrava-se omissa em um pouco menos de 20% dos casos. Esta proporção foi maior nos doentes
mais velhos e pertencentes ao grupo com tratamento paliativo. Como indicadores sócio-económicos
utilizaram-se a proporção de residentes em cada região geográfica com pelo menos a escolaridade
obrigatoria e a proporção de desempregados. Resultados preliminares mostraram existir associação
entre o ńıvel de escolaridade e a sobrevivência dos doentes, embora a tendência não seja comple-
tamente clara. Depois de ajustar para outros factores de prognóstico, como a extensão da doença,
sexo e idade, as diferenças entre grupos sócio-económicos foram atenuadas.

Referências
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Instituto Português de Oncologia do Porto, mjbento@ipoporto.min-saude.pt

Denisa Mendonça
Instituto Ciências Biomédicas Abel Salazar, Instituto de Saúde Pública da Universidade do Porto,
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Resumo: A existência de dados omissos em dados na área da saúde, é uma realidade com a qual
um bioestat́ıstico se confronta com uma regularidade superior à desejada. No caso concreto de
dados de registos oncológicos de base populacional, é frequente encontrar informação em falta em
factores de prognóstico importantes como o estadiamento da doença. Esta falta de informação pode
levar a que os resultados da análise, que se efectua a esses dados, sejam envieados, especialmente
se o mecanismo de omissão não for completamente aleatório.
Pretendeu-se avaliar o desempenho da imputação múltipla como abordagem para lidar com a
existência de dados omissos nas covariáveis duma análise de sobrevivência, através de um estudo
de simulação, para diferentes proporções de omissão. Foi utilizada como base para o estudo de
simulação, uma amostra de dados de sobrevivência correspondente a doentes diagnosticados com
tumores gástricos. Os dados foram disponibilizados pelo Registo Oncológico Regional do Norte
(RORENO).
Para cada conjunto de dados de sobrevivência simulados, procedeu-se da seguinte forma: eliminação
de uma proporção escolhida de casos seguindo padrões de omissão semelhantes aos observados nos
dados reais; imputação dos valores omissos usando imputação múltipla; análise de sobrevivência dos
dados completados; combinação das diferentes estimativas seguindo as regras de Rubin; comparação
dos valores obtidos com os valores reais conhecidos.
A extensão da doença é um dos factores de prognóstico para o qual a proporção de casos omis-
sos é normalmente elevada. O seu valor é completamente definido pelo valor das três variáveis
T(tumor), N(nódulos linfáticos) e M(metastização). A ausência do conhecimento da variável T ou
da variável N, impede a atribuição do valor da extensão. Observa-se, nos casos reais, que para
uma certa proporção de casos apenas uma ou duas destas variáveis se encontra omissa. Utilizando
apenas a variável extensão, perde-se a informação dispońıvel nas variáveis T ou N que poderia ser
conhecida. Pretendeu-se comparar o comportamento do algoritmo de imputação múltipla em duas
situações: imputação directa da variável extensão da doença, sem utilização da informação do TNM
e imputação das três variáveis seguida de atribuição do valor da extensão nos dados imputados. A
distribuição dos valores imputados das duas formas foi comparada com as distribuições reais, assim
como os resultados obtidos no modelo de sobrevivência.
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1 Introdução

A análise de sobrevivência de dados de registos de cancro de base populacional é uma importante
ferramenta de apoio à decisão. Permite a avaliação dos cuidados de saúde prestados à população
coberta por esses mesmos registos e permite a avaliação de heterogeneidades no acesso a esses
cuidados. Diferentes estudos têm demonstrado a existência de associação entre as condições socio-
económicas e a sobrevivência de doentes oncológicos. Estas foram já reportadas para páıses como
Inglaterra, Estados Unidos, Austrália, entre muito outros [1]. Para doentes residentes em Portugal
não existem, no entanto, resultados publicados sobre esta avaliação.

2 Objectivos

Descrever a sobrevivência de doentes diagnosticados com tumores malignos do estômago ou tu-
mores malignos da bexiga, na Região Norte de Portugal, durante o peŕıodo 2000-2006. Estudar a
associação entre alguns indicadores socioeconómicos e a sobrevivência desses doentes.

3 Material e métodos

Foram inclúıdos na análise todos os doentes diagnosticados no peŕıodo de interesse com tumores
malignos do estômago ou bexiga, residentes na Região Norte de Portugal e registados pelo Registo
Oncológico Regional do Norte (RORENO). A condição socioeconómica de cada doente foi atri-
búıda com base em variáveis ecológicas apenas, visto esta informação não estar dispońıvel a ńıvel
individual. O ńıvel geográfico utilizado para esta atribuição foi a freguesia (população mediana:
745). Os indicadores utilizados (ńıvel de escolaridade, analfabetismo, desemprego) foram dispo-
nibilizados pelo Instituto Nacional de Estat́ıstica e baseam-se na informação obtida nos Censos
de 2001 e 2011. Consideraram-se ainda dois indicadores compostos, um indicador de ruralidade e
um indicador de acessibilidade a bens e serviços. A sobrevivência relativa foi estimada usando o
método Ederer II. O efeito dos factores de prognóstico foi avaliado, estimando Razões de Excesso
de Risco (RER), através de modelos paramétricos fléxiveis. Estes permitem uma modelação mais
adequada da função de risco de base usando splines cúbicas [2].
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4 Resultados

No peŕıodo de diagnóstico considerado, foram registados 7820 doentes com cancro do estômago
e 3630 doentes com cancro da bexiga. A sobrevivência relativa aos 5 anos foi de 33, 8% para os
tumores do estômago e 73, 7% para os tumores da bexiga. A sobrevivência foi significativamente
superior nas mulheres em relação aos homens, tanto para os tumores do estômago como para os
da bexiga (RER ajustado para a idade: 0.81 e 0.84, respectivamente). Resultados preliminares
sugerem que a sobrevivência de doentes residentes em áreas com o menor ńıvel educional e em
áreas com o maior ı́ndice de ruralidade é significativamente inferior à sobrevivência dos doentes
residentes nas restantes áreas.

5 Discussão

Os resultados sugerem que doentes provenientes de áreas mais desfavorecidas apresentam um pior
prognóstico, para ambos os tumores analisados. Este pior prognóstico poderá estar relacionado
com tendência a diagnósticos da doença em fases mais avançadas. A existência duma grande
proporção de informação em falta no estadiamento da doença, não permitiu a validação dessa
hipótese. Apesar da dimensão mediana das freguesias ser relativamente baixa, algumas freguesias
urbanas apresentam um número de habitantes elevado (acima dos 40 mil), o que poderá ter levado
a uma subestimação das desigualdades socioeconómicas na sobrevivência.

Referências

[1] Woods, L.M., Rachet, B., Coleman, M.P. (2006). Origins of socio-economic inequalities in cancer sur-
vival: a review. Annals of Oncology 17(1), 5–9.

[2] Nelson, C.P., Lambert, P.C., Squire, I.B., Jones, D.R. (2007). Flexible parametric models for relative
survival, with application in coronary heart disease. Statistics in Medicine 26(30), 5486–5498.
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transverse colon, descending colon, and others were 43.0, 12.5, 10.1,

8.8, 7.9 and 17.7 %, respectively. Stage I, II, III, IV was registered in

6.0, 23.4, 35.3 and 29.5 % cases, respectively, unknown stage

in5.8 %. The proportion of urban population (Arkhangelsk, Sev-

erodvinsk, Novodvinsk, Kotlas, Koryazhma, Mirny) is 66.4 % of all

diagnosed cases of CC in the Arkhangelsk region. During the period

the standardized incidence rates of CC have increased from 14.0 to

17.8 per 100,000. The crude incidence among men and women have

increased from13.6 per 100,000 in 2000 to 22.1 per 100,000 in 2010

and from 21.0 per 100,000 in 2000 to 28.8 in 2010, respectively. The

incidence among the urban population has risen from 15.5 per

100,000 in 2000 to 24.4 per 100,000 in 2010. The incidence in rural

areas was slightly higher and ranged from 23.3 per 100,000 in 2000 to

29.2 per 100,000 in 2010.

Conclusions: The incidence and the mortality of CC in the Arkhan-

gelsk region of Russia increased during the period 2000–2010,

resembling incidence pattern in countries in transition. Most of the

patients are females. The incidence is higher among rural population.
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Background: The influence of diabetes mellitus (DM) on hepato-

cellular carcinoma (HCC) incidence remains obscure and it is not

clear whether it may affect the overall survival.

Objective: Evaluation of DM influence on HCC survival.

Methods: We prospectively enrolled 329 patients, with first diagnosis

of HCC from 1995 to 2001, in Brescia, Italy, Etiology was assessed

by interviewing patients regarding their history of alcohol intake and

by testing sera for hepatitis B surface antigen and anti-hepatitis C

virus (HCV) antibodies and HCV RNA. Patients was considered to be

diabetics in presence of hospital discharge DM code. Survival was

determined from the date of HCC diagnosis to the end of follow-up,

which was December 31, 2012. Cumulative survival curves were

modeled by using the Kaplan-Meier method. The association of each

variable with patient survival was tested by univariate analysis using

the log-rank test. The same variables were tested by multivariate

analysis using Cox proportional hazard models.

Results: Among 329 patients with HCC 271 (82.4 %) were males and

98 (29.8 %) had DM. Heavy alcohol intake ([40 g in men and[20 g

in women of ethanol per day for at least 1 decade) was found in

36.5 % of cases, hepatitis virus infection in 15.5 %, alcohol and

hepatitis virus infection in 41.9 % and other factor in 6.1 %. Thirteen

patients (4.0 %) were alive at the end of follow-up, with a median

survival of 19.8 months (IC95 % 17.1–22.5). Overall survival at 1, 5

and 10 years was 61.3, 22.9 and 7.6 % respectively. On multivariate

analysis, survival was associated with serum ALT [ 100 U/l (hazard

ratio [HR] = 1.4, p = 0.018), stage pT (HR = 1.2; p = 0.023),

portal vein invasion (HR = 1.9; p \ 0.001), cirrhosis (HR = 1.66,

p = 0.001), metastasis (HR = 2.7, p = 0.001), treatment (radical

treatment vs. palliative treatments/no treatment HR = 3.0, p \
0.001), Child classification (A vs. B HR = 1.38, p = 0.032; A vs.

C HR = 1.82, p = 0.003). The presence of DM was negatively

associated with survival (HR 1.3, p = 0.07).

Conclusions: In this study a higher prevalence of DM was found in

HCC patients as compared to italian general population in the same

age group (12.5 %) and negative influence of DM on HCC survival

was observed.
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Background: Socioeconomic inequalities in cancer survival have

been consistently reported in different countries for most of the adult

cancers. However, this has not yet been confirmed for Portuguese

cancer patients.

Objectives: To describe the survival of patients diagnosed in the

North Region of Portugal with one of the most common cancers

(stomach, colorectum, lung, breast, bladder) during the period

2000–2006 and to study the influence of socioeconomic conditions in

survival.

Materials and methods: Data consisted in cancer patients resident in

the North Region of Portugal and registered by the corresponding

population-based cancer registry (RORENO). All malignant, inva-

sive, primary tumours of breast, colorectum, stomach, lung and

bladder diagnosed among adult in 2000–2006, were considered for

analysis. Socioeconomic conditions were assigned to each patient

using ecological variables defined at parish level, namely, level of

education, illiteracy, unemployment, index of rurality and index of

accessibility to goods and services. The levels for each geographical

area and each year of diagnosis were estimated based on the infor-

mation of two different population census (2001 and 2011). Relative

survival was calculated using Ederer II method. Excess hazards ratios

(EHR) were estimated using a flexible modelling approach enabling

to model the effects of sex, age and socio-economic condition.

Results: A total of 40,768 patients were diagnosed in the period of

interest (breast-27 %; colorectal-29 %; stomach-19 %; lung-16 %;

bladder-9 %). Five-year relative survival was lower for lung (10.5 %)

and stomach cancer (33.8 %) and higher for colorectal (59.7 %),

bladder (73.7 %) and breast cancer (87.0 %). For stomach, lung and

bladder cancer, women had a better survival than men (EHR adjusted

for age: 0.81, 0.79 and 0.84, respectively) while for colorectal, no

differences were found EHR = 0.98). Preliminary results have shown

that stomach and bladder cancer patients coming from areas with a

higher index of rurality or lower level of education have lower sur-

vival, while for colorectal, lung and breast cancers the survival rates

are similar across socioeconomic levels.

Discussion: Socioeconomic inequalities in cancer survival were

found more significant for bladder and stomach cancers. The median

number of individuals by parish is relatively small (745) but some

urban areas reach more than forty thousand inhabitants, what can lead

to an underestimation of the socioeconomic gap in survival. The

proportion of missing information on stage of disease at diagnosis was

higher than fifty percent, precluding the inclusion of this variable in

the analysis.
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Introduction 
Socioeconomic conditions are known to affect cancer survival. Many factors can contribute to these 
inequalities, including differential access to diagnosis/treatment centres and different cancer 
symptoms awareness. 
  

Objectives 
To understand the role of education level as a prognostic factor for colorectal cancer patient’s 
survival using a population-based dataset from a large urban area where geographical access to 
health care centres is homogeneous. 
 
Material and Methods 
All malignant invasive colorectal cancer patients (ICD-10: C18-C20), with residence at diagnosis in 

the city of Porto, diagnosed in the period 2000 to 2002, aged 15 years or older, were considered 
for analysis. Education level was assigned to each patient based on the area of residence at census 

tract level and measured by the proportion of residents with at least the compulsory level of 
education. Net survival was estimated using Pohar-Perme estimator and age-adjusted excess 
hazards (EHR) were estimated using parametric flexible models. 
 
Results 

A total of 550 patients (51.5% male) were considered eligible for analysis. After excluding cases 
with no follow-up information (1.1%), 544 cases were included for analysis. Overall 5-year net 
survival was 58.5% (95%CI: 53.4-63.5). No differences in survival were found by sex (p=0.312). 
Patients were grouped by education level of its area of residence in three groups: very low 
education, medium education and very high education. Five-year net survival ranged from 53.9% 
(95%CI: 40.9-67.0) for the lower educated group to 72.5% (95%CI: 60.7-84.2) for the highest 

group. 
The excess hazard in the more educated patients was lower, although not reaching statistical 
significance (age-adjusted EHR: 0.64; 95%CI: 0.36-1.13) while the excess hazard in the medium 

educated group was similar to the one of the less educated group (age-adjusted EHR: 0.95; 
95%CI: 0.63-1.44). 
 
