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Abstract and keywords 

 

As it happens with other grape varieties, Baga is prone to high productivity and also 

to rot, due to the production of compact clusters and thin skin berries. The occurrence 

of some diseases and excessive productivity are frequently associated, and therefore, 

yield control is an important issue. Fruit thinning and the application of growth 

regulators do not produce intended effects, revealing inconsistencies, technical 

difficulties to implement and high costs. Manual cluster thinning is time-consuming and 

chemical thinning is difficult to control, yielding random results depending on variety, 

phenological status and dosage of the used chemicals. 

A three-year study was carried out, testing the production control techniques "early 

severe leaf removal" (manual and mechanical, MAD and MED, respectively), "Double 

Maturation Raisonnée" (DMR) and "manual bunch thinning" (MBT). 

The objective of this work was to compare the effects of MAD, MED, DMR and MBT 

as methods of yield control and to demonstrate their individual effects on Baga variety, 

quality of grapes, musts and resulting wines. Using MAD, the first six basal leaves were 

removed at flowering, while MED was performed using the leaf removal machine in the 

fruiting zone on both sides of the vine at the same period. MBT was performed at 

veraison, limiting one bunch per shoot. DMR was performed 15 days before harvest, 

leaving shoots and bunches hanging on the wires. 

A randomized complete block design with four replications was used. 

The results reflected some influence of the different climatic conditions over the 

effects of each method studied on three harvests. However, some tendencies could be 

found: the techniques studied decrease vine yield; MAD, MED, DMR and MBT showed 

successfully lower yields; MAD, MED and DMR showed lower incidence of rot and 

cluster compactness, as well as some improvements in the composition of the must 

(something not presented in MBT); the wines produced with DMR and MED presented 

good sensorial quality, similar or superior to the used commercial References, while 

wines produced under MAD and MBT conditions presented superior results compared 

to Control (CTR) but not to the References; MED proved to be a lower-cost alternative 

to the other methods. 

 

Keywords: Yield; Quality; Bunch Thinning; „Double Maturation Raisonnée‟; Early 

Defoliation.  
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Resumo e Palavras-chave 

 

Tal como ocorre com outras variedades de uva, a casta Baga é propensa a 

produtividade elevada e também à podridão, devido a produzir cachos compactos e 

bagos de película fina. A ocorrência de algumas doenças e produtividade excessiva 

estão frequentemente associadas, sendo, por isso, o controle de rendimento uma 

questão importante. A monda de cachos e aplicação de reguladores de crescimento 

não produzem os efeitos pretendidos, revelando inconsistências, dificuldades técnicas 

de implementação e custos elevados. A monda manual é demorada e a monda 

química é difícil de controlar, produzindo resultados aleatórios dependendo da 

variedade, estado fenológico e de dosagem dos químicos usados. 

Foi realizado um estudo de três anos, testando as técnicas de controlo de produção 

"desfolha precoce severa" (manual e mecânica, MAD e MED), "Double Maturation 

Raisonnée" (DMR) e a “monda de cachos manual” (MBT). 

O objetivo deste trabalho foi comparar os efeitos destas técnicas MAD, MED, DMR 

e MBT como métodos de controle de rendimento e demonstrar os seus efeitos sobre 

qualidade das uvas, mostos e vinhos da casta Baga. Utilizando MAD, as primeiras seis 

folhas basais foram removidas à floração, enquanto que MED foi realizada utilizando a 

máquina de desfolha na zona de frutificação em ambos os lados da videira no mesmo 

período. MBT foi realizada na fase do “pintor”, limitando um cacho por pâmpano. A 

técnica DMR foi realizada 15 dias antes da colheita, deixando varas e cachos 

pendurados nos arames. Foi utilizado o delineamento experimental de blocos ao 

acaso (aleatório), com quatro repetições. 

Os resultados obtidos, sobre os efeitos de cada um dos métodos em estudo, foram 

influenciados, em certa medida, pelas diferentes condições climáticas das 3 colheitas. 

No entanto, algumas tendências podem ser encontradas: as técnicas estudadas 

fizeram diminuir a produtividade da videira; tendo a MAD, MED, DMR e MBT mostrado 

menores rendimentos; a utilização das técnicas MAD, MED e DMR resultou numa 

menor incidência de podridão e compacidade do cacho, e em algumas melhorias na 

composição do mosto (algo não apresentado por MBT); os vinhos produzidos com 

uvas sujeitas às técnicas de DMR e MED apresentaram boa qualidade sensorial, 

similar ou superior às Referências comerciaisutilizadas, enquanto as obtidas pelas 

técnicas de MAD e MBT apresentaram resultados superiores ao CTR mas não às 

Referências; a técnica de MED revelou ser uma alternativa de menor custo aos outros 

métodos. 

Palavras-chave: Produção; Qualidade; Monda de cachos; „Double Maturation 

Raisonnée‟; Desfolha precoce.  
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Preamble 

 

During the implementation of the work, the evaluation of results and the writing itself, 

I was continually rushed with doubt about the focus of this dissertation, the guiding 

principle, the juice that will nourish the knowledge of Baga, Bairrada region and 

Viticulture. 

My closest family‟s life has been linked to the wine throughout my life. Since young 

age, I kept hearing discomfortable ideas about Bairrada and Baga, like both were 

united in a “Siamese connection”: harsh, unexplained, undrinkable, retrograde and 

somehow exciting. These images were being cemented, my “knowledge” kept being 

nurtured based in third-party thoughts but always unfounded and inexperienced, 

without having the opportunity to be confronted with the question and being clarified. 

During a complete decade, I discovered wine, wine styles, wine regions, grape 

varieties, vineyards, wineries, techniques and methodologies… and Baga remained 

unclear and undiscovered. After having accomplished some stages of academic 

training, with the wine always in the background (a journey made on the contrary, 

starting discovering the final product and walking backwards on the production chain), I 

finally decided that I should learn more about the „origin of everything‟: grapevine and 

grapes. The Universe somehow pushed me to Bairrada, to the “damned” and 

misunderstood Baga! 

It has been a pleasure to work and to meet a grape variety who most seem to reject, 

seeming like the 'outcast' of Portuguese grape varieties; getting to know a being with 

closed nature, bad-tempered, capricious, but that is also generous for those who 

devote time, attention and patience. Fortunately, my relationship with the 'friend' Baga 

did not ended after this work - I am fortunate to work professionally with Baga, in 

Bairrada, in vineyards over 60 years old, with other trellising, with other motivations, but 

always generous. 

 

Finally, I tried to focus not only on numbers to support science but also in individual 

perception of wine; after all, grape quality and wine quality are not easily or fully 

explained by numbers and figures or translated into scientific writing. 

 

 

 

 

Hugo Silva 
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I Overview 

 

Grape and wine productions play a central role in Western society, today and also in 

the past. They have an important influence in several aspects of the society, such as 

economic, social, religious and intellectual. 

Both grape and wine productions are economically important, particularly in the 

Mediterranean basin, and are also money-rewarding agricultural activities (when 

comparing with other agricultural productions). Beside these aspects, they are not 

accessible to everyone due to legal restrictions of vine plantation, of wine production 

and of wine commercialization, and also because they demand extensive knowledge 

and dedicated care. 

Socially, wine is a beverage associated with key events like celebrations and 

agreement/pact/document signings, traditionally is used as distinguished offer, socially 

assumed to be associated with gentlemen behaviour, and some vine/wine expressions 

are popularly used with noble meanings.  

Wine plays an important role in religion, frequently entitled „the nectar of the Gods‟ 

and also as „The blood of Christ‟ for the Christians. 

Intellectually, wine is associated with intellectual beings, with reflection about life, 

with humanity and respect among men. 

The great impact of wine in the History of Mankind explains the fact that we can find 

vines planted in almost every country of the planet.  

 

According to „Organisation Internationale de la Vigne et du Vin‟ (OIV) data from 

2017 [1], 267 million hectolitres (MhL) of wine were produced worldwide in 2016 (Table 

1), with more than 80% of this volume being produced by only ten countries. Wine 

consumption worldwide has maintained near to 240 MhL per year, a constant trend 

since 2009 (Figure 1). Combining both data, it is clear that the problem of wine surplus 

is a current and global issue and it also highlights the need for an increased and urgent 

adaptation of the wine industry to the demand preferences. Data also shows that this 

reduction of global consumption is fairly related to the effects of the 2008 world 

economic crisis [1]. Finally, another feature of the data is the declining of wine 

production, and also consumption, in traditional wine producing countries, while it is 

increasing in the northern European countries and others, such as China and Australia 

(China is expanding the vine plantings surface, the volumes of wine production and the 

national consumption of wine are concomitantly increasing). 
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Table 1 - Wine production for 2012-16 (Source: Adapted from OIV, 2017
 [1]

).  

 

 

Apart from the wine consumed, a substantial percentage of the wine produced is 

used as a by-product for other derivatives‟ wine associated products such as vinegars, 

distilled beverages, culinary sauces, etc. These data are usually missing in most of the 

global annual statistics so it is difficult to have a clear and overall vision about the wine 

production/consumption ratios. Objectively, the hypothesis that these sources of wine 

consumption would absorb the surplus of wine production in some years cannot be 

disregarded - this would explain why the global wine production is not dropping sharply 

as one would predict after successive years of wine surplus scenario. 

Nevertheless, this would not happen in all years. 

 

 

Figure 1 - World wine consumption, expressed in millions of hectolitres (Source: OIV, 2017
 [1]

). 

 

Concerning the cultivated area with vines (Figure 2), it was over 7.5 million hectares 

(Mha) worldwide. The area had been increasing since 2011, the year of the lowest 

Italy 45.6 54.0 44.2 50.0 50.9 0.9 2

France 41.5 42.1 46.5 47.0 43.5 -3.5 -7

Spain 31.1 45.3 39.5 37.7 39.3 1.7 4

USA 21.7 24.4 23.1 21.7 23.9 2.2 10

Australia 12.3 12.3 11.9 11.9 13.0 1.1 9

China 13.5 11.8 11.6 11.5 11.4 -0.1 -1

South Africa 10.6 11.0 11.5 11.2 10.5 -0.7 -6

Chile 12.6 12.8 10.0 12.9 10.1 -2.7 -21

Argentina 11.8 15.0 15.2 13.4 9.4 -3.9 -29

Germany 9.0 8.4 9.2 8.9 9.0 0.1 1

Portugal 6.3 6.2 6.2 7.0 6.0 -1.0 -15

Russia 6.2 5.3 4.9 5.6 5.6 0.0 0

Romania 3.3 5.1 3.7 3.5 3.3 -0.3 -8

New Zealand 1.9 2.5 3.2 2.3 3.1 0.8 34

Greece 3.1 3.3 2.8 2.5 2.6 0.0 2

Serbia 2.2 2.3 2.3 2.3 2.3 0.0 0

Austria 2.1 2.4 2.0 2.3 2.0 -0.3 -14

World Total (OIV) 258 290 270 276 267 -9 -3

2016
2016/15 Var. 

Volume

2016/2015 Var 

%
Million hL 2012 2013 2014 2015
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value between 2000 and the present; Europe had the biggest relative reduction, almost 

10 percentual points but still represents an absolute decrease of 17% in cultivated area 

- the OIV report [1] noticed that this decrease was the consequence of the abandonment 

of vineyards. In contrast, Asia has significantly increased its vineyard area. Again, it is 

difficult to explain the global increase in vineyard area (excluding Europe) when there is 

a global surplus in wine production. 

 

 

Figure 2 - Evolution of planted vines area (Source: OIV, 2017 
[1]

). 

 

Another important feature that should be pointed out is that a substantial proportion 

of the wine produced globally is from a very limited number of varieties - 10 varieties 

represent close to 26% of the global planted area [2] (Table 2). The use of these more 

common and vastly planted grape varieties can bring, in the first years, some 

commercial impact for a new producer - it will attract the attention of variety-driven wine 

consumers; but, just after a few years in the business and if nothing other than the 

grape variety is added to the production (like branding, new products, new varieties, 

new wine styles, marketing and advertising), the attention brought by the varietal wines 

tend to abruptly disappear, because the consumer choice was only motivated by a 

feature that is not exclusive to that particular wine producer - the grape variety. The 

massive global offering of wine from these ten varieties, combined with a wine surplus 

scenario, can result in increased difficulties for all sorts of wine producing entities, 

regardless the country of origin or their size: cooperatives, very large producers, large 

and medium producers, small producers and boutique wineries. 

In order to avoid economical unbalances, single countries and multi-country trade 

organizations are constantly establishing new regulations for the wine industry, acting 

specifically in limiting production and tightening quality standards - yield control and 
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quality assurance are important tools in the legally restricted nonetheless vast wine 

business world. 

 

Table 2 - Most common grape varieties planted (in hectares, Source: Adapted from IVV, 2015 
[2]

). 

 

 

Portugal‟s wine context is similar to the rest of the Europe: according to 2014 data 

from “Instituto da Vinha e do Vinho” (IVV) [2], there were 218 677 ha of vines planted, 

from each there were 79 573 ha of vines/vineyards with “Denominação de Origem 

Protegida” (DOP) certification (Table 3), that means “Protected Designation of Origin” 

or “Protected Geographic Indication”. 

 

Table 3 - Planted vine areas per Portuguese region (Source: Adapted from IVV, 2015 
[2]

). 

 

 

There are 26 grape varieties with more than 1000 ha of vines planted each in 

Portugal, with Aragonez/Tinta Roriz/Tempranillo and Touriga Franca with more than 10 

000 ha planted each (Table 4). Although Portugal has a large number of 

autochthonous varieties and several distinct DOP regions, there is a limited offer of 

wine producing varieties: the 10 most planted varieties in Portugal combined represent 

36% of all vine area planted: Aragonez/Tinta Roriz/Tempranillo, Touriga Franca, 

Castelão/João de Santarém/Periquita, Fernão Pires/Maria Gomes, Touriga Nacional, 

1 Cabernet Sauvignon Red 290 091 220 890 127 678

2 Merlot Red 267 169 211 967 154 752

3 Airen White 252 364 387 978 476 396

4 Tempranillo Red 232 561 32 985 47 429

5 Chardonnay White 198 793 145 344 69 282

6 Syrah Red 185 568 101 516 35 086

7 Garnacha Tinta Red 184 735 213 987 282 997

8 Sauvignon Blanc White 110 138 64 889 44 677

9 Trebbiano Toscano White 109 772 136 572 207 442

10 Pinot Noir Red 86 662 60 099 41 539

Order 2010 (ha) 1990 (ha)Grape Variety Colour 2000 (ha)

DOP Total

Minho 15 810 27 432

Tras-os-Montes 417 23 303

Douro 40 378 43 611

Beiras 8 370 52 670

Lisboa 1 074 22 425

Tejo 1 161 15 653

Península de Setúbal 2 154 8 622

Alentejo 10 090 23 188

Algarve 119 1 773

Total 79 573 218 677

Area (ha)
Region
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Trincadeira/Tinta Amarela/Trincadeira Preta, Baga, Síria/Roupeiro/Códega, 

Arinto/Pedernã e Syrah/Shiraz. 

 

 

Table 4 - Most planted varieties in Portugal in 2014 (Source: IVV, 2015 
[2]

). 

 

 

Baga represents close to 5000 ha of the planted vineyard area in July 2014, and it is 

almost limited to the Bairrada and Dão regions. According to IVV reports, Baga planted 

area in July 2013 was 4811 ha [3], in July 2014 was 4996 ha, and 7105 ha in July 2015 

[4] - these features are for a total vineyard area in Portugal, and not only Bairrada 

region. If one believes that the vast majority of Baga plantings occur in Bairrada region, 

this evolution represents an inversion of the apparent decrease of Baga planted area 

over the last decade in Bairrada (during the 80‟s, Baga represented 80 to 90% of the 

red varieties planted in Bairrada region [5]). 

Portugal‟s overall production of wine is a bit more than 6 000 000 hectolitres (hL) per 

year (Table 5), divided between 2 227 500 hL of wine with DOP, 725 000 hL of fortified 

wine, 1 685 000 hL of wine with “Indicação Geográfica Protegida” (IGP) and the rest 

just wine (close to 1 500 000 hL). Minho, Douro and Alentejo regions are responsible 

Aragonez / Tinta Roriz / Tempranillo 15292 7

Touriga Franca 12231 6

Castelão / João de Santarém / Periquita 9287 4

Fernão Pires / Maria Gomes 9126 4

Touriga Nacional 8183 4

Trincadeira / Tinta Amarela / Trincadeira Preta 7632 3

Baga 4996 2

Síria / Roupeiro / Códega 4909 2

Arinto / Pedernã 4244 2

Syrah / Shiraz 3925 2

Loureiro 3820 2

Alicante Bouschet 3710 2

Tinta Barroca 3646 2

Vinhão / Sousão 2953 1

Alvarinho 2224 1

Malvasia Fina / Boal 2094 1

Rufete / Tinta Pinheira 2078 1

Marufo / Mourisco Roxo 2064 1

Malvasia Rei 1897 1

Jaen / Mencia 1826 1

Caladoc 1781 1

Cabernet Sauvignon 1712 1

Rabigato 1553 1

Antão Vaz 1339 1

Trajadura / Treixadura 1171 1

Azal 1 080 0.5

Grape Variety Area (ha) %
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for the major quota of the DOP wine produced, and the central-southern region 

produces the most important amount of IGP wine produced (Alentejo, Lisboa, 

Península de Setúbal and Tejo regions). Vinho do Porto is the most important fortified 

wine with DOP produced in Portugal, accounting for more than 700 000 hL.  Interesting 

information is that Portugal produces less wine without DOP or IGP than wine with 

DOP and wine with IGP. 

 

Table 5 - Wine production in Portugal in 2014 per region (Source: IVV, 2015 
[2]

). 

 

 

Portugal‟s wine production is slowly decreasing (Table 6), the same occurring with 

Bairrada/Beira Atlântico region. The Bairrada/Beira Atlântico region is responsible for 

producing 255 333 hL in 2014 vintage, from which 71 787 hL was produced as DOP 

wine, 28 633 hL as IGP, and the rest as table wine.  

 

Table 6 - Evolution of wine production in Portugal per region 2004-14 (Source: IVV, 2015 
[2]

). 

 

 

Comparing Portuguese wine production with other European Union (EU) countries 

(Table 7) and other countries from the world (Table 8), Portugal produces significantly 

less wine than Germany, France, Spain and Italy, and also South Africa, China, 

Minho 793 417 743 626 0 43 837 0 5 953

Trás-os-Montes 96 615 12 070 0 7 600 1 204 75 741

Douro & Porto 1 516 925 507 497 707 752 42 631 0 259 045

Beira Atlântico 255 333 71 787 0 28 633 34 263 120 649

Terras do Dão 304 824 195 362 0 30 702 4 887 73 873

Terras da Beira 215 783 42 853 0 35 930 0 137 000

Terras de Cister 64 731 21 266 0 1 400 0 42 064

Tejo 500 807 54 860 276 159 846 3 030 282 795

Lisboa 885 742 46 911 477 503 749 757 333 848

Península de Setúbal 407 853 108 522 15 624 190 009 30 93 668

Alentejo 1 127 910 469 652 433 633 255 150 24 419

Algarve 11 676 1 668 0 7 794 0 2 214

Continental Subtotal 6 181 615 2 276 075 724 562 1 685 388 44 321 1 451 271

Madeira 43 136 1 270 39 426 35 0 2 405

Açores 6 595 53 1 219 973 0 4 350

Island Subtotal 499 731 1 323 40 645 1 008 0 6 755

Total 6 231 347 2 277 398 765 207 1 686 396 44 321 1 458 026

Region Wine
Wine with indication 

of Year/Variety
IGP wineDOP fortified wineDOP wineTotal

Minho 987 715 939 564 937 605 710 625 784 028 866 985 912 176 823 341 655 253 793 417

Trás-os-Montes 225 787 255 798 232 042 98 302 105 075 110 614 119 367 102 005 108 615 96 615

Douro & Porto 1 645 627 1 743 865 1 717 728 1 443 429 1 379 051 1 351 949 1 660 408 1 329 423 1 346 152 1 516 925

Beira Atlântico 377 947 413 322 365 030 255 978 211 669 246 705 297 704 292 596 283 897 255 333

Terras do Dão 376 121 487 491 515 551 240 723 251 863 297 483 355 687 293 537 356 454 304 824

Terras da Beira 364 606 356 079 363 100 125 789 194 365 192 084 224 735 184 759 217 693 215 783

Terras de Cister 77 650 97 046 94 312 37 605 78 831 47 872 61 036 45 959 64 655 64 731

Tejo 845 425 685 319 639 747 669 472 518 989 544 935 630 548 382 276 641 789 500 807

Lisboa 1 294 856 1 177 088 1 195 983 1 056 407 932 736 962 323 1 204 098 826 666 1 097 712 885 742

Península de Setúbal 373 125 338 204 428 488 418 989 337 139 379 371 431 696 308 857 517 797 407 853

Alentejo 825 709 693 364 961 721 930 452 811 690 810 338 1 189 719 969 832 970 124 1 127 910

Algarve 24 107 27 955 31 672 27 587 23 698 23 650 19 190 13 150 12 338 11 676

Continental Subtotal 7 418 676 7 215 095 7 482 979 6 015 360 5 629 135 5 834 310 7 106 363 5 572 402 6 272 479 6 181 615

Madeira 41 213 42 656 49 245 45 591 49 925 45 449 36 782 38 769 49 637 43 136

Açores 21 339 8 493 10 482 12 091 9 500 13 754 4 783 11 192 4 991 6 595

Island Subtotal 62 552 51 149 59 728 57 682 59 426 59 203 41 564 49 961 54 628 49 731

Total 7 481 228 7 266 244 7 542 706 6 073 042 5 688 560 5 893 513 7 148 927 5 622 363 6 327 107 6 231 347

2009/10 2013/142012/132011/122010/11Region 2004/05 2005/06 2006/07 2007/08 2008/09
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Australia, Chile, Argentina, and United States of America - Portugal‟s wine production 

represents 2% if combining the productions of these countries.  

 

Table 7 - Evolution of wine production in European Union (Source: IVV, 2015 
[2]

). 

 

 

In this scenario, combining wine surplus with the small size of the country and its 

wine production, Portuguese wine companies face the difficult challenge of creating a 

noticeable place in the global market of wine.  

 

Table 8 - Comparison of Portuguese wine production with other countries (Source: IVV, 2015 
[2]

). 

 

 

One alternative to increase Portugal‟s importance in the wine world is to promote the 

wine as a wine country, rather than promote individual companies - IVV, Viniportugal 

and DOP boards had only started to walk this path. 

One other path that could help to achieve wine companies‟ success is increasing 

quality and gradually increasing selling price of the Portuguese wines. This purpose is 

usually accompanied of lowering yields per area of vineyard and increasing 

viticulture/winemaking knowledge and technical capacity.  

Others 1 259 1 143 -9

Slovenia 754 770 2

Croatia 1 424 1 248 -12

Bulgaria 1 246 1 755 41

Austria 2 352 2 392 2

Hungary 3 198 2 666 -17

Greece 3 079 3 343 9

Romenia 6 703 5 242 -22

Portugal 5 894 6 231 6

Germany 9 228 8 409 -9

France 46 743 41 491 -11

Spain 39 232 52 460 34

Italy 50 665 54 029 7

UE Total 171 777 181 179 5

2009/10 (1000hL) 2013/14 (1000hL) 5-Year variation (%)

Others 41 692 38 580 -7

Portugal 5 894 6 231 6

Germany 9 228 8 409 -9

South Africa 9 986 10 980 10

China 12 800 11 780 -8

Australia 11 784 12 310 4

Chile 10 093 12 846 27

Argentina 12 135 14 984 23

USA 21 965 23 500 7

France 46 743 41 491 -11

Spain 39 232 52 460 34

Italy 50 665 54 029 7

World Total 272 217 287 600 6

2009/10 (1000hL) 2013/14 (1000hL) 5-Year variation (%)
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Bairrada region is one of the oldest wine producing regions of Portugal: wine 

production in this region goes back to romans time. Several Portuguese Kings took 

measures to protect the wines from the area which is presently the Bairrada region due 

to their quality and social-economic importance, even though the vineyard destruction 

imposed by Marquês de Pombal following the establishment of the Vinho do Porto 

region. The area of the region spreads from „Minho‟ to „Estremadura‟, and it can be 

described by its small properties of intensive and multicultural agriculture. The DOP 

Bairrada region is situated between Águeda and Coimbra, delimitated at North by the 

Vouga river, at South by the Mondego river, at East by the Caramulo and Buçaco 

mountains and at west by the Atlantic Ocean. The region is constituted mainly by 

plains, with vines planted usually below 120 meters‟ altitude; due to the plain and the 

closeness to the ocean, the climate is temperate with strong maritime influence, with 

abundant rains and cool temperatures; the winters are long and cool, and the hot days 

of the summer are smoothen by cool sea breezes. There are several soils profiles that 

go from the argyle-calcareous to sandy soils, giving different styles of wines - normally 

fresh, acidic and low alcohol, with fruity and mineral whites, vibrant sparkling wines and 

highly tannic reds.  

The medium to small size properties establish grounds for the presence of large 

cooperatives and large wine companies - the highly fractioned grape production of the 

region is bought by the large wine producers, so the main objective of grape producers 

is to produce more grapes to sell. 