Discussion and conclusions 

A higher survival for the group of patients coming from the highest educated areas has been 
observed, although not statistically significant probably due to small number of cases. By 
considering as region of interest an urban area, the differences in survival by education level may 
be more likely attributable to other causes than differences in geographical access to treatment 
centres, namely, different cancer symptoms awareness or comorbidities. 
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Antecedentes/Objectivos 
A condição socioeconómica de um doente oncológico é um reconhecido factor de prognóstico. 

Vários factores podem contribuir para estas iniquidades, incluindo heterogeneidade no acesso a 
centros de diagnóstico e tratamento, diferentes comorbilidades ou diferente valorização dos sinais 
e sintomas da doença. Pretendeu-se neste trabalho, avaliar a sobrevivência por nível de privação 
socioeconómica de doentes residentes na cidade do Porto, diagnosticados com cancro colo-rectal. 
 

Métodos 
Foram considerados elegíveis, todos os doentes diagnosticados no período 2000-2002, com 
tumores colo-rectais (IDC10: C18-C20), com residência no Porto e idade igual ou superior a 15 
anos. A condição socioeconómica de cada doente foi atribuída com base na área de residência, ao 
nível da subsecção estatística. O indicador utilizado agrega informação relativa à distribuição 
etária, educação, ocupação e condição das habitações. A sobrevivência net foi estimada usando o 

estimador de Pohar-Perme e as razões de excesso de risco foram estimadas usando modelos 
paramétricos flexíveis. 
 
Resultados 

Foram identificados 550 doentes elegíveis para análise (51,5% do sexo masculino). Após exclusão 
de casos sem informação de follow-up ou sem informação da condição socioeconómica (2,5%), 
foram considerados 536 casos. A sobrevivência net aos 5 anos variou nos doentes do sexo 

masculino entre 64,3% e 60,9% (nos grupo mais e menos favorecido, respectivamente). Para as 
doentes do sexo feminino, a sobrevivência net aos 5 anos variou entre 72,7% no grupo mais 
favorecido e 44,8% no grupo menos favorecido. O grupo com maior índice de privação apresentou 
um excesso de risco de morte (ajustado para a idade) significativamente superior ao do grupo mais 
favorecido (RER=2,25; IC95: 1,18-4,27) nas mulheres, enquanto para os homens, o excesso de 
risco nos dois grupos foi semelhante (RER=1,03; IC95: 0,53-2,01). 
 

Conclusões 
Observaram-se desigualdades na sobrevivência por grupo socioeconómico nos doentes do sexo 
feminino mas não nos do sexo masculino. Dado que a análise se restringiu a um meio urbano, as 
desigualdades atribuíveis a diferenças na acessibilidade geográfica aos centros de 

diagnóstico/tratamento deverão ser mínimas. Outras causas possíveis poderão estar relacionadas 
com maior atraso na procura de cuidados médicos por parte das doentes com maior índice de 

privação, no entanto, as razões para estas desigualdades necessitam de ser investigadas com 
maior detalhe. 
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Identification and hierarquization the risk factors for colorectal
cancer in Alentejo Litoral: a case control epidemiological study

Sara Letras1, Pedro Aguiar2, Mário Jorge Santos3

1Public Health Unit, Local Health Unit of Alentejo Litoral (ULSLA);
2National School of Public Health, Universidade Nova de Lisboa;
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(ULSLA); Corresponding author’s e-mail: saraletras@gmail.com

Background: Colorectal cancer (CRC) is currently considered a

major public health problem internationally and for Portugal. Due to

population aging in Alentejo Litoral (AL), the problem get a major

magnitude (annual average incidence being around 80 new cases/

100,000 inhabitants, annual prevalence rate up to 500 cases/100,000,

average annual mortality up to 40 deaths/100,000) and that reinforces

the importance to identify the main risk factors (RF) for CRC in order

to address possible and to maximize effective prevention measures.

The main goal of the study it was the identification and its ranking for

the main risk factors to CRC.

Methods: It was performed a retrospective analytical epidemiological

case–control study, with the Odds ratio (OR) determination. The

observation unit it was: to be resident in the AL, and have greater than

or equal to 40 years. The study included 90 CRC cases (identified by

ROR-Sul) and 201 controls (general medical consultations). Cases

and controls were inquired for independent variables included in the

study (sociodemographic, family/personal and behavioral history).

Descriptive, bivariate and multivariate (logistic regression) statistical

analysis (SPPS 20) was performed.

Results: The main results for bivariate analysis (Confidence Interval

(CI) 95 % and p value\ 0.10) were: personal history of inflammatory

bowel disease (OR = 9.302): Insulin therapy previous to CRC

(OR = 6.897): consumption of alcoholic beverages in the past

(OR = 4.853) and with a typical frequency greater than 4 times a

week (OR = 3.632). The main results for multivariate analysis (CI

95 % and p\ 0.05) were: consumption of red meat (adjusted

OR = 6.828), family history for CRC (adjusted OR = 6.628) and

number of alcoholic drinks (in a typical day) greater than or equal to 3

per day (adjusted OR = 5808).

Conclusion: The main RF for CRC in AL were: red meat con-

supmtion, family history for CRC and number of alcoholic drinks

greater than or equal to 3 per day. The study also concludes that most

RF identified for this population are modifiable, can be targeted for

interventions of health promotion and disease prevention and estab-

lish wich those RF are more cost effective regarding possible health

interventions.

Abstract #: P 02

Socioeconomic position and incidence of colorectal cancer
in the Swedish population

Hannah L. Brooke1, Mats Talbäck1, Anna Martling2,

Maria Feychting1, Rickard Ljung1

1Unit of Epidemiology, Institute of Environmental Medicine,

Karolinska Institutet, Stockholm, Sweden; 2Department of Molecular

Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;

Corresponding author’s e-mail: hannah.brooke@ki.se

Background: The association between socioeconomic position and

incidence of colorectal cancer is unclear. We aimed to clarify this

association, in the whole Swedish population. This work may inform

policy and prevention strategies designed to reduce health

inequalities.

Methods: We conducted a population-based open cohort study using

national registry data. We included all individuals, aged C30 years,

residing in Sweden between 1993 and 2010, without a previous

diagnosis of colon or rectal cancer. Socioeconomic position was

indicated by (1) highest education level (‘Bprimary’, ‘lower sec-

ondary’, ‘higher secondary’, ‘lower university’ [\3 years], ‘higher

university’ [C3 years]), and (2) personal disposable income (quin-

tiles). The outcome was diagnosis of colon or rectal cancer. We used

Poisson regression to estimate incidence rate ratios (IRR) and 95 %

confidence intervals (95 % CI) of colon and rectal cancer, for each

exposure. Models were stratified by sex and adjusted for age, year of

follow-up, region of residence, and marital status, with mutual

adjustment of exposures.

Results: In 100,679,466 person-years of follow-up, 61,793 cases of

colon cancer (30,014 men, 31,779 women) and 30,131 cases of rectal

cancer (17,379 men, 12,752 women) were diagnosed.

In men and women, IRRs of colon cancer were close to 1.00 for all

education levels compared with the least educated, and for all quin-

tiles of personalised disposable income compared with the lowest

quintile. However, there was a slightly higher risk of colon cancer in

men with ‘higher secondary’ compared with ‘Bprimary’ education

(IRR [95 % CI]: 1.05 [1.02, 1.09]). In women, there was a higher risk

of colon cancer in the middle compared with the lowest quintile of

personal disposable income (IRR [95 % CI]: 1.07 [1.03, 1.11]).

Risk of rectal cancer in men and women gradually decreased with

increasing education level. Compared with ‘Bprimary’ education, the

IRRs (95 % CI) of rectal cancer in men with ‘lower secondary’,

‘higher secondary’, ‘lower university’ or ‘higher university’ education

were: 0.99 (0.95, 1.03), 0.94 (0.90, 0.99), 0.90 (0.84, 0.96), and 0.86

(0.81, 0.92), respectively. In women, the corresponding figures were:

0.99 (0.95, 1.04), 0.95 (0.87, 1.04), 0.88 (0.82, 0.96) and 0.87 (0.81,

0.94). Rectal cancer incidence did not differ between quintiles of

personal disposable income.

Conclusions: In the Swedish population, incidence of colon cancer

was not clearly patterned by socioeconomic position. However, there

was lower incidence of rectal cancer in more highly educated groups.

To help reduce such health inequalities, further evaluation of poten-

tially preventable mechanisms and health promotion strategies among

deprived groups is warranted.

Abstract #: P 03

Impact of the choice of life tables on the assessment
of socioeconomic inequalities in survival from colorectal cancer

Luis Antunes1, Bernard Rachet2, Maria José Bento1,

Denisa Mendonça3

1North Region Cancer Registry of Portugal, Porto, Portugal; 2Cancer

Survival Group, London School of Hygiene and Tropical Medicine,

London, UK; 3EPIUnit - Institute of Public Health, University of

Porto, Porto, Portugal; Corresponding author’s e-mail:

luis.antunes@ipoporto.min-saude.pt

Background: Socioeconomic condition can affect the mortality of a

cancer patient from both their cancer and other causes. Assessing

socioeconomic inequalities in cancer survival must therefore account

for socioeconomic inequalities in background mortality. When the

cause of death is unknown (relative survival data setting), net survival

is estimated by comparing observed survival with background mor-

tality provided by general population life tables (LTs).

We aimed at evaluating the impact of the choice of LTs in esti-

mating inequalities in colorectal cancer survival by education group.

762 E. Bols et al.
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Methods: All patients, aged 15–84, diagnosed with a malignant

invasive colorectal cancer (ICD-10: C18–C20), in the North Region

of Portugal in 2000–2002, were considered for analysis. Education

level, the proportion of residents with at least the compulsory level of

education in a given census tract, was assigned to each patient based

on their area of residence and categorised according to quintiles. Net

survival and age-adjusted excess hazards ratios (EHR) were estimated

using Pohar-Perme estimator and flexible parametric models,

respectively. Three different scenarios were considered for back-

ground mortality: no education-specific Portuguese LTs (S1):

education-specific LTs considering the same ratios between socioe-

conomic groups as observed in England (S2): education-specific LTs

with a 70 % reduction (relative to S2) in the log ratio between

socioeconomic groups (S3).

Results: A total of 4105 patients (56.3 % male) were analysed. In

scenario S1, male patients coming from lower educated areas had

comparable 1-year survival to patients from higher educated areas,

but a lower 5- and 10-year survival (at 5 years: EHR = 1.40, 95 % CI

1.07–1.83: at 10 years: EHR = 1.56, 95 % CI 1.08–2.25). Inequali-

ties in survival decreased substantially in both scenarios S2 (5 years:

EHR = 1.09, 95 % CI 0.83–1.43: 10-yrs: EHR = 1.12, 95 % CI

0.77–1.61) and S3 (5 years: EHR = 1.30, 95 % CI 0.99–1.70:

10 years: EHR = 1.41, 95 % CI 0.98–2.03).

No significant differences in survival were found in women.

Conclusion: No education-specific life tables are available for Por-

tugal. To test the sensitivity of the inequalities found in men to the

choice of the LT, we built two sets of education-specific LT in which

differences in life expectancy at birth between extreme groups were

7.7 years (S2) and 2.3 years (S3). Cancer survival inequalities

observed in S1 faded out in both scenarios, suggesting that the

observed differences are most likely attributable to education

inequalities in background mortality, stressing the importance of

using the adequate life tables in cancer survival inequalities

assessment.

Abstract #: P 04

Changes in body weight during and after treatment for colorectal
cancer
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J.C. van Warmerdam3, Art Vreugdenhil4, Gerrit Slooter4, Jan-Willem

Straathof4, Ellen Kampman1, Rianne van Lieshout4, Sandra Beijer2

1Agrotechnology and Food Sciences, Wageningen University,
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Eindhoven, the Netherlands; 3Catharina Hospital, Eindhoven, the
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Corresponding author’s e-mail: teunise_s@hotmail.com

Background: Prevalence of overweight and obesity is high among

colorectal cancer patients at diagnosis. Literature suggests that body

weight may further increase during adjuvant chemotherapy for col-

orectal cancer. However, so far, weight changes from diagnosis until

after treatment have not been studied in this patient group.

Methods: The study population consisted of 485 stage II/III col-

orectal cancer patients diagnosed between 2007 and 2012 and treated

with surgery and adjuvant chemotherapy in one of three selected

hospitals in the Netherlands. Eligible patients were selected from the

Netherlands Cancer Registry. Data about body weight (at diagnosis,

shortly after surgery, shortly after chemotherapy and during follow-

up) and other personal/clinical factors were retrieved from the cancer

registry and from medical records.

Results: From diagnosis until shortly after surgery, patients on

average lost weight (mean weight loss -1.9 kg, SD 4.6 kg)

(n = 357). Body weight increased during chemotherapy with a mean

of 2.9 kg (SD 5.8 kg) (n = 291) and continued to increase in the

period of follow-up by 2.2 kg (SD 6.6 kg) (n = 242). Overall, from

diagnosis until at least 6 months after chemotherapy, there was a

mean weight gain of 2.0 kg (SD 6.8 kg) (n = 283). Factors associated

with weight gain over this period were a normal BMI (vs patients with

a BMI of 25–30), open surgery (vs laparoscopic surgery) and Cape-

citabine chemotherapy (vs Capecitabine in combination with

Oxaliplatin).

Conclusions: Body weight generally decreased from diagnosis until

shortly after surgery, while it increased again during and after

chemotherapy. At least 6 months after chemotherapy, body weight

was higher than at diagnosis. Studies among other patient groups—

mostly breast cancer—suggest that these changes may be charac-

terised by unbeneficial changes in body composition, e.g. sarcopenic

obesity. Future studies should characterize changes in body weight

and composition and the impact on the health and quality of life of

colorectal cancer patients.

Abstract #: P 05

Interlaboratory variability in grading of dysplasia in a nationwide
cohort of colorectal adenomas

Chantal C.H.J. Kuijpers1,2,3, Caro E. Sluijter2,4, Lucy I.H. Overbeek2,
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Background: Colorectal adenomas are precursor lesions of colorectal

adenocarcinoma. One of the risk factors for malignant transformation

and future development of a new adenoma or carcinoma is the

presence of high-grade dysplasia (HGD). However, this factor is not

incorporated in Dutch colonoscopy surveillance guidelines, partly due

to high variability in grading dysplasia between pathologists. We

aimed to determine, on a nationwide basis, whether histological

grading of colorectal adenomas varies in daily practice between

Dutch pathology laboratories.