In this context, Baga variety rose between all other varieties planted in the region - 

because is a highly productive variety, it was called in the Bairrada region as „Paga-

dívidas‟ (Pays-debts) and „Carrega-burros’ (Burdens-donkeys)[6]. Baga was then the 

most important red variety of the Bairrada region. Nowadays, the importance of the 

variety diminished due to several aspects: the quality of wines produced from Baga 

cannot be reliably predicted before the harvest, because high yield production is usual, 

maturation of the fruits is every year a challenge (sometimes incomplete), significant 

fraction of grapes has clusters of Botrytis infection if rain occurs after veraison, which 

require tremendous work with canopy management because shoots grow unevenly 

and horizontally (shoot trimming, leaf removal and fruit/bunch/cluster thinning are 

frequently needed), and, of course, because of planting of new vineyards. In order to 

counteract these problems and be successful, substantial investment in labour has to 

be done by the grape producer, but the quality of the wines continues to be 

unpredictable until the day of the harvest. 
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Due to these profit-debilitating problems, Baga vineyards are being to be planted 

with other grape varieties. This is particularly observed for those vineyards of old age 

plants, resulting in a region that loses its identity, strongly related with Baga variety. 

 

In a perspective of excessive wine production and world wine surplus, it is important 

to know its impact according to some aspects: relation to legal problems, production 

and also with commercial value of the product: 

a) Legal production limits imposed by international and national regulators, and also 

by regional regulators of a particular region/DOP, aim to regulate the total yield per vine 

area, in order to guaranty an appropriate quality level and also to prevent the fall of 

commercial price of wines from a specific region. Bairrada region DOP wine is 

regulated by Portuguese law, and the yield for red wines is limited to 80 hL per ha [7]; 

b) Yield limits also help to normalize standards‟ levels of production costs because 

avoid surplus in grape production benefits the regulation of the selling prices of grapes, 

aiming to create a competitive edge for the grape producers. 

c) Yield limits determine a maximum volume of wine to be produced each year in a 

particular region. Because of the limited volume of wine available, the ratio between 

supply and demand is sustained (or even the demand increases, in the optimal 

situation) and, if quality standards are high or increasing gradually, the value of the 

product also increases - this helps to maintain/increase commercial prices for the wines 

of the region. These limits also help the producers to manage their production because 

production (and prices) fluctuations are usually due to climate variations.  

Consequently, grape yield are controlled, and if needed, reduced. This is essential 

for small wine productions (regions and/or small countries).  

 

For a grape producer, what kind of yield control or yield reduction strategies can be 

implemented? 

Yield control strategies can be approximately divided into 3 major groups: long term 

methods (that relate to vineyard selection and planting); usage of some kind of 

product/mixture/etc; and soil/canopy management techniques. 

These yield control strategies will be explained in further detail in the following 

chapters. At this point, it is important to emphasize that, adding to the goal of 

controlling the yield, each of these strategies have other consequences that have to be 

considered when making the decision - the consequences can be related to viticulture 

management, regarding the labor allocation and costs, of the plant response during the 

current vintage and for the subsequent vintages; which can consequently affect grape 

and wine quality.  
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Most of viticultural aspects that are influenced by using one of the mentioned 

strategies/techniques can be measured and sometimes predicted, even if takes several 

years to perform the measurement; on contrary, the aspects involving fruit and wine 

quality are difficult to be measured and/or predicted - as there are too many factors that 

have a determinant influence in wine quality (factors regarding viticulture, biochemistry, 

chemistry, sensorial, cultural and hedonic perception) some other factors related to 

wine quality also, are too subjective to be described and measured in an accurate way.  

Viticulture should be complementary to winemaking and may determine wine producing 

goals, through being able to pursue the strategies needed to obtain fruits that are able 

to produce the intended wine; but then, viticulture should also be useful to typify the 

virtues of the grapes produced in a particular vintage in order to predict the quantity 

and the qualities of the wines that can be produced with those fruits. Extensive and 

more complex relationship between viticulture and winemaking should be pursued in 

order to aid the decisions of the winemakers but also to empower their decisions, that 

is, to provide enough information to the winemakers in order that render them able to 

consciously make decisions leading to produce the wines they want. 

 

In view of this local and economic context, the need arose for a study with the 

following objectives: 

Compare the effects of the techniques Manual Early Leaf Removal (MAD), 

Mechanical Early Leaf Removal (MED), Manual Bunch Thinning/ Manual Cluster 

Thinning (MBT), and „Double Maturation Raisonnée‟ (DMR) as methods of yield control 

and to demonstrate their effects on the quality of grapes, musts and wines of Baga 

variety; 

To use new techniques of yield control by means of expeditious means („Double 

Maturation Raisonnée‟ - DMR) or mechanizable (Mechanical Early Leaf Removal - 

MED); 

To test and to prove the effects of the Early Severe Leaf Removal and the „Double 

Maturation Raisonnée’ as alternative methods of control of the production, comparing 

with Manual Bunch Thinning; 

To demonstrate the respective effects on quality of musts and wines, produced with 

Baga variety, produced in the demarcated region of Bairrada; 

Chemical and aromatic characterization of wines produced with Baga variety, and to 

elucidate some aspects related to the aromatic typicality of the Baga variety. 
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II Yield control techniques and wine quality 

 

2.1 Reproductive cycle of the vine 

 

Vineyard and vine management have always immediate consequences, some 

predictable, some unclear, and almost all management techniques used currently can 

carry consequences for several years after being employed. The knowledge of the 

grapevine yearly cycle can be useful to understand and to predict some of the 

consequences of vineyard and canopy management techniques. 

The grapevine is a perennial plant, specially adapted to temperate climate - it has a 

vegetative growth active period (from spring to fall), and a resting period, during the 

winter. After bud burst in the spring, a complex bud is formed in young shoots, in the 

axil part of each leaf. In the bud is formed three latent buds - primary, secondary and 

tertiary buds. This bud may also burst within the same growing season, developing as 

a lateral shoot [8]. During the beginning of the growth period, several leaves primordia 

develop in each of these buds, while inflorescence primordia develop mainly in the 

primary bud [9]. By mid-summer, the latent buds enter in a paradormancy stage, in 

which bud burst is inhibited by factors originated in other plant organs, such as auxins 

from the apical meristem [10]. Entering fall, the decrease of sunshine hours and ambient 

temperature induce bud endodormancy, a phase in which bud burst is repressed by 

factors within the bud [10,11] - it will be required exposure to cold temperatures during a 

significant period to occur the bud evolution through the dormancy cycle and eventually 

be released from endodormancy [10,12]. Once the low temperature necessities are 

fulfilled, buds become capable of burst under the adequate conditions - buds can go 

through ecodormancy stage, as long as the environmental conditions inhibit bud burst 

because of being inadequate for supporting the plant growth [11].   

The reproductive cycle of Vitis vinifera is an intricate complex process, covering over 

two years, deeply influenced by environmental conditions and cultural practices. During 

the flower formation (a process dependent of numerous factors [13]), four phases can be 

defined as crucial: induction, initiation and early differentiation (occurring during the first 

year), and differentiation after bud break (occurring in the second year) [14] (Figure 3). 

During the first year, induction occurs, which means the formation of the 

reproductive primordia. Stems and inflorescences have a common primordia origin and 

successful destine depends on hormonal balance cytokinins and gibberellins - 

cytokinins favour the transition to flower. After the induction of the primordia of 
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inflorescence, stems and shoot, meristems that will convert into flower in the second 

year begin to develop, although not all will be present in the latent bud. 

 

 

Figure 3 – Grapevine two-year lifecycle, according to Watt et al
 [14]

 - adapted for southern hemisphere. 

 

The main factors regulating the fertility of the buds are light exposure [15,16,17], 

temperature (between 20 and 35º C) and carbohydrates availability. The absence of 

any kind of stress [18,19,20] and precipitation will also help to a successful initiation.   

During growth, the dormant buds predominantly obtain carbohydrates from the 

leaves of the same side of the shoot [21]. There is a lack of competition between 

initiation and inflorescence differentiation in dormant buds [22,23], with the development 

of the flowers already open before the fruit set; on the other hand, there is evidence of 

competition between vegetative growth and flowering process [24]. Thus, a decrease in 

photosynthesis during flowering can produce negative impact on the fertility of the bud, 

although can also be related with the carbohydrates reserves in the perennial parts of 

the plant [25,26].  

The formation and differentiation of the different parts of the flower begins after bud 

break in the second year. Light exposure, temperature and carbohydrates availability 

are key factors that influence bloom (same as for induction, initiation and differentiation 

of the first year), and carbohydrate availability is accepted to be the start trigger [15,16,17]. 

Low temperature and humidity combination can be negative for bloom, and can result 

in poor pollination and fruit set. It was also referred that rain periods before and during 

flowering can cause flowers to drop [27], before even opening. In theory, the 
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carbohydrates needed for flowering could come from the reserves of the perennial 

parts and from photosynthesis, although being widely accepted that the main source of 

carbohydrates for flowering is photosynthesis [28]. Some authors refer that leaf removal 

close to flowering period could cause abortion of flowers [25] and the decrease of fruit 

set. Other authors refer that an imbalance of macro and micronutrients can also 

produce negative impact in flowering and fruit set [29,30,31,32,33]. 

The transformation of the flower into a fruit, or fruit set, varies depending of the 

variety and clone. When flowering occurs under normal conditions, the decrease of fruit 

set is usually due to deficient nutrition of the flower and the newly formed fruit, not 

having enough energy to guaranty regular fruit development [34,35,36]. The occurrence of 

any irregular environmental condition or the usage of a cultural technique that lowers 

photosynthesis and/or sugar available in the plant will cause the decrease of fruit set. 

After flower fecundation, fruit set and fruit development begins with a cell 

multiplication phase (increase in cell number by mitosis), which takes place during 2 to 

3 weeks. Afterwards, cell multiplication ends and cell enlargement stage initiates, 

throughout approximately 4 weeks. At this point, cell number of pericarp is already 

definitive and so the berry size is dependent of the elasticity of the cell walls (and the 

cell number) [37]. If some irregular environmental condition or a cultural technique is 

performed that lowers photosynthesis and/or sugar available in the plant, a decrease of 

berry size will be caused. 

 

 

2.2 Microclimate and canopy management 

 

The importance of microclimate in viticulture was widely studied, like by Smart [38] 

among others, explored the effects of environmental conditions near and close to the 

clusters and leaves. Microclimate depends predominantly on leaf density and on the 

arrangement of leaves and clusters, which is critical to the quantity and quality of the 

light that reaches the plant, the leaves and the clusters, and also for the temperature 

and humidity surrounding them [39]. 

The sanitary condition of the grapes is a crucial element for their quality. For 

varieties with high leaf density, leaf transpiration can lead to the increase of humidity 

close to leaves and clusters and conditions prone to disease incidence; if the canopy is 

open and porous, ventilation is stimulated and more intense, consequently reducing 

humidity, decreasing the presence of fungal infections such as Botrytis cinerea [39,40,41]. 
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Several authors [42,43,44,45,46,47] associate higher light exposure of the clusters with 

improving the quality of the grapes, referring higher content of sugar, polyphenols and 

anthocyanins, and lower malic acid concentration and titratable acidity. 

In cooler climates, higher concentration of anthocyanins (related with colour 

development) is associated with increased cluster exposure to sunlight [48,49,50]; in warm 

regions, higher exposure can be extreme, causing berry skin sunburn [50,51,52] and lower 

colour [50,53,54]; sunlight exposure and concomitant increased temperatures were also 

described as key factors stimulating the degradation of malic acid [55,56] and it was also 

observed a greater assimilation of carbon dioxide in the synthesis of tartaric acid in 

berries exposed to sunlight, compared with berries under shading [57].  

Grape phenolics are often mentioned as quality indicators specially for red varieties 

[58,59,60]. The influence of temperature and light on polyphenols synthesis and 

accumulation is a complex phenomenon because the metabolic pathways of these 

compounds are sensitive to both factors [52] and it is not simple to study these factors 

independently. In general, it is established that an increase in light exposure favours 

higher concentrations of berry polyphenols, specially flavonoids (anthocyanins and 

flavonols, mainly [52,53,54,61]). Moreover, negligible flavonol contents were found in berries 

that were not exposed to light [62].  

From several studies designed to study the effects of light and temperature on 

anthocyanins accumulation [50,52,54,61], it was reported that the normal canopy conditions 

allow clusters to obtain sufficient light, with moderate intensity, not being a limiting 

factor; however temperature seems to be a limiting factor [47]. The temperature range of 

17 to 26º C would be suited for the enzymes involved in the biosynthetic pathway [63]; 

20 to 30º C for Cabernet Sauvignon [64] and for Merlot [52]. Temperatures around 35º C 

and high light exposure may lead to insufficient colour accumulation because of the 

inhibition of the anthocyanin synthesis and/or due to the increased degradation rate [54]. 

It was also found that the temperature range effect over the synthesis of anthocyanins 

depends on the variety [65].  

 

Canopy might be defined as the leaf and shoot system of the vine [66]; it is described 

by dimensions of the boundaries in space (width, height, length, etc.) and also by shoot 

system (usually leaf area). Canopies can be continuous (the foliage from adjacent 

vines of the row combines, having no large gaps) or discontinuous (canopies are 

separated from vine to vine).  

Canopies can be divided (one vine or adjacent vines are divided into discrete foliage 

walls) or dense (high leaf area within the volume bounded by canopy surfaces) - high 
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value of the ratio leaf area/canopy surface area (LA/CSA) [67], or of leaf layer number 

(LLN) or shoot density (shoots/m canopy) [68]. 

„Canopy management‟ includes a range of techniques which can be used in vines to 

alter the position or amount of leaves, shoots and fruits in space, to achieve some 

desired arrangement (i.e. canopy microclimate): winter and summer pruning, shoot 

positioning, leaf removal (principal and lateral leaf removal), shoot vigour control 

(suckering, shoot trimming, top trimming) and fruit thinning. Canopy management 

techniques can be used to improve production and/or wine quality, reduce disease 

incidence, facilitate labour and mechanisation. Open canopies also lead to more 

efficient distribution of agricultural chemicals [69]. 

Some basic principles of canopy management can be mentioned [38]: 

- exposed leaf surface (ELS) should be healthy and efficient through all vegetative 

season; 

- broad and well exposed ELS are desirable; 

- keep cluster light microclimate suitable for the vineyard region; 

- find balance between ELS and yield; 

- canopy should help vineyard tasks and mechanization. 
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2.3 Wine quality and grape composition 

 

What is wine quality? 

Can basic, premium and ultra-premium wines be differentiated, chemically and by 

taste? Will they have the same quality standards or composition? 

Do young and aged wines have the same qualities? 

Does the quality standard has to be universal, or is it individual? 

Are there some individual molecules that are responsible for highlighting an 

individual wine as high quality, or young wine, or as a cheap wine? 

And, again, can we define „quality‟?  

 

The „quality‟ may be defined as “A distinctive attribute or characteristic possessed by 

someone or something” [70]; this definition is originated from Latin „qualitas’, meaning “of 

what kind, of such a kind”. Clearly, „quality‟ means the intrinsic attributes of someone or 

something, without classifying if those attributes are positive or negative. There is 

another definition, more common, for „quality‟ - “The standard of something as 

measured against other things of a similar kind; the degree of excellence of something” 

[71]. Using this definition of quality, the subject is classifying the attributes as positive so 

„quality wine‟ means that it is a very good wine when compared with other wines. The 

problem with the use of this terminology is that the attributes used to define if the wine 

has quality or not, are subjective, individual and not identified - each individual has a 

set of attributes to characterize a wine as good or not, and each individual experiences 

in a unique way a particular wine, so there are distinct and individual definitions for a 

single attribute due to physiological and neural abilities, cultural and experience 

learning and individual hedonic preferences. 

Quality definition should be characterized by identifiable and measurable attributes, 

related to compound concentrations, consumer preferences, sensorial 

description/analysis or commercial value. For example, wine chemical composition can 

be a starting point to define wine quality, but it will not be enough to describe this 

quality. After clearly defining what does one mean as „wine quality‟, the features that 

contribute positively or negatively to wine quality can be found, identified and related 

with the consumer perception of the wine. Perceived wine quality and their related 

compounds can be dependent of many aspects of the wine production, from grape 

composition on the moment of picking and varietal and vineyard characteristics, 

harvest conditions, fermentation conditions and winery techniques and maturation and 

conservation of the final wine. 
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But, complicating more, will the quality definition in grapes have the same 

parameters as for quality definition in wines? How can we estimate quality 

improvement of different viticultural technique or when we test a commercial product 

inside the winery? 

Defining grape and wine quality is crucial to answer the previous questions, but they 

are very difficult to achieve. One first step could be to do a grape/wine composition 

assessment in order to identify positive and also negative attributes. Grape is the lead 

protagonist in viticulture and in wine production but is somewhat undervalued, when 

compared to wine - performing simple grape analysis when preparing the harvest and 

starting the wine production seems to be sufficient for wine producing companies: 

apparently, probable alcohol/sugar content, pH, and acidity are sufficient to ensure 

good planning and execution of the production of wine for many wine producers. 

The technical conditions of the wineries have improved substantially in these last 3 

decades, being difficult to find at point of sale wines without a minimum quality value, 

with gross defects or problems that resulted from wrong wine production - but little 

effort and investment was made for defining grape quality, and identifying grape 

attributes that are positive (or negative) for wine production. 

 

2.3.1 Grape composition and berry development 

 

The berry growth curve has four specific and distinct phases (Figure 4): 

Phase 1, the berry formation phase, when the berries are still green; 

Phase 2, the lag-to-veraison phase, when the bunch is completely formed, with 

berries fully grown and still green, until colour formation (veraison); 

Phase 3, the ripening phase, when berries are coloured, acidity reduces, sugar and 

aroma contents increase, skin softens; 

Phase 4, the over-ripening phase, when berries dehydrate, skin shrivels, sugar 

increases concentration, acidity lowers further [72]. 

Summarizing, the berry formation phase is characterized by cell division, followed by 

cell enlargement; the ripening phase is exclusively defined by cell enlargement, while 

the „over-ripening‟ phase is described by berry water loss due to evaporation under hot 

and dry conditions („withering‟). This later feature can be used for the production of 

late-harvest wines and „Passito‟ wines, which is not be so interesting for table wines. 

During the first phase, lasting 60 days after flowering approximately, the berry is 

formed, and the seed embryos created; the cell division is fast during the first few 

weeks and the total number of cells in the berry has been fully established [73]. The total 
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number of the berry‟ cells can be a limiting factor for the future size of the berry. After 

cell division, only cell enlargement occurs, even during the final stages of the berry 

formation phase. Between berry formation and ripening, veraison occurs - berry tissues 

become softer (skin and pulp) and change colour.  

 

 

Figure 4 - Berry growth phases (adapted from James Kennedy)
 [74]

. 

 

The nutritional needs of the grape berries are satisfied through the stem/pedicel, by 

a vascular system composed of xylem and phloem - xylem vessels transport water, 

mineral, growth regulators and nutrients from the root system to the rest of the plant; 

phloem vessels transport sugars (photosynthate) from the canopy. There is some 

evidence that xylem is functional in the grape berries until veraison, and largely 

reduced afterwards (to zero) [75]; phloem has little importance during the berry 

development phase but becomes the primary source of nutrients after veraison.  

The enlargement of grape berries after veraison is primarily due to higher water 

content, associated with increased sugar content; there are some grape varieties (like 

Syrah) in which an increase of the sugar content at latter stages of ripening is not 

accompanied with the increase of berry volume, but by occurring berry shrinkage 

apparently due to loss of water by transpiration process [76,77,78]. This feature might 
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suggest that phloem activity can become limited or null in later stages of berry ripening, 

with berry dehydration becoming the most important mechanism until harvest (maybe 

achieving full maturation or continuing to over ripening). 

Research works, studying the formation phase of berry development, are limited 

because of the complex nature of the study and also due to the incorrect assumption 

that the compounds formed and/or assimilated during this earlier stage are of little 

importance for the sensorial aspect of grapes and wines [72]. Nevertheless, it is known 

that berry volume increases during this period and some compounds are accumulated, 

like tartaric acid and malic acid which are crucial for wine quality. Other compounds 

that also are accumulated are hydroxycinnamic acids [79] (disseminated in the pulp and 

skin, important due to their involvement in browning reactions and for being precursors 

of volatile phenols [80]), monomeric catechins and other tannins [81,82] (tannins are 

present almost exclusively in the skin and seeds, are responsible for bitterness and 

astringency, and are also important for colour stability of red wine), minerals [83], amino 

acids [84], micronutrients and aroma compounds, like methoxypyrazines [85,86]. These 

compounds are likely to remain in the grape during later periods of ripening (at lower 

concentrations because of the increased berry volume, dilution) and also at harvest, 

and might be critical to overall wine quality.  

After veraison, the berries begin to accumulate sugars (sucrose, and hydrolysing it 

to glucose and fructose [87]) and malate becomes the carbon source for respiration [88] - 

sugar concentration at harvest will be dependent on several aspects, like crop load, 

size of the canopy, health conditions, water conditions and the allowed time period for 

ripening. Numerous compounds determinants for wine quality are formed during this 

period, like most of the aroma compounds and aroma precursors (often glycosides) 

[89,90,91,92,93]. Aroma compounds are distributed between pulp and skin of the berry while 

they are being formed, being concentrated in the skin in latter stages; anthocyanins are 

generally concentrated in the skin.  

As it is for malic acid, some methoxypyrazines (usually undesirable and causing 

vegetal, herbaceous notes) tend to decrease their concentration during ripening (it is 

linked with sunlight exposure of the clusters, and can be manipulated if needed) [94]. 

Tannins per-berry also decline during ripening - seed tannins decrease due to oxidation 

as they are fixed to the seed coat, reducing bitterness [95]; skin tannins generally 

increase their size due to reaction with pectin and anthocyanins, resulting in changes of 

wine texture and colour stability [81].  
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2.3.2. Carotenes and chlorophyls 

 

The grapevine response to ultraviolet radiation (UV) depends on the cultivar, the 

incident UV dose, the ratio of UV and photosynthetically active radiation (PAR) and 

some environmental conditions [96,97]. Furthermore, different consequences seem to 

take place depending on the plant organ (leaf, stem or berry) and its developmental 

stage [97].  

The major carotenoids in grapevines are -carotene and lutein, some times in the 

range of mg/kg; the residual portion might be present at levels of g/kg by other 

xanthophylls, including neoxanthin, violaxanthin, luteoxanthin, lutein-5,6-epoxide and 

zeaxanthin, and cis isomers of lutein and -carotene [98,99,100]. The carotenoids proposed 

to be involved in the aroma of wine are -carotene and neoxanthin. However, lutein 

and violaxanthin might also be considered because they go through breakdown 

reactions that may produce norisoprenoid compounds [101].  

The carotenoid content in grapes can be influenced by several factors, which 

include grapevine variety, climate conditions, maturity evolution, soil characteristics and 

also viticultural practices.  

Light is one the environmental factors with the highest influence on the growth and 

development of plants, through the photosynthesis process. Light is also a main factor 

responsible for the biosynthesis and regulation of carotenoids [98,101,102]. 

Generally, the highest carotenoid content in grapevines occurs in hot regions of the 

world. Temperature has a main effect on grape composition which is a complex 

process and should be associated with sunlight exposure degree. Apparently, light 

stimulates the formation of carotenoids in the unripe grapes (before veraison), 

compared with shaded grapes; during ripening, grapes exposed to sunlight display a 

decrease of carotenoids compared to grapes under shade conditions [98]. Carotenoids 

are synthesized mostly until veraison and then degrade till the end of ripening. The 

levels of -carotene, lutein, and neoxanthin decrease between veraison and full 

maturity [99]. This could be related to chemical and enzymatic degradation, or it could be 

due to mechanisms of conversion in other compounds, like the formation of 

violaxanthin from -carotene as a consequence of the activation of the xanthophylls 

cycle at the end of maturation [98,103]. Carotenoids have higher concentrations in the skin 

of ripe grapes than in the pulp [103,104]. Differences of carotenoid levels during ripening 

were described and have been linked with the formation of C13-norisoprenoids (varietal 

aromas) [98,99,101,105]. 
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-Carotene and lutein are the most important carotenoids present in the grapes and 

display different behaviour according to the winemaking process [106]. In „Vinho do 

Porto‟ wines, the profile of carotenoids was similar to the equivalent grapes, even 

though at lower concentrations. Carotenoid concentration seemed to be dependent on 

the age of wines, having found lower carotenoid concentrations in aged wines than in 

younger ones [106,107]. Carotenoid content in red table wines is, normally, inexistent or 

present in very lower contents. Again, the winemaking process might be the reason for 

this behaviour: as in port wine the alcoholic fermentation is stopped with the alcohol 

addition, between the middle to the last third of its length, carotenoid degradation might 

not be complete, and the added alcohol might help the stability of the present 

carotenoid molecules. There were not reported carotenoid present in white grape must 

or wines, probably because the grapes were usually subjected to pressing without skin 

maceration. 

Carotenoid degradation might generate several compounds, some of which are 

norisoprenoids, which might have impact in wine quality because they have aromatic 

properties [101,108]. Norisoprenoids have been identified in both white and red wines, 

from several grape varieties [101,105,109]. It was also reported that -damascenone and -

ionone might enhance fruity aromas and mask herbaceous notes, having then an 

indirect influence over the sensorial impact of these wines [110,111]. 