Methods: Using the Dutch Pathology Registry (PALGA), all synoptic

pathology reports of colorectal biopsies and polypectomies histolog-

ically diagnosed in 2013 as tubular, tubulovillous or villous adenoma

were identified. Percentages of low-grade dysplasia (LGD) and HGD

were determined for biopsies and polypectomies separately, and

clinico-pathological factors associated with HGD were investigated.

In a subgroup of 21 Dutch pathology laboratories, each with C100

synoptically reported colorectal adenomas, percentages of HGD per

laboratory were compared. Univariable and multivariable logistic

regression analyses were performed.

Results: Pathology reports of 21,145 colonoscopies of 20,332

patients (57 % males, mean age: 66 year) with C1 adenomas were

identified. The 32,524 histologically confirmed adenomas included

21,544 adenomas from biopsies and 10,980 adenomas from

polypectomies. HGD was diagnosed in 2.6 % and 9.6 % of adenomas

from biopsies and polypectomies, respectively. In both subgroups,

HGD was significantly associated with advanced age, distal location,

Healthy Living: The European Congress of Epidemiology, 2015 763
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Palavras�chave: net survival, age standardisation, sparse data

Abstract:
Cancer survival analysis is of major importance in the evaluation of cancer

care practices provided to populations. International comparison of survival
probabilities from cancer should take into account di�erences in patient�s
population age structure since survival from cancer is often age dependent.
This is usually achieved through direct age-standardization using a common
age distribution standard such as the International Cancer Survival Standards.
The direct age-standardization implies the estimation of survival for each age
group. Often, the extreme age groups (youngest or oldest, depending on the
cancer) are sparse and their net survival estimates are either very unstable or
even impossible to obtain a few years after diagnosis.

Net survival, the survival that would be observed in the absence of causes
of death not related to the disease in study, can be estimated using the Pohar-
Perme estimator or a modelling approach. If the model is correctly speci�ed,
both methods should produce the same estimate. When age is considered as a
continuous variable and the excess hazard is modelled with �exible functions
(e.g. splines), net survival of each individual can be thinly predicted for any
time since diagnosis. The net survival of a given age group is obtained as the
mean of the individual net survival of the subjects in this age group. Although
a �exible modelling approach is used, net survival estimate of each age group
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depends on the observed number of subjects in each group as well as on
their observed age-distribution. This will again lead to unstable net survival
estimates when the data are sparse even if the model allows to smoothly
predict exact individual net survivals. Age group-speci�c estimates given by
the non-parametric Pohar-Perme estimator are also very unstable on such
datasets.

The main aim of this study was to evaluate and compare methods for the
estimation of age-standardized net survival when data are sparse, using a sim-
ulation study. Di�erent approaches were compared: model-based predictions
and non-parametric estimates.

Three di�erent scenarios were considered with increasing model complex-
ity. Large datasets (N = 106) using models �tted to real cancer datasets were
generated for each scenario. From these sets, we randomly selected 1000 small
samples (n = 200). For each sample, four model �tting approaches were used:
same type of model for all samples (non-linear and time-dependent e�ects of
age); choose �best� model for each sample; categorical age; semi-continuous
age (categorized only in extreme age groups). Model-based net survival pre-
dictions were obtained averaging individual predictions (established approach)
and predicting for a reference age in each age group (alternative proposed ap-
proach). Additionally, net survival was estimated using the Pohar-Perme esti-
mator. Net survival was age-standardised by weight averaging age-group spe-
ci�c estimates. Estimates were produced for the full samples and for smaller
subsets.

The estimates obtained using the established and alternative approaches
had similar performance in terms of bias and coverage probability when es-
timating survival for the full samples. However, when estimating for smaller
subsets, the alternative approach allowed the estimation of survival for a much
higher proportion of samples than the classical approach.

These results suggest that, for situations where data are sparse, an alter-
native estimation approach could be used. Further studies with more complex
scenarios are under way to con�rm, or not, the feasibility of these alternative
approaches.
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Appendix B

R Code

In this appendix, the R code developed for some of scenarios tested in the simulation

studies and statistical analysis performed along this thesis is presented. For the other

different scenarios tested the code is similar and is not presented.

More specifically, the code for the following tasks is presented:

• Evaluation of age-standardise net survival estimators (non-parametric and model-

based). Simulation study for scenario B (Non-linear and time-dependent efect of

age, linear and proportional efect of year of diagnosis).

• Simulation study to evaluate performance of SMC-FCS algorithm for excess hazard

models comparing with complete case analysis and standard FCS multiple imputa-

tion. Code for scenario C (outcome-dependent MAR).

• Evaluation of socioeconomic inequalities in survival from colorectal cancer. Com-

parison of complete-case analysis, standard FCS multiple imputation and SMC-

FCS. Code for SMC-FCS when substantive model is an excess hazard model and

missingness in categorical covariate.
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##########################################################################

# Age-standardised net survival estimation

#

# Comparison of model-based approaches and PP

#

# Scenario B

#

# Breast cancer

# Choose best model for each sample

#

# Simulated data files were generated elsewhere

#

#########################################################################

library(mexhaz)

library(relsurv)

library(statmod)

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/Paper_simulations")

source("C:\\Users\\ljant\\Documents\\Doutoramento - PDMA\\Artigo1\\Paper_Simulations\\NewSurvPop_Hadrien.r")

set.seed(123456)

# Sample size

n_size=2000

# Number of simulations by cycle

n_sim=1000

# Weights for age standardization

weights=c(0.07,0.12,0.23,0.29,0.29)

# To save survival by age profile for each chosen model

# age vector

mean_age=60

sd_age=14

knot=60

age_vector=seq(15,99,1)

n_age=length(age_vector)

agecrk=rep((knot-mean_age)/sd_age,n_age)

agecr_vector=(age_vector-mean_age)/sd_age

agecr_vector2=agecr_vector^2

agecr_vector3=agecr_vector^3

agecr_vectortr=as.numeric(age_vector>knot)*(agecr_vector-agecrk)^3

agecr_yydx_vector=0

# Survival matrices

surv_agegrp_MB1=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB1_2001=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB1_2010=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2001=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2002=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2003=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2004=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2005=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2006=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2007=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2008=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2009=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_MB2_2010=matrix(NA,nrow=n_sim,ncol=5)

# Standard error matrices

stand_agegrp_MB1=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB1_2001=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB1_2010=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2001=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2002=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2003=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2004=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2005=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2006=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2007=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2008=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2009=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_MB2_2010=matrix(NA,nrow=n_sim,ncol=5)

# Age-standardised survivals

asns_MB1=asns_MB1_2001=asns_MB1_2010=NULL

se_MB1=se_MB1_2001=se_MB1_2010=NULL

asns_MB2=matrix(NA,nrow=n_sim,ncol=10)

se_MB2=matrix(NA,nrow=n_sim,ncol=10)

asns_MB2_ave=NULL

se_MB2_ave=NULL
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# Survival profiles by age

surv_by_age=matrix(NA,nrow=n_sim,ncol=n_age)

# Get reference age for MB2

m1_agec=read.table(file="scB_ref_agec.txt",sep="\t")

m1_agec2=read.table(file="scB_ref_sec2.txt",sep="\t")

m1_agec3=read.table(file="scB_ref_agec3.txt",sep="\t")

m1_ageknot=read.table(file="scB_ref_ageknot.txt",sep="\t")

m1_agec=m1_agec[,1]

m1_agec2=m1_agec2[,1]

m1_agec3=m1_agec3[,1]

m1_ageknot=m1_ageknot[,1]

# Fake populations for MB2

mydata_mb2_2001=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2002=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2003=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2004=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2005=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2006=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2007=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2008=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2009=data.frame(NA,nrow=5,ncol=6)

mydata_mb2_2010=data.frame(NA,nrow=5,ncol=6)

mydata_mb2=data.frame(NA,nrow=50,ncol=6)

for(j in 1:5) {

mydata_mb2_2001[j,1]=m1_agec[j]

mydata_mb2_2002[j,1]=m1_agec[j]

mydata_mb2_2003[j,1]=m1_agec[j]

mydata_mb2_2004[j,1]=m1_agec[j]

mydata_mb2_2005[j,1]=m1_agec[j]

mydata_mb2_2006[j,1]=m1_agec[j]

mydata_mb2_2007[j,1]=m1_agec[j]

mydata_mb2_2008[j,1]=m1_agec[j]

mydata_mb2_2009[j,1]=m1_agec[j]

mydata_mb2_2010[j,1]=m1_agec[j]

mydata_mb2_2001[j,2]=m1_agec2[j]

mydata_mb2_2002[j,2]=m1_agec2[j]

mydata_mb2_2003[j,2]=m1_agec2[j]

mydata_mb2_2004[j,2]=m1_agec2[j]

mydata_mb2_2005[j,2]=m1_agec2[j]

mydata_mb2_2006[j,2]=m1_agec2[j]

mydata_mb2_2007[j,2]=m1_agec2[j]

mydata_mb2_2008[j,2]=m1_agec2[j]

mydata_mb2_2009[j,2]=m1_agec2[j]

mydata_mb2_2010[j,2]=m1_agec2[j]

mydata_mb2_2001[j,3]=m1_agec3[j]

mydata_mb2_2002[j,3]=m1_agec3[j]

mydata_mb2_2003[j,3]=m1_agec3[j]

mydata_mb2_2004[j,3]=m1_agec3[j]

mydata_mb2_2005[j,3]=m1_agec3[j]

mydata_mb2_2006[j,3]=m1_agec3[j]

mydata_mb2_2007[j,3]=m1_agec3[j]

mydata_mb2_2008[j,3]=m1_agec3[j]

mydata_mb2_2009[j,3]=m1_agec3[j]

mydata_mb2_2010[j,3]=m1_agec3[j]

mydata_mb2_2001[j,4]=m1_ageknot[j]

mydata_mb2_2002[j,4]=m1_ageknot[j]

mydata_mb2_2003[j,4]=m1_ageknot[j]

mydata_mb2_2004[j,4]=m1_ageknot[j]

mydata_mb2_2005[j,4]=m1_ageknot[j]

mydata_mb2_2006[j,4]=m1_ageknot[j]

mydata_mb2_2007[j,4]=m1_ageknot[j]

mydata_mb2_2008[j,4]=m1_ageknot[j]

mydata_mb2_2009[j,4]=m1_ageknot[j]

mydata_mb2_2010[j,4]=m1_ageknot[j]

mydata_mb2_2001[j,5]=weights[j]

mydata_mb2_2002[j,5]=weights[j]

mydata_mb2_2003[j,5]=weights[j]

mydata_mb2_2004[j,5]=weights[j]

mydata_mb2_2005[j,5]=weights[j]

mydata_mb2_2006[j,5]=weights[j]

mydata_mb2_2007[j,5]=weights[j]

mydata_mb2_2008[j,5]=weights[j]

mydata_mb2_2009[j,5]=weights[j]

mydata_mb2_2010[j,5]=weights[j]

mydata_mb2_2001[j,6]=2001-2005

mydata_mb2_2002[j,6]=2002-2005
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mydata_mb2_2003[j,6]=2003-2005

mydata_mb2_2004[j,6]=2004-2005

mydata_mb2_2005[j,6]=2005-2005

mydata_mb2_2006[j,6]=2006-2005

mydata_mb2_2007[j,6]=2007-2005

mydata_mb2_2008[j,6]=2008-2005

mydata_mb2_2009[j,6]=2009-2005

mydata_mb2_2010[j,6]=2010-2005

mydata_mb2_2001[j,7]=m1_agec[j]*(2001-2005)

mydata_mb2_2002[j,7]=m1_agec[j]*(2002-2005)

mydata_mb2_2003[j,7]=m1_agec[j]*(2003-2005)

mydata_mb2_2004[j,7]=m1_agec[j]*(2004-2005)

mydata_mb2_2005[j,7]=m1_agec[j]*(2005-2005)

mydata_mb2_2006[j,7]=m1_agec[j]*(2006-2005)

mydata_mb2_2007[j,7]=m1_agec[j]*(2007-2005)

mydata_mb2_2008[j,7]=m1_agec[j]*(2008-2005)

mydata_mb2_2009[j,7]=m1_agec[j]*(2009-2005)

mydata_mb2_2010[j,7]=m1_agec[j]*(2010-2005)

}

colnames(mydata_mb2_2001)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2002)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2003)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2004)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2005)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2006)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2007)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2008)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2009)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

colnames(mydata_mb2_2010)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/UM_SeminarioFev2017/Samples/2000/B")

count_agegrp=read.table(file=paste(n_size,"scB_count_agegrp.txt",sep=""),sep="\t")

count_agegrp_2001=read.table(file=paste(n_size,"scB_count_agegrp_2001.txt",sep=""),sep="\t")

count_agegrp_2010=read.table(file=paste(n_size,"scB_count_agegrp_2010.txt",sep=""),sep="\t")

# Model convergency

model_c=matrix(0,nrow=n_sim,ncol=16)

# Save chosen model for each sample

model_chosen=NULL

# Predict survival at 5 years

timept=5

# significance level

alpha=0.05

for (k in 1:n_sim) {

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/UM_SeminarioFev2017/Samples/2000/B")

model=NULL

model_1=model_2=model_3=model_4=model_5=model_6=NULL

model_7=model_8=model_9=model_10=model_11=model_12=NULL

model_13=model_14=model_15=model_16=NULL

print("Simulation n:")

print(k)

sample=read.table(file=paste(n_size,"scB_sample_",k,".txt",sep=""),sep="\t")

sample$age_yydx=sample$age_c*sample$yydx_c

sample_2001=sample[sample$yydx==2001,]

sample_2010=sample[sample$yydx==2010,]

# Flag if there is any age group with zero count

flag=0

for (j in 1:5) {

if (count_agegrp[k,j]==0) {flag=1}

}

flag2001=0

for (j in 1:5) {

if (count_agegrp_2001[k,j]==0) {flag2001=1}

}

flag2010=0

for (j in 1:5) {

if (count_agegrp_2010[k,j]==0) {flag2010=1}

}

# Model 1 vs Model 2 (test interaction age*yydx)

model_1=model1(sample)

model_2=model2(sample)

if (is.null(model_1$code)==F) {

if (model_1$code==1) {

model_c[k,1]=1

ll_1=model_1$loglik
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}

}

df1=model_1$n.par

if(is.na(ll_1)) ll_1=-1e6

if (is.null(model_2$code)==F) {

if (model_2$code==1) {

model_c[k,2]=1

ll_2=model_2$loglik

}

}

df2=model_2$n.par

if(is.na(ll_2)) ll_2=-1e6

# Check if interaction age*yydx is significant

# (compare M1 with M2)

ll=2*(ll_1-ll_2)

p12=pchisq(ll, df=df1-df2,lower.tail = F)

print(p12)

if (p12<0.05) {

print("interaction is significant")

model_3=model3(sample)

model_4=model4(sample)

model_6=model6(sample)

if (is.null(model_3$code)==F) {

if (model_3$code==1) {

model_c[k,3]=1

ll_3=model_3$loglik

}

}

df3=model_3$n.par

if(is.na(ll_3)) ll_3=-1e6

if (is.null(model_4$code)==F) {

if (model_4$code==1) {

model_c[k,4]=1

ll_4=model_4$loglik

}

}

df4=model_4$n.par

if(is.na(ll_4)) ll_4=-1e6

if (is.null(model_6$code)==F) {

if (model_6$code==1) {

model_c[k,6]=1

ll_6=model_6$loglik

}

}

df6=model_6$n.par

if(is.na(ll_6)) ll_6=-1e6

# Compare models

# Test TD yydx

ll=2*(ll_2-ll_3)

p2_3=pchisq(ll, df=df2-df3,lower.tail = F)

# Test TD age

ll=2*(ll_2-ll_4)

p2_4=pchisq(ll, df=df2-df4,lower.tail = F)

# Test NL age

ll=2*(ll_2-ll_6)

p2_6=pchisq(ll, df=df2-df6,lower.tail = F)

max_p=max(p2_3,p2_4,p2_6)

if (max_p<0.05) {

model_chosen[k]="M1"

model=model_2

} else if (max_p>=alpha) {

model_5=model5(sample)

model_6=model6(sample)

model_7=model7(sample)

model_8=model8(sample)

model_9=model9(sample)

if (is.null(model_5$code)==F) {

if (model_5$code==1) {

model_c[k,5]=1

ll_5=model_5$loglik

}

}

df5=model_5$n.par

if(is.na(ll_5)) ll_5=-1e6
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if (is.null(model_6$code)==F) {

if (model_6$code==1) {

model_c[k,6]=1

ll_6=model_6$loglik

}

}

df6=model_6$n.par

if(is.na(ll_6)) ll_6=-1e6

if (is.null(model_7$code)==F) {

if (model_7$code==1) {

model_c[k,7]=1

ll_7=model_7$loglik

}

}

df7=model_7$n.par

if(is.na(ll_7)) ll_7=-1e6

if (is.null(model_8$code)==F) {

if (model_8$code==1) {

model_c[k,8]=1

ll_8=model_8$loglik

}

}

df8=model_8$n.par

if(is.na(ll_8)) ll_8=-1e6

if (is.null(model_9$code)==F) {

if (model_9$code==1) {

model_c[k,9]=1

ll_9=model_9$loglik

}

}

df9=model_9$n.par

if(is.na(ll_9)) ll_9=-1e6

if(max_p==p2_3) {

# Compare M3/M5

ll=2*(ll_3-ll_5)

p3_5=pchisq(ll, df=df3-df5,lower.tail = F)

# Compare M3/M7

ll=2*(ll_3-ll_7)

p3_7=pchisq(ll, df=df3-df7,lower.tail = F)

max_p2=max(p3_5,p3_7)

if (max_p2<alpha) {

print("M3")

model=model_3

model_chosen[k]="M3"

} else {

if (max_p2==p3_5) {

# Compare M5/M9

ll=2*(ll_5-ll_9)

p5_9=pchisq(ll, df=df5-df9,lower.tail = F)

if (p5_9>=alpha) {

print("M9")

model=model_9

model_chosen[k]="M9"

} else {

print("M5")

model=model_5

model_chosen[k]="M5"

}

}

if (max_p2==p3_7) {

# Compare M7/M9

ll=2*(ll_7-ll_9)

p7_9=pchisq(ll, df=df7-df9,lower.tail = F)

if (p7_9>=alpha) {

print("M9")

model=model_9

model_chosen[k]="M9"

} else {

print("M7")

model=model_7

model_chosen[k]="M7"

}

}

}

}

if(max_p==p2_4) {

# Compare M4/M5

ll=2*(ll_4-ll_5)

p4_5=pchisq(ll, df=df4-df5,lower.tail = F)

# Compare M4/M8

ll=2*(ll_4-ll_8)

p4_8=pchisq(ll, df=df4-df8,lower.tail = F)

max_p2=max(p4_5,p4_8)
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if (max_p2<alpha) {

print("M4")

model=model_4

model_chosen[k]="M4"

} else {

if (max_p2==p4_5) {

# Compare M5/M9

ll=2*(ll_5-ll_9)

p5_9=pchisq(ll, df=df5-df9,lower.tail = F)

if (p5_9>=alpha) {

print("M9")

model=model_9

model_chosen[k]="M9"

} else {

print("M5")

model=model_5

model_chosen[k]="M5"

}

}

if (max_p2==p4_8) {

# Compare M8/M9

ll=2*(ll_8-ll_9)

p8_9=pchisq(ll, df=df8-df9,lower.tail = F)

if (p8_9>=alpha) {

print("M9")

model=model_9

model_chosen[k]="M9"

} else {

print("M8")

model=model_8

model_chosen[k]="M8"

}

}

}

}

if(max_p==p2_6) {

# Compare M6/M7

ll=2*(ll_6-ll_7)

p6_7=pchisq(ll, df=df6-df7,lower.tail = F)

# Compare M6/M8

ll=2*(ll_6-ll_8)

p6_8=pchisq(ll, df=df6-df8,lower.tail = F)

max_p2=max(p6_7,p6_8)

if (max_p2<alpha) {

print("M6")

model=model_6

model_chosen[k]="M6"

} else {

if (max_p2==p6_7) {

# Compare M7/M9

ll=2*(ll_7-ll_9)

p7_9=pchisq(ll, df=df7-df9,lower.tail = F)

if (p7_9>=alpha) {

print("M9")

model=model_9

model_chosen[k]="M9"

} else {

print("M7")

model=model_7

model_chosen[k]="M7"

}

}

if (max_p2==p6_8) {

# Compare M8/M9

ll=2*(ll_8-ll_9)

p8_9=pchisq(ll, df=df8-df9,lower.tail = F)

if (p8_9>=alpha) {

print("M9")

model=model_9

model_chosen[k]="M9"

} else {

print("M8")

model=model_8

model_chosen[k]="M8"

}

}

}

}

}

} else if (p12>=alpha) {

print("interaction not significant")

model_10=model10(sample)

model_11=model11(sample)

model_13=model13(sample)

if (is.null(model_10$code)==F) {

if (model_10$code==1) {
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model_c[k,10]=1

ll_10=model_10$loglik

}

}

df10=model_10$n.par

if(is.na(ll_10)) ll_10=-1e6

if (is.null(model_11$code)==F) {

if (model_11$code==1) {

model_c[k,11]=1

ll_11=model_11$loglik

}

}

df11=model_11$n.par

if(is.na(ll_11)) ll_11=-1e6

if (is.null(model_13$code)==F) {

if (model_13$code==1) {

model_c[k,13]=1

ll_13=model_13$loglik

}

}

df13=model_13$n.par

if(is.na(ll_13)) ll_13=-1e6

# Compare models

# Test TD yydx

ll=2*(ll_2-ll_10)

p2_10=pchisq(ll, df=df2-df10,lower.tail = F)

# Test TD age

ll=2*(ll_2-ll_11)

p2_11=pchisq(ll, df=df2-df11,lower.tail = F)

# Test NL age

ll=2*(ll_2-ll_13)

p2_13=pchisq(ll, df=df2-df13,lower.tail = F)

max_p=max(p2_10,p2_11,p2_13)

if (max_p<alpha) {

model_chosen[k]="M2"

model=model_2

} else if (max_p>=alpha) {

model_12=model12(sample)

model_13=model13(sample)

model_14=model14(sample)

model_15=model15(sample)

model_16=model16(sample)

if (is.null(model_12$code)==F) {

if (model_12$code==1) {

model_c[k,12]=1

ll_12=model_12$loglik

}

}

df12=model_12$n.par

if(is.na(ll_12)) ll_12=-1e6

if (is.null(model_13$code)==F) {

if (model_13$code==1) {

model_c[k,13]=1

ll_13=model_13$loglik

}

}

df13=model_13$n.par

if(is.na(ll_13)) ll_13=-1e6

if (is.null(model_14$code)==F) {

if (model_14$code==1) {

model_c[k,14]=1

ll_14=model_14$loglik

}

}

df14=model_14$n.par

if(is.na(ll_14)) ll_14=-1e6

if (is.null(model_15$code)==F) {

if (model_15$code==1) {

model_c[k,15]=1

ll_15=model_15$loglik

}

}

df15=model_15$n.par

if(is.na(ll_15)) ll_15=-1e6

if (is.null(model_16$code)==F) {



264 FCUP and ICBAS
Statistical models in cancer survival
Application to study of prognostic factors in the presence of incomplete data

if (model_16$code==1) {

model_c[k,16]=1

ll_16=model_16$loglik

}

}

df16=model_16$n.par

if(is.na(ll_16)) ll_16=-1e6

if (max_p==p2_10) {

print(max_p)

# Compare M10/M12

ll=2*(ll_10-ll_12)

p10_12=pchisq(ll, df=df10-df12,lower.tail = F)

# Compare M10/M14

ll=2*(ll_10-ll_14)

p10_14=pchisq(ll, df=df10-df14,lower.tail = F)

max_p2=max(p10_12,p10_14)

if (max_p2<alpha) {

print("M10")

model=model_10

model_chosen[k]="M10"

} else {

if (max_p2==p10_12) {

# Compare M12/M16

ll=2*(ll_12-ll_16)

p12_16=pchisq(ll, df=df12-df16,lower.tail = F)

if (p12_16>=alpha) {

print("M16")

model=model_16

model_chosen[k]="M16"

} else {

print("M12")

model=model_12

model_chosen[k]="M12"

}

}

if (max_p2==p10_14) {

# Compare M14/M16

ll=2*(ll_14-ll_16)

p14_16=pchisq(ll, df=df14-df16,lower.tail = F)

if (p14_16>=alpha) {

print("M16")

model=model_16

model_chosen[k]="M16"

} else {

print("M14")

model=model_14

model_chosen[k]="M14"

}

}

}

}

if(max_p==p2_11) {

# Compare M11/M12

ll=2*(ll_11-ll_12)

p11_12=pchisq(ll, df=df11-df12,lower.tail = F)

# Compare M11/M15

ll=2*(ll_11-ll_15)

p11_15=pchisq(ll, df=df11-df15,lower.tail = F)

max_p2=max(p11_12,p11_15)

if (max_p2<alpha) {

print("M11")

model=model_11

model_chosen[k]="M11"

} else {

if (max_p2==p11_12) {

# Compare M12/M16

ll=2*(ll_12-ll_16)

p12_16=pchisq(ll, df=df12-df16,lower.tail = F)

if (p12_16>=alpha) {

print("M16")

model=model_16

model_chosen[k]="M16"

} else {

print("M12")

model=model_12

model_chosen[k]="M12"

}

}

if (max_p2==p11_15) {

# Compare M15/M16

ll=2*(ll_15-ll_16)

p15_16=pchisq(ll, df=df15-df16,lower.tail = F)

if (p15_16>=alpha) {

print("M16")

model=model_16

model_chosen[k]="M16"
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} else {

print("M15")

model=model_15

model_chosen[k]="M15"

}

}

}

}

if(max_p==p2_13) {

# Compare M13/M14

ll=2*(ll_13-ll_14)

p13_14=pchisq(ll, df=df13-df14,lower.tail = F)

# Compare M13/M15

ll=2*(ll_13-ll_15)

p13_15=pchisq(ll, df=df13-df15,lower.tail = F)

max_p2=max(p13_14,p13_15)

if (max_p2<alpha) {

print("M13")

model=model_13

model_chosen[k]="M13"

} else {

if (max_p2==p13_14) {

# Compare M14/M16

ll=2*(ll_14-ll_16)

p14_16=pchisq(ll, df=df14-df16,lower.tail = F)

if (p14_16>=alpha) {

print("M16")

model=model_16

model_chosen[k]="M16"

} else {

print("M14")

model=model_14

model_chosen[k]="M14"

}

}

if (max_p2==p13_15) {

# Compare M15/M16

ll=2*(ll_15-ll_16)

p15_16=pchisq(ll, df=df15-df16,lower.tail = F)

if (p15_16>=alpha) {

print("M16")

model=model_16

model_chosen[k]="M16"

} else {

print("M15")

model=model_15

model_chosen[k]="M15"

}

}

}

}

}

}

if (model_chosen[k]!="") {

print("Converged")

# Predict age-standardised survival MB1 2001-2010

if (flag==0) {

sample$Weight[sample$age_grp==1]=weights[1]/nrow(sample[sample$age_grp==1,])

sample$Weight[sample$age_grp==2]=weights[2]/nrow(sample[sample$age_grp==2,])

sample$Weight[sample$age_grp==3]=weights[3]/nrow(sample[sample$age_grp==3,])

sample$Weight[sample$age_grp==4]=weights[4]/nrow(sample[sample$age_grp==4,])

sample$Weight[sample$age_grp==5]=weights[5]/nrow(sample[sample$age_grp==5,])

} else {

sample$Weight=1/nrow(sample)

}

model_res_MB1=PredSurvPop(mydata=sample,mytime=timept,mymodel=model,colweight="Weight")

asns_MB1[k]=model_res_MB1$SNW

se_MB1[k]=model_res_MB1$SNW*model_res_MB1$Stderr.logS

# Predict age-standardised survival MB1 2001

if (flag2001==0) {

sample_2001$Weight[sample_2001$age_grp==1]=weights[1]/nrow(sample_2001[sample_2001$age_grp==1,])

sample_2001$Weight[sample_2001$age_grp==2]=weights[2]/nrow(sample_2001[sample_2001$age_grp==2,])

sample_2001$Weight[sample_2001$age_grp==3]=weights[3]/nrow(sample_2001[sample_2001$age_grp==3,])

sample_2001$Weight[sample_2001$age_grp==4]=weights[4]/nrow(sample_2001[sample_2001$age_grp==4,])

sample_2001$Weight[sample_2001$age_grp==5]=weights[5]/nrow(sample_2001[sample_2001$age_grp==5,])