Carotenoids might degrade either by enzymatic or non-enzymatic reactions, 

producing norisoprenoids. Norisoprenoids, in other hand, can derive from direct 

degradation of carotenoids or via glycosylated intermediates [101,108,112]. The 

norisoprenoids that form the free fraction (non-glycosylated) constitute the C13-

norisoprenoid varietal aroma in grapes. The remaining compounds, that are in the 

bound fraction (glycoconjugate) could remain „stored‟ and might be released in the 

aglycone form during alcoholic fermentation, via enzymatic and acid hydrolysis 

[101,108,112].  

 

2.3.3 Aroma compound composition 

 

One of the crucial aspects that can help to define wine quality is the aroma. Aroma 

refers to the detection of volatile compounds using the olfaction receptors (smelling); 

these compounds were previously liberated by the matrix. Hundreds of compounds are 

already known to contribute to wine aroma, with impact on the base aroma, 

contributing to a particular odorant descriptor (ex. citrus aroma, white flower aroma, 

etc.), contributing to a specific descriptor (ex. banana aroma, rotten egg aroma, etc.), 
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or by being a specific aroma of a variety or a wine style (ex. green bell pepper aroma, 

kerosene aroma, etc.) [72]. The impact of the compound to the wine aroma is dependent 

on the concentration of the individual compound and also dependent on similar 

chemical-family compounds concentration or similar aroma compounds. For some 

compounds, different concentrations result in different aroma descriptors. 

 Aroma compounds of the wine can be divided according to the origin, and be 

classified as: 

Primary aroma compounds, if coming directly from grape composition at the time of 

picking; 

Secondary aroma compounds, if produced by fermentation processes; 

Tertiary aroma compounds, if originated during the conservation of the wine until 

consumption. 

 

The aroma of the grape, composed by a large number of compounds and chemical 

families, can be used to describe wine quality, the technological potential of the 

grapevine variety, and also allows to identify grapevine varieties and/or origin of 

production (when complemented by wine tasting). This could mean that some aromatic 

components might be used as technological markers - for storage and conservation of 

wines, for determining the origin and authenticity of protected origin wines, and also 

contributing for valorisation of minor grapevine varieties and biodiversity preservation 

[72].  

The primary aroma of the wine can also be named „varietal aroma‟ because the 

volatile compounds present in the berries give a characteristic and distinctive aroma to 

the wine, and this aromatic composition is different and distinct to each grapevine 

variety („from the variety‟). In fresh grape berries, the large majority of the aroma 

compounds are present in odourless form, aroma compounds are linked to a sugar 

molecule - the glycoconjugate forms. The free form of each compound (the aglycone 

form) is odorous, and is liberated into the wine by acidic and enzymatic hydrolysis. 

Glycoconjugate hydrolysis is enhanced with the fermentation progress, that is the 

reason why the grape juice is not particularly aromatic even though the wine can be 

aromatic. The „aromatic‟ varieties got this designation because can be described as 

having large concentrations of free aroma molecules, higher than the threshold of 

aroma perception - so their berry aroma is intense, differing from „neutral‟ varieties, 

which have concentrations of aromatic compounds below the threshold of perception or 

without any distinctive aroma. 
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During the ripening phase there is the development of interesting berry flavours as 

result of the changes in sugar-acid balance, phenols and aroma concentration - this 

can be named as „Flavour ripening‟; the development of the aromatic portion of the 

flavour detected by berry tasting is called „engustment‟ [113]. One important and 

distinctive feature of the description of the „engustment‟ phenomena is the increase in 

concentration of the aroma compounds (both in free and glycosylated forms) in the 

advanced stages of ripening when the sugar increase per berry is already slower [114].  

The grape aroma compounds and aroma precursors are produced during the 

complete berry development and the mixture at each point of the development/ 

ripening/ harvest depends on several variables, including the environmental conditions 

during the dormant and growing periods, vineyard and canopy management, degree of 

ripening and the grapevine variety.  

In aromatic varieties, there is high concentration of „varietal specific‟ aromatic 

compounds with an impact above the other classes of aromatic compounds; the 

concentration of „varietal‟ compounds is above its threshold perception level, resulting 

in highly odorous grape juice. If the variety can be classified as a „floral‟ variety, the 

concentration of monoterpenes should be higher than the rest of the aromatic 

compounds; if the variety is „non-floral‟, the concentration of monoterpenes should be 

similar to the rest of the aromatic compounds, what might also result in high complexity 

of aromas [72]. 

In general, concentration of terpenes and benzene derivatives compounds can be 

found relatively high in flowers, decreasing during fruit set and increasing again during 

the ripening phase [115,116]. Usually, the concentration of carotenoids, precursors of C13-

norisoprenoids, increases from fruit set until veraison and then decreases during 

ripening, at the time the concentration of C13-norisoprenoids increases [117,118]. Some 

other classes of aroma compounds, such as methoxypyrazines, accumulate during 

berry developing, decreasing during ripening, while some other specific compounds, 

like aliphatic esters and thiols, are synthesized entirely during ripening [119].  

In red varieties, the content in varietal volatile compounds is usually high at maturity 

by sugar/acidity ratio, and remains fairly constant during the subsequent weeks [120,121]. 

For instance, esters in Cabernet Sauvignon are representative of first stages in berry 

development, aldehydes of intermediate development stages, and alcohols of the later 

stages [122]. Adding to this, terpenes are also characteristic of early development (like 

eucalyptol, β-caryophyllene, and R-humulene), while benzene derivatives tend to 

appear later (like phenylethanol and 2-phenylethanal) [72,123]. The late prevalence of 

alcohols is positive because alcohols tend to have higher herbaceous odour thresholds 
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than aldehydes, and also because of great tendency of alcohols to form fruity-character 

esters with carboxylic acids.  

In white varieties, the evolution of concentrations of volatile compounds during 

ripening differs with grape variety, and determining maturity using varietal volatiles 

contents might be more difficult to perform [124] - in Fernão Pires variety [125], C6-

aldehydes, alcohol, norisoprenoids concentrations increase in the three following 

weeks after veraison, and then decrease fast; for several Spanish white varieties [124], 

C6-aldehydes and alcohols increase until maturity is achieved, but terpenic compounds 

increase only until mid-ripening; for Müller-Thurgau, Muscat Ottonel, Gewürztraminer 

and Kerner varieties [126], there was a substantial loss of free volatile terpenes (FVT) 

and potentially-volatile terpenes (PVT) between berry harvest and grape pressing 

stages (at the winery) and the contents were higher 10 to 20 days after the designated 

date for harvest; in less ripe white varieties [127], it was found higher ester and fatty 

acids levels and lower concentrations of terpene and benzene derivatives, when 

compared with mature grapes; for different white varieties [128], monoterpenoids content 

increased with ripening, sesquiterpenoids and C13-norisoprenoids increased until 

maturity and then decreased, n-hexanol (herbaceous aroma) decreased gradually and 

total ester and alcohol content remain similar during the weeks around maturity.  

The evolution of volatile compounds during berry development suggests that the 

dependence on enzyme activity and enzyme specificity to be higher than the 

dependence on the levels of fatty acid unsaturation [72], so there might be a possibility of 

using the alcohol/aldehydes ratio for scheduling harvest, aiming to maximize grape and 

wine aroma. 

 

Several factors affect aroma compound composition and aroma quality of grapes, 

and each have different impact - knowing how they can affect grape content it is 

important to orient grape production towards wine production goals. The main factors 

affecting aroma content and quality are the vineyard site (location, soil, and climate) 

and vineyard practices (sunlight exposure, canopy training and management, water 

management, vineyard fertilization and vine disease management). 

Vineyard location is critical and restrictive of grape production quality, and cited as 

the most important factor affecting grape composition and sensory quality, followed by 

canopy management [129]. It is commonly accepted that restrained grapevine vigour due 

to local conditions and correct vineyard practices can produce grapes and wines of 

higher quality. Understanding the influence of the „terroir‟ (French term that covers 

topographic, agro-pedological and climatic conditions) can help the grape grower to 
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produce grapes with the attributes it desires and managing production conditions to 

achieve the highest wine quality.  

The first feature related with vineyard location that favours the production of grapes 

with higher quality is a limited soil fertility - sufficient nutrient levels limit vegetative 

growth, creating a situation where a higher proportion of photosynthates might be 

focused to fruit ripening, favouring aroma and mouth feel formation. High soil porosity 

is common in low fertility soils, a feature that is also positive because it might create an 

additional restriction to vegetative growth (due to mild water deficit), might improve 

microclimate around the vine (favours rapid warming from sun exposure and also rapid 

irradiation, and minimize frost severity), might have better drainage (promotes early 

spring growth and limits skin fissures which is good against diseases) [72]. 

Another feature beneficial for grape quality is medium to low rainfall - although water 

stress should be avoided during earlier stages of vegetative growth due to high impact 

in limiting growth, dry conditions enhance disease resistance and usually improve 

grape ripening (grapevines grow roots deeply so life-threatening conditions due to 

water stress and nutrient deficiency might be minimized). Nevertheless, water stress at 

fruit set can be positive because it could limit berry cell division and berry growth, 

resulting in berries with higher skin/pulp ratio, and subsequent higher concentration of 

skin products in must and wines - the reduction of cell volume as result of early water 

deficit is irreversible and the results of having small berries prevail until the end of 

annual cycle [130]. 

Temperature during growing season (both vineyard climate, and vine microclimate) 

is another important feature towards grape quality. It is known that cool conditions help 

to retain fruit acidity, which enhances colour stability of wines and also microbial 

stability; temperate conditions seem to benefit formation of grape aroma compounds 

and their preservation [72]: Grenache wines produced in warmer areas showed to have 

higher -damascenone and geraniol concentrations, whereas wines produced in cooler 

and late ripening areas had lower -damascenone and higher -ionone concentrations 

[131]; Traminette grapes produced higher concentrations of C6 aldehydes in cooler areas 

and higher concentrations of monoterpenes in warmer vineyard locations [132].  

Altitude of vineyard location influences the temperature and sun exposure of the 

vines, normally creating conditions for cooler and longer ripening seasons, but also 

increases the chances of frost damages. Where possible, planting vineyards in 

locations on slopes or close to large bodies of water can help to avoid these negatives 

features, always having in mind the number of growing degree days for growing 

season and the year.   
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Several authors mentioned that soil depth, drainage and water-retaining capacity 

are more important factors to wine quality than soil type and composition (far more 

important than climate and grape variety), however others believe soil can have an 

independent effect on grape quality [133,134]. As mentioned above, soil characteristics 

may affect the availability of nutrients and water, can affect vine microclimate through 

capacity of retaining heat and light reflectance, and root development through its 

penetrability [133]. Soils with clay composition usually have higher water retention 

capacity and retain large volumes of water, while sandy soils have better drainage 

[135,136]. Clay and calcareous clay soils, with good water-retaining capacities and good 

drainage, may produce grapes that have higher volatile compounds content than in 

sandy soils. Wines produced by grapes from vineyards with cover crop also show 

higher volatile compounds content when compared with clean control [137].  Wines from 

Cabernet Franc, Cabernet Sauvignon and Merlot from vines grown in well-drained 

gravel soils showed to have lower concentrations than wines from limestone or clay-silt 

soils [138]. Other research stated that soil type has significantly affect the content of 

aromas‟ descriptors of the solvent and the green series if grapes are harvested early, 

and affect all aroma series except fatty series if harvest occurs at full maturity [139]. 

Wines produced by grapes from clay soils had higher contributions from floral, sweet 

and fruity series, while grapes from sandy soils produced wines that have higher 

attributes of solvent and green series. Wines from potassium-rich soils have higher 

concentrations of -ionone and ester acetates (mainly isoamyl acetate) [140]; sparkling 

wines from calcareous clay soils have higher concentrations of varietal compounds 

than sandy soils or clay soils; concentrations of monoterpenoids, sesquiterpenoids and 

C13-norisoprenoids in wines from calcareous clay were higher than wines from clay 

soils and sandy soils, but total volatile content in clay soil wines is similar to those of 

calcareous clay soils [128].  

Climate and yearly weather are also important factors influencing the aroma 

compound content and grape quality. Hexanal, (E)-2-hexenal, some carbonyl 

compounds, (E)-anethole and estragole were identified as the most abundant in less 

ripe juices [141]. Musts from ripe grapes tended to have higher concentrations of 

decanoic and dodecanoic acids, and also a larger aliphatic/aromatic ester ratio. The 

vintage-dependence degree of aliphatic alcohols and terpenoids apparently also 

depends on variety.  

Beside vineyard location, vineyards practices highly affect the development of 

aroma compounds in several different ways [142] - through the influence over the amount 

of sunlight that the vine and the clusters are exposed to (light exposure prevents 

disease incidence, and enhances aromatic and polyphenols development), the total 
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leaf area and exposed leaf area due to the vine training system (conditioning the ability 

and efficiency of the vine to perform photosynthesis, regulates bud differentiation, 

cluster exposure, leaf transpiration), managing the water status of the vine (can restrain 

vine growth, berry and metabolites development), vine nutrition, particularly nitrogen 

management (and can have negative impact on aroma of wines) and also fungicide 

treatments [143]. 

The effect of sunlight exposure on grape metabolism is complex: direct light can 

cause dehydration and increased temperature (resulting in water and heat stress) but 

can also provoke positive changes in photosynthetic pigment content. Light exposure in 

green berries can increase carotenoid concentration (precursors of C13-norisoprenoids) 

[144,145], increase concentration of glycosides of terpenols and phenols, and contribute to 

the reduction of methoxypyrazines concentration (which are sensitive to light) [146,147]. 

An experiment with Muscat cultivars subject to different sunlight exposures was 

performed [148]; highest concentration of free terpenols was found for clusters with 50% 

exposure but the differences relative with 100% exposure clusters were negligible; 

linalool levels in wines showed to be sensitive to sunlight exposure of respective 

grapes and this behaviour of monoterpenes was attributed to berry temperature due to 

sunlight influence. Clusters of Muscat of Frontignan naturally shaded by vine foliage 

had similar levels of free and glycoconjugates volatiles to those clusters exposed to the 

sun but clusters shaded by 90% (using shading cloth) had lower concentrations of 

monoterpenols and C13-norisoprenoids [145]; performing similar study with Syrah, 

shaded clusters (naturally by vine foliage or by using shading bags) had lower levels of 

glycoconjugates, particularly phenolic and C13-norisoprenoid glycosides, than clusters 

exposed to sunlight; 30% or 50% whole vine shading reduced concentrations of 

glycosides of terpenols, phenols and C13-norisoprenoids, and cluster shading appeared 

to have greater effect than vine shading [144]. Also with Syrah, glycosides of -

damascenone and 1,6-trimethyl-1,2-dihydronaphthalene  (TDN), colour, anthocyanins 

and tannins decreased in wine due to extreme shading and that shaded berries were 

rated lower for astringency, fruity flavour and flavour persistence although there was no 

significant difference in aroma attributes [149].  

Vine training and canopy management are influenced by sunlight exposure and 

several other production variables; many vine training systems were created taking 

these into account. There are few balanced evaluation studies related vine training 

systems and canopy management techniques overseeing their influence on grape and 

wine aroma and flavour composition (balanced conditions should involve the same 

variety, vine age, canopy management during study period and also over former years, 

vine nutrition, etc., at least). These studies usually focus on minimizing production 
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costs or maximizing quantity without loss of quality than focusing on maximizing aroma 

or solely maximizing quality. In a study comparing several training systems, alternate 

double crossarm training was referred as producing higher free volatile terpenes (FVT) 

and potentially-volatile terpenes (PVT) than Lenz Moser, low cordon, low-V and 

pendelbogen training systems, that removing basal leaves 45 days post-bloom would 

increase it further [150]. In another study, basal leaf removal also increased FVT and 

PVT in Gewürztraminer and produced berries richer in muscat and floral aromas than 

berries from vines that were unhedged or hedged to approximately 14 leaves per shoot 

[151]. Higher amounts of FVT and PVT were obtained after performing cluster thinning 

and basal leaf removal compared with only performing thinning or hedging. The highest 

value was obtained when thinning was performed at veraison, wines had more intense 

floral and muscat scented aromas [152]. Viognier in Smart-Dyson trellising showed to 

have higher levels of linalool, -terpineol, -damascenone and n-hexanol than if trained 

in vertical shoot positioning (VSP) or Geneva double curtain (GDC) [153]. In some cases, 

wines from GDC vines had higher concentrations of phenol-free glycosides, with fruitier 

and floral aromas than those produced using other systems, which could be attributed 

to GDC allowed greater fruit sunlight interception, higher cluster number and crop yield, 

and lower cane pruning weight per meter of cordon. In another work, authors have 

found higher levels of monoterpenes in grapes from VSP training than in Scott Henry, 

Smart-Dyson, high cordon or GDC training and credited to VSP creating less extreme 

exposure to sunlight than GDC or high cordon [132]. It was noticed, for Cabernet 

Sauvignon and Sauvignon Blanc, a combination of leaf thinning and removal of lateral 

leaves in the fruiting zone could produce higher aromatic ripening [138]. The removal of 

shoot basal leaf, especially early shoot leaf removal (at pre-flowering, during flowering 

or just after fruit-set), might have impact the grape aroma composition, increasing the 

concentration of monoterpenes and principally of C13-norisoprenoids [154]. 

Water management of the vineyard is another crucial aspect for grape production, 

directly affecting yield but can also improve wine quality, colour and aroma, if a 

moderate water deficit occurs [155,156]. Studies usually focused on the evaluation of 

irrigation needs and irrigation protocols, and findings depended on the studied variety. 

Non irrigated Cabernet Sauvignon vines (unless water potential dropped below -1.6 

MPa) produced grapes with more fruit flavour, with intense red and blackberry, jam or 

cooked berry and dried fruit aromas, combined with less astringency, bell pepper and 

black pepper aromas and vegetable notes, than those wines from irrigated vines [157]. 

Similar results were stated for Cabernet Sauvignon on 1103P and SO4 rootstocks [158]. 

Sauvignon Blanc vines subjected to moderate water stress produced higher 

concentrations of cysteinylated aroma compound precursors than those without water 
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limitation [138]. By other way, water stress should not be higher than mild for obtaining 

maximum aroma expression in Sauvignon Blanc grapes [159]. Limited water availability 

for Agiorgitiko may increase glycoconjugates aroma components and the wines are 

preferred in wine trials panels [160]. In another study, Merlot vines supplied with 35% of 

estimate crop evapotranspiration during berry development produced higher contents 

of vitispiranes, -damascenone, guaiacol, 4-methylguaiacol, 4-ethylguaiacol and 4-

vinylguaiacol than irrigated vines, but irrigation deficit had no effect over volatile esters 

and terpenes concentrations [161]. Wines from Chardonnay irrigated vineyards had more 

intense aromas of apple, citrus and floral, and less earthy aromas, than un-irrigated 

controls [162].  

In a study about the mechanisms by which water deficit influences the synthesis of 

aroma compounds [155] also in Cabernet Sauvignon and Chardonnay some 

contradictory behaviours were found - in Chardonnay, water deficit induced photo-

protective mechanisms, activating parts of the phenylpropanoid, energy, carotenoid 

and isoprenoid pathways that contribute to production of antheraxanthin, flavonols and 

aroma volatiles, and lowering the concentration of abscisic acid (ABA) following 

veraison; in Cabernet Sauvignon, having anthocyanins, water deficit increased ABA 

concentrations, and also proline, sugar and anthocyanin concentrations (which were 

not increased in Chardonnay, suggesting their dependence on ABA). Water deficit 

increased the transcript abundance of lipoxygenase and hydroperoxide lyase in the 

fatty metabolism pathway, which is known to affect berry and wine aromas. 

Nitrogen fertilization can produce excessive vine vigour, susceptibility to grey rot but 

also enhance aroma expression. Higher nitrogen supply in Sauvignon Blanc may lead 

to higher cysteine precursor levels in must, and also higher concentration of glutathione 

(antioxidant and aroma protective substance) and lower concentrations of phenolic 

compounds, if fertilization occurs at berry set [163]. Another work [164] mentioned that 

there was no difference in leaf nitrogen levels when comparing nitrogen application to 

the soil or foliage, but that the concentrations of volatile thiols, glutathione and varietal 

aroma intensity were higher if foliar application was used, especially when combined 

with sulphur. Nitrogen fertilization in the vineyard can produce wines with higher 

concentrations of 1-butanol, trans-3-hexen-1-ol, benzyl alcohol and the majority of 

esters in Riesling wines, and lower the concentrations of amyl alcohols and 2-

phenylalcohol [165].  

Finally, disease control substances, especially fungicides are known to affect 

fermentation kinetics, which eventually affect wine aroma (if disease in the grapes and 

vines occurs, wine aroma will be also affected).  
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One important consideration must be in mind related to aroma of wines: how to 

express the concentration in grapes. From an oenological point of view, it is important 

to express aroma concentration per berry weight or berry or must volume (by example, 

using g L-1) because this parameter is directly correlated with the potential 

concentration of the substances in wines; from a viticulture point of view, it might be 

more appropriate and useful to express concentration per single berry (by example, 

using g berry-1) in order to avoid the dilution effect due to water or accumulation of 

soluble solids during ripening.  

 

Some considerations about different classes of aroma compounds will be focussed 

in these last paragraphs.  

The main groups of varietal/primary aroma compounds include terpenes 

(monoterpenes, sesquiterpenes and C13-norisoprenoids), shikimate pathway 

derivatives (volatile phenols or benzene derivatives), aliphatic C6 volatile compounds 

(aldehydes and alcohols), volatile thiols (mercaptan derivatives) and 

methoxypyrazines.  

Terpenes are a large group of organic compounds produced by plants, and are the 

main components of essential oils; terpenes are isoprenoids, derived from a 5-carbon 

unit with C5H8 formula (isoprenic unit); terpenes exist as multiples of the isoprenic unit: 

hemiterpenes (with 5 carbons; C5), monoterpenes (C10) and sesquiterpenes (C15), and 

diterpenes (C20, which are still volatile under normal atmospheric conditions) [166]. The 

most predominant group in grapes and wines are the monoterpenes (C10H16) and more 

than 50 terpenes have already been identified in grapes and wines - linalool, geraniol 

and nerol are the most common terpenes present in grapes and the typical aroma 

descriptors include floral, rose, citrus, coriander and spicy aroma. Terpenes are volatile 

molecules present in white varieties like Muscats or Gewürztraminer, but they are also 

present in red varieties like Touriga Nacional [167]. The most common monoterpenes 

present in must and wines are linalool and its related compounds (pyranic and furanic 

oxides, linalool hydroxides, diols), geraniol and its related compounds (isogeraniol, 

nerol, nerol oxide, rose oxide), terpineol and citronellol [168]. While their aroma 

descriptors are attractive in concentrations usually present in wines (rose, camphor, 

coriander or citric notes), when monoterpenes are present in high concentration they 

can become undesirable due to their herbaceous notes. Sesquiterpenes are present in 

grapes as free forms: farnesol is one of the most common, and others like rotundone, 

-caryophyllene, -copaene, -cubebene, muurolene, calamenene have been already 

detected in several grape varieties.  
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Norisoprenoids are originated from oxidative degradation of carotenoids (C40, 

tetraterpenes, like -carotene and lutein) and the most abundant in grapes are the C13-

norisoprenoids. C13-norisoprenoids are present as glycoside compounds and their 

aroma descriptors are floral, fruity and spicy, and they have special impact in neutral 

varieties like Sangiovese [72]. C13-norisoprenoids are classified in megastigmanes 

(oxygenated on carbon 7 - damascene group - or in carbon 9 - ionone group) and non-

megastigmanes. Megastigmane group compounds include -damascenone (aroma 

described as fruity-floral, honey-like and stewed apple notes, and mentioned often as 

an „aroma booster‟), 3-hydroxy--damascone (tobacco characters), -damascone 

(fruity and tobacco notes) and 3-oxo--ionol (tobacco characters) and -ionone (aroma 

described as sweet and violet notes), and they have very low aroma threshold (in ng L-1 

range). The presence of some carotenoids can influence the perception of other 

compounds - it was cited that -damascenone has an indirect impact on red wine 

aroma because it increases the threshold of fruity esters, like ethyl cinnamate or ethyl 

caproate, and decrease the odour threshold of green bell pepper notes [169]. As for the 

non-megastigmanes, the most known are 1,6-trimethyl-1,2-dihydronaphthalene (TDN), 

(E)-1-(2,3,6-trimethylphenyl)buta-1,3-diene (TPB) and some actinidols. TDN aroma can 

be described as a kerosene-like character (can be positive or negative, depending on 

the wine and varieties), while TPB, when present in high concentrations, can contribute 

to floral, geranium, and insecticide or plastic character of wines. Carotenoids and 

norisoprenoids tend to accumulate during ripening and break-down into smaller 

compounds when grapes reach maturity phase - in grapes they exist bounded to 

sugars, being released during alcoholic fermentation (becoming aromatically active). 

Carotenoids are formed in berry skin, being increased with higher sunlight exposure 

because carotenoids function is to protect grape tissues from sunlight and ultraviolet 

light [170].  

Benzene derivatives are another important group of varietal aroma compounds, and 

include molecules such as benzyl alcohol, vanillin, methyl vanillate, acetovanillone and 

homovanillic alcohol. The typical descriptors associated with benzenoids are spicy, 

tobacco, citrus, honey, vanilla and floral, and become with undesirable notes at high 

concentrations, described as chemical or phenolic - these compounds are present in 

free and glycosylated forms, and aroma thresholds vary between L-1 and 10 mgL-1.  