} else {

sample_2001$Weight=1/nrow(sample_2001)

}

model_res_MB1_2001=PredSurvPop(mydata=sample_2001,mytime=timept,mymodel=model,colweight="Weight")

asns_MB1_2001[k]=model_res_MB1_2001$SNW

se_MB1_2001[k]=model_res_MB1_2001$SNW*model_res_MB1_2001$Stderr.logS

# Predict age-standardised survival MB1 2010

if (flag2010==0) {
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sample_2010$Weight[sample_2010$age_grp==1]=weights[1]/nrow(sample_2010[sample_2010$age_grp==1,])

sample_2010$Weight[sample_2010$age_grp==2]=weights[2]/nrow(sample_2010[sample_2010$age_grp==2,])

sample_2010$Weight[sample_2010$age_grp==3]=weights[3]/nrow(sample_2010[sample_2010$age_grp==3,])

sample_2010$Weight[sample_2010$age_grp==4]=weights[4]/nrow(sample_2010[sample_2010$age_grp==4,])

sample_2010$Weight[sample_2010$age_grp==5]=weights[5]/nrow(sample_2010[sample_2010$age_grp==5,])

} else {

sample_2010$Weight=1/nrow(sample_2010)

}

model_res_MB1_2010=PredSurvPop(mydata=sample_2010,mytime=timept,mymodel=model,colweight="Weight")

asns_MB1_2010[k]=model_res_MB1_2010$SNW

se_MB1_2010[k]=model_res_MB1_2010$SNW*model_res_MB1_2010$Stderr.logS

# Predict survival by age

if (model_chosen[k]=="M1"|model_chosen[k]=="M3"|model_chosen[k]=="M4"|model_chosen[k]=="M5"|

model_chosen[k]=="M6"|model_chosen[k]=="M7"|model_chosen[k]=="M8"|model_chosen[k]=="M9") {

s_temp <- predict.mexhaz(model, time.pts=timept, data.val = data.frame(age_c=agecr_vector,

age_c2=agecr_vector2,age_c3=agecr_vector3,age_knot=agecr_vectortr,yydx_c=0,

age_yydx=0),conf.int="none")

} else {

s_temp <- predict.mexhaz(model, time.pts=timept, data.val = data.frame(age_c=agecr_vector,

age_c2=agecr_vector2,age_c3=agecr_vector3,age_knot=agecr_vectortr,yydx_c=0),conf.int="none")

}

surv_by_age[k,] <- as.numeric(s_temp$results["surv"][,1])

# MB2

prop_years=NULL

for (m in 1:10) {

prop_years[m]=length(sample$yydx[sample$yydx==(2000+m)])/length(sample$yydx)

}

m=0

for (j in 1:10) {

for (i in 1:5) {

m=m+1

mydata_mb2[m,1]=m1_agec[i]

mydata_mb2[m,2]=m1_agec2[i]

mydata_mb2[m,3]=m1_agec3[i]

mydata_mb2[m,4]=m1_ageknot[i]

mydata_mb2[m,5]=weights[i]*prop_years[j]

mydata_mb2[m,6]=2000+j-2005

mydata_mb2[m,7]=(2000+j-2005)*m1_agec[i]

}

}

colnames(mydata_mb2)=c("age_c","age_c2","age_c3","age_knot","peso","yydx_c","age_yydx")

s_temp01=PredSurvPop(mydata=mydata_mb2_2001,mytime=timept,mymodel=model,colweight="peso")

s_temp02=PredSurvPop(mydata=mydata_mb2_2002,mytime=timept,mymodel=model,colweight="peso")

s_temp03=PredSurvPop(mydata=mydata_mb2_2003,mytime=timept,mymodel=model,colweight="peso")

s_temp04=PredSurvPop(mydata=mydata_mb2_2004,mytime=timept,mymodel=model,colweight="peso")

s_temp05=PredSurvPop(mydata=mydata_mb2_2005,mytime=timept,mymodel=model,colweight="peso")

s_temp06=PredSurvPop(mydata=mydata_mb2_2006,mytime=timept,mymodel=model,colweight="peso")

s_temp07=PredSurvPop(mydata=mydata_mb2_2007,mytime=timept,mymodel=model,colweight="peso")

s_temp08=PredSurvPop(mydata=mydata_mb2_2008,mytime=timept,mymodel=model,colweight="peso")

s_temp09=PredSurvPop(mydata=mydata_mb2_2009,mytime=timept,mymodel=model,colweight="peso")

s_temp10=PredSurvPop(mydata=mydata_mb2_2010,mytime=timept,mymodel=model,colweight="peso")

asns_MB2[k,1]=s_temp01$SNW

asns_MB2[k,2]=s_temp02$SNW

asns_MB2[k,3]=s_temp03$SNW

asns_MB2[k,4]=s_temp04$SNW

asns_MB2[k,5]=s_temp05$SNW

asns_MB2[k,6]=s_temp06$SNW

asns_MB2[k,7]=s_temp07$SNW

asns_MB2[k,8]=s_temp08$SNW

asns_MB2[k,9]=s_temp09$SNW

asns_MB2[k,10]=s_temp10$SNW

se_MB2[k,1]=s_temp01$SNW*s_temp01$Stderr.logS

se_MB2[k,2]=s_temp02$SNW*s_temp02$Stderr.logS

se_MB2[k,3]=s_temp03$SNW*s_temp03$Stderr.logS

se_MB2[k,4]=s_temp04$SNW*s_temp04$Stderr.logS

se_MB2[k,5]=s_temp05$SNW*s_temp05$Stderr.logS

se_MB2[k,6]=s_temp06$SNW*s_temp06$Stderr.logS

se_MB2[k,7]=s_temp07$SNW*s_temp07$Stderr.logS

se_MB2[k,8]=s_temp08$SNW*s_temp08$Stderr.logS

se_MB2[k,9]=s_temp09$SNW*s_temp09$Stderr.logS

se_MB2[k,10]=s_temp10$SNW*s_temp10$Stderr.logS

s_temp=PredSurvPop(mydata=mydata_mb2,mytime=timept,mymodel=model,colweight="peso")

asns_MB2_ave[k]=s_temp$SNW

se_MB2_ave[k]=s_temp$SNW*s_temp$Stderr.logS

}

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/Paper_simulations/Scenario B2")

write.table(model_c,file=paste(n_size,"scB2_model_c.txt"),sep="\t")

write.table(model_chosen,file=paste(n_size,"scB2_model_chosen.txt"),sep="\t")

write.table(surv_by_age,file=paste(n_size,"scB2_surv_by_age.txt"),sep="\t")
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write.table(asns_MB1,file=paste(n_size,"scB2_ASNS_MB1.txt"),sep="\t")

write.table(asns_MB1_2001,file=paste(n_size,"scB2_ASNS_MB1_2001.txt"),sep="\t")

write.table(asns_MB1_2010,file=paste(n_size,"scB2_ASNS_MB1_2010.txt"),sep="\t")

write.table(se_MB1,file=paste(n_size,"scB2_stand_ASNS_MB1.txt"),sep="\t")

write.table(se_MB1_2001,file=paste(n_size,"scB2_stand_ASNS_MB1_2001.txt"),sep="\t")

write.table(se_MB1_2010,file=paste(n_size,"scB2_stand_ASNS_MB1_2010.txt"),sep="\t")

write.table(asns_MB2,file=paste(n_size,"scB2_ASNS_MB2.txt"),sep="\t")

write.table(se_MB2,file=paste(n_size,"scB2_stand_ASNS_MB2.txt"),sep="\t")

write.table(asns_MB2_ave,file=paste(n_size,"scB2_ASNS_MB2_ave.txt"),sep="\t")

write.table(se_MB2_ave,file=paste(n_size,"scB2_stand_ASNS_MB2_ave.txt"),sep="\t")

}

# FUNCTION Model 1 - NL age + TD age + yydx + yydx*age + TD yydx

model1 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 1

}

# FUNCTION Model 2 - NL age + TD age + yydx + TD yydx

model2 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 2

}

# FUNCTION Model 3 - NL age + TD age + yydx + yydx*age + PH yydx
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model3 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 3

}

# FUNCTION Model 4 - NL age + PH age + yydx + yydx*age + TD yydx

model4 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx+

nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 4

}

# FUNCTION Model 5 - NL age + PH age + yydx + yydx*age + PH yydx

model5 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0
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}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+age_yydx,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 5

}

# FUNCTION Model 6 - LL age + TD age + yydx + yydx*age + TD yydx

model6 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 6

}

# FUNCTION Model 7 - LL age + TD age + yydx + yydx*age + PH yydx

model7 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 7

}

# FUNCTION Model 8 - LL age + TD age + yydx + yydx*age + PH yydx

model8 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
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my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx+nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 8

}

# FUNCTION Model 9 - LL age + PH age + yydx + yydx*age + PH yydx

model9 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+age_yydx,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 9

}

# FUNCTION Model 10 - NL age + TD age + yydx + PH yydx

model10 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}
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return(model)

# end of model 10

}

# FUNCTION Model 11 - NL age + PH age + yydx + TD yydx

model11 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c+

nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 11

}

# FUNCTION Model 12 - NL age + PH age + yydx + PH yydx

model12 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+age_c2+age_c3+age_knot+yydx_c,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 12

}

# FUNCTION Model 13 - LL age + TD age + yydx + yydx*age + TD yydx

model13 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1
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} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(age_c+yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 13

}

# FUNCTION Model 14 - LL age + TD age + yydx + PH yydx

model14 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(age_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 14

}

# FUNCTION Model 15 - LL age + TD age + yydx + PH yydx

model15 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c+nph(yydx_c),

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 15

}

# FUNCTION Model 16 - LL age + PH age + yydx + PH yydx

model16 <- function(sample) {

conv=0

# Get initial parameters estimates using observed survival

tryCatch({

model.crude <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5),fnoptim = c("optim"))},
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error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

my.init <- round(model.crude$coef, 2)

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

if (is.null(model$code)==F) {

if (model$code==1) {

conv=1

} else {

conv=0

}

} else {

conv=0

}

if (conv==0) {

tryCatch({

model <- mexhaz(formula=Surv(time=stime, event=event)~age_c+yydx_c,

data=sample, base="exp.bs", degree=3, knots=c(.25,1.5), expected="popmort",fnoptim = c("optim"),

verbose=0, n.gleg=50,init=my.init)}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

return(model)

# end of model 16

}

#########################################################################

library(relsurv)

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/Paper_simulations")

set.seed(123456)

# Sample size

n_size=2000

# Number of simulations

n_sim=1000

# Survival matrices by age group

surv_agegrp_PP=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_PP_2001=matrix(NA,nrow=n_sim,ncol=5)

surv_agegrp_PP_2010=matrix(NA,nrow=n_sim,ncol=5)

# Standard error matrices by age group

stand_agegrp_PP=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_PP_2001=matrix(NA,nrow=n_sim,ncol=5)

stand_agegrp_PP_2010=matrix(NA,nrow=n_sim,ncol=5)

# Unstandardised survival vectors

surv_unstd_PP=surv_unstd_PP_2001=surv_unstd_PP_2010=NULL

# Unstandardised SE vectors

stand_unstd_PP=stand_unstd_PP_2001=stand_unstd_PP_2010=NULL

# Life table definitions for Pohar-Perme estimator (package relsurv)

rt_men=as.matrix(read.table(file="rt_men.txt", header=F, sep="\t"))

rt_women=as.matrix(read.table(file="rt_women.txt", header=F, sep="\t"))

lifetable=transrate(rt_men,rt_women,yearlim=c(1995,2015),int.length=1)

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/Paper_simulations/Samples/B/2000")

timept=5*365.25

for (k in 1:n_sim) {

print("Simulation n:")

print(k)

sample=read.table(file=paste(n_size,"scB_sample_",k,".txt",sep=""),sep="\t")

sample_2001=sample[sample$yydx==2001,]

sample_2010=sample[sample$yydx==2010,]

###########################################################################

# Estimate survival and std error - PP

for (l in 1:5) {

selection=which(sample$age_grp==l)

if (length(selection)>0) {

ns=rs.surv(Surv(stime*365.25,event)~1+ratetable(age=age*365.25,sex=sex,year=year_sim),

ratetable=lifetable,data=sample[selection,])

tryCatch({

surv_agegrp_PP[k,l]=summary(ns, times=timept)$surv},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

stand_agegrp_PP[k,l]=summary(ns, times=timept)$std.err},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

selection=which(sample_2001$age_grp==l)

if (length(selection)>0) {
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ns2001=rs.surv(Surv(stime*365.25,event)~1+ratetable(age=age*365.25,sex=sex,year=year_sim),

ratetable=lifetable,data=sample_2001[selection,])

tryCatch({

surv_agegrp_PP_2001[k,l]=summary(ns2001, times=timept)$surv},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

stand_agegrp_PP_2001[k,l]=summary(ns2001, times=timept)$std.err},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

selection=which(sample_2010$age_grp==l)

if (length(selection)>0) {

ns2010=rs.surv(Surv(stime*365.25,event)~1+ratetable(age=age*365.25,sex=sex,year=year_sim),

ratetable=lifetable,data=sample_2010[selection,])

tryCatch({

surv_agegrp_PP_2010[k,l]=summary(ns2010, times=timept)$surv},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

stand_agegrp_PP_2010[k,l]=summary(ns2010, times=timept)$std.err},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

}

# Estimate unstandardised net survival and stderr estimates for the full samples

# 2001-2010

ns=rs.surv(Surv(stime*365.25,event)~1+ratetable(age=age*365.25,sex=sex,year=year_sim),

ratetable=lifetable,data=sample)

tryCatch({

surv_unstd_PP[k]=summary(ns, times=timept)$surv},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

stand_unstd_PP[k]=summary(ns, times=timept)$std.err},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

# 2001

ns_2001=rs.surv(Surv(stime*365.25,event)~1+ratetable(age=age*365.25,sex=sex,year=year_sim),

ratetable=lifetable,data=sample_2001)

tryCatch({

surv_unstd_PP_2001[k]=summary(ns_2001, times=timept)$surv},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

stand_unstd_PP_2001[k]=summary(ns_2001, times=timept)$std.err},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

# 2010

ns_2010=rs.surv(Surv(stime*365.25,event)~1+ratetable(age=age*365.25,sex=sex,year=year_sim),

ratetable=lifetable,data=sample_2010)

tryCatch({

surv_unstd_PP_2010[k]=summary(ns_2010, times=timept)$surv},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

stand_unstd_PP_2010[k]=summary(ns_2010, times=timept)$std.err},

error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

}

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo1/Paper_simulations/Scenario B - PP")

write.table(surv_agegrp_PP,file=paste(n_size,"scB_surv_agegrp_PP.txt"),sep="\t")

write.table(surv_agegrp_PP_2001,file=paste(n_size,"scB_surv_agegrp_PP_2001.txt"),sep="\t")

write.table(surv_agegrp_PP_2010,file=paste(n_size,"scB_surv_agegrp_PP_2010.txt"),sep="\t")

write.table(stand_agegrp_PP,file=paste(n_size,"scB_stand_agegrp_PP.txt"),sep="\t")

write.table(stand_agegrp_PP_2001,file=paste(n_size,"scB_stand_agegrp_PP_2001.txt"),sep="\t")

write.table(stand_agegrp_PP_2010,file=paste(n_size,"scB_stand_agegrp_PP_2010.txt"),sep="\t")

write.table(surv_unstd_PP,file=paste(n_size,"scB_surv_unstd_PP.txt"),sep="\t")

write.table(surv_unstd_PP_2001,file=paste(n_size,"scB_surv_unstd_PP_2001.txt"),sep="\t")

write.table(surv_unstd_PP_2010,file=paste(n_size,"scB_surv_unstd_PP_2010.txt"),sep="\t")

write.table(stand_unstd_PP,file=paste(n_size,"scB_stand_unstd_PP.txt"),sep="\t")

write.table(stand_unstd_PP_2001,file=paste(n_size,"scB_stand_unstd_PP_2001.txt"),sep="\t")

write.table(stand_unstd_PP_2010,file=paste(n_size,"scB_stand_unstd_PP_2010.txt"),sep="\t")
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#

# Simulation of excess hazard model based on the

# Simulation performed in the article by Bartlett 2015

#

# Extension of SMC-FCS for excess hazard models

#

# Survival times: h_E(t|X)=0.002exp(beta1.X1 + beta2.X2)

# (beta1, beta2) = (1, 1)

# Censoring times: exponential distribution with hazard h_C(t)=0.002

# Background mortality: exponential distribution with hazard h_P(t)=0.001

#

# X1 ~ Be(n,p=0.5)

#

# X2 ~ N(X1, 1)

#

# Missing X1 - MAR: p_miss_x1=1/(1+exp(-0.1*x2+0.11))

# Missing X2 - MCAR: p_miss_x2=0.3

#

# Number of simulations: 1000

#

library(survival)

library(mice)

library(mitools)

library(smcfcs)

library(mexhaz)

library(MASS)

source("C:\\Users\\ljant\\Documents\\Doutoramento - PDMA\\Artigo_MI\\SummaryFunc.R")

source("C:\\Users\\ljant\\Documents\\Doutoramento - PDMA\\Artigo_MI\\function_smcfcs_exchaz.R")

set.seed(123)

n=1000

beta1=1

beta2=1

n_sim=1000

estim_x1=estim_x2=NULL

estim_x1_cc=estim_x2_cc=NULL

estim_x1_fcs=estim_x2_fcs=NULL

estim_x1_smcfcs=estim_x2_smcfcs=NULL

cov_cc_beta1=cov_cc_beta2=NULL

cov_fcs_beta1=cov_fcs_beta2=NULL

cov_smcfcs_beta1=cov_smcfcs_beta2=NULL

prob_x1=0.5

h0_x2=0.002

h_cens=0.002

h_pop=0.001

sd_x2=1

# Number of imputations

m_imps=10

for (k in 1:n_sim) {

# Generate X1

x1 = rbinom(n, 1, prob_x1)

# Generate X2

x2=NULL

for (i in 1:n) {

x2[i] = rnorm(1, mean=x1[i], sd=sd_x2)

}

# Generate time to death cancer

u1=runif(n,0,1)

t_E=log(1-u1)/(-h0_x2*exp(beta1*x1+beta2*x2))

# Generate censoring times

u2=runif(n,0,1)

c=log(1-u2)/(-h_cens)

# Generate time to death other causes

u3=runif(n,0,1)

t_P=log(1-u3)/(-h_pop)

# Define time to event as minimum between time to death from cancer and time to death from other causes

st_event=pmin(t_E,t_P)

# Define survival time as minimum between censoring and time to event

st=pmin(c,st_event)

# Create censoring indicator

d=ifelse(c<st_event,0,1)

# Create fully observed dataset

data=cbind(x1,x2,st,d)
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data=as.data.frame(data)

# Bind population mortality

data$rate=rep(h_pop,n)

# Calcultate the Nelson-Aalen cumulative hazard estimate

data$nach=nelsonaalen(data, st, d)

# Create missing values

index=seq(1,n,1)

p_miss_x1=1/(1+exp(+0.01*st-0.3))

#sum(p_miss_x1>0.5)

#boxplot(p_miss_x1)

#plot(st,p_miss_x1)

mx2=sample(index,size=n*0.3)

data_inc=data

data_inc[p_miss_x1>0.5,"x1"]=NA

data_inc[mx2,"x2"]=NA

# Full dataset analysis

data$x1=as.factor(data$x1)

fit=mexhaz(formula=Surv(time=st, event=d)~x1+x2,data=data,base="pw.cst",expected="rate",

verbose=0, n.gleg=25, fnoptim="optim")

estim_x1[k]=fit$coefficients["x11"]

estim_x2[k]=fit$coefficients["x2"]

# Complete case analysis

data_inc=as.data.frame(data_inc)

# Copy to other matrix since in smcfcs x1 must not be a factor

data_fcs=data_inc

data_fcs$x1=as.factor(data_inc$x1)

fit_cc=mexhaz(formula=Surv(time=st, event=d)~x1+x2,data=data_fcs,base="pw.cst",expected="rate",

verbose=0, n.gleg=25, fnoptim="optim")

estim_x1_cc[k]=fit_cc$coefficients["x11"]

estim_x2_cc[k]=fit_cc$coefficients["x2"]

# Estimate coverage

lw1=up1=lw2=up2=NULL

# CI95% limits for beta1

lw1=confint(fit_cc)["x11",1]

up1=confint(fit_cc)["x11",2]

# CI95% limits for beta2

lw2=confint(fit_cc)["x2",1]

up2=confint(fit_cc)["x2",2]

cov_cc_beta1[k]=ifelse((lw1<beta1)&(beta1<up1),1,0)

cov_cc_beta2[k]=ifelse((lw2<beta2)&(beta2<up2),1,0)

# Impute missing values using FCS

# Select linear regression for X2 and logistic for X1

ini <- mice(data_inc, maxit = 0)

meth <- ini$meth

pred <- ini$pred

meth["x1"] <- "logreg"

meth["x2"] <- "norm"

pred["x1","st"]=0

pred["x2","st"]=0

imp=mice(data_fcs,meth=meth,pred=pred,m=m_imps)

analysis_imput_fcs <- with_mexhaz(imp)

combined_coef_fcs <- combine_mexhaz(analysis_imput_fcs)

estim_x1_fcs[k]=combined_coef_fcs["x1","mean"]

estim_x2_fcs[k]=combined_coef_fcs["x2","mean"]

# Estimate coverage

lw1=up1=lw2=up2=NULL

# CI95% limits for beta1

lw1=combined_coef_fcs["x1","lower"]

up1=combined_coef_fcs["x1","upper"]

# CI95% limits for beta2

lw2=combined_coef_fcs["x2","lower"]

up2=combined_coef_fcs["x2","upper"]

cov_fcs_beta1[k]=ifelse((lw1<beta1)&(beta1<up1),1,0)

cov_fcs_beta2[k]=ifelse((lw2<beta2)&(beta2<up2),1,0)

# Impute missing values using SMC-FCS

imp_smcfcs=smcfcs_exchaz(data_inc,m_imps)

analysis_imput_smcfcs=with_mexhaz_smcfcs(imp_smcfcs,m_imps)

combined_coef_smcfcs <- combine_mexhaz(analysis_imput_smcfcs)
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estim_x1_smcfcs[k]=combined_coef_smcfcs["x1","mean"]

estim_x2_smcfcs[k]=combined_coef_smcfcs["x2","mean"]

# Estimate coverage

lw1=up1=lw2=up2=NULL

# CI95% limits for beta1

lw1=combined_coef_smcfcs["x1","lower"]

up1=combined_coef_smcfcs["x1","upper"]

# CI95% limits for beta2

lw2=combined_coef_smcfcs["x2","lower"]

up2=combined_coef_smcfcs["x2","upper"]

cov_smcfcs_beta1[k]=ifelse((lw1<beta1)&(beta1<up1),1,0)

cov_smcfcs_beta2[k]=ifelse((lw2<beta2)&(beta2<up2),1,0)

}

boxplot(estim_x1_cc,estim_x1_fcs,estim_x1_smcfcs,

estim_x2_cc,estim_x2_fcs,estim_x2_smcfcs,axt="n")

axis(1,at=c(1,2,3,4,5,6),c("CC-X1","FCS-X1","SMC-FCS-X1","CC-X2","FCS-X2","SMC-FCS-X2"))

abline(h=1,col=2)

# CC

emp_cov_cc_b1=round(sum(na.omit(cov_cc_beta1))/sum(is.na(cov_cc_beta1)==F)*100,1)

emp_cov_cc_b2=round(sum(na.omit(cov_cc_beta2))/sum(is.na(cov_cc_beta2)==F)*100,1)

# FCS

emp_cov_fcs_b1=round(sum(na.omit(cov_fcs_beta1))/sum(is.na(cov_fcs_beta1)==F)*100,1)

emp_cov_fcs_b2=round(sum(na.omit(cov_fcs_beta2))/sum(is.na(cov_fcs_beta2)==F)*100,1)

# SMC-FCS

emp_cov_smcfcs_b1=round(sum(na.omit(cov_smcfcs_beta1))/sum(is.na(cov_smcfcs_beta1)==F)*100,1)

emp_cov_smcfcs_b2=round(sum(na.omit(cov_smcfcs_beta2))/sum(is.na(cov_smcfcs_beta2)==F)*100,1)

smcfcs_exchaz <- function(data,m) {

# m - number of imputations

# n - number of rows of matrix

n=dim(data)[1]

# Completed datasets

data_compl=list()

max_iter_reject=1000

n_iter=10

# Population hazard must be stored in variable "rate"

data$lambda_p=data$rate

# Cumulative population hazard

# (in this first example, population hazard is constant)

data$cum_lambda_p=data$rate*data$st

# store which rows in the matrix have x1 or x2 missing

row_miss_x1=which(is.na(data$x1)==T)

row_miss_x2=which(is.na(data$x2)==T)

# Fill in all missing values with starting value

# Mode for the categorical variable (x1)

# Mean for the continuos variable (x2)

mode_x1=getmode(na.omit(data$x1))

mean_x2=mean(na.omit(data$x2))

data1=data

data1$x1[is.na(data1$x1)==T]=mode_x1

data1$x2[is.na(data1$x2)==T]=mean_x2

# Count number of cases that have missing values for each variable

n_miss1=length(row_miss_x1)

n_miss2=length(row_miss_x2)

# Keep imputations from iterations

imputed_x1=matrix(NA,nrow=n_miss1,ncol=n_iter)

imputed_x2=matrix(NA,nrow=n_miss2,ncol=n_iter)

for (imp in 1:m) {

for (l in 1:n_iter) {

# Fit the substantive model of interest to the completed dataset

fit1=mexhaz(formula=Surv(time=st, event=d)~x1+x2,data=data1,base="pw.cst",

expected="rate",verbose=0, n.gleg=25, fnoptim="optim")

# Store estimated coefficients and var-cov matrix from the substantive model

beta_means=c(fit1$coefficients["x1"],fit1$coefficients["x2"])

beta_vcov=fit1$vcov[2:3,2:3]

# Draw random values of the model parameters from a normal multivariate distribution

# with mean equal to parameters estimates and var-cov matrix estimated from the model

betas_subst=mvrnorm(n=1,mu=beta_means,Sigma=beta_vcov)
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# The excess hazard baseline is considered piecewise constant (with only one time interval)

data1$lambda_baseline=exp(fit1$coefficients[1])

data1$cum_lambda_baseline=exp(fit1$coefficients[1])*data1$st

# Fit imputation model to x1 conditioned on x2

fit_impmod_x1=glm(x1~x2,family=binomial(link="logit"),data=data1)

fit_impmod_x1_coeff=fit_impmod_x1$coefficients

fit_impmod_x1_vcov=stats::vcov(fit_impmod_x1)

# Draw random values of the imputation model parameters from a normal multivariate

# distribution with mean equal to parameters estimates and var-cov matrix estimated

# from the fitted imputation model

betas_impmod_x1=mvrnorm(n=1,mu=fit_impmod_x1_coeff,Sigma=fit_impmod_x1_vcov)

# For X1

for (j in 1:n_miss1) {

# Draw random imputation for X1

# First, calculate probability from logistic regression model

k=row_miss_x1[j]

pr_x1=1/(1+exp(-(betas_impmod_x1[1]+betas_impmod_x1[2]*x2[k])))

count=0

reject=1

while(reject==1 & count<max_iter_reject) {

count=count+1

# Draw from binomial distribution

x1_imp=rbinom(1,1,pr_x1)

reject = check_comp(x1_imp,data1$x2[k],data1$lambda_p[k],data1$cum_lambda_p[k],

data1$lambda_baseline[k],data1$cum_lambda_baseline[k],

data1$d[k],betas_subst)

}

# Save iteration

imputed_x1[j,l]=x1_imp

# Replace x1 values in data by newly imputed ones

data1[k,"x1"]=x1_imp

}

# Fit imputation model to x2 conditioned on x1

fit_impmod_x2=lm(x2~x1,data=data1)

fit_impmod_x2_coeff=fit_impmod_x2$coefficients

fit_impmod_x2_vcov=stats::vcov(fit_impmod_x2)

fit_impmod_x2_resid_sd=(summary(fit_impmod_x2)$sigma)

# Draw random values of the imputation model parameters from a normal multivariate

# distribution with mean equal to parameters estimates and var-cov matrix estimated

# from the fitted imputation model

betas_impmod_x2=mvrnorm(n=1,mu=fit_impmod_x2_coeff,Sigma=fit_impmod_x2_vcov)