Thiols are compounds containing sulphur atoms, analogue of an alcohol (as 

mercaptans) are responsible for high impact wine aromas, pleasant but also 

undesirable - they are present in grapes as cysteine and glutathione S-conjugates 

exclusively. Most important volatile thiols identified in grapes are 3-mercaptohexanol 
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(3MH - passion fruit and grapefruit notes), 3-mercaptohexyl acetate (3MHA - boxwood, 

grapefruit peel and passion fruit characters), 4-mercapto-4-methylpentan-2-one (4MMP 

- boxwood and broom descriptors), and 4-mercapto-4-methylpentan-2-ol (4-MMPOH - 

citrus peel characters) - these compounds have a positive impact in wine aroma 

[138,171,172,173]. Some other compounds have their origin in fermentation process and also 

contribute to the final wine aroma, for example, hydrogen sulphide (H2S) that has a 

negative impact in the wine aroma, due to rotten egg aroma, are formed by yeast 

during fermentation - this aroma is common, especially when alcoholic fermentation 

occurs in difficult conditions and yeast struggles to complete fermentation (low 

nutrients, high alcohol, low oxygen content, reductive conditions, etc.). Other typical off-

flavours of thiols are cooked vegetables, onion, plastic, Band-Aid or cabbage, and are 

formed by compounds such as thioacetic acid esters or other mercaptans [174]. Thiols 

are present in varieties like Sauvignon Blanc, Riesling, Colombard, Semillon, Cabernet 

Sauvignon and Merlot [171], existing in traces in grapes and are formed during alcoholic 

fermentation, through mechanisms not yet fully understood. 

Methoxypyrazines are odoriferous compounds that contain nitrogen and have been 

identified in several different varieties such as Sauvignon Blanc, Cabernet Sauvignon, 

Cabernet Franc, Merlot and Semillon; they contribute with aromatic notes like 

vegetative, herbaceous, bell pepper and earthy, so they can have positive impact but 

also negative, depending on the concentration. The most important methoxypyrazines 

identified in wines are 2-methoxy-3-isobutylpyrazine (IBMP - green capsicum 

character), 2-methoxy-3-isopropylpyrazine (IPMP - asparagus or sweet pea notes), and 

2-methoxy-3-sec-butylpyrazine (SBMP - galbanum oil characters) [175]. 

Higher alcohols are alcohols that have more than 2 carbon atoms and so they have 

higher molecular weight and boiling points than ethanol. Higher alcohols are present in 

wine, formed by yeasts during alcoholic fermentation and they can be produced from 

sugars or from amino acids (the amount of formed higher alcohols depend of several 

aspects such as genus, specie and strain of yeast, nutrients and composition of the 

must, temperature, aeration and pH during fermentation). Higher alcohols can be 

related with the amino acid from which they were produced - leucine with 3-

methylbutanol, isoleucine with 2-methylbutanol, valine with 2-methylpropanol, threonine 

with propanol and phenylalanine with 2-phenylethanol. The impact of the presence of 

higher alcohols can be either positive or negative. Because of the high odour threshold 

and low concentration present in wines, the impact of higher alcohols can be small or 

inexistent; their impact is more significant in distilled beverages because they are 

present in higher concentrations. As example, isoamyl alcohol is one of the major 

higher alcohols present in wines, can be described as banana character.  
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Aldehydes and aliphatic alcohols compounds with 6 carbons already identified in 

wines can be described as having herbaceous, unripe fruit and crumpled leaf notes, so 

their presence is negative to wine‟s aroma. The major aliphatic alcohol present in 

grapes is hexanol, Z-3-hexenol and E-2-hexenol, and hexanal, Z-3-hexenal and E-2-

hexenal are present in grapes in lower amounts. 

Volatile phenols are compounds with high impact in wine aroma; the major phenols 

found in wines are 4-ethylguaiacol (4-EG), 4-ethylphenol (4-EP), 4-methylguaiacol, 

vinylphenols, guaiacol, eugenol, and vanillin. These compounds can have positive 

impact in wine aroma when in low concentrations and become off-flavours when 

present in higher concentrations. The common descriptors go from sweaty saddle, 

leather to cloves. In any case, because of their low thresholds, a small concentration 

can produce great aromatic impact and completely overwhelm the aroma of the wine. 

The presence of these compounds in wine can be explained to one of three origins: 

microbial, oak maturation and smoke-taint [176,177,178].  

 

2.3.4 Composition of Baga grapes and wines 

 

Unfortunately, there are just a few publications regarding Baga varietal aroma and 

wine chemical composition, especially when Baga represents a large percentage of the 

total area of red varieties planted in Bairrada region. In addition, none of the papers 

reported in literature has sensorial data analysis of Baga wines.  

A first publication found in literature [179], with the aim of performing the aromatic 

analysis of Baga red wines and to identify possible impact odorants, was based on a 

liquid-liquid continuous extraction method with dichloromethane followed by analysis by 

gas chromatography-mass spectrometry (GC-MS) and subsequent identification of 

impact odorants by calculating aroma index using odour thresholds from literature. A 

total of 53 compounds were identified and quantified, with the majority being aliphatic 

and aromatic alcohols (44%), acids (27%), esters (15%), and small quantities of 

lactones (6%), amides (5%) and phenols (1%). Nine compounds were determined to 

be the odorants with higher impact: guaiacol, 3-methylbutanoic acid, 4-ethoxycarbonyl-

-butyrolactone, isobutyric acid, 2-phenylethanol, -nonalactone, octanoic acid, ethyl 

octanoate and 4-(1-hydroxyethyl)--butyrolactone. Another research work focused on 

the evolution of varietal aroma of Baga variety during ripening [180]. It was reported a 

ripening, since veraison until full ripening, using headspace-solid phase microextraction 

technique (HS-SPME) and a GC-MS quantification methodology. A large number of 

sesquiterpenoids, monoterpenoids and norisoprenoids were identified in samples 
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during the ripening from two different vineyards and the majority of compounds found 

were obtained at full technical maturity (determined by sugar acid ratio). The authors 

concluded that sesquiterpenoids were an important group for varietal aroma of Baga.  

Apart from these papers, little information regarding Baga aromatic composition was 

found in literature. Another important aspect to be mentioned is that it is regionally 

accepted that Baga wines need some time in wood barrel before being ready for 

consumption, so it was difficult to find Baga wines commercially available that did not 

overpassed barrel ageing [181].  
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2.4 Yield control techniques 

 

In years of excessive production or for certain grape varieties, yield control is an 

important issue, as consequence of using better plant material (obtained from clonal 

selection). Using better plant material, even though presenting clearly advantages, is 

sometimes perverse and might lead to excessive grape production. Nevertheless, yield 

control is an old problem in viticulture. 

A grape producer that intends to obtain yield control can use one or more of the 

following yield control strategies, divided into 3 major groups: Long term methods (that 

relate to vineyard selection and planting), use of some kind of products or mixture, and 

soil or canopy management techniques. 

 

Vineyard establishment, long term methods and strategies are not usually referred 

as yield control strategies. Nevertheless, some can be used during the lifetime of a 

vineyard even though the costs of these methods are generally much higher than the 

rest the strategies to be referred below. These strategies are related to vineyard site 

selection and/or vineyard planting, and linked to plant vigor. To name just a few 

examples, there are the choice (when possible) of the vineyard location, the soil 

characteristics (fertility, depth, rock composition), sun exposure, water availability, 

altitude, and slope [182]. Prospect yields are also dependent on the selected rootstock 

and selected variety clone, row orientation and density of plantation. These kinds of 

strategies always involve long term decisions and are always the last choice due to 

high costs; any changes introduced can result in a breakdown of the grape production 

for a vintage or more. 

Soil management techniques can also influence yield in the same harvest, or for 

several harvests. These techniques include soil nutrition, soil cover cultures, root 

pruning, and graft-clone selection (by selecting the lower yield graft-variety binary, and 

it can be changed during vineyard production life, for instance, using T-budding 

technique [183]. For soil nutrition and cover cultures, the crucial aspect is to maintain 

balance between the vines necessities and other crops, preventing crop competition, 

but controlling the yield levels [184,185]. 

 

Several studies of performing chemical thinning were made earlier in the twentieth 

century to find an economical and effective alternative to manual thinning, and 

continued up to the present. Several compounds were tested, most of them with little 

success or, at least, too many technical difficulties to be used by wine companies: 
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Alpha-naphtaleneacetic acid (NAA) [186,187]; 

Dinitro-sec-butylphel (ND-289) [186]; 

Gibberellic acid (GA) [188,189,190]; 

Ethephon, Ethrel (2-Chloroethylphoshonic acid - CEPA) [191,192]; 

5-Chloro-6-ethoxycarbonylmethoxy-2,1,3 benzothiadiazole (TH 6241) [191]; 

Denapon (1-naphthyl N-methylcarbamate) [192]; 

Chlormequat (2-chloroethyl)trimethylammonium chloride [193]; 

Calcium Prohexadione [194,195]. 

Chemical thinning usually involved spraying the substance during one or more 

stages of flower and/or fruit development - the active substance interferes with the 

flower and/or fruit development and causes the formation of less grapes berries or the 

abortion of fruits. If the substance is sprayed post-fruit set, it can create no result. In 

other cases, when using calcium prohexadione, the active substance has an effect in 

reducing vegetative development of the plant, the vigor and the need of shoot trimming, 

for example [194]. 

When applied in earlier stages, this technique requires lower concentrations of 

active substance to be successful but, at these earlier stages, the leaves/shoots are 

more susceptive to damage and it is more difficult to predict the need of chemical 

thinning. If the concentration of the active substance or the amount of product used is 

too high, a significant decrease of yield can occur.  

Other substances, such as TH 6241, can act as plant regulator inhibiting or 

stimulating ethylene production and cause fruit abscission in nearly mature fruits [191].  

Although most of the active substances would successfully cause a reduction of the 

formed fruits and/or yield, and could decrease berry size and cluster compactness 

(reducing then the probability of rot occurrence),  these techniques were challenging to 

be established as vineyard techniques and became uncommon: chemical thinning fruit 

- yield reduction results and fruit quality are difficult to predict, which, associated to 

difficulties to implement because of the product concentration and spraying 

calibrations, canopy density, wind and rain conditions close to spraying dates, lead to 

chemical thinning to become an unusual technique in grape production for wine. 

 

Flower thinning consists on removing flowers from clusters close to bloom [188]. This 

technique can be performed manually or mechanically, and published results show 

that, although yield can decrease using flower thinning, fruit set of the remaining 

clusters usually increase, increasing also cluster compactness (resulting in higher risk 

of cluster rot presence) [188,196]. It is believed that the plant adapts to lower cluster 

number and increases the fruit set of the remaining clusters, adjusting the source/sink 
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ratio - this adjustment can result in difficulties in forecasting the harvest yield. Flower 

thinning technique can be time and cost-effective if mechanically performed, but it may 

not answer the concerns about future grape quality and yield forecast.   

 

Berry thinning [197] consists of removing the tips of all clusters immediately after 

flowering in order to obtain rounder clusters, and is based on the principle that the tip of 

the cluster matures slower than the rest of the cluster [198,199]; however, little information 

about the influence of berry thinning on the quality of grapes and wines is available, 

only has been studied in table grapes. Horizontal division consists in removing 

manually part of the cluster aiming to produce high quality grapes, focusing on the 

reduction of disease incidence while producing healthy and fully mature grapes, in 

moderate yields [200]. Initial trials were only partial [201,202,203] and little is known about 

intervention timing and the influence on different varieties. An example could be a work 

that studied this practice in Pinot Gris and Riesling [200]. In this work the authors focused 

the impact of timing of the cluster division on rot incidence and harvest parameters. 

These techniques require expertise, are time consuming and expensive, having the 

positive aspect of removing damaged berries, or green berries. 

 

Shading is a common phenomenon in dense canopies, and creates several 

problems like an incomplete ripening (low sugar, high acidity), low coloured berries, 

and development of herbaceous aromas [204]. Light suppression reduces the activity of 

the plant, whether shading occurs only in the clusters area or in all vine foliage [205]. 

When light suppression occurs during flowering it can reduce fruit set due to 

photosynthesis reduction, and this outcome can be used as yield control technique [206]. 

Intentionally or not, light reduction can be obtained using adjacent foliage (especially 

when in dense canopies), by boxes or small bags (for individual clusters) or opaque 

nets placed close to the vines or above the vines. When early severe defoliation may 

not be suited for dry and hot regions because it may expose the clusters to excessive 

sunlight (can cause cluster sunburn, severe berry dehydration, low colour and low 

acidity), temporary shading might be used as a yield control method, acting between 

pre-bloom and fruit set [206]. This technique could be advantageous as it requires less 

labour, by avoiding removing leaves. Results obtained showed that cluster 

compactness, fruit set, berry number per cluster, cluster weight and yield per vine were 

reduced by using shading techniques, without affecting berry composition. It was 

reported in literature [207] that shaded clusters showed lower levels of glycoconjugates, 

particularly phenolic and C13-norisoprenoidic glycosides; for the shaded vines, lower 

contents of glycosides of terpenols, phenols and C13-norisoprenoids were found. 
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Cluster shading affected more the berry composition than vine shading. One of the 

more interesting features of this technique is that is simple and temporary: as long as 

the shading remains, photosynthesis continues to be repressed but plant goes back to 

full activity when sun exposure is restored. 

 

One of the most recent alternatives of reducing yield is the application of anti-

transpirant at early season, to create a limitation during fruit set and berry development 

[208] - the possibility to create temporary source limitation by using an anti-transpirant to 

reduce transpiration and photosynthesis followed similar research data for several 

other crops [209,210,211]. It was used the anti-transpirant Vapor Gard® (Di-1-p-Menthene, 

Intrachem Bio Italia, Grassobbio, BG, Italy) with encouraging results as leaf 

assimilation and transpiration were reduced for several weeks after product spraying in 

cultivars Sangiovese and Ciliegiolo, compared with control vines. Results showed 

lower yield, berry weight, berry size, bunch compactness, and also higher sugar and 

anthocyanin contents. With another aim, the same anti-transpirant, Di-1-p-Menthene, 

was used in Sangiovese vines post-veraison (around 14-15º Brix) with the aim of 

delaying ripening and reducing sugar accumulation in the berry [212]. Another study was 

performed using anti-transpirant before bloom and achieved reductions net assimilation 

in treated leaves for 20 to 40 days after spraying [213]; berry set, cluster weight and yield 

were significantly reduced, and bunched compactness had a small reduction; soluble 

solids and titratable acidity showed no significant differences. In another work, a kaolin-

based foliar reflective film (Surround WP; NovaSource, Phoenix, AZ) was used to study 

the effect on the ratio of anthocyanins to soluble solids in deficit-irrigated Merlot 

grapevines over a 5-year period and it was found that sprayed vines showed a reduced 

number of berries per cluster [214], a result that was not reported in other former papers 

[215,216] studying different cultivars. The author refers [214] that the reasons for the 

observed reduction of the number of berries are uncertain, but the spraying may induce 

fruit abscission by the presence of the product, by the force of the spraying, or the 

berries formation was vulnerable at fruit set. However, yield was not affected due to 

compensation by berry weight increase.  

 

Irrigation might also be used as a strategy to reduce yield, and to achieve better 

quality. Where irrigation is frequently needed to surpass excessive water stress levels, 

controlling water stress and limiting the available amount of water could be useful and 

crucial for limiting yield - as mentioned above, water stress during earlier stages of 

vegetative growth may be limiting in vegetative growth, especially by limiting the berry 

growth irreversibly and thus indirectly reducing yield [130]. Higher water deficit introduced 
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between flowering and veraison may lead to lighter berries when comparing to berries 

resulting from fully irrigated regimens [217].  Some interesting aspects linking irrigation 

and yield loss or control were found: Regulated Deficit Irrigation (RDI) differences lower 

than 40% between crop evapotranspiration (ETO) do not alter yield or quality 

parameters significantly but reduced leaf growth [218]; significant yield loss was 

mentioned when using sustained deficit irrigation [219]; two RDI regimens were 

proposed, both resulting in significant lower yields when comparing with fully irrigating 

vines [220]; early water deficit at flowering results in poor berry set or aborted grape yield 

reduction [221]. Irrigation can be used for reducing yield but only when irrigation is 

needed and only by changing the irrigation regimen to other regimen.  

 

Shoot trimming is a canopy management technique commonly used to prevent 

diseases and to facilitate the harvests tasks [182,222]. When practiced at certain timings, 

limiting yield might also be a consequence of shoot trimming, as several works 

mention. It was referred that using shoot trimming could result in yield loss, increased 

soluble solids, increased berry anthocyanins but did not alter wine aroma global 

perception [223]. In some cases, post-veraison shoot trimming significantly reduced yield 

per vine and light trimming had higher reduction effect than severe trimming, probably 

due to compensation of the plant [224]. The trimming regimens also achieved reduced 

cluster weight and compactness, lower Brix and pH, and introduced slight effects on 

titratable acidity, yeast assimilable nitrogen, and total anthocyanins. Some authors 

referred that shoot trimming has no usefulness before flowering [182], and only has 

function between the period of 3 weeks after fruit set and the harvest; before flowering, 

it may reduce the photosynthetic capacity of the plant due to lowering the photoactive 

leaves; between flowering and 2 weeks after fruit set, it may result in lower fruit set due 

to lower photoassimilates and also result a stimulate formation of lateral leaves; this 

lower fruit set can be interesting if lower yield is desired. However, others have not 

found difference between trimming and not trimmed vines [222], with Touriga Nacional.  

 

Leaf removal is a common practice in vineyards, aiming to control diseases, 

increase fruit quality and to help in harvest tasks; however it is not always correctly 

used [182]. Leaves are crucial to produce photoassimilates and removing them provokes 

a decrease on the overall photosynthetic capacity of the plant; nonetheless, it can 

improve the sunlight exposure, the microclimate close to the fruit zone and can also 

increase the efficiency of the disease control products application. When leaf removal 

is executed manually, is time consuming and can represent high costs; when 

performed mechanically, it can be faster but care is needed to avoid shoots and vine 
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damage. Leaf removal alters source/sink ratio, the light and temperature microclimate 

of the vine, and also alters the leaf age average; it can be implemented from bloom 

until harvest, producing different results. Several authors mentioned that leaf removal 

may increase leaf photosynthetic activity [225,226], probably to compensate source/sink 

ration, but others stated the opposite [227,228]. Additionally, it was also referred that 

chlorophyll concentration increased after leaf removal [229]. Regarding the vegetative 

growth and vigor, some variable results can be mentioned: lateral leaves growth was 

stimulated [228]; leaf removal could cause the vine not to have enough accumulated 

photoassimilates for the dormant season due to insufficient source/sink ration [230], but 

also the contrary was affirmed [231,232]; and finally, does not affect pruning weight [226,233]. 

As for yield, leaf removal effects depend on timing and intensity. Leaf removal between 

bloom and veraison can increase light microclimate and next year fertility [234,235] and 

may not increase bud differentiation if performed after veraison [227]; if leaf removal is 

executed between bloom and fruit set can result in reduced growth and lower yield 

[225,230] and, additionally, if performed at bloom it may result in 50% abscission of 

flowers but only in 25% abscission if performed two weeks after bloom [230]. As some 

authors reported, performing leaf removal before bloom could cause low yield [236], this 

was the starting point of studying early leaf removal as a yield control technique. It was 

used with that purpose [228], obtaining low fruit set, low berry number, low berry weight 

and low cluster weight; some authors mentioned that may not reduce yield if performed 

after fruit set [226,234,237,238]; It was also mentioned that high intensity leaf removal could 

affect flowering, cluster and berry weight in the following year [239] - some other authors 

reported not to have significant impact on following year [226,237,238,240,241,242]. From all 

data obtained from early leaf removal, the most important and interesting are the 

following: leaf removal increases light in the cluster area [227,229,243] (better and more 

light, and also heat, changes primary and secondary metabolism, like phytocrome 

reactions that are responsible for anthocyanins and phenolics biosynthesis [244,245]); less 

leaves may decrease sugar content in berries due to low or insufficient photosynthesis 

for a correct ripening [246,247] but other authors also mentioned that there was no change 

in sugar content [226,242,248] and other mentioned higher sugar content [228,249,250]; higher 

phenolics content [226,228,248,251,252,253], attributed to light exposure, but other did not [233]; 

lower acidity [254,255], higher anthocyanins content [239,256] attributed to the temperature, 

and sunburn [257], associated with low aroma and low acidity. It was also reported that 

higher temperatures in the berries could result in lower anthocyanins contents [239,255] , 

either by degradation or by inhibition of the biosynthesis, or by both simultaneously. 

The effect of early leaf removal on the grape aroma is poorly known - while light affects 

enzymatic activity needed to the formation of aroma compounds, temperature also 
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affects it, and so moderate exposure might be positive for aroma formation [257]; leaf 

removal may also result in glycosidic precursors enhancement [248,258] and improving 

floral aromas while reducing green and herbaceous notes [249]. Early leaf removal 

promotes better cluster light exposure, better wind exposure (allowing clusters and 

cluster zone leaves to dry faster), allow to use less disease control products and to 

make easier applications, induces less Botrytis incidence due to better microclimate 

conditions and due to thickening of berry skin as a result of early light exposure of the 

clusters [259]. Timing and the severity of the leaf removal are crucial parameters that 

contribute to the success of this technique, and it is needed to take into account that 

total leaf area is not the same as exposed leaf area when deciding the severity of the 

defoliation. 

 

Manual bunch thinning (MBT), or cluster thinning, or fruit thinning consists in 

removing one or more bunches/clusters from each vine with the purpose of gaining fruit 

quality, and sometimes, and/or reducing yield. This is one of the oldest methods for 

yield control, and thoroughly studied. Bunch thinning does not always produces clear 

and significant results [260], although other authors mentioned that is a useful technique 

to achieve yield reduction and quality improvement [261,262,263], especially for high-

yielding varieties, because it results in a better balanced vine, and can also accelerate 

ripening 5 to 10 days [264]. Commonly, the cluster removal is performed manually, which 

is time consuming and represents expensive human labor. The amount of clusters to 

be removed needs to be established depending of the aims: as examples, it can be 

removed all green or partially ripe clusters, in order to have more homogenous ripening 

and better ripeness; it can be decided to have a certain number of clusters per vine so 

it will be removed all cluster needed to achieve that number; it can be decided to have 

one cluster per shoot, so it will be removed all the extra cluster from every shoot. Some 

authors advised to carry out yield estimation and quantification of vine leaf areas prior 

to perform bunch thinning [265]; others added that over production should be clearly 

defined to help to decide if bunch thinning is needed [262]. It is frequently argued that 

high-yielding varieties in a high-yield vintage should not be submitted to bunch thinning 

because the hypothetical quality increase may be very small and it will not reward 

bunch thinning costs. Some criteria for selecting the clusters to be removed were 

defined in literature [266]: disease clusters; late or delayed ripening clusters; clusters 

higher in the shoot; clusters with more shaded hours. Bunch thinning should be 

performed at veraison, having the risk that the plant might compensate if performed 

earlier [264]; if executed later than veraison, it may only result in lower yield [267]. For 

some authors [268,269,270] bunch thinning performed at fruit set produced better results, 
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even though the risk of the plant compensation or the risk of occurrence of climate 

incidents that could result in loss of production [271], while others [272] referred that results 

depend more on thinning intensity than on phenological stage when is performed. 

There are some contradictory results regarding the outcomes of using bunch thinning 

and the intensity that should be used: the most common bunch thinning intensities 

between 30 to 60%, some referring 50% [264,267,271,272,273,277] others 30 to 45% [268,274], and 

some 25% [270] and 60% [275]. The intensity of bunch thinning is not proportional with 

yield loss [277], and this may be due to compensation of the plant, that can also affect 

sugar concentration and ripening [276], and successive application of higher bunch 

thinning severities may reduce its effect in subsequent vintages. In other hand, 

complete bunch thinning increased plant vigor, shoot weight and shoot diameter [277] 

what can be important during the formation of a new plant. 

 

One of the most innovative and yet less studied is „Double Maturation Raisonnée‟ 

(DMR), or „Passerillage sur souche‟, or „Reasoned Double Ripening‟. DMR has being 

developed rather slowly since the first works [278], and being introduced to several 

countries to autochthonous varieties. DMR consists on disconnecting from the vine part 

of the clusters, leaving them hanging attached to the vine wires and exposed to 

sunlight to dehydrate. The separation by cutting can involve the cluster and/or the 

shoots; the proportion of clusters to be separated must be carefully selected, as well as 

the timing of the separation and the number of days between the separation and the 

actual picking of these cluster - the cutting can be made with the berries unripe, close 

to full maturity, fully matured, and over ripped, and the period of time of dehydration 

can go up to several weeks. Consequently, the result is having two different sorts of 

clusters, with different ripening processes, and so it explains the name „double 

maturation‟, which means „dual ripening‟. One of the sets of clusters, connected to the 

vine until the harvest date, can be compared with the clusters from common vines with 

active ripening [279]; the second set is of clusters separated from the vine, where some 

degree of dehydration occurs. Depending on the date of the harvest, the first set may 

be characterized by the same physiological and biochemical reactions and composition 

as normal grapes [280]. These authors referred also that significant changes occur in the 

clusters submitted to dehydration, related to the water loss [281] (increase of sugar 

concentration, for example) and also that titratable acidity remains high due to the end 

of acid catabolism, lower occurrence of rot, and more „maturity‟ in polyphenols [282]. The 

common results attributed to DMR are lower yield, higher sugar concentration, higher 

acidity of the must, and low Botrytis incidence [279,280,283,284,285]. In most cases, two 

weeks between cutting the shoots or clusters were sufficient to obtain the appropriate 
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over-ripening for the harvest [286], but is advisable to proceed carefully to dehydration 

assessment of the grapes; they mentioned also that shoot cut is better to be performed 

before complete berry ripening and softening because it enhances grape health (less 

harm from bee and wasps), since it requires less time to execute when compared with 

a late shoot cut that may include damaged berries to remove from the vine and finally it 

may achieve a better balance between both ripening sets. Sensorial scores of wines 

from DMR were reported to be higher than wines from traditional procedures [283], or, at 

least, similar [280]. In another work [284] it was reported that scores from DMR wines were 

higher than traditional wines, and the highest scores were obtained from wines 

combining DMR with a late harvest date. 