# For X2

for (j in 1:n_miss2) {

# Draw random imputation for X2 (from linear model)

k=row_miss_x2[j]

count=0

reject=1

while(reject==1 & count<max_iter_reject) {

count=count+1

x2_imp=as.numeric(betas_impmod_x2[1]+betas_impmod_x2[2]*data1$x1[k]+

rnorm(n=1, mean = 0, sd = fit_impmod_x2_resid_sd))

reject = check_comp(data1$x1[k],x2_imp,data1$lambda_p[k],data1$cum_lambda_p[k],

data1$lambda_baseline[k],data1$cum_lambda_baseline[k],

data1$d[k],betas_subst)

}

# Save iteration

imputed_x2[j,l]=x2_imp

# Replace x1 values in data by newly imputed ones

data1[k,"x2"]=x2_imp

# print(paste("count=",count))

# print(paste("x1=",x1_imp))

# print(paste("d=",data1$d[k]))

}

}

# Save completed dataset

data_compl[[imp]]=data1

}

return(data_compl)

}

# Function to calculate mode of a vector

getmode <- function(v) {

uniqv <- unique(v)
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uniqv[which.max(tabulate(match(v, uniqv)))]

}

# Function for sample rejection - X1

check_comp <- function(x1,x2,lambda_p,cum_lambda_p,lambda_baseline,cum_lambda_baseline,

d,betas_subst) {

if (d==0) {

#print("0")

c_lim = exp(-cum_lambda_p) * exp(-cum_lambda_baseline*

exp(betas_subst[1]*x1+betas_subst[2]*x2))

u=runif(1)

reject=ifelse(u<=c_lim,0,1)

} else if (d==1) {

#print("1")

A=cum_lambda_baseline*lambda_p/lambda_baseline

B=exp(betas_subst[1]*x1+betas_subst[2]*x2)

c_lim=((lambda_p+lambda_baseline*B)*exp(-cum_lambda_p-cum_lambda_baseline*B))/

((lambda_baseline/cum_lambda_baseline)*exp(-cum_lambda_p-1+A))

u=runif(1)

reject=ifelse(u<=c_lim,0,1)

}

return(reject)

}

with_mexhaz_smcfcs <- function(imputed,m) {

coef=matrix(NA,ncol=m,nrow=4)

rownames(coef)=c("x1","x2","x1_std","x2_std")

for (i in 1:m) {

data=imputed[[i]]

fit=mexhaz(formula=Surv(time=st, event=d)~x1+x2,data=data,

base="pw.cst",expected="rate",

verbose=0, n.gleg=25, fnoptim="optim")

coef["x1",i]=fit$coefficients["x1"]

coef["x2",i]=fit$coefficients["x2"]

coef["x1_std",i]=fit$std.errors["x1"]

coef["x2_std",i]=fit$std.errors["x2"]

}

return(coef)

}

combine_mexhaz <- function(coef) {

ncoef=(dim(coef)[1])/2

m=dim(coef)[2]

results=matrix(NA,ncol=4,nrow=ncoef)

rownames(results)=c("x1","x2")

colnames(results)=c("mean","std.err","lower","upper")

for (i in 1:ncoef) {

results[i,1]=mean(coef[i,])

U=mean(coef[(i+ncoef),]^2)

B=1/(m-1)*sum((coef[i,]-mean(coef[i,]))^2)

results[i,2]=sqrt(U+(1+1/m)*B)

# Calculate confidence interval limits

df=floor((m-1)*(1+U/B)^2)

t=qt(0.975,df)

results[i,3]=results[i,1]-t*results[i,2]

results[i,4]=results[i,1]+t*results[i,2]

}

return(results)

}
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#########################################################################################

# Colorectal cancer in the North region of Portugal

#

# Article on Multiple Imputation extending SMC-FCS to accomodate excess hazard models

# Excess hazard modelling

#

# Complete case analysis, FCS, SMC-FCS

#

# Covariables: age, sex, EDI, extent

#

# Load necessary libraries

library(MASS)

library(relsurv)

library(mexhaz)

library(dplyr)

library(mice)

library(mitools)

set.seed(1234)

source("C:\\Users\\ljant\\Documents\\Doutoramento - PDMA\\Artigo_MI\\SummaryFunc.R")

source("C:\\Users\\ljant\\Documents\\Doutoramento - PDMA\\Artigo_MI\\functions_application.R")

source("C:\\Users\\ljant\\Documents\\Doutoramento - PDMA\\Artigo_MI\\functions_application_smcfcs_v4.R")

# Set working directory

setwd("C://Users/ljant/Documents/Doutoramento - PDMA/Artigo_MI")

# Load initial database

bd_original<-read.csv2("Base_CRC_2010-2012_actual.csv",header=TRUE,sep=";")

bd_original$survtime_yrs=bd_original$survtime/365.25

# Create variable age group

bd_original$grupo_et[(bd_original$Idade>=15)&(bd_original$Idade<=44)]=1

bd_original$grupo_et[(bd_original$Idade>=45)&(bd_original$Idade<=54)]=2

bd_original$grupo_et[(bd_original$Idade>=55)&(bd_original$Idade<=64)]=3

bd_original$grupo_et[(bd_original$Idade>=65)&(bd_original$Idade<=74)]=4

bd_original$grupo_et[(bd_original$Idade>=75)&(bd_original$Idade<=120)]=5

# Code sex

bd_original$sex[bd_original$Sexo=="Masculino"]=1

bd_original$sex[bd_original$Sexo=="Feminino"]=2

bd_original$dep[bd_original$EDI==1]="edi1"

bd_original$dep[bd_original$EDI==2]="edi2"

bd_original$dep[bd_original$EDI==3]="edi3"

bd_original$dep[bd_original$EDI==4]="edi4"

bd_original$dep[bd_original$EDI==5]="edi5"

# Read deprivation-specific life tables

rt_men1<-as.matrix(read.table(file="rt_men_edi1.txt", header=F, sep="\t"))

rt_women1<-as.matrix(read.table(file="rt_women_edi1.txt", header=F, sep="\t"))

rt_men2<-as.matrix(read.table(file="rt_men_edi2.txt", header=F, sep="\t"))

rt_women2<-as.matrix(read.table(file="rt_women_edi2.txt", header=F, sep="\t"))

rt_men3<-as.matrix(read.table(file="rt_men_edi3.txt", header=F, sep="\t"))

rt_women3<-as.matrix(read.table(file="rt_women_edi3.txt", header=F, sep="\t"))

rt_men4<-as.matrix(read.table(file="rt_men_edi4.txt", header=F, sep="\t"))

rt_women4<-as.matrix(read.table(file="rt_women_edi4.txt", header=F, sep="\t"))

rt_men5<-as.matrix(read.table(file="rt_men_edi5.txt", header=F, sep="\t"))

rt_women5<-as.matrix(read.table(file="rt_women_edi5.txt", header=F, sep="\t"))

# Deprivation-specific life tables

lifetable1<-transrate(rt_men1,rt_women1,yearlim=c(2001,2017),int.length=1)

lifetable2<-transrate(rt_men2,rt_women2,yearlim=c(2001,2017),int.length=1)

lifetable3<-transrate(rt_men1,rt_women3,yearlim=c(2001,2017),int.length=1)

lifetable4<-transrate(rt_men4,rt_women4,yearlim=c(2001,2017),int.length=1)

lifetable5<-transrate(rt_men5,rt_women5,yearlim=c(2001,2017),int.length=1)

lifetable_edi <- joinrate(list(edi1=lifetable1,edi2=lifetable2,edi3=lifetable3,edi4=lifetable4,

edi5=lifetable5),dim.name="deprivation")

# Transform probability of survival in mortality rate

rate_men1=-log(rt_men1)

rate_men2=-log(rt_men2)

rate_men3=-log(rt_men3)

rate_men4=-log(rt_men4)

rate_men5=-log(rt_men5)

rate_women1=-log(rt_women1)

rate_women2=-log(rt_women2)

rate_women3=-log(rt_women3)

rate_women4=-log(rt_women4)

rate_women5=-log(rt_women5)

# Attribute column names to mortality matrix

colnames(rate_men1)=seq(2001,2017,1)

colnames(rate_men2)=seq(2001,2017,1)
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colnames(rate_men3)=seq(2001,2017,1)

colnames(rate_men4)=seq(2001,2017,1)

colnames(rate_men5)=seq(2001,2017,1)

colnames(rate_women1)=seq(2001,2017,1)

colnames(rate_women2)=seq(2001,2017,1)

colnames(rate_women3)=seq(2001,2017,1)

colnames(rate_women4)=seq(2001,2017,1)

colnames(rate_women5)=seq(2001,2017,1)

# Attribute row names to mortality matrix

rownames(rate_men1)=seq(0,99,1)

rownames(rate_men2)=seq(0,99,1)

rownames(rate_men3)=seq(0,99,1)

rownames(rate_men4)=seq(0,99,1)

rownames(rate_men5)=seq(0,99,1)

rownames(rate_women1)=seq(0,99,1)

rownames(rate_women2)=seq(0,99,1)

rownames(rate_women3)=seq(0,99,1)

rownames(rate_women4)=seq(0,99,1)

rownames(rate_women5)=seq(0,99,1)

# Apply exclusion criteria

# Limit to patients with:

# - age at diagnosis < 95

# - known status

# - survival time > 0

# - known EDI

bd_surv = bd_original %>% filter(Idade<95) %>% filter(status!=9) %>%

filter(survtime>0) %>% filter(EDI!=9)

dim(bd_surv)

# Read and append population mortality rate

n=dim(bd_surv)[1]

for (i in 1:n) {

bd_surv$age_exit[i]=floor(bd_surv$survtime_yrs[i])+bd_surv$Idade[i]

bd_surv$year_exit[i]=floor(bd_surv$survtime_yrs[i])+bd_surv$anodiag[i]

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi1") {

bd_surv$popmort_spec[i]=

rate_men1[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi2") {

bd_surv$popmort_spec[i]=

rate_men2[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi3") {

bd_surv$popmort_spec[i]=

rate_men3[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi4") {

bd_surv$popmort_spec[i]=

rate_men4[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi5") {

bd_surv$popmort_spec[i]=

rate_men5[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi1") {

bd_surv$popmort_spec[i]=

rate_women1[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi2") {

bd_surv$popmort_spec[i]=

rate_women2[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi3") {

bd_surv$popmort_spec[i]=

rate_women3[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi4") {

bd_surv$popmort_spec[i]=

rate_women4[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi5") {

bd_surv$popmort_spec[i]=

rate_women5[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

}

# Calculate and append cumulative population hazard

# Cum pop hazard = SUM (pop haz (age_i) * time)

for (i in 1:n) {

bd_surv$yrs_lived[i]=bd_surv$age_exit[i]-bd_surv$Idade[i]+1

bd_surv$cum_popmort_spec[i]=0
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if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi1") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_men1[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi2") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_men2[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi3") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_men3[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi4") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_men4[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==1 & bd_surv$dep[i]=="edi5") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_men5[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi1") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_women1[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi2") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_women2[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi3") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_women3[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi4") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_women4[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

if(bd_surv$sex[i]==2 & bd_surv$dep[i]=="edi5") {

for (j in 1:bd_surv$yrs_lived[i]) {

bd_surv$cum_popmort_spec[i]=bd_surv$cum_popmort_spec[i]+

rate_women5[as.character(bd_surv$Idade[i]-1+j),as.character(bd_surv$anodiag[i]-1+j)]

}

}

}

# Distribution of EDI quintiles in the North region of Portugal

# (quintiles were obtained from the all country distribution)

weights_pop=c(0.09481,0.11785,0.21968,0.26554,0.30212)

# Define matrix for the weighted mortalities

rate_men_gen=matrix(NA,nrow=100,ncol=17)

rate_women_gen=matrix(NA,nrow=100,ncol=17)

colnames(rate_men_gen)=seq(2001,2017,1)

colnames(rate_women_gen)=seq(2001,2017,1)

rownames(rate_men_gen)=seq(0,99,1)

rownames(rate_women_gen)=seq(0,99,1)

nr=dim(rate_men_gen)[1]

nc=dim(rate_men_gen)[2]

# Calculate weighted mortalities to obtain general life tables

# (better to compare results from deprivation specific and general life tables)

for (i in 1:nr) {

for (j in 1:nc) {

rate_men_gen[i,j]=weights_pop[1]*rate_men1[i,j]+weights_pop[2]*rate_men2[i,j]+

weights_pop[3]*rate_men3[i,j]+weights_pop[4]*rate_men4[i,j]+

weights_pop[5]*rate_men5[i,j]

rate_women_gen[i,j]=weights_pop[1]*rate_women1[i,j]+weights_pop[2]*rate_women2[i,j]+

weights_pop[3]*rate_women3[i,j]+weights_pop[4]*rate_women4[i,j]+
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weights_pop[5]*rate_women5[i,j]

}

}

n=dim(bd_surv)[1]

for (i in 1:n) {

if(bd_surv$sex[i]==1) {

bd_surv$popmort_gen_calc[i]=

rate_men_gen[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

if(bd_surv$sex[i]==2) {

bd_surv$popmort_gen_calc[i]=

rate_women_gen[as.character(bd_surv$age_exit[i]),as.character(bd_surv$year_exit[i])]

}

}

# Create dummy variables for EDI

bd_surv$edi2=bd_surv$edi3=bd_surv$edi4=bd_surv$edi5=0

bd_surv$edi2[bd_surv$EDI==2]=1

bd_surv$edi3[bd_surv$EDI==3]=1

bd_surv$edi4[bd_surv$EDI==4]=1

bd_surv$edi5[bd_surv$EDI==5]=1

# Create dummy variables for extent

bd_surv$extent2=bd_surv$extent3=bd_surv$extent4=0

bd_surv$extent2[bd_surv$extent==2]=1

bd_surv$extent3[bd_surv$extent==3]=1

bd_surv$extent4[bd_surv$extent==4]=1

# Create dummy variable for sex (women - reference category)

bd_surv$men=0

bd_surv$men[bd_surv$sex==1]=1

# Standardise age

c_age=70

s_age=12

bd_surv$age_z=(bd_surv$Idade-c_age)/s_age

###################################################################

#

# Estimation of net survival by EDI for the full cohort

# Compare survival curves using "log-rank type" test

#

###################################################################

pp_edi<-rs.surv(Surv(survtime,status==1) ~ EDI + ratetable(age=Idade*365.25,sex=sex,year=year,

deprivation=dep),ratetable=lifetable_edi,data=bd_surv,conf.type="log")

p=rs.diff(Surv(survtime,status==1) ~ EDI + ratetable(age=Idade*365.25,sex=sex,year=year,

deprivation=dep),ratetable=lifetable_edi,data=bd_surv)

plot(pp_edi,col=c(1,2,3,4,5),lty=c(1,2,3,4,5),xlim=c(0,5),

ylab="Net survival", xlab="Years since diagnosis",xscale=365.25,xaxs="i",yaxs="i",font.lab=2)

legend("bottomright",c("EDI1 (least deprived)","EDI2","EDI3","EDI4","EDI5 (most deprived)"),

lty=seq(1,5,1),col=seq(1,5,1),bty="n")

text(x=4*365,y=0.9,paste("p = ",round(as.numeric(p$p.value),4)),font=3)

###################################################################

#

# COMPLETE-CASE ANALYSIS

#

# Discard cases with missing extent

#

###################################################################

bd_surv_cc = bd_surv %>% filter(extent!=9)

dim(bd_surv_cc)

# Fit model with Linear age and PH effects of age, sex, edi and extent

model_cc <- mexhaz(formula=Surv(time=survtime_yrs, event=status)~age_z + men +

edi2 + edi3 + edi4 + edi5 + extent2 + extent3 + extent4,

data=bd_surv_cc, base="exp.bs", degree=3, knots=c(1), expected="popmort_spec",

verbose=0, n.gleg=50)

summary2(model_cc)

model_cc

###################################################################

#

# MULTIPLE IMPUTATION USING FCS

#

# Imputation model: multinomial logistic regression model
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# Covariates in imputation model: age, sex, tumour site,

# deprivation, basis of diagnosis,

# cumulative hazard, event indicator

#

###################################################################

# Define number of imputations

n_imps=50

# Define number of iterations

n_iter=5

# Create dummy variable for tumour site

bd_surv$site[bd_surv$Top=="colon"]=0

bd_surv$site[bd_surv$Top=="rectum"]=1

# Create dummy variable for basis of diagnosis

bd_surv$mv=0

bd_surv$mv[bd_surv$basediag=="Histolgico"|

bd_surv$basediag=="Citolgico"]=1

# Calcultate the Nelson-Aalen cumulative hazard estimate

bd_surv$nach=nelsonaalen(bd_surv, survtime, status)

bd_surv_fcs = bd_surv %>%

### SELECT A SUBSET OF VARIABLES TO WORK WITH

select(

age_z,

men,

site,

EDI,

mv,

nach,

status,

survtime_yrs,

extent,

popmort_spec,

cum_popmort_spec,

year

)

# Delete missing extent (9 --> NA)

bd_surv_fcs[bd_surv_fcs$extent==9,"extent"]=NA

# Define categorical variables as factors

bd_surv_fcs$EDI=as.factor(bd_surv_fcs$EDI)

bd_surv_fcs$extent=as.factor(bd_surv_fcs$extent)

# Initialise Multiple Imputation

ini <- mice(bd_surv_fcs, maxit = 0)

# Eliminate variables from the imputation model

pred <- ini$pred

pred[ ,"survtime_yrs"] <- 0

pred[ ,"popmort_spec"] <- 0

pred[ ,"cum_popmort_spec"] <- 0

pred[ ,"year"] <- 0

pred

imp_fcs <- mice(bd_surv_fcs, pred=pred, m=n_imps, maxit=n_iter)

coefs_fcs=with_mexhaz_fcs(imp_fcs)

comb_coef_fcs=combine_fcs(coefs_fcs)

comb_coef_fcs

##############################################################

#

# MULTIPLE IMPUTATION USING SMC-FCS

#

# Imputation model: multinomial logistic regression model

# Covariates in imputation model: age, sex, deprivation, mv, site

#

##############################################################

# Assumes that the above preparation code was run

bd_surv_smcfcs=bd_surv_fcs

n_iter=10

library(nnet)

n_iter=10

n_imps=50

imp_smcfcs = smcfcs_exchaz_app(bd_surv_smcfcs,n_imps,n_iter)
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coefs_smcfcs=with_mexhaz_smcfcs_app(imp_smcfcs,m=n_imps)

comb_coef_smcfcs=combine_mexhaz_app(coefs_smcfcs)

smcfcs_exchaz_app <- function(data,m,n_iter) {

# m - number of imputations

# n - number of rows of matrix

n=dim(data)[1]

# Completed datasets

data_compl=list()

max_iter_reject=1000

# Population hazard must be stored in variable "popmort_spec"

data$lambda_p=data$popmort_spec

# Cumulative population hazard

# Read from data (calculated elsewhere)

data$cum_lambda_p=data$cum_popmort_spec

# store which rows in the matrix have extent missing

row_miss_ext=which(is.na(data$extent)==T)

# Count number of cases that have missing values for each variable

n_miss=length(row_miss_ext)

# Create dummy variables for EDI

data$edi2=data$edi3=data$edi4=data$edi5=0

data$edi2[data$EDI==2]=1

data$edi3[data$EDI==3]=1

data$edi4[data$EDI==4]=1

data$edi5[data$EDI==5]=1

# Fill in all missing values with starting value

# Predicted from a multinomial regression model with survtime as explanatory variable

# (should converge faster than using the mode)

fit_init=multinom(extent~survtime_yrs,data=data[is.na(data$extent)==F,])

data1=data

for (j in 1:n_miss) {

k=row_miss_ext[j]

pred_ext=predict(fit_init,data1[k,])

data1$extent[k]=pred_ext

}

# Define extent as factor

data1$extent=as.factor(data1$extent)

# Keep imputations from iterations

imputed_ext=matrix(NA,nrow=n_miss,ncol=n_iter)

# Cycle for imputations

for (imp in 1:m) {

print(paste("imputation=",imp))

# Cycle for iteration within each imputation

for (l in 1:n_iter) {

print(paste("iter=",l))

# Fit the substantive model of interest to the completed dataset

fit1 = mexhaz(formula=Surv(time=survtime_yrs, event=status)~age_z + men +

edi2 + edi3 + edi4 + edi5 + extent +

site + mv,

data=data1, base="exp.bs", degree=3, knots=c(1), expected="popmort_spec",

verbose=0, n.gleg=50, fnoptim="optim")

# Store estimated coefficients for excess hazard baseline

gamma_means=c(fit1$coefficients["Intercept"],fit1$coefficients["BS3.1"],

fit1$coefficients["BS3.2"],fit1$coefficients["BS3.3"],

fit1$coefficients["BS3.4"])

gamma_vcov =fit1$vcov[1:5,1:5]

# Store estimated coefficients and var-cov matrix from the substantive model

beta_means=c(fit1$coefficients["age_z"],fit1$coefficients["men"],

fit1$coefficients["edi2"],fit1$coefficients["edi3"],

fit1$coefficients["edi4"],fit1$coefficients["edi5"],

fit1$coefficients["extent2"],fit1$coefficients["extent3"],

fit1$coefficients["extent4"],fit1$coefficients["site"],

fit1$coefficients["mv"])

beta_vcov=fit1$vcov[6:16,6:16]

# Draw random values of the model parameters from a normal multivariate distribution

# with mean equal to parameters estimates and var-cov matrix estimated from the model

# Draw baseline parameters separately from covariates parameters

gamma_subst=mvrnorm(n=1,mu=gamma_means,Sigma=gamma_vcov)

betas_subst=mvrnorm(n=1,mu=beta_means,Sigma=beta_vcov)
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# Use predict function from mexhaz to estimate excess hazard baseline

# and cumulative excess hazard baseline

fit_temp=fit1

coefs_temp=c(gamma_subst,betas_subst)

fit_temp$coefficients=coefs_temp

pred_baseline=predict(fit_temp, time.pts=data1$survtime_yrs,

data.val = data.frame(age_z=0,men=0,edi2=0,edi3=0,

edi4=0,edi5=0,extent=as.factor(1),site=0,mv=0),conf.int="none")

for (p in 1:n) {

data1$lambda_baseline[p]=pred_baseline$results$hazard[

pred_baseline$results$time.pts==data1$survtime_yrs[p]][1]

data1$cum_lambda_baseline[p]=-log(pred_baseline$results$surv[

pred_baseline$results$time.pts==data1$survtime_yrs[p]][1])

}

# Fit imputation model to extent conditioned on:

# age_z, sex, deprivation, site, mv

# For Extent

y=data1$extent

ry=ifelse(is.na(bd_surv_smcfcs$extent)==F,T,F)

x = data1 %>%

select(

age_z, men, site, edi2, edi3, edi4, edi5, mv)

probs_polyreg=fit_polyreg(y,ry,x)

# For each missing value

for (j in 1:n_miss) {

k=row_miss_ext[j]

count=0

reject=1

post <- matrix(probs_polyreg[j,], nrow = 1, ncol = length(probs_polyreg[j,]))

while(reject==1 & count<max_iter_reject) {

count=count+1

# Draw random imputation for extent

un <- rep(runif(1), each = 4)

draws <- un > apply(post, 1, cumsum)

ext_imp <- 1 + apply(draws, 2, sum)

reject = check_comp_ext(ext_imp,data1$lambda_p[k],data1$cum_lambda_p[k],

data1$lambda_baseline[k],data1$cum_lambda_baseline[k],

data1$status[k],data1$age_z[k],data1$men[k],data1$edi2[k],

data1$edi3[k],data1$edi4[k],data1$edi5[k],

data1$site[k],data1$mv[k],betas_subst)

}

print(paste("count=",count))

# Save iteration

imputed_ext[j,l]=ext_imp

# Replace extent values in data by newly imputed ones

data1[k,"extent"]=ext_imp

}

write.matrix(imputed_ext,file=paste("v4_imputed_ext",l,".txt",sep=""),sep="\t")

}

# Save completed dataset

data_compl[[imp]]=data1

write.matrix(data1,file=paste("v4_completed_dataset",imp,".txt",sep=""),sep="\t")

}

return(data_compl)

}

# Function to calculate mode of a vector

getmode <- function(v) {

uniqv <- unique(v)

uniqv[which.max(tabulate(match(v, uniqv)))]

}

# Function for sample rejection - Extent

check_comp_ext <- function(extent,lambda_p,cum_lambda_p,lambda_baseline,cum_lambda_baseline,

d,age_z,men,edi2,edi3,edi4,edi5,site,mv,betas_subst) {

ext2=ext3=ext4=0

ext2=ifelse(extent==2,1,0)

ext3=ifelse(extent==3,1,0)

ext4=ifelse(extent==4,1,0)
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#print(paste("extent=",extent))

#print(paste("ext2=",ext2))

#print(paste("ext3=",ext3))

#print(paste("ext4=",ext4))

if (d==0) {

#print("0")

c_lim = exp(-cum_lambda_p) * exp(-cum_lambda_baseline*

exp(betas_subst["age_z"]*age_z+betas_subst["men"]*men+betas_subst["edi2"]*edi2+

betas_subst["edi3"]*edi3+betas_subst["edi4"]*edi4+betas_subst["edi5"]*edi5+

betas_subst["extent2"]*ext2+betas_subst["extent3"]*ext3+betas_subst["extent4"]*ext4+

betas_subst["site"]*site+betas_subst["mv"]*mv ))

u=runif(1)

reject=ifelse(u<=c_lim,0,1)

} else if (d==1) {

#print("1")

A=cum_lambda_baseline*lambda_p/lambda_baseline

B=exp(betas_subst["age_z"]*age_z+betas_subst["men"]*men+betas_subst["edi2"]*edi2+

betas_subst["edi3"]*edi3+betas_subst["edi4"]*edi4+betas_subst["edi5"]*edi5+

betas_subst["extent2"]*ext2+betas_subst["extent3"]*ext3+betas_subst["extent4"]*ext4+

betas_subst["site"]*site+betas_subst["mv"]*mv)

c_lim=((lambda_p+lambda_baseline*B)*exp(-cum_lambda_p-cum_lambda_baseline*B))/

((lambda_baseline/cum_lambda_baseline)*exp(-cum_lambda_p-1+A))

u=runif(1)

reject=ifelse(u<=c_lim,0,1)

}

return(reject)

}

with_mexhaz_smcfcs_app <- function(imputed,m) {

coef=matrix(NA,ncol=m,nrow=18)

rownames(coef)=c("age_z","men","edi2","edi3","edi4","edi5","extent2","extent3","extent4",

"age_z_std","men_std","edi2_std","edi3_std","edi4_std",

"edi5_std","extent2_std","extent3_std","extent4_std")

for (i in 1:m) {

data=imputed[[i]]

fit=mexhaz(formula=Surv(time=survtime_yrs, event=status)~age_z + men +

edi2 + edi3 + edi4 + edi5 + extent,

data=data, base="exp.bs", degree=3, knots=c(1), expected="popmort_spec",

verbose=0, n.gleg=50, fnoptim="optim")

coef["age_z",i]=fit$coefficients["age_z"]

coef["men",i]=fit$coefficients["men"]

coef["edi2",i]=fit$coefficients["edi2"]

coef["edi3",i]=fit$coefficients["edi3"]

coef["edi4",i]=fit$coefficients["edi4"]

coef["edi5",i]=fit$coefficients["edi5"]

coef["extent2",i]=fit$coefficients["extent2"]

coef["extent3",i]=fit$coefficients["extent3"]

coef["extent4",i]=fit$coefficients["extent4"]

coef["age_z_std",i]=fit$std.errors["age_z"]

coef["men_std",i]=fit$std.errors["men"]

coef["edi2_std",i]=fit$std.errors["edi2"]

coef["edi3_std",i]=fit$std.errors["edi3"]

coef["edi4_std",i]=fit$std.errors["edi4"]

coef["edi5_std",i]=fit$std.errors["edi5"]

coef["extent2_std",i]=fit$std.errors["extent2"]

coef["extent3_std",i]=fit$std.errors["extent3"]

coef["extent4_std",i]=fit$std.errors["extent4"]

}

return(coef)

}

combine_mexhaz_app <- function(coef) {

ncoef=(dim(coef)[1])/2

m=dim(coef)[2]

results=matrix(NA,ncol=4,nrow=ncoef)

rownames(results)=c("age_z","men","edi2","edi3","edi4","edi5","extent2","extent3","extent4")

colnames(results)=c("mean","std.err","lower","upper")

for (i in 1:ncoef) {

results[i,1]=mean(coef[i,])

U=mean(coef[(i+ncoef),]^2)

B=1/(m-1)*sum((coef[i,]-mean(coef[i,]))^2)

results[i,2]=sqrt(U+(1+1/m)*B)

# Calculate confidence interval limits

df=floor((m-1)*(1+U/B)^2)

t=qt(0.975,df)

results[i,3]=results[i,1]-t*results[i,2]

results[i,4]=results[i,1]+t*results[i,2]

}

return(results)

}