One of the major concerns using this technique is the time consuming and personal 

expertise requirements. Other concerns are the suitability of this technique to different 

wine styles and the consequences in plant development during the following seasons.  
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III Material and Methods 

 

3.1 Location and description of vineyard  

 

The trials were installed in a commercial vineyard planted with Baga (Vitis vinifera 

L.), in a property owned by "Caves Messias", during the 2011, 2012, and 2013 growing 

seasons. The vineyard is called „Quinta do Valdoeiro‟ (Figure 5 and Figure 6), located 

in Bairrada region, at Vacariça, closed to Mealhada (40°21'23.55"N; 8°24'58.94"W, 

altitude between 80 and 100 meters). 

 

 

Figure 5 - „Quinta do Valdoeiro‟ vineyard (Vacariça, Mealhada). Aerial photo from Google maps. 

 

The trials were conducted with 15 years-old grapevines cv. Baga variety grafted on 

3309 C rootstock, vertically shoot positioned and pruned in Double Guyot, with two 

pairs of movable wires, planted 1.25 x 2.40 meters, oriented north-south (Figure 7).  
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Figure 6 - „Quinta do Valdoeiro‟ vineyard, with Baga in the foreground, with the markings of the experimental plot 
(Vacariça, Mealhada). 

 

The Guyot training system is a part of a group of systems referred to as a VSP 

system - Vertical Shoot Positioned. The training system was intended for low to 

moderate vigour vineyards - it has fewer buds and vine growth per linear meter of 

vineyard row than other training systems. Vigorous vines might not be well adequate to 

the Guyot system, and can result in high shoot density and inner-canopy shading [183]. 

The soils can be described as having low fertility, poor, consisting of a first sandy 

layer and another layer, deeper, of clayey consistency, compact, where the roots of the 

vines penetrate with difficulty; the vineyard is composed by several wave like slopes 

facing the South and East, with the different varieties separated by plots; all the 

property is managed according with Integrated Pest Management protocols and only 

use approved products. 

All vineyard practices and treatments were carried by „Caves Messias‟ according to 

the company decisions regarding the plant and grape production needs, excluding 

defoliation, bunch thinning and DMR.  
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Figure 7 - Baga in Double Guyot, experimental plot (Vacariça, Mealhada). 
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3.2 Climate description 

 

Meteorological description was performed for the experimental study, 2011, 2012 

and 2013 seasons. Data from these vintages was collected from private meteorological 

stations close to Mealhada (Cantanhede, 11km and Coimbra, 24 km, respectively), 

combining values when some was missing. The recorded parameters were air 

temperature, precipitation, humidity and wind speed (Table 9).  

Several bioclimatic indexes were also calculated aiming to know the annual climate 

variations, as it is shown in Table 14. Meteorological data corresponding to the 

vegetative season included data from 1 March until 30 September for each year of 

study. The following classes were defined by the respective authors of each bioclimatic 

index:  

-for Winkler Index [287] - Region I (1111-1390 growing-degree days - GDD) and 

Region II (1391-1670 GDD) generally produce the best dry table wines with light to 

medium body and good balance; Region III (1671-1950 GDD) produces full-bodied dry 

and sweet wines; Region IV (1951-2220 GDD) is best for fortified wines, with table 

wines being inferior; Region V (2220-2499 GDD) is best for table grapes and makes 

low-quality table wines; 

- for Huglin Index [288] - Unsuitably Cool: < 900; Too Cool: 900-1200; Very Cool: 

1200-1500; Cool: 1500-1800; Temperate: 1800-2100; Warm/Temperate: 2100-2400; 

Warm: 2400-2700; Very Warm: 2700-3000; Too Hot: > 3000; 

- for Cool Night Index [289] - Very cool nights: < 12; Cool nights: 12-14; Temperate 

nights: 14-18; Warm nights: > 18; 

- for Branas Heliothermic Index [290] - Unsuitable below 2.6; 

- for Hydrothermic Index [291] - Low risk of contamination: < 2500; Medium risk of 

contamination: 2500-5100; High risk of contamination: 5100-7500; Very high risk of 

contamination: > 7500; 

- for Selianinov Index - Insufficient hydric regime: < 1; Normal hydric regime: 1-3; 

Excessive hydric regime: > 3; 

- and for Growing Season Temperature - Too Cool: <1111; Cool: 1111-1389; 

Temperate: 1389-1667; Temperate/Warm: 1667-1944; Warm: 1944-2222; Very warm: 

2222-2500; Too Hot: > 2500-2778. 
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Table 9 - Climate description of the vineyard region for 2011 - 2013 vintages (data from Coimbra). 

 

 

As it can be seen from the data (Table 9), the three years of the study had different 

weather: 2011 was a warmer year, and rained less during the growing season, 

although having a good volume of rain during dormant season; 2012 was cooler year, 

with a dry dormant season but a wet growing season; 2013 was also a cool year, with a 

wet dormant season and a relatively wet growing season.  

The summary of climate description between 1959 and 1988 for Coimbra appears in 

Table 10. 

2011 Av. Tmin (º C) Av. Tmax (º C) Tot. P (mm) Av. Hum (%) Av.Wind (km/h)

Jan. 6.7 13.5 90.5 85.3 9.3

Feb. 6.9 15.5 103.8 85.1 9.5

Mar. 8.3 16.5 54.3 74.1 2.1

Apr 12.8 23.8 56.6 68.9 2.2

May 13.8 24.6 90.3 76.8 2.1

Jun 13.7 25.8 0.2 68.3 2.6

Jul 14.2 26.7 3.2 73.6 4.8

Aug 15.5 27.5 10.6 79.0 2.3

Sep 14.4 27.1 23.6 79.2 1.9

Oct 14.2 26.9 45.9 60.7 2.6

Nov 9.4 16.9 176.0 86.0 2.8

Dec 6.5 13.9 58.6 86.1 2.0

2012 Av. Tmin (º C) Av. Tmax (º C) Tot. P (mm) Av. Hum (%) Av.Wind (km/h)

Jan. 5.3 13.8 15.8 82.3 1.9

Feb. 3.6 14.6 4.7 65.3 2.2

Mar. 8.9 20.1 14.2 63.8 2.0

Apr 8.5 15.8 113.1 82.8 2.5

May 12.3 22.4 83.9 77.8 2.5

Jun 14.2 25.4 21.4 76.5 2.3

Jul 14.4 26.7 4.0 76.0 9.0

Aug 15.0 27.4 18.5 78.1 8.0

Sep 16.2 28.5 49.6 67.6 6.4

Oct 12.4 21.2 121.2 83.3 8.1

Nov 8.1 15.4 98.4 85.3 8.3

Dec 7.7 14.0 92.3 89.5 9.9

2013 Av. Tmin (º C) Av. Tmax (º C) Tot. P (mm) Av. Hum (%) Av.Wind (km/h)

Jan. 7.2 13.4 134.1 88.8 8.9

Feb. 4.4 15.0 65.1 89.1 11.7

Mar. 8.4 15.0 239.5 88.2 11.4

Apr 8.7 18.7 71.5 79.5 10.1

May 9.5 20.4 47.6 82.1 2.3

Jun 14.0 24.4 56.6 78.2 9.1

Jul 16.9 29.4 4.3 85.3 4.4

Aug 15.6 30.1 1.1 78.5 7.5

Sep 15.5 29.5 48.8 77.3 8.5

Oct 13.9 21.6 145.5 92.1 8.3

Nov 8.1 15.9 23.2 84.8 8.1

Dec 6.2 14.5 169.4 83.8 10.3
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Table 10 - Climate description of the vineyard region for 1959-88 (data from Coimbra). 

 

 

 

  

Year Month Frost R. Humidity Insolation Tamax Tamin Tmax Tmin Wind speed

1 4,6 85,1 122,0 18,6 1,1 14,0 4,4 5,9

2 2,3 83,8 132,0 20,4 0,9 14,9 5,1 6,2

3 1,2 78,7 177,5 23,6 1,2 16,9 6,3 6,0

4 0,7 76,1 200,0 25,6 2,3 18,7 7,6 6,0

5 0,0 75,4 228,8 29,8 3,9 21,0 9,8 5,7

6 0,0 74,8 238,8 34,0 7,3 24,7 12,9 5,4

7 0,0 75,4 278,8 35,5 8,8 27,2 14,2 5,5

8 0,0 76,3 283,3 35,9 8,3 27,6 13,7 5,3

9 0,0 78,2 211,6 34,7 7,3 26,4 13,1 4,6

10 0,0 81,3 181,1 29,0 4,1 22,2 10,5 4,5

11 2,1 83,9 138,2 23,2 2,3 17,2 7,0 5,7

12 4,5 84,8 123,3 19,2 0,8 14,3 4,8 6,0

1
9

5
9

-8
8
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3.3 Experimental design 

 

The trials were performed in three consecutive years, following an experiment 

designed in a randomized type, with four blocks (replications), and five modalities were 

applied in each block, using 3 previously marked vines in each modality/block (Table 

11): 

(1) Control (no intervention) - CTR;  

(2) Manual leaf removal at fruit set - removing 6 basal leafs at full bloom - MAD;  

(3) Mechanical leaf removal at fruit set - partial defoliation by machine - MED;  

(4) Manual Bunch thinning - bunch removal at veraison, leaving one per shoot - 

MBT;  

(5) "Double Maturation Raisonnée” - “separation” of 85% of the shoots from the 

plant at least 2 weeks before harvest - DMR. 

Two additional modalities were introduced in 2013 vintage in order to have a 

comparison with the 5 modalities studied:  

DMR30 - “separation” 85% of the shoots from the plant at least 30 days before 

harvest; 

BIO - usage of a bio stimulant, Ascophyllum Nodosum, before bloom. 

 

Table 11 - Randomized blocks experimental design for all modalities, conducted in experimental vineyard Baga in 
2011, 2012 and 2013 vintages. 

 

 

 

Each experimental unit has 14 vines, so it gives a total of 56 vines per modality and 

a total of 280 vines. For each modality, 12 vines (3 vines per unit) are marked between 

bud break and flowering to perform the necessary quantifications and a single shoot 

was marked for the quantifications of leaf area.  

Block 1

Block 2

Block 3

Block 4

1 - CTR

2 - MBT

3 - MAD

4 - DMR

1 - MAD

2 - DMR

3 - MBT

4 - CTR

1 - MED

2 - MED

3 - MED

4 - MED

1 - MBT

2 - CTR

3 - DMR

4 - MAD

1 - DMR

2 - MAD

3 - CTR

4 - MBT
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3.4 Methods and quantifications  

 

The following methods, techniques and quantifications were implemented with the 

intention of studying the effects of early leaf removal (manually and mechanically 

removed), manual bunch thinning and „double maturation raisonnée‟ as yield control 

techniques. Although primary focused in the viticulture features, this study also covered 

qualitative aspects regarding fruit quality and wine quality. 

 

 

3.4.1. Pruning 

 

Pruning was performed on January (10-01-2012, 21-01-2013, and 15-01-2014), of 

all marked vines of the study; another 3 vines per block and modality were also pruned 

in order to be used in the study, if needed. 

Double Guyot pruning (Figure 7) was performed manually and the pruning wood of 

each pruned vine was weighted with a standard scale (Korona, Hans Dinslage GmbH, 

Uttenweiler, Germany) immediately after the task was completed. 

 

 

3.4.2. Canopy management 

 

All canopy management procedures were carried personally or by „Caves Messias‟ 

(when mentioned in the text) according to the production needs, except for leaf 

removal, bunch thinning and DMR procedures, where the tasks were performed 

personally. Early defoliation, bunch thinning and DMR were only performed in the 

marked vines for those individual study modalities.   

 

3.4.2.1. Suckering 

The removal of shoots growing in the old wood, or suckering, was performed 

manually since the beginning of each vintage. Every task performed in the vineyard 

was also used to examine abnormal growth of shoots and to remove them promptly. 
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3.4.2.2. Shoot positioning 

Shoot positioning was performed whenever needed, manually and adjusting the 

movable wires. 

 

3.4.2.3. Shoot trimming 

Shoots in cv. Baga usually grow horizontally and vertically (a significant part of the 

shoots grow horizontally) so shoot trimming is a very important task (complemented 

with shoot positioning) in order to control the vegetative growth of the plants and to 

facilitate the usage of machinery. Lateral shoot trimming was performed once or twice 

between fruit set and veraison; shoot trimming of the top of the vine was performed 

close to veraison, in June or July, usually only once and depending on the vegetative 

growth of the plants - performed to avoid cluster shading due to longer shoots. Shoot 

trimming was performed by „Caves Messias‟ personnel, decided according to 

vegetative growth of each particular vintage. 

 

3.4.3. Leaf removal 

 

Leaf removals of the vines assigned to modalities MAD and MED were performed 

between flowering stage (Eichhorn Lorentz E-L stage 23) and fruit set (E-L stage 27). 

The execution of leaf removal was based on the plant growing season, and the 

availability of the mechanical leaf removal equipment.  

The intensity of the MAD was 6 basal leaves (Figure 8), without removing any lateral 

leaves. Not removing laterals was considered positive in order to protect the clusters 

from excessive sunlight during later stages of ripening. MED removed principal and 

lateral leaves, and occasionally, complete shoots. 

MED was performed by leaf removal machinery using an ERO defoliator (ERO 

GmbH, Niederkumbd, Germany), by passing the machinery twice by each side of the 

vine row (Figure 9).  
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Figure 8 - MAD - Manual leaf removal and vines after MAD. 

 

 

 

Figure 9 - MED - Mechanical leaf removal and vines after MED. 
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3.4.4. Manual Bunch Thinning (MBT) 

 

Manual bunch thinning (MBT) was performed at veraison (E-L Stage 35), leaving 

only one cluster per shoot, by removal of all the clusters per shoot except the basal 

cluster (Figure 10).  

If the basal cluster was damaged, or affected by disease, then the basal cluster was 

removed, and not the upper cluster. Previously, it was chosen to keep the basal 

cluster, disregarding the ripening stage and/or overall cluster quality when compared 

with the other clusters, removing the bias of MBT due to choosing the worst cluster as 

the ones to be removed (and instantly producing better averages).  

 

 

Figure 10 - MBT – Manual bunch thinning and vines after MBT. 

 

 

3.4.5. ‘Double Maturation Raisonnée’ (DMR) 

 

DMR was performed by cutting each shoot containing clusters immediately below 

the basal cluster, 15 days before the expected harvest date (Figure 11). The shoots 

were separated from the vine and left hanging in the upper wire, preferably.  

Another modality of DMR was tested in 2013, involving a period of 30 days between 

the shoot cutting and harvest. The aim of this test was to understand if changing the 

number of days between DMR and harvest could result in grapes of different quality. 

This modality is mentioned in text, tables and figures as DMR30.  
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Figure 11 - DMR - Double maturation raisonnée and shoots after DMR. 

 

 

3.4.6 Ascophyllum nodosum as bio stimulant. 

 

Ascophyllum nodosum is common brown seaweed (Phaeophyceae) from Fucaceae 

family, being the only species in the genus Ascophyllum, and common on the northern 

Atlantic Ocean. This seaweed has several uses in agriculture, like nutrient provider and 

stimulant of vegetative activity. The intended usage of Ascophyllum was to study the 

ability of the seaweed to stimulate rachis growth and to enlarge cluster length, trying to 

achieve a lower compaction of the cluster. The application of the product was 

performed only in 2013 vintage, in 22/05/2013, when the plant was in stage E-L 17 (12 

leaves separating, and formation of the cluster).  

The obtained result was insignificant but the ripening and wine making procedures 

continued as previously scheduled because the grapes had different quality than all 

other modalities. This modality is mentioned in text, tables and figures as BIO.  

 

 

 

 

 

 

 

 

 



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

56 

 

 
 

3.4.7 Timelines 

 

The timing of performing each modality/activity and the vegetative evolution of the 

plants during the three vintages is depicted in Table 12.  

 

Table 12 - Dates for each activity and vegetative evolution for 2011 - 2013 vintages.  

 

(n.a. - not available or not applicable). 

 

Harvest dates were chosen according to „Messias‟ harvest dates - companies‟ 

harvest was performed by machine so the harvest for the study had to be done before 

the harvester machine crosses the experimental blocks. 

In 2011 and 2012, the harvest occurred sooner than expected because of rain 

incidence. In both years, „Messias‟ company had to harvest sooner as well.  

 

3.4.8. Canopy assessment 

 

3.4.8.1. Leaf area estimation 

Foliar area of each vine was assessed at full bloom (E-L 23), before and after the 

defoliation, and at veraison (E-L 35) using the methodology described in literature [292], 

one tagged shoot per vine, 3 vines per repetition. 

In order to estimate leaf area (LA), several items were quantified: 

Eichorn-Lorenz Stages 2011 2012 2013

5 - Bud break n.a. 26/03/2012 n.a.

9 - Shoots 2-4 cm n.a. 18/04/2012 n.a.

12 - Shoots 10 cm 04/04/2011 11/05/2012 22/04/2013

15 - 8 leaves separated n.a. n.a. 14/05/2013

17 - 12 leaves separated 18/04/2011 n.a. 22/05/2013

19 - Flowering begins 27/04/2011 23/05/2012 n.a.

23 - Full Bloom 04/05/2011 01/06/2012 05/06/2013

25 - 80% caps off 11/05/2011 n.a. n.a.

27 - Setting 16/05/2011 08/06/2012 14/06/2013

29 - Berries pepper-corn size 20/05/2011 n.a. 20/06/2013

31 - Berries Pea Size n.a. 22/06/2012 n.a.

33 - Berries hard and green n.a. 13/07/2012 26/07/2013

35 - Veraison 21/07/2011 08/08/2012 10/08/2013

38 - Harvest 16/09/2011 19/09/2012 23/09/2013

Prunning 10/01/2012 21/01/2013 15/01/2014

MAD 16/05/2011 08/06/2012 05/06/2013

MED 16/05/2011 19/06/2012 06/06/2013

MBT 28/07/2011 13/08/2012 31/07/2013

DMR 26/08/2011 14/09/2012 09/09/2013

DMR 30 n.a. n.a. 30/08/2013

BIO n.a. n.a. 22/05/2013
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Principal leaf number of the shoot; Length of the left and right leaf blades of the 

larger principal leaf; Length of the left and right leaf blades of the smaller principal leaf; 

Lateral leaf number of the shoot; Length of the left and right leaf blades of the larger 

lateral leaf; Length of the left and right leaf blades of the larger lateral leaf. 

After performing these quantifications, principal, lateral and total leaf areas were 

calculated for each vine. 

 

3.4.8.2. Point Quadrat Analyis 

Canopy characterization was performed according to Point Quadrat Analysis (PQA) 

[183]. PQA is a simple method for measuring important parameters of canopy 

architecture, quantifying canopy differences and providing some insight into vine 

performance. 

 

 

 

Figure 12 - PQA measurement spots. 

 

Measurements were done at constant heights (at lower wire height, close to the 

fruiting zone, and at upper wire height), by inserting a long rod in specific points of the 

canopy: 6 insertions were performed, 3 at lower wire height (centre of the vine, 40 cm 

left from the centre, and 40 cm right from the centre), and 3 at upper wire height (centre 

of the vine, 40 cm left from the centre, and 40 cm right from the centre). 
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As the rod contacts any part of the plant, the contacts are identified and recorded - 

„leaves‟ and/or „clusters‟ - or „gaps‟ if there was no contact with the plant.  

From PQA measurements, it can be calculated parameters associated with plant 

vigour (canopy gap percentage and leaf layer number) and plant light environment 

(interior leaves percentage and interior clusters percentage). These parameters can 

then be used to compare vine canopy and also establish if a particular technique to be 

studied is effective or not.  

 

3.4.9. Yield components 

 

3.4.9.1. Fertility 

In order to estimate fertility and the influence of each modality, several parameters 

were quantified per vine, for each marked shoot between E-L Stages 17 and 19 

(separate clusters): number of buds, number of shoots, number of clusters per vine, 

and the number of flowers per cluster.  

The data recorded for the 2011 vintage was used as the initial state of the vineyard 

and used as contrast with the parameters measured in 2012 and 2013.  

 

Bud break Index = (Shoot number/Bud number) x 100 

Potential Fertility Index = (Cluster number/Shoot number)  

 

3.4.9.2. Fruit set 

A method described in literature [228] was used to quantify the fruit set ratio for each 

vine, and modality. Fruit set percentage was determined using the flower number 

quantified at bloom (determined by a photograph of the cluster at bloom against an 

orange background - complementary colour of the green cluster) and the number of 

berries counted at harvest, according to the formula: 

 

Fruit set = (Berry number/Flower number) x 100 

 

To achieve this, 20 unmarked basal cluster per vintage were photographed against 

an orange sheet (complementary colour of cluster green colour); the cluster was then 

used to count the number of flowers. Afterwards, and using the photographs, the 

number of visible flowers was counted, and used to calculate a linear regression 

between visible flowers in the photograph and the actual number of flowers (Figure 13). 
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Using the visible flower number and the linear regression determined with the 

unmarked clusters, the estimate number of the flowers per cluster could be determined.  

Fruit set was calculated using the flower number quantified at bloom and the 

number of berries counted at harvest. 

 

 

Figure 13 - Basal cluster photograph for flower number determination. 

 

3.4.9.3. Cluster components 

The marked cluster from each vine were picked separately at harvest (weighted by a 

standard scale immediately after picking), being subsequently used for quantification of 

cluster components: 

- weight of marked cluster: weighted using electronic scale (Korona, Hans Dinslage 

GmbH, Uttenweiler, Germany); 

- number of berries of each basal cluster: counted after destemming the cluster 

manually; 

- berry weight: calculated by dividing the cluster weight with the number of berries of 

the respective cluster. 

 

3.4.9.4. Cluster compactness 

Cluster compactness was determined at harvest using OIV 204 standard [293], by 

examination of the marked clusters, in a 5-point scale ranging from (1) very loose to (9) 

very dense.  
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3.4.9.5. Botrytis impact 

The incidence of rot (Botrytis cinerea) was assessed at harvest by visually 

estimating the fraction of berries with visual symptoms to total berries in each tagged 

bunch [228].  

 

3.4.9.6. Berry components 

Berry weight was measured using 200 berries and a standard scale. 

Berry number per bunch was determined by manually separating the berries from 

the bunch and hand counted. 

Berry variability [228] was evaluated using 30 berries taken from several marked 

clusters of each modality, and weighed using a standard scale. The diameter of each 

sample berries was measured, and berries were then sliced in half, the seeds and flesh 

carefully removed from each berry half, without rupturing pigmented hypodermal cells, 

and the seeds was carefully separated from the flesh. Both skins and seeds were then 

weighed. All these measurements were performed within 24 hours after harvest. 

 

3.4.9.7. Ripening assessment 

Fruit ripening was monitored between veraison (E-L Stage 35) and the harvest 

(Figure 14). The progress of ripening was followed performing determinations using 

200 berries samples (for each modality, at each ripening date) of the following 

parameters: Brix degree and must density, pH and titratable acidity.  

Must acidity was determined according to Method OIV-MA-AS313-01 [294]. 

pH of must was determined according to Method OIV-MA-AS313-15 [295]. 

Brixº must was determined according to Method OIV-MA-AS2-02 [296]. 

Must density was determined according to Method OIV-MA-AS2-01B [297]. 

 

Sugar load levels per berry were calculated from sugar concentration and berry 

volume [298,299,300]. It is understood that sugar load can be used as a measure of 

ripening progression: as it represents the amount of sugar present inside the berry, 

ripening progression should be considered the increasing progression of the amount of 

sugar present in each berry. 
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Figure 14 - Ripening assessment. 

 

3.4.9.8. Harvest 

At harvest, the number of clusters and their overall weight per marked vine were 

recorded immediately using a standard scale.  

The average cluster weight of each marked vine was calculated afterwards using 

these two parameters.  

 

 

3.4.10. Micro-fermentations 

 

Marked clusters were picked individually and kept separately, the rest of the clusters 

were picked for separate plastic bags - cluster number and total yield were recorded 

immediately after finished picking. When arrived at the winery, all bags were split by 

modality. The clusters were taken off the bags and hand-destemmed into a large thick 

plastic bag, one bag for each modality - rotten berries were separated and were 

discarded. After destemming all clusters, the berries were crushed by hand and feet; 

then placed into 45 litres plastic bins, where the alcoholic fermentation occurred - 30 

ppm of sulphur dioxide was added to each bin, to prevent enzymatic oxidation and/or 

disease spreading. Every must was inoculated the day after, with commercial yeast 

Viniferm CT007 (AGROVIN, Spain) - this commercial yeast was chosen because its 

characteristics (ensures polyphenolic and colour stability, while produces low quantity 
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of fermentation aroma compounds preserving varietal aroma) and to certify that all 

fermentations, within the vintage and between vintages, occurred with similar yeast 

population.  

Alcoholic fermentation occurred in a stable room temperature, for the time needed, 

and performing two cap movements per day (punch-downs). 

After finishing alcoholic fermentation, the wine was racked from the skins and 

pomace into small plastic bins, to perform the malolactic fermentation. The bins were 

filled with wine to assure almost complete absence of air and oxygen.  

After the end of malolactic fermentation, the wines were racked for individual plastic 

bins, added 90 ppm of sulphur dioxide and bottled (glass bottles and closed with 

corks). 

 

 

 

3.5 Chemical analysis of wines produced 

 

Wine chemical characterization was performed at a private laboratory operating 

according to OIV, IVV and „Instituto dos Vinhos do Porto e Douro‟ (IVDP) reference 

methods. The parameters performed for wine analysis were alcohol content [301], 

residual sugar content [302] (OIV-MA-AS311-01A), titratable acidity [294] (OIV-MA-AS313-

01), pH [295] (OIV-MA-AS313-15), wine colour and total phenolics parameters [303] (OIV-

MA-AS2-07B), Hydrochloric acid index [304].  

Sugar load levels per berry were calculated from sugar concentration and berry 

volume. Sugar load can be a measure of ripening progression as it represents the 

amount of sugar present inside the berry. 

 

3.6 Carotenoids quantification in berry skins 

 

Grape skin carotenoids quantification (“Precursores aromáticos en Uvas. Análisis de 

hollejo de uva”) was performed according to method described in literature [305,306], at 

University of Rioja, Departamento de Agricultura y Alimentación de la Universidad de 

La Rioja (Logroño, Spain). The substances quantified by the method were: 

antheraxanthin, -carotene, chlorophyll a, chlorophyll b, lutein, neoxanthin, pheophytin, 

violaxanthin and zeaxanthin. Commercial standards of chlorophyll a and b (Fluka, 
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Buchs, Switzerland) and carotenoids (CaroteNature, Ostermundigen, Switzerland) 

were used to build calibration curves for quantification. 

Grape samples were conserved below -34º C in absence of light until quantification. 

Transportation was made in similar conditions. 

  

3.7 Aromatic description of wines produced 

 

Wine aroma compounds quantification was performed according to method 

described in literature [307] at Laboratório de Toxicologia, Departamento de Ciências 

Biológicas da Faculdade de Farmácia, Universidade do Porto (Porto, Portugal). The 

substances quantified were: ethyl butanoate, ethyl hexanoate, ethyl heptanoate, ethyl 

octanoate, ethyl decanoate, ethyl dodecanoate, ethyl 2-methyl-butanoate, ethyl 3-

methyl-butanoate, ethyl trans-4-decenoate, isoamyl acetate, phenylethyl acetate, 

diethyl succinate, isoamyl hexanoate, phenylethyl alcohol, benzyl alcohol, -terpineol, 

-cis-terpineol, -linalol, nerolidol, cis--farnesene, trans--bisabolene, trans-nerolidol, 

4-ethylguaiacol, di-hydropseudo-ionone, -damascenone, limonene, terpinolene, -

pinene, geranyl-acetone, ethyl-2-hexenoate, unidentified sesquiterpene 1, unidentified 

sesquiterpene 2, unidentified sesquiterpene 3, unidentified sesquiterpene 4, 

unidentified terpene 1, unidentifid terpene 2, TDN, neryl acetate, ethyl malate, 4-ethyl 

phenol. 

The volatile compounds studied were (CAS number in brackets): limonene (5989-

54-8, Fluka), cis-linalool oxide (5989-33-3, Fluka), terpinolene (586-62-9, Aldrich), -

linalool (78-70-6, Sigma), -terpineol (138-87-4, Sigma), -terpineol (98-55-5, Sigma), 

nerol (106-25-2, Aldrich), geraniol (106-24-1, Sigma), -ionone (6901-97-9, Aldrich), 

nerylacetate (141-12-8, Aldrich), -ionone (6901-97-9, Aldrich), nerolidol (7212-44-4, 

Aldrich), ethyl butanoate (105-54-4, Merck), isoamylacetate (123-92-21, Sigma), 

ethylhexanoate (123-66, Sigma), hexylacetate (142-92-7, Merck), diethylsuccinate 

(123-25-1, Merck), ethyloctanoate (106-32-2, Merck), phenylethylacetate (103-45-7, 

Merck) and phenylethyl alcohol (60-12-8, Sigma). A hydrocarbon mixture C6-C20 was 

obtained from Fluka.  NaCl and NaOH were purchased from Merck. 
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3.7.1 Short chemical and sensorial description of quantified compounds 

 

Annex I has a small description about each quantified compound, regarding 

nomenclature and odour description, based on an online library, The Good Scents 

Company [308]. 

Table 13 shows the odour threshold limits for each quantified aromatic compound, 

odour descriptor and odorant series. Additional information can be consulted in annex 

I. 
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Table 13 - Compounds quantified by SPME-GC-MS method, odour descriptors, odorant series and odour threshold. 

 

1 = Fruity; 2 = Floral; 3 = Green, Fresh; 4 = Sweet; 5 = Spicy; 6 = Fatty; 7 = Others  
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3.8 Sensorial analysis of wines produced 

 

Sensorial analysis of the produced wines and wines named Baga references was 

performed by an expert panel, composed by 7 tasters (three females, four males, ages 

between 28 and 62 years) with large experience in wine industry and wine tasting 

(experience between 5 and 44 years).  

The descriptive analysis was performed in 2014, after all fermentations ended, and 

all the wine samples at once. Tasting glasses were ISO grade. Instructions were given 

to avoid scoring depending on the vintage/age of the wine. A first stage was 

implemented for training the panel and for normalizing the sensorial definitions and 

intensities of the different aromas - several commercial aromatic essences were used 

for training.  

The tasters had to score using a 0 to 5 scale (from 0 meaning „non-existent‟; 1 

meaning „slight notes‟; 2 meaning „perceptive‟; 3 meaning „perceptive significantly‟; 4 

meaning „perceptive with average intensity‟; until 5 meaning „intense‟) a list of 

previously selected aroma descriptors; the tastings were limited to aroma analysis, and 

the list of previously selected aromas was selected using the aromas reported as 

varietals for Baga variety wines (see annex III) 

The sensorial analysis results were subsequently evaluated by statistical analysis. 

 

 

3.9 Statistical Analysis 

 

Results of comparison of mean values, using the SPSS v.23 program (IBM SPSS 

program, version 23, 2015), are expressed as the level of significance. Where resulting 

differences were significant, individual means were compared using the Duncan‟s 

multiple range test (p < 0.05), identifying different levels of significance with different 

letters. 

 

The information is not completely translated by a single variable and therefore 

univariate data contains marginal information rather than complete information. We 

might be able to obtain a 'data structure' from observations and also 'noise', that can 

arise from other components, from the measurement, from the instrument, etc. The 

separation of the important data structure related to our study and the “noise” 

(information that has no significance as it is due to variations of instrumental signal and 

other processes) is a major problem when we are analyzing a set of observations, even 
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because the data structure hides part of the information when we analyze only one 

variable. Principal Component Analysis (PCA) is one of the most basic and useful 

multivariate data analysis tool [309,310,311]. PCA involves the decomposition of a data 

matrix into 'structure' and 'noise', that is, variance components. The concept of 

variance is very important - the fundamental assumption of multivariate data analysis is 

that the maximum variance is associated with the 'hidden phenomena'. What is wanted 

with this type of data analysis is to determine the "phenomena" that are not visible in 

the matrix (which is extremely complex) of the data and in the graphical 

representations of this. It is assumed in PCA that the directions of maximum variance 

are somehow directed toward these "phenomena". In PCA, the Cartesian axes of the 

graphic representations of the data matrix are replaced by new axes. These new 

Cartesian axes are the directions with the maximum variance. The axis PC1, i.e., the 

first Principal Component axis (PC) is the direction of the maximum longitudinal 

variance of the data. Another way of looking at the PC1 axis is as the line resulting 

from the application of the least squares method to the set of points in the matrix. Thus, 

there are two ways to get the main axis: find the direction with the maximum of 

longitudinal variance or the direction with the least squares of the distances to the axis 

itself (transverse distances). 

The most frequent choice for the centre of the axes is the midpoint of the entire data 

matrix. After determining the first PC axis, the remainder are determined from the 

largest longitudinal variances, decreasingly, and always orthogonal to each other. It is 

then determined a new set of Cartesian axes. The maximum number of axes is the 

smallest value of (n-1) objects or p variables. However, not all of the given PCs are 

normally used. Knowing how many axes to use is a key issue in PCA. 

Each PC can be represented as the linear combination of p vectors of the variables, 

where the coefficients for each variable relative to a given PC are called "Loadings". 

The loadings give information about the relationship between the original variables and 

the PCs. The distances of each object to PCs are called "Scores". They are therefore 

the coordinates of each object relative to the PC axes. The residual values are the 

projection distances of each object and represent the amount of information lost due to 

the approximation made by the PCA.  

The purpose of PCA is to highlight the relationship between data (observations or 

individuals) and variables. The process for this is to replace the set of Cartesian axes 

with new main component axes, reducing (if possible) the number of dimensions of the 

data matrix, eliminating noise (not important information). 

Principal component analysis was performed using Unscrambler v.9.7 program, 

(CAMO Software, version 9.7, 2007).   
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IV Viticulture studies - Results and discussion 

 

4.1 Introduction  

 

The Baga is an ex-libris red variety in Bairrada and it is required to compose the 

blend in order to have a wine labelled as 'Bairrada Clássico' - “Classic Bairrada”. 

Nevertheless, for Bairrada region the importance attributed to this variety has as many 

„haters‟ than „lovers‟. Some authors mentioned that this variety is not able to produce 

wines of great „finesse‟; however in Dão region (adjacent wine producing DOP region 

of Bairrada) producers improved to higher quality when the percentage of planted Baga 

variety decreased [181]; the wines are described of harsh dry tannins and forest fruits 

when young age; when ripe (considered when having 13% alcohol or above) and after 

some ageing time (in barrels or/and in bottle), develop depth and complexity, the 

tannins soften, and the aroma got nuances of black plums, herbs, olives, smoke, 

tobacco, honey, camphor, and coffee [312].  

Briefly, Baga variety can be described as having compact clusters and thin skin 

berries, two characteristics that can lead to rupture of the berries and appearance of 

rot, especially if precipitation occurs near maturity/harvest date. Baga vines often 

develop with excessive vigour and high yield, and almost always in need cluster/bunch 

thinning, as is frequently mentioned by Baga producers [6]. Bunch thinning is usually 

performed four weeks before the expected harvest date. If it occurs later, the thinned 

clusters can be used for the production of sparkling and rosés wines, avoiding the fall 

in yield of the plot. It is believed that it produces its best wines in calcareous-clay soils. 

According to some producers [6], cluster thinning helps to achieve the later stages 

and perfect maturation of Baga, improving also the phenolic ripeness. Some of them 

mention that is almost impossible to achieve great quality in Baga variety without 

performing bunch thinning. Additionally, the ungrafted vines tend to produce less but 

with better quality, also with better phenolic concentration (ungrafted vines tend to be 

older, before mass clonal selection, and also using different trellising). 
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4.2 Weather characterization 

 

As it can be seen from the data (Table 9), the three years of the study had different 

weather: 2011 was a warmer year (Winkler‟s „region IV‟ and Huglin‟s „Warm‟ 

classifications), and rained less during the growing season (low Selianinov index 

value), although having a good volume of rain during dormant season; 2012 was cooler 

year (Winkler‟s „region III‟ and Huglin‟s „Warm/Temperate‟ classifications), with a dry 

dormant season but a wet growing season (very high Selianinov index value); 2013 

was also a cool year (Winkler‟s „region III‟ and Huglin‟s „Warm/Temperate‟ 

classifications), with a wet dormant season and a relatively wet growing season (high 

Selianinov index value).  

 

Table 14 - Climate description, using several bioclimatic indexes, of the vineyard region for 2011 - 2013 vintages.  

 

Climate description 2011 2012 2013

Daily Av. Temperature Max. (º C) 22.3 21.5 20.9

Daily Av. Temperature Min. (º C) 11.5 10.0 10.7

Daily Av. Temperature (º C) 16.3 15.1 15.4

Daily Av. Sunshine (h) 7.4 7.3 7.0

Yearly Sunshine (h) 2691 2647 2562

Daily Av. Precipitation (mm) 2.0 1.8 2.5

Yearly Precipitation (mm) 719 639 921

Nº days Tmin<10º C Oct-Feb 94 102 99

Nº days Tmin<7º C Oct-Feb 74 91 71

Nº days Tmin<10º C Mar-Sep 28 51 54

Precipitation 4 weeks around flowering (mm) 75.0 23.4 62.4

Nº days raining 4 weeks around flowering 12 15 14

Av. Temp 4 weeks around flowering (º C) 20.3 18.6 16.4

Nº days <10º C 4 weeks around flowering 3 0 5

Av. Temp 2 weeks before fruit set (º C) 19.3 19.0 17.3

Av. Min. Temp 2 weeks before fruit set (º C) 12.7 14.7 12.4

Av. Temp 2 weeks after fruit set (º C) 21.4 18.2 20.0

Av. Min. Temp 2 weeks after fruit set (º C) 15.8 13.4 14.1

Nº days >30º C Mar-Sep 37 31 35

Nº days >30º C Aug-Sep 8 18 21

Bioclimatic indexes 2011 2012 2013

Winkler Index (º C) 2220 1911 1915

Huglin Index (º C) 2453 2184 2226

Cool Night Index (º C) 16.8 15.2 14.3

Branas Heliothermic Index (º C h) 4.0 3.0 3.4

Hydrothermic Index (º C mm) 3109 3478 2136

Selianinov Index (mm/º C) 2.3 8.4 6.5

S  Growing season Temperature (º C) 2089 1773 1815

Growing season precipitation (mm) 188 288 219

Growing season average Temperature (º C) 19.9 18.6 18.6

Dormant season Precipitation (mm) 513 273 570

S  Dormant season Temperature (ºC) 1669 1648 1662

S  Dormant Daily Av. (High - Low) T (º C) 1511 1772 1240

S  Aug-Sept Daily Av. (High - Low) T (º C) 593 814 880
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Some interesting features summarized in Table 14, that may have had importance 

for the overall harvest yield and quality, must be mentioned:  

In 2011, there were 28 days in the growing season when the minimum temperatures 

fallen below 10º C, opposing with 51 days in 2012 and 54 days in 2013; 

In 2012, there were 91 days in the dormant season when minimum temperatures 

fallen below 7º C (102 days below 10º C), contrasting with 74 days in 2011 and 71 

days in 2013; 

Precipitation around flowering in 2012 was 23.4 mm, differing from 62.4 mm in 2013 

and 75.0 mm in 2011; 

The average temperature around flowering in 2013 was 16.4º C, different from 18.6º 

C in 2012 and 20.3º C in 2011; 

The number of days that minimum temperatures around flowering fallen below 10º C 

in 2012 was 0, contrasting with 3 days in 2011 and 5 days in 2013; 

Finally, the number of days that maximum temperatures were above 30º C during 

the ripening period (August and September) in 2011 was 8, divergent from 18 days in 

2012 and 21 days in 2013. 

 

Table 15 - Days in difference between vegetative stages and/or modality activities. 

 

(n.a. - not available or not applicable) 

 

Differences in days between important vegetative stages and/or modality activities 

were calculated and are presented in Table 15. 

Days of difference 2011 2012 2013

Bloom - Fruitset 12 7 9

Fruitset - Veraison 66 61 57

Veraison - Harvest 57 42 44

Bloom - Veraison 78 68 66

Bloom - Harvest 135 110 110

Bloom - MAD 12 7 0

MAD - Fruitset 0 0 -9

MAD - Harvest 123 103 110

Bloom - MED 12 18 1

MED - Fruitset 0 11 -8

MED - Harvest 123 92 109

Veraison - MBT 7 5 -10

MBT - Harvest 50 37 54

Veraison - DMR 36 37 30

DMR - Harvest 21 5 14

Veraison - DMR30 n.a. n.a. 20

DMR30 - Harvest n.a. n.a. 24

BIO - Bloom n.a. n.a. 14

BIO - Veraison n.a. n.a. 80

BIO - Harvest n.a. n.a. 124
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Some interesting information can be observed in the timelines of modalities 

application and vegetative growth stages: 

2011 was the year with longest „bloom to harvest‟ period, 135 days, and 2012 and 

2013 had 110 days - all the periods between stages were longer than in previous 

years; 

MAD and MED occurred at fruit set in 2011 and 2012, but was applied before fruit 

set in 2013; MED was delayed for several days in 2012 due to a mechanical 

malfunction of the equipment; 

MBT was performed one week after veraison in 2011 and 2012, but in 2013 it was 

applied just before veraison; 

DMR was performed at least 2 weeks before harvest in 2011 and 2013, but in 2012 

was only 5 days before harvest because of unpredicted early harvest (due to rain). 
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4.3 Canopy characterization and early leaf removal 

 

Canopy description was performed at veraison using canopy height and width 

measurements and Point Quadrat Analysis (PQA) [183]. PQA can be used to evaluate 

and compare plant vigour expression and also do a characterization of the light and 

temperature environment close to the fructification zone. Performing PQA at veraison 

helps to understand the form of the canopy during ripening and maturity stages.  

 

Table 16 - Canopy description for 2011, 2012 and 2013 vintages and exposed canopy surface - height and width, 
determined using 40 vines per modality. Average values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Vine canopy was similar for all modalities during 2011 and 2012 vintages; for 2013, 

several differences occurred, the average of each modality were lower than the 

previous years - vegetative growth was weaker in 2013, and it is reflected in vine height 

and width being lower (Table 16). Canopy height for MAD lowered gradually from 2011 

until 2013, and also lowered for MBT in lesser extent, but not with the remaining 

Modality

CTR 98.0 (10.7) a 103.0 (10.7) b 90.9 (13.6) b 97.3

MAD 97.9 (11.3) a 84.6 (11.3) a 76.2 (12.5) a 86.2

MED 103.8 (12.7) a 94.1 (12.7) ab 96.3 (10.7) b 98.1

MBT 101.1 (11.8) a 100.0 (11.8) b 97.6 (8.2) b 99.6

DMR 99.3 (14.8) a 92.8 (14.8) ab 94.4 (10.8) b 95.5

CTR 56.8 (7.7) a 54.2 (7.7) a 53.5 (5.8) a 54.8

MAD 52.3 (9.4) a 53.4 (9.4) a 50.9 (5.1) a 52.2

MED 54.3 (6.7) a 49.2 (6.7) a 47.3 (6.7) a 50.3

MBT 55.5 (8.4) a 55.0 (8.4) a 52.8 (8.6) a 54.4

DMR 52.5 (5.6) a 52.8 (5.6) a 50.3 (6.4) a 51.9

CTR 55.8 (7.7) ab 53.8 (7.7) a 43.8 (4.9) a 51.1

MAD 60.8 (8.9) b 53.7 (8.9) a 48.8 (5.9) ab 54.4

MED 51.3 (9.4) a 49.2 (9.4) a 51.1 (5.3) b 50.5

MBT 52.5 (7.9) a 49.3 (7.9) a 45.3 (5.6) a 49.0

DMR 56.3 (6.0) ab 54.3 (6.0) a 52.9 (5.1) b 54.5

CTR 30017 31312 27147 29492

MAD 30011 25680 22849 26180

MED 31431 28155 28813 29466

MBT 30734 30215 29187 30046

DMR 30227 28169 28471 28956

2011 Averages 2012 Averages 2013 Averages

27293.4 n.a.

Calculated 

Exposed 

Canopy Surface 

(cm2)

n.a.

All Modality 

Average
30484.1 28706.3

All Modality 

Average

55.3

54.3 52.9 51.0 n.a.

48.4

Canopy Height 

(cm)

Canopy Bottom 

Width (cm)

Canopy Top 

Width (cm)

3-Vintage 

Average

n.a.91.194.9100.0

All Modality 

Average

All Modality 

Average

52.1
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modalities. Although vigour was smaller in 2013, canopy width was higher than the 

optimal values mentioned in the literature [313] - canopy width between 30 to 40 cm.  

Manual and mechanical defoliation reduced the amount of main leaves, main leaf 

area and total leaf area as compared to control, and also triggered lateral regrowth 

(Table 17). MAD removed more than 40% of total leaf area in every vintage (46.3% in 

2011; 47.7% in 2012; 56.6% in 2013), and MED removed more than 20% of total leaf 

area (22.3% in 2011; 24.2% in 2012; 30.0% in 2013). Though a large leaf area was 

removed with MAD and MED, leaf area was compensated until reaching veraison, 

when it was similar from the value recorded in the control vines. 

 

Table 17 - Modality influence over leaf area, for 2011, 2012 and 2013 vintages, determined using 12 marked vines 
and shoots per modality. Average values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable.  

 

The leaf removal machinery performed single-pass defoliation for each side of the 

canopy in 2011 and some concerns about the efficiency of the defoliation lead to make 

twice-pass defoliation in 2012 and 2013. The increase of passages from the leaf 

removal machinery did not cause a significant increase of the percentage of leaf area 

removed from canopy. 

Using PQA to evaluate the plant vigour at veraison (Table 18), it was clear that there 

were minimal variations between 2011 and 2012 vintages - Leaf Layer Number (LLN) 

Modality

CTR 13.5 (2.5) a 15.8 (1.7) a 11.7 (1.2) a 13.7

MAD 13.3 (2.6) a 14.7 (1.3) a 11.1 (1.1) a 13.0

MED 14.0 (2.0) a 15.2 (2.3) a 11.6 (1.3) a 13.6

MBT 12.2 (2.0) a 15.4 (2.2) a 11.3 (1.6) a 13.0

DMR 12.7 (1.7) a 15.1 (1.4) a 10.5 (2.7) a 12.8

CTR 17777 (6501) c 21650 (9791) b 17081 (6733) c 18836

MAD 8901 (3877) a 9018 (3008) a 5880 (3011) a 7933

MED 12910 (5006) ab 16147 (5710) b 10050 (3477) ab 13035

MBT 15344 (5849) bc 21824 (6937) b 13540 (6243) bc 16903

DMR 15066 (3089) bc 18909 (4544) b 12000 (5690) b 15325

CTR 25627 (11523) a 23733 (11741) ab 31707 (11563) b 27023

MAD 20378 (11816) a 16430 (5137) a 17350 (8743) a 18053

MED 22138 (12693) a 23914 (11454) ab 21008 (6888) a 22354

MBT 20883 (7580) a 25167 (10911) ab 25302 (12803) ab 23784

DMR 20977 (6058) a 25684 (8530) b 21905 (9664) a 22856

All Modality 

Average

n.a.

n.a.

22986

17509

15.2

Principal Leaf 

Number/vine 

(at fruit set)

3-Vintage 

Average

n.a.

23455

Total Leaf 

Area/vine (at 

veraison) (cm2)

All Modality 

Average

All Modality 

Average

Total Leaf 

Area after 

defoliation/vin

e (at fruit set) 

(cm2)
14000

22001

2011 Averages 2012 Averages 2013 Averages

13.1 11.2

11710
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was similar and Percentage of Gaps in the canopy (%Gaps) had a few differences. It 

should be noticed that %Gaps increased regularly for MBT and DMR modalities from 

2011 until 2013, which didn‟t occurred for the other modalities; it should be considered 

the hypothesis of this being related with consequences from the modalities procedures. 

Again, the vigour expression is lower for 2013, with higher %Gaps in the canopy and 

lower LLN than previous years, for all modalities. 

 

 

Table 18 - Canopy description and plant vigour expression at veraison, using Point Quadrat Analysis - 2011, 2012 
and 2013 vintages, determined using 12 marked vines and shoots per modality. Average values and standard deviation 
(between brackets). 

 

 CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Literature mentioned that optimum canopy gap percentage was 40% and leaf layer 

number between 1 and 1.5 [38] and the quantified values were considerably different 

from the optimal values (these values were described for Australia and New Zealand 

and so attention is due when comparing them to Portuguese viticulture context [222]). 

The percentage of gaps in canopy was much lower, and leaf layer number was always 

higher, which shows that the canopy was denser than the optimal literature values.  

Leaf layer number for MAD was lower than all modalities in 2011 (even not 

significantly) and similar in 2012 and 2013; MED appeared to be higher than other 

modalities, which was not expected. PQA was performed at veraison and MAD was 

submitted to severe defoliation at fruit set, so it was reasonable to assume that LLN for 

MAD could be lower than CTR and MBT, and not similar. This could be explained by 

intense lateral formation because of the intense early defoliation, compensating the 

removed leaves. From this it should be mentioned that, although LLN was similar for 

MAD and MBT, canopies were differently structured - MBT leaf distribution consisted in 

Modality

CTR 9.8 (15.1) a 8.4 (11.3) a 15.3 (13.1) ab 11.17

MAD 8.5 (8.9) a 5.6 (10.8) a 20.8 (17.5) ab 11.63

MED 7.0 (11.2) a 7.0 (11.2) a 8.4 (11.3) a 7.47

MBT 5.6 (14.8) a 14.0 (15.6) a 26.5 (13.0) b 15.37

DMR 7.1 (8.8) a 12.6 (12.5) a 26.5 (16.5) b 15.40

CTR 3.0 (0.7) a 3.2 (1.0) a 2.6 (0.6) a 2.93

MAD 2.8 (0.9) a 2.9 (0.6) a 2.2 (0.3) a 2.63

MED 3.5 (1.1) a 3.2 (0.7) a 2.6 (0.7) a 3.10

MBT 3.4 (1.1) a 2.8 (0.6) a 2.2 (0.4) a 2.80

DMR 3.2 (0.7) a 2.9 (0.6) a 2.3 (0.8) a 2.80

2011 Averages 2012 Averages 2013 Averages

n.a.19.509.50

3-Vintage 

Average

All Modality 

Average

All Modality 

Average

7.60

n.a.2.403.003.20

% Gaps/vine 

(Point 

Quadrat)

Leaf Layer 

Number (Point 

Quadrat)
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principal leaves predominantly, MAD had a strong lateral leaves population and no 

basal principal leaves, and so MAD leaf age was much younger, on average, than MBT 

leaf age population, which can be important during ripening period (old basal principal 

leaves can lose their activity during ripening period due to age) [228]. Additionally, shoot 

trimming performed traditionally in June-July could also be a factor that influenced leaf 

area.  

 

Table 19 - Canopy description and light environment characterization at veraison, using Point Quadrat Analysis - 
2011, 2012 and 2013 vintages, determined using 12 marked vines and shoots per modality. Average values and 
standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Regarding the light environment of the fructification zone of the canopy, there were 

no significant differences in the percentage of interior leaves (%IL) within the year, and 

the values between the years were very similar - higher values for 2013 could be the 

result of lower vegetative expression, with shorter shoots (Table 19). Concerning the 

percentage of internal clusters (%IC), the values for 2013 were lower than the previous 

years, showing once more, the impact of low vegetative expression of the vines. The 

%IC for MAD was always lower comparing to the other modalities, and CTR, MBT and 

DMR had higher values.  

Canopy structure of all modalities in all vintages was too dense compared with 

literature, where it was mentioned optimum values lower than 20% of interior leaves 

and 60% of exposed clusters [38] - the values were far from the optimal values found in 

literature but attention to the fact that the values are for Australia/New Zealand context 

and not for Portuguese viticulture.  

Modality

CTR 43.8 (9.8) a 47.6 (10.3) a 51.9 (10.3) a 47.77

MAD 41.8 (11.7) a 43.9 (10.2) a 52.8 (8.9) a 46.17

MED 48.0 (9.5) a 43.5 (12.2) a 56.8 (9.3) a 49.43

MBT 44.8 (14.1) a 45.3 (10.7) a 53.3 (11.2) a 47.80

DMR 45.0 (9.0) a 44.5 (6.1) a 55.8 (11.4) a 48.43

CTR 68.0 (35.2) ab 86.1 (30.8) a 45.7 (22.0) bc 66.60

MAD 46.7 (39.1) a 71.5 (32.7) a 12.8 (21.9) a 43.67

MED 81.7 (28.4) b 82.4 (36.9) a 27.8 (19.9) ab 63.97

MBT 81.3 (21.9) b 86.8 (20.5) a 52.1 (25.4) c 73.40

DMR 91.3 (13.8) b 85.6 (30.4) a 62.4 (34.8) c 79.77

82.50 40.20 n.a.

3-Vintage 

Average

% Interior 

Leaves (Point 

Quadrat)

All Modality 

Average
44.70 45.00 54.10 n.a.

2011 Averages 2012 Averages 2013 Averages

% Interior 

Clusters (Point 

Quadrat)

All Modality 

Average
73.80
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4.4 Yield components 

 

4.4.1 Bud break and Fertility 

 

Bud break and fertility ratios were described using the number of buds, shoots and 

bunches per vine, and also the bud break and Potential Fertility indexes (Table 20 and 

Table 21). 

 

Table 20 - Modality influence over bud number, shoot number and bunch number per vine, for 2011, 2012 and 2013 
vintages, determined using 12 marked vines and shoots per modality. Average values and standard deviation (between 
brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Bud and shoot number are dependent of pruning of the end of the previous 

vegetative season and so, if pruning was correctly performed and the vines were 

balanced, there should be little differences in bud and shoot number between vintages. 

The values for 2013 were lower than the ones for the previous vintages, and this was 

also observed for the canopy description. In general, there were no significant 

differences of number of buds and number of shoots between the modalities, but the 

averages values were lower year by year.  

Bunch number at fruit set was uneven between vintages, and spring climate 

(between flowering and fruit set) could be responsible for this unbalanced behaviour. 

Modality

CTR 14.6 (2.2) a 14.2 (3.2) a 15.6 (2.8) b 14.80

MAD 15.7 (2.5) a 13.2 (3.4) a 12.9 (2.6) a 13.93

MED 15.8 (2.0) a 12.0 (1.3) a 12.6 (2.0) a 13.47

MBT 15.5 (3.8) a 13.5 (1.9) a 12.5 (3.4) a 13.83

DMR 15.6 (2.5) a 13.7 (2.9) a 12.1 (2.6) a 13.80

CTR 13.3 (1.9) a 13.8 (3.9) a 13.8 (2.9) b 13.63

MAD 15.0 (2.4) a 12.7 (4.5) a 11.5 (2.5) a 13.07

MED 13.4 (2.0) a 12.7 (2.2) a 10.9 (1.4) a 12.33

MBT 13.6 (2.5) a 13.8 (1.7) a 11.3 (4.0) a 12.90

DMR 13.5 (1.7) a 13.9 (3.0) a 11.0 (2.8) a 12.80

CTR 17.8 (2.4) a 27.8 (9.0) c 24.7 (7.2) c 23.43

MAD 21.5 (6.2) a 23.8 (8.4) ab 15.6 (6.8) b 20.30

MED 20.5 (3.8) a 26.9 (9.2) bc 21.2 (7.1) c 22.87

MBT 19.2 (4.4) a 18.4 (6.3) a 12.3 (5.6) a 16.63

DMR 20.6 (4.9) a 20.2 (8.4) ab 10.9 (7.1) a 17.23

2011 Averages 2012 Averages 2013 Averages

n.a.

Bunch 

number/vine 

(at fruit set)

n.a.13.80 13.40

16.9423.42

11.70

3-Vintage 

Average

15.40 13.30 13.10 n.a.
All Modality 

Average

Bud 

number/vine

Shoot 

number/vine

All Modality 

Average

All Modality 

Average
19.92
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Even though, it should be remarked that CTR bunch number are higher than the other 

modalities, which could mean than there are post-vintage effects for each modality; 

MBT and DMR showed lower bunch number than the other modalities and both these 

aspects could directly and indirectly contribute to CTR having higher yield and MBT 

and DMR having lower yield.  

 

Table 21 - Modality influence over Bud break and Potential fertility indexes, for 2011, 2012 and 2013 vintages, 
determined using 12 marked vines and shoots per modality. Average values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Regarding bud break and fertility indexes, results were irregular once more. Bud 

break increased from 2011 to 2012 and decreased to the lowest values, in 2013. 

Although significant differences appeared in 2011 and 2012, there were no differences 

in 2013. 

Fertility index had a similar behaviour as bud break: increased from 2011 to 2012 

and decreased to 2013. One interesting feature was that fertility in MBT and DMR was 

significantly lower than the other modalities for 2012 and 2013.    

 

 

 

  

Modality

CTR 91.3 (8.7) ab 96.6 (10.1) ab 88.5 (4.1) a 92.1

MAD 96.1 (8.6) b 94.5 (13.2) a 89.1 (6.6) a 93.2

MED 85.3 (8.1) a 105.2 (11.5) b 87.6 (8.6) a 92.7

MBT 89.1 (8.3) ab 102.4 (10.1) ab 89.4 (12.0) a 93.6

DMR 87.4 (7.9) a 102.1 (11.5) ab 90.9 (11.5) a 93.5

CTR 1.36 (0.25) a 2.18 (0.98) b 1.82 (0.56) b 1.78

MAD 1.44 (0.38) a 1.91 (0.51) b 1.58 (0.46) b 1.64

MED 1.54 (0.25) a 2.11 (0.50) b 1.97 (0.46) b 1.87

MBT 1.43 (0.32) a 1.32 (0.41) a 0.91 (0.44) a 1.22

DMR 1.53 (0.34) a 1.25 (0.75) a 0.98 (0.63) a 1.25

n.a.

3-Vintage 

Average

n.a.

1.45

89.1

Bud break 

index (%)

All Modality 

Average

Potential 

Fertility 

Index

All Modality 

Average
1.46 1.75

89.8 100.2

2011 

Averages

2012 

Averages

2013 

Averages
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4.4.2 Fruit set 

 

Fruit set was one of the important features to be studied - less berries could imply 

lower yield (if there was no compensation from the plant, producing less but larger 

berries). Fruit set percentage was determined using the flower number quantified at 

bloom (determined by a photograph of the cluster at bloom against an orange 

background - complementary colour of the green cluster) and the number of berries 

counted at harvest.  

Each vine‟s basal cluster was photographed against an orange sheet and the 

photograph was then used to determine the visible flower number. Using the visible 

flower number and the linear regression determined (Figure 15) with the unmarked 

clusters, the estimate number of the flowers per cluster could be determined. Fruit set 

was calculated using the flower number quantified at bloom and the number of berries 

counted at harvest. 

 

 

Figure 15 - Linear regression between cluster visible flowers of the photograph and the actual number of flowers, 
used to estimate marked cluster number of flowers. 

 

 Table 22 shows flower and berry number, and respective fruit set ratio for the 

marked clusters. There were no significant differences in flower number between 

modalities in 2011 and 2012; there were some differences in 2013, for the modalities 

that have higher standard deviation. It must be pointed the low number of flowers for 

MED in 2013, significantly lower than any other modality - this result could be due to 

the flower destruction from earlier mechanical defoliation.  
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Table 22 - Modality influence over Flower and Berry number, Fruit set ratio, and berry number ration between CTR 
and each modality, for 2011, 2012 and 2013 vintages, determined using 12 marked vines and shoots per modality. 
Average values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Regarding the number of berries, there were significant differences in 2011 and 

2013, but they could be more pronounced if the standard deviation of the results were 

lower. MAD and MED tend to have less berries than CTR, DMR tend to have also 

lower berry number (because of the berry dehydration, wind could easily separate 

berries from the clusters), and MBT has lower berry number in 2011 and 2012 but the 

highest berry number in 2013 (overall, MBT showed to have less berries than CTR). 

When analysing the berry number ratio of each modality against CTR, the studied 

modalities had lower berry number than CTR, in the range of 0.7 up to 1.1. The 

exceptions to this behaviour were MAD in 2011 and MED in 2013, which had lower 

values, 0.56 and 0.49, respectively. The lower MAD/MED berry number was an already 

know result [228]. As for MBT and DMR berry numbers, these modalities should not be 

affected due to their late use but the values are lower than CTR. 

Modality

CTR 447.4 (129.6) a 428.1 (149.9) a 343.3 (140.7) ab 406.3

MAD 424.4 (153.5) a 452.9 (147.1) a 363.6 (177.8) b 413.6

MED 439.7 (95.9) a 441.8 (162.2) a 236.2 (104.4) a 372.6

MBT 373.9 (127.1) a 405.6 (189.3) a 365.1 (141.5) b 381.5

DMR 466.3 (188.2) a 438.7 (233.4) a 303.8 (105.5) ab 402.9

CTR 136.0 (56.9) b 172.9 (88.9) a 167.5 (37.8) b 158.8

MAD 75.9 (36.7) a 143.8 (58.6) a 160.0 (65.9) b 126.6

MED 120.7 (44.0) ab 143.4 (78.2) a 82.4 (64.7) a 115.5

MBT 99.6 (67.2) ab 121.0 (63.5) a 177.0 (90.8) b 132.5

DMR 124.9 (40.0) ab 154.7 (64.4) a 134.1 (66.2) a 137.9

CTR 32.2 (10.8) a 43.3 (17.7) a 49.9 (30.0) a 41.8

MAD 20.0 (15.6) a 34.4 (18.1) a 49.8 (25.1) a 34.7

MED 30.2 (14.0) a 38.8 (23.2) a 34.1 (29.7) a 34.4

MBT 27.2 (16.1) a 36.3 (19.9) a 41.7 (32.0) a 35.1

DMR 30.8 (10.2) a 40.3 (15.9) a 44.8 (36.3) a 38.6

CTR n.a. n.a. n.a. n.a.

MAD 0.56 0.83 0.96 0.78

MED 0.89 0.83 0.49 0.74

MBT 0.73 0.70 1.06 0.83

DMR 0.92 0.89 0.80 0.87

Berry Number 

(Modality/CTR)

All Modality 

Average
n.a. n.a. n.a. n.a.

111.4 147.2 144.2 n.a.

Fruitset (%)

All Modality 

Average
28.1 38.6 44.1 n.a.

3-Vintage 

Average

Flower 

number

All Modality 

Average
430.3 433.4 322.4 n.a.

Berry number

All Modality 

Average

2011 Averages 2012 Averages 2013 Averages
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Fruit set percentages show no significant differences within the three vintages - this 

should be related to high variability of the results obtained. Even though there are no 

significant differences, all modalities reduced fruit set when compared with CTR, 

vintage average values are different and several features can be pointed: 

CTR and DMR have the highest fruit set ratios; MAD has lower fruit set in 2011 and 

2012, but equal to CTR in 2013; MED has lower fruit set in 2012 (MED was performed 

too late in 2012 and might have caused flower destruction) and 2013, but not in 2011; 

MBT has lower fruit set than CTR. Previous researches have shown low fruit set for 

MAD and MED [225,228,230,314,315,316] but similar results were not reported for MBT or DMR 

before. Again, the high standard deviation of the results did not allow significant 

differences.  

One important remark should be noted - average fruit set increases from 2011 to 

2013, and these results were due to berry number average in 2013 was similar to 

2012, even though being a low vigour year, with lower flower number, with average 

temperatures lower than 2011 and 2012, and high occurrence of rain in previous days 

to fruit set.  

One might place the question whether the number of berries in a Baga cluster is 

limited by the length of the rachis - and if the number of viable berries might be similar 

because of the limiting effect of the rachis length? In 2013 vintage, MED showed lower 

number of berries but each berry is larger and heavier than berries from other 

modalities; probably compact clusters do not allow berries to grow and, either berries 

are compressed and do not complete its format  or berries could be expelled from the 

cluster due to high compression.  

 

 

4.4.3 Cluster morphology 

 

Cluster morphology (Table 23) was studied using the marked clusters, by 

determining the cluster weight, average berry weight (calculating from cluster weight 

and berry number), and cluster compactness.  

General trend of results was that CTR clusters had more weight than other 

modalities, and the berry weight was also higher; DMR had the lightest clusters and 

berries, and MAD and MED had lighter clusters than MBT. Average cluster weight for 

2011 and 2013 was similar, and 2012 had a much higher value. MAD and MED had 

lighter clusters than CTR and MBT, and DMR clusters were usually the lightest cluster 

average. So, every modality produced clusters with lower weight than CTR. Several 
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works mentioned that MAD and MED could produce lighter clusters [314,315,316], and 

others referred the same for DMR [317,318]. For MBT, the most common result regarding 

cluster weight show higher weight and not lower [319,320]. 

 In all three vintages, berry weight for every modality was also lighter than for CTR, 

with the exception of MBT in 2012, probably due to compensation from cluster removal. 

DMR produced low weight berries due to dehydration. MAD and MED showed lower 

weight berries when compared with CTR, due to restriction of berry formation [228,314]. 

Regarding the cluster compactness, CTR had the highest values for the three 

vintages, and DMR had the lowest values. The 2012 vintages showed homogenous 

results, probably due to the weather conditions of the year. For all vintages, every 

modality produced clusters with lower compactness than CTR. MAD [228,314,315] and 

DMR showed significant lower cluster compactness when compared with CTR as it 

was expected and MED and MBT showed variable results. 

 

Table 23 - Modality influence over basal cluster morphology - cluster and berry weight, and compactness, for 2011, 
2012 and 2013 vintages, determined using 12 marked clusters per modality. Average values and standard deviation 
(between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

 

 

Modality

CTR 261.3 (97.8) b 313.1 (151.7) a 195.0 (55.7) b 256.46

MAD 110.0 (73.8) a 236.8 (137.5) a 146.5 (46.8) ab 164.44

MED 178.9 (101.2) ab 205.7 (144.9) a 109.1 (69.0) a 164.56

MBT 180.4 (119.5) ab 234.0 (169.4) a 185.0 (98.7) b 199.80

DMR 126.8 (91.8) a 201.6 (85.2) a 87.6 (43.1) a 138.67

CTR 1.83 (0.70) c 1.87 (0.61) ab 0.94 (0.50) ab 1.55

MAD 1.50 (0.75) abc 1.63 (0.43) ab 0.90 (0.38) ab 1.34

MED 1.20 (0.75) ab 1.33 (0.59) a 1.22 (0.89) b 1.25

MBT 1.70 (0.58) bc 1.90 (0.73) b 0.75 (0.49) ab 1.45

DMR 0.98 (0.68) a 1.36 (0.62) a 0.55 (0.42) a 0.96

CTR 6.8 (0.4) b 6.1 (1.7) a 7.5 (0.8) c 6.79

MAD 5.2 (2.0) a 5.8 (1.3) a 5.9 (1.4) bc 5.64

MED 6.4 (1.5) ab 5.8 (1.9) a 5.6 (2.8) b 5.94

MBT 6.2 (0.8) ab 5.9 (1.6) a 6.9 (1.0) bc 6.34

DMR 5.5 (2.0) ab 4.5 (0.8) a 3.9 (1.7) a 4.63

2011 Averages 2012 Averages 2013 Averages
3-Vintage 

Average

n.a.

n.a.

n.a.

238.24 144.64

All Modality 

Average

Compactness 

(marked cluster)

Berry weight 

(marked cluster) 

(g)

6.00

All Modality 

Average
1.44 1.62 0.87

Cluster weight 

(marked cluster) 

(g)

All Modality 

Average
171.48

6.00 5.60
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4.4.4 Berry components 

 

Berry components were studied using the berry the following parameters: weight 

average of pulp, skin and seeds, skin/pulp ratio, seed number and berry diameter 

(Table 24) of 30 berries. Berry weight determination was a different procedure than the 

average berry determination using the marked cluster - berry weight from marked 

cluster determination is the average berry weight calculated from the cluster weight and 

the number of berries of the cluster; berry weight determination is the average weight 

of 30 berry samples taken at ripening assessment, from several clusters of several 

vines.  

There were small differences between modalities berry weight with the exception of 

DMR, which had the lightest berries. MAD produced berries lighter than CTR, and MED 

and MBT showed a fluctuant behaviour over the vintages. According to modality to 

CTR ration shown in Table 25, the relationship between modalities berry weight with 

CTR was between 89 and 117% of CTR berry weight, with the exception of DMR. 

Overall, DMR produces lighter berries, MAD showed a lighter berry weight trend, and 

MED and MBT showed no marked difference from CTR. Generally, berry weight 

determined by berry sampling had higher weights than marked cluster determination 

and this can be attributed to the fact that berry sampling could only reach external 

berries (due to clusters compactness) missing the smaller internal berries, while 

marked cluster determination included all berries of the cluster. 

Regarding pulp weight and skin weight, modalities showed generally lower skin 

weight than CTR and higher pulp weight than CTR, and so, apparently there was no 

gain in skin to pulp ratio when using the studied modalities. Pulp weight can be heavier 

if pulp has higher content of soluble solids, and this could explain the reason why 

berries from all modalities were heavier than CTR - they were more mature. 

One other interesting result was the average seed number and seed number ratio 

with CTR. It is known that seed number can be related with higher viability of the berry 

[314,315], 2013 seed number results confirm that it was a difficult year and 2012 a more 

fertile and suitable year for the success and formation of berries. When using the ratio 

modality/CTR, MAD/CRT and MED/CRT ratio showed an increasing trend during the 3 

vintages, while MBT/CRT and/ DMR/CRT ratio showed a decreasing trend. Apparently, 

MAD and MED showed increased berry viability when compared with CTR, and MBT 

and DMR showed lower berry viability. On the other hand, early leaf defoliation causes 

berry abortion and so less viable berries are not formed [314,315], and therefore these 

determinations were performed with the most viable berries from the clusters, the ones 
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that could strive after defoliation, naturally having higher seed number. This did not 

happen with MBT and DMR, which had, on average, a few more berries per clusters. 

 

Table 24 - Averages values for modality influence over berry components - berry, pulp, skin and seed weight, 
skin/pulp ration, berry diameter and number of seeds per berry, for 2011, 2012 and 2013 vintages, determined using 
samples from 12 marked clusters per modality. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). n.a. - not available or not applicable. 

 

Two remarks should be made about these results. First, Baga variety is traditionally 

described as a thin skin variety and this could explain why the early defoliation effect 

Modality

CTR 2.15 2.00 1.15 1.77

MAD 1.95 2.00 1.00 1.65

MED 2.15 2.20 1.35 1.90

MBT 2.05 1.70 1.25 1.67

DMR 1.60 1.60 0.40 1.20

CTR 0.95 0.85 0.50 0.77

MAD 0.85 1.00 0.45 0.77

MED 1.10 1.00 0.65 0.92

MBT 1.10 0.70 0.60 0.80

DMR 0.60 0.60 0.05 0.42

CTR 0.90 0.95 0.50 0.78

MAD 0.75 0.85 0.35 0.65

MED 0.85 1.00 0.45 0.77

MBT 0.85 0.80 0.50 0.72

DMR 0.80 0.85 0.25 0.63

CTR 42 48 43 44

MAD 38 43 35 39

MED 40 45 33 39

MBT 41 47 40 43

DMR 50 53 63 55

CTR 95 112 100 102

MAD 88 85 78 84

MED 77 100 69 82

MBT 77 114 83 92

DMR 133 142 500 258

CTR 0.17 0.30 0.15 0.21

MAD 0.19 0.30 0.20 0.23

MED 0.15 0.30 0.25 0.23

MBT 0.13 0.30 0.15 0.19

DMR 0.11 0.30 0.10 0.17

CTR 2.1 2.2 1.3 1.8

MAD 1.6 3.0 1.5 2.0

MED 2.0 2.6 2.2 2.3

MBT 2.3 2.4 1.3 2.0

DMR 2.3 2.1 1.1 1.8

CTR 13.1 12.9 11.1 12.4

MAD 13.9 13.4 10.2 12.5

MED 13.7 13.6 12.5 13.3

MBT 13.1 13.2 11.2 12.5

DMR 11.9 11.6 6.9 10.1

Seed 

number

3-Vintage 

Average

Skin/Berry 

(%)

2011 

Averages

2012 

Averages

2013 

Averages

Seed 

weight (g)

Berry 

diameter 

(mm)

Berry 

weight (g)

Pulp 

weight (g)

Skin weight 

(g)

Skin/Pulp 

(%)
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over skin weight and skin to pulp ratio was not visible, while it was broadly mentioned 

in literature [228]. 

 

Table 25 - Modality to CTR ratio for each modality influence over berry components - berry, pulp, skin and seed 
weight, skin/pulp ration, berry diameter and number of seeds per berry, for 2011, 2012 and 2013 vintages, determined 

using 12 marked clusters per modality. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée’). n.a. - not available or not applicable. 

 

Modality

n.a n.a n.a n.a

0.91 1.00 0.87 0.93

1.00 1.10 1.17 1.09

0.95 0.85 1.09 0.96

0.74 0.80 0.35 0.63

n.a n.a n.a n.a

0.89 1.18 0.90 0.99

1.16 1.18 1.30 1.21

1.16 0.82 1.20 1.06

0.63 0.71 0.10 0.48

n.a n.a n.a n.a

0.83 0.89 0.70 0.81

0.94 1.05 0.90 0.97

0.94 0.84 1.00 0.93

0.89 0.89 0.50 0.76

n.a n.a n.a n.a

0.92 0.89 0.81 0.87

0.94 0.96 0.77 0.89

0.99 0.99 0.92 0.97

1.19 1.12 1.44 1.25

n.a n.a n.a n.a

0.93 0.76 0.78 0.82

0.82 0.89 0.69 0.80

0.82 1.02 0.83 0.89

1.41 1.27 5.00 2.56

n.a n.a n.a n.a

1.13 1.00 1.33 1.16

0.88 1.00 1.67 1.18

0.78 1.00 1.00 0.93

0.64 1.00 0.67 0.77

n.a n.a n.a n.a

0.76 1.36 1.20 1.11

0.98 1.18 1.76 1.31

1.10 1.07 1.04 1.07

1.12 0.95 0.88 0.99

n.a n.a n.a n.a

1.06 1.04 0.91 1.00

1.05 1.05 1.13 1.08

1.00 1.02 1.01 1.01

0.91 0.90 0.62 0.81

2011 

Averages

2012 

Averages

2013 

Averages

Pulp 

weight (g)

Skin weight 

(g)

Seed 

weight (g)

3-Vintage 

Average

Berry 

weight (g)

Skin/Berry 

(%)

Modality/CTR

Skin/Pulp 

(%)

Berry 

diameter 

(mm)

Seed 

number
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Second, early defoliation was reported previously to produce small berries [228] and 

results from this study did not showed the same trend. Again, the difficulties of berry 

sampling, with compact clusters, could explain these discrepancies from those reported 

in literature considering other varieties.  

 

 

4.4.5 Yield 

 

All studied modalities showed significantly lower yield when compared with CTR 

therefore succeeding the primary goal of the study (Table 26). In all 3 vintages, CTR 

yield was significantly higher than all modalities and no significantly differences were 

found within the other modalities, with the exception of DMR in 2013. The effect of 

lower yield for each modality was confirmed by these results. Though the expected 

lowering of yield for all studied modalities was confirmed, the reasons why these 

results occurred were not similar. MBT showed lower yield because the number of 

cluster per vine was inferior than CTR; MAD and MED had less berries; DMR has 

lighter berries. 

 

Table 26 - Modality influence over yield per vine and average cluster weight, for 2011, 2012 and 2013 vintages, 
determined using samples from 12 marked clusters per modality. Average values and standard deviation (between 
brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée’). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

The legal limit for grape production in Bairrada region is close to eleven tonnes per 

hectare [4] - knowing that there are an average of 3333 vines per hectare, the 

production for all modalities for 2011 and 2012 was in fact higher than this legal yield 

Modality

CTR 4944.0 (2232.6) a 7425.4 (2097.9) b 4072.8 (1289.7) c 5480.7

MAD 3373.6 (873.1) b 5532.1 (2031.9) a 2416.4 (1687.8) b 3774.0

MED 3548.1 (1019.9) b 5435.4 (2526.7) a 2207.3 (1028.5) b 3730.3

MBT 3215.7 (677.1) b 4618.8 (1736.1) a 2064.4 (517.5) b 3299.6

DMR 3321.0 (1478.3) b 4645.5 (2394.0) a 742.0 (571.4) a 2902.8

CTR 274.8 (89.2) b 239.5 (79.4) b 173.4 (50.5) d 229.2

MAD 171.3 (30.9) a 226.2 (101.5) ab 124.4 (46.3) bc 174.0

MED 213.4 (71.1) a 158.2 (86.8) a 103.7 (43.4) ab 158.4

MBT 190.7 (46.4) a 245.2 (77.5) b 145.3 (46.1) cd 193.7

DMR 161.5 (44.0) a 239.0 (89.0) b 73.3 (26.3) a 157.9

All Modality 

Average
202.3 221.6

Average 

Cluster weight 

(at harvest) (g)

3-Vintage 

Average

Yield/vine (g)

All Modality 

Average
3680.5 5531.4 2300.6 n.a.

124.0 n.a.

2011 Averages 2012 Averages 2013 Averages
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limit. Only in 2013 all modalities achieved yield lower than the legal limit and CTR was 

above. 

 

Table 27 - Modality influence over yield and yield per hectare, for 2011, 2012 and 2013 vintages, determined using 
samples from 12 marked clusters per modality. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée’). 

 

Some differences were evident for the average cluster weight values: in 2011 

vintage, CTR average cluster was significantly heavier than all the studied modalities, 

and this trend occurred in the subsequent vintages. No differences were found 

between the other modalities in 2011; in 2012, CTR, MBT and DMR clusters are 

significantly heavier than other modalities, with MED being the lowest weight modality 

and MAD in intermediate level. Also for 2012, DMR showed a heavier cluster weight 

when compared with 2011 and 2013 because the time period between DMR and 

harvest was 5 days, due to an earlier harvest. Overall, DMR, MAD and MED showed 

lower clusters weights, and MBT closer results to CTR, even though lighter. 

As for leaf area-yield ratio, there are no significant differences, even though there 

are differences between the average values. Once again, the standard deviation is too 

high to have significant differences. The leaf area values were determined at veraison, 

when the removed leaf area for MAD and MED was already compensated; considering 

that values for leaf area to yield ratio below 5 cm2/g are low and above 20 cm2/g are 

high [38], the obtained values for all vintages and all modalities are intermediate. 

 

 

 

 

 

 

 

 

 

Modality Yield/vine Yield/ha Yield/vine Yield/ha Yield/vine Yield/ha

CTR 4944 16478 7425 24749 4073 13575 18267

MAD 3374 11244 5532 18438 2416 8054 12579

MED 3548 11826 5435 18116 2207 7357 12433

MBT 3216 10718 4619 15394 2064 6881 10998

DMR 3321 11069 4646 15483 742 2473 9675

Average 3680 12267 5531 18436 2301 7668

2011 2012 2013 3 Year 

Average/ha
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Table 28 - Modality influence over yield, leaf area yield ratio and corrected leaf area yield ratio, for 2011, 2012 and 
2013 vintages, determined using samples from 12 marked clusters per modality. Average values and standard deviation 
(between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée’). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

 

4.4.6 Vegetative expression and vigour 

 

Table 29 shows the variation of the pruning weight and the Ravaz index over the 

three vintages. The reference values for the Ravaz index vary between 5 and 12; 5-10 

[39]; 5-7 [321]; 5-12 [322]. There are significant differences between modalities, mainly in 

2013 - CTR where it is observed the highest pruning weight, and for MAD the value is 

quite similar, all other modalities had lower values. Nevertheless, these values have 

little interest because the vineyard owning company performed a shoot trimming in 

July, which masks these results. 

 

Modality

CTR 4944.0 (2232.6) a 7425.4 (2097.9) b 4072.8 (1289.7) c 5480.7

MAD 3373.6 (873.1) b 5532.1 (2031.9) a 2416.4 (1687.8) b 3774.0

MED 3548.1 (1019.9) b 5435.4 (2526.7) a 2207.3 (1028.5) b 3730.3

MBT 3215.7 (677.1) b 4618.8 (1736.1) a 2064.4 (517.5) b 3299.6

DMR 3321.0 (1478.3) b 4645.5 (2394.0) a 742.0 (571.4) a 2902.8

CTR 5.18 (2.30) a 3.20 (1.20) a 7.79 (7.00) a 5.39

MAD 6.04 (5.20) a 2.97 (1.30) a 7.18 (9.50) a 5.40

MED 6.24 (1.40) a 4.40 (2.30) a 9.52 (12.40) a 6.72

MBT 6.49 (3.50) a 5.45 (3.60) a 12.26 (6.80) a 8.07

DMR 6.32 (5.00) a 5.53 (31.00) a 29.52 (66.90) b 13.79

CTR 4.68 (2.09) a 2.93 (26.68) a 6.59 (7.01) a 4.73

MAD 5.53 (4.80) a 2.80 (28.82) a 5.69 (8.68) a 4.67

MED 5.80 (1.42) a 4.09 (43.05) a 8.72 (12.65) a 6.20

MBT 6.13 (3.76) a 4.69 (13.13) a 9.01 (9.34) a 6.61

DMR 5.87 (4.66) a 4.83 (31.22) a 21.70 (56.48) b 10.80

13.25 n.a.

(Leaf Area x 

%GAPs)/Yield 

(cm2/g)

All Modality 

Average
5.60 3.87 10.34 n.a.

Leaf 

Area/Yield 

(cm2/g)

3-Vintage 

Average

Yield/vine (g)

All Modality 

Average
3680.5 5531.4 2300.6 n.a.

2013 Averages

All Modality 

Average
6.05 4.31

2011 Averages 2012 Averages
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Table 29 - Modality influence over pruning weight and Ravaz index, for 2011, 2012 and 2013 vintages, determined 
using samples from 12 marked clusters per modality. Average values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée’). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Regarding the Ravaz index, most of the values were in the lower part of the intervals 

suggested in literature and mentioned above, meaning that the yield-pruning ratio was 

small. Again, these results were affected by July shoot trimming operation and so the 

actual Ravaz index would be lower than the obtained values.  

 

 

4.4.7 Fruit properties and quality 

 

4.4.7.1 Ripening assessment 

 

Grape ripening assessment was performed by sampling 200 berries once a week, 

during the three to four weeks prior to the expected harvest date - usually starting late 

August. Overall, the progression of grape ripening followed the expected behaviour, 

with the increase of total soluble solids (º Brix) and juice pH, and the decrease of the 

juice total titratable acidity (Table 30).  

  

Modality

CTR 913.1 (491.3) a 904.8 (232.3) ab 895.0 (188.4) b 904.3

MAD 771.4 (342.5) a 1046.0 (520.4) b 855.8 (193.6) ab 891.1

MED 608.2 (207.6) a 683.3 (184.6) a 758.3 (191.7) ab 683.3

MBT 795.6 (499.2) a 773.9 (266.0) a 775.0 (140.6) ab 781.5

DMR 629.7 (151.8) a 745.5 (221.7) a 700.0 (218.5) a 691.7

CTR 5.9 (2.2) a 7.8 (3.2) a 4.7 (1.8) c 6.1

MAD 4.7 (1.5) a 5.7 (2.3) a 2.7 (1.5) b 4.4

MED 6.2 (1.7) a 7.6 (3.3) a 3.1 (1.5) b 5.6

MBT 5.0 (2.4) a 6.1 (2.3) a 2.5 (0.5) b 4.5

DMR 5.4 (2.4) a 6.4 (3.1) a 1.1 (0.8) a 4.3

2011 Averages 2012 Averages 2013 Averages

Pruning 

weight/vine (g)

All Modality 

Average

3-Vintage 

Average

743.6 830.7 796.8 n.a.

Ravaz Index

All Modality 

Average
5.4 6.7 2.8 n.a.
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Table 30 - Modality influence over grape ripening - must soluble solids, pH and titratable acidity (TA), for 2011, 2012 
and 2013 vintages, determined using 200 berries samples from marked clusters. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟).  

Modality 17/08/2011 26/08/2011 05/09/2011 16/09/2011

105 114 124 135

1332 1441 1543 1667

CTR 16.9 18.5 18.0 19.0

MAD 19.6 20.0 18.7 22.5

MED 15.5 19.2 19.2 20.5

MBT 16.4 20.0 19.2 19.5

DMR 18.7 17.8 20.2 30.5

CTR 3.02 2.99 3.15 3.40

MAD 2.95 2.97 3.21 3.40

MED 2.85 2.87 3.24 3.49

MBT 2.96 3.00 3.18 3.48

DMR 2.89 2.88 3.20 3.32

CTR 7.9 7.5 5.9 4.1

MAD 7.7 7.3 5.8 4.6

MED 8.5 8.0 5.8 4.7

MBT 7.9 7.4 5.9 4.4

DMR 8.4 8.1 7.0 6.9

Modality 31/08/2012 07/09/2012 14/09/2012 19/09/2012

91 98 105 110

1227 1323 1403 1461

CTR 15.5 18.0 18.8 18.5

MAD 14.4 16.4 19.4 20.0

MED 13.3 16.6 18.2 17.5

MBT 13.7 17.2 16.6 18.5

DMR 13.3 15.6 18.0 21.0

CTR 2.57 2.80 2.92 3.42

MAD 2.55 2.73 2.95 3.33

MED 2.59 2.75 2.93 3.30

MBT 2.52 2.79 2.96 3.31

DMR 2.52 2.79 3.00 3.45

CTR 10.1 9.2 7.1 4.4

MAD 10.5 9.8 7.5 4.8

MED 10.0 9.4 7.7 5.4

MBT 11.1 9.8 8.3 4.9

DMR 10.6 9.4 7.7 4.9

Modality 30/08/2013 10/09/2013 19/09/2013 23/09/2013

86 97 106 110

1245 1360 1447 1493

CTR 16.0 17.2 20.0 21.0

MAD 15.4 18.0 18.4 22.0

MED 16.6 18.8 20.4 20.5

MBT 17.2 18.0 20.8 21.0

DMR 17.4 16.4 28.4 32.0

CTR 2.80 3.06 3.18 3.53

MAD 2.84 2.99 3.16 3.53

MED 2.84 3.00 3.14 3.49

MBT 2.78 2.92 3.13 3.59

DMR 2.84 2.90 3.45 3.55

CTR 9.3 7.2 7.0 4.1

MAD 8.9 6.7 6.2 4.3

MED 8.6 6.8 6.4 4.5

MBT 9.6 7.2 6.9 4.1

DMR 9.0 7.0 7.1 6.3

2
0

1
1

2
0

1
2

2
0

1
3

Parameter

Parameter

Bloom until sampling (days)

GDD

Bloom until sampling (days)

GDD

Total soluble 

solids (º Brix)

Parameter

Juice TA (g/L)

Total soluble 

solids (º Brix)

Juice pH

Juice TA (g/L)

Total soluble 

solids (º Brix)

Juice pH

Juice pH

Juice TA (g/L)

Bloom until sampling (days)

GDD
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Episodic rain events caused the deviations to these expected behaviours for soluble 

solids and acidity.  

There were no significant relations between the ripening progressions of each 

modality when using as independent variable the number of days after blooming 

occurrence but there were some relations between ripening progression and the 

growing degree days (GDD) (Table 31).  

 

Table 31 - Linear regression parameters between modality and GDD over grape ripening - must soluble solids, pH 
and titratable acidity (TA), for 2011, 2012 and 2013 vintages, determined using 200 berries samples from marked 

clusters. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟).  

 

Observing the slope and linear correlation coefficients (r) values for the estimated 

relations for total soluble solids, the studied modalities show faster ripening 

progressions than CTR, with noticeable linear correlations. 

DMR showed higher values and it is explained by dehydration of the berries causing 

a sugar concentration progression much faster than natural ripening. Comparing the 

other modalities, MAD showed higher values than MED and both higher than MBT. It is 

reasonable to understand that MBT would increase global fruit ripening condition 

instantly because the greener part of the fruits might have been removed before; these 

results show that the ripening progression after MBT was faster than CTR, and so, the 

lower number of clusters might contribute to a faster ripening progression. As for leaf 

removal procedures, MAD and MED, higher ripening progressions were observed, with 

the highest values for MAD. The early removal of basal leaves and consequential 

lateral growth may explain these findings - basal leaves would be the oldest leaves 

during ripening and would have a small contribution (or none) to the fruit ripening; after 

Slope Intercept r

CTR 0.00885 5.62 0.7063

MAD 0.01645 -4.49 0.8457

MED 0.01436 -2.25 0.8090

MBT 0.01220 0.94 0.7262

DMR 0.03672 -31.06 0.7501

CTR 0.00184 0.47 0.8124

MAD 0.00193 0.33 0.8459

MED 0.00203 0.18 0.8736

MBT 0.00212 0.06 0.8698

DMR 0.00194 0.32 0.7574

CTR -0.01433 27.20 -0.8817

MAD -0.01376 26.43 -0.8582

MED -0.01258 24.91 -0.8614

MBT -0.01550 29.17 -0.8786

DMR -0.00859 19.83 -0.7083

Total 

soluble 

solids (º 

Brix) / GDD

Juice pH / 

GDD

Juice TA / 

GDD
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the early basal leaf removal, the laterals grow and they might contribute to grape 

ripening, representing a more active part of the canopy than principal leaves. 

There were only small differences when comparing using pH and titratable acidity. 

The impact of temperature and climate over grape ripening might be more significant 

than the influence of the studied modalities, and this can explain the absence of 

differences when using acidity measurements.  

These relations suggest that the modalities influenced the ripening speed - 

additional information if the impact was only over ripening speed or if it was also over 

ripening potential was not provided, that is, if the modalities could contribute for the 

fruits to achieve potential higher ripening degrees. 

 

4.4.7.2 Botrytis incidence 

 

Two other aspects were studied using the marked clusters - cluster compactness 

and the incidence of Botrytis (Table 32). It was observed that modalities had strong 

influence over cluster compactness in 2011 and 2013. MAD and MED contributed to 

loose clusters and DMR produced less clusters as well, with the lowest compactness 

index (average for DMR in 2012 was the lowest of all, even not being significant). MBT 

showed lower cluster compactness than CTR but not significantly different.  

 

Table 32 - Modality influence over cluster compactness and Botrytis incidence, for 2011, 2012 and 2013 vintages, 
determined using samples from 12 marked clusters per modality. Average values and standard deviation (between 
brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. n.a. - not available or not applicable. 

 

Modality

CTR 6.8 (0.4) b 6.1 (1.7) a 7.5 (0.8) c 6.8

MAD 5.2 (2.0) a 5.8 (1.3) a 5.9 (1.4) bc 5.6

MED 6.4 (1.5) ab 5.8 (1.9) a 5.6 (2.8) b 5.9

MBT 6.2 (0.8) ab 5.9 (1.6) a 6.9 (1.0) bc 6.3

DMR 5.5 (2.0) ab 4.5 (0.8) a 3.9 (1.7) a 4.6

CTR 16.8 (8.1) a 6.4 (8.6) a 13.9 (13.8) b 12.4

MAD 13.7 (9.2) a 3.3 (5.9) a 1.2 (3.9) a 6.1

MED 11.5 (10.0) a 1.1 (3.8) a 3.9 (6.3) a 5.5

MBT 17.8 (7.9) a 3.3 (5.9) a 15.7 (5.3) b 12.3

DMR 13.7 (10.9) a 5.3 (8.5) a 5.8 (6.9) a 8.3

2011 Averages 2012 Averages 2013 Averages
3-Vintage 

Average

Compactness 

(marked cluster)

All Modality 

Average
6.0 5.6 6.0 n.a.

Botrytis 

incidence (%) 

(marked cluster)

All Modality 

Average
14.7 3.9 8.1 n.a.
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DMR showed lower compactness due to dehydrated berries, which retracted their 

size; MAD and MED were less compact as the number of berries was lower. 

Regarding the Botrytis incidence in the marked clusters, only clusters from 2013 

showed significant differences - standard deviations were too high for the differences in 

averages values to have some significance. Nevertheless, the trends observed for 

2011 and 2012 vintages were confirmed with the significant results of 2013: MAD, MED 

and DMR showed lower Botrytis incidence in the clusters, and MBT displayed similar 

results as CTR. The looser clusters of MAD, MED and DMR were related with the 

lower incidence of Botrytis in these modalities and MBT showed no difference from 

CTR.  

 

 

4.4.7.3 Fruit analysis at harvest 

 

The last sampling of each vintage, occurring at harvest day, was used to perform a 

more extensive chemical analysis of the fruit, focusing also in polyphenolic content - 

colour and tannins. 

Berry weight and volume are important parameters during the ripening, and they are 

disregarded most of the times. If berry volume increases during ripening it causes the 

dilution of the berry compounds. From the results of the three vintages (Table 33 and 

Table 34), it can be observed that MBT outcomes in an increase of berry volume 

compared with CTR; there was a similar behaviour for MED, so both MBT and MED 

might cause an increase of berry volume if performed. For all the vintages, MAD 

berries displayed to have lower volume than CTR, and DMR had a more broad 

decrease of berry volume. Higher berry volume results in a higher risk of berry skin 

rupture and subsequent Botrytis infection. In the particular case of MBT, the risk might 

be even higher because it will result in increased cluster compactness. 

Regarding the sugar concentration, DMR and MAD showed higher sugar 

concentration/probable alcohol when compared with CTR; MED and MBT displayed 

values similar with CTR. One of the reasons that MAD and DMR show higher sugar 

concentrations is the lower berry volume, while MED and MBT presented higher berry 

volume.  

As for acidity, titratable acidity and pH, the differences were small and should not 

have a perceptible effect in wine. Sugar load levels per berry were also calculated from 

sugar concentration and berry volume - it is understood that sugar load can be a 
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measure of ripening progression as it represents the amount of sugar present inside 

the berry. 

It was observed that MAD, MED and MBT had similar or higher sugar load than 

CTR for 2011 and 2013 vintages, but lower values in 2012. As for DMR, even though 

sugar concentration is substantially higher than CTR for every vintage, the sugar load 

is lower than CTR in every vintage - this means that ripening didn‟t progress in DMR 

fruits as extensively as for CTR. This result was expected for DMR as the shoots and 

berries were disconnected from the vine in DMR and ripening was affected, even 

stopped. There is the hypothesis of ripening continuing to occur after cutting the 

shoots, but that would be possible only if the leaves would continue to produce 

photosynthates and the vessels transporting them to the fruits after being disconnected 

from the plant. 

One important aspect regarding the usage of sugar load to determine the ripening 

progression is that this determination is not capable of distinguishing if the ripening 

would have occurred at a different rate (a higher sugar load at a determined sampling 

point represents that ripening occurred at a faster rate than the comparison value) or if 

the ripening have occurred in a different mechanism, occurring in different length (a 

higher sugar load at a determined sampling point represents that ripening occurred 

further than the comparison value). 

 

Table 33 - Modality influence over must quality - berry weight and volume, soluble solids, pH and titratable acidity 
(TA), probable alcohol and sugar load per berry for 2011, 2012 and 2013 vintages, determined using 200 berries 
samples from marked clusters. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟).  

CTR 351 220 3.40 4.1 19.0 10.7 1.76 1.10 0.200

MAD 326 218 3.40 4.6 22.5 13.1 1.63 1.09 0.241

MED 390 270 3.49 4.7 20.5 11.8 1.95 1.35 0.267

MBT 356 246 3.48 4.4 19.5 11.1 1.78 1.23 0.230

DMR 189 94 3.32 6.9 30.5 18.7 0.95 0.47 0.153

CTR 388 276 3.42 4.4 18.5 10.4 1.94 1.38 0.243

MAD 373 230 3.33 4.8 20.0 11.4 1.87 1.15 0.222

MED 364 256 3.30 5.4 17.5 9.7 1.82 1.28 0.211

MBT 388 272 3.31 4.9 18.5 10.4 1.94 1.36 0.239

DMR 293 188 3.45 4.9 21.0 12.1 1.47 0.94 0.192

CTR 245 156 3.53 4.1 21.0 12.1 1.23 0.78 0.159

MAD 239 150 3.53 4.3 22.0 12.8 1.20 0.75 0.161

MED 251 164 3.49 4.5 20.5 11.8 1.26 0.82 0.162

MBT 304 204 3.59 4.1 21.0 12.1 1.52 1.02 0.208

DMR 164 76 3.55 6.3 32.0 19.8 0.82 0.38 0.131

CTR 328 217 3.45 4.20 19.5 11.1 1.64 1.09 0.201

MAD 313 199 3.42 4.57 21.5 12.4 1.56 1.00 0.208

MED 335 230 3.43 4.87 19.5 11.1 1.68 1.15 0.214

MBT 349 241 3.46 4.47 19.7 11.2 1.75 1.20 0.226

DMR 215 119 3.44 6.03 27.8 16.9 1.08 0.60 0.159

Sugar load 

(g/ berry)

A
ve

ra
ge

Berry 

volume 
º Brix

Probable 

Alcohol 

Berry 

weight (g)

Juice 

volume 
pHModality

Berries 

weight (g)

Titratable 

acidity 

2
0

1
3

2
0

1
1

2
0

1
2
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Table 34 - Modality influence over wine quality - colour intensity (CI), anthocyanins concentration and per berry, 
total phenolics index (TPI) and HCl index for 2011, 2012 and 2013 vintages, determined using 200 berries samples from 
marked clusters. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟).  

 

Colour intensity (CI) was higher for MAD and DMR comparing with CTR, and for 

MED and MBT was similar to lower than CTR. Anthocyanins concentration followed 

similar pattern, with higher values for MAD and DMR and lower values for MED and 

MBT, when compared with CTR. Colour intensity and anthocyanin concentration are 

concentration-related components and these results can be due to lower berry volume 

of MAD and DMR, and compound dilution in MED and MBT because of higher berry 

volume.  

When observing the quantity of anthocyanins present per berry, MAD consistently 

showed higher values than CTR, the highest values of all modalities for 2011 and 2012 

vintages. MAD favoured the formation of anthocyanins in the berry but MED did not, as 

its results were similar or lower than CTR. DMR showed the lowest values for each 

vintage - lower value for DMR might result from the ripening stoppage resulting from 

the shoot disconnection of the vine. MBT showed to have similar or higher amounts of 

anthocyanins than CTR (the highest value for 2013 vintage), showing that MBT might 

not favour the colour formation.  

CTR 11.860 337.5 371.3 32.6 15%

MAD 13.690 410.4 447.3 36.4 13%

MED 7.860 273.3 369.0 26.5 16%

MBT 9.700 304.5 374.5 31.3 15%

DMR 13.330 300.2 141.1 40.4 12%

CTR 9.120 225.6 311.3 30.6 17%

MAD 13.940 319.3 367.2 37.4 -7%

MED 8.570 197.8 253.2 28.9 26%

MBT 9.140 228.2 310.4 27.8 16%

DMR 12.350 308.0 289.5 37.7 -17%

CTR 15.480 367.0 286.3 43.9 19%

MAD 17.900 391.3 293.5 50.0 19%

MED 15.500 348.8 286.0 45.4 21%

MBT 15.550 327.1 333.6 44.5 18%

DMR 23.080 377.4 143.4 62.3 22%

CTR 12.153 310.0 322.9 35.7 17%

MAD 15.177 373.7 369.3 41.3 8%

MED 10.643 273.3 302.7 33.6 21%

MBT 11.463 286.6 339.5 34.5 16%

DMR 16.253 328.5 191.3 46.8 6%

2011

2012

2013

Average

HCl indexTPI (A280 nm)
Anthocyanins 

(mg/berry)

Anthocyanins 

(mg/L)
CIModality
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Total phenolics index (TPI) is a measurement of the phenolic compounds 

concentration present in the sample. MAD and DMR displayed regularly higher values 

than CTR, and MED and MBT displayed lower values than CTR in 2011 and 2012 

vintages, having slightly higher values in 2013 vintage.  

Hydrochloric acid index (HCl index) is based on the instability of procyanidins in a 

concentrated HCl medium, and precipitation rate depends on polymerization degree - 

the usual values for this index are between 5 and 40 [138]. A light wine at the beginning 

of barrel aging might have a low value, around 5 or 10. A wine suitable for ageing might 

have values ranged between 10 and 25 and a wine with a high concentration of highly 

polymerized phenolic compounds shows values above 25. For the wines that obtain 

index values above 35-40, the tannins in wine precipitate. Therefore, HCl index reflects 

the polymerization state of tannins in the wine, which also depends on the aging 

conditions. As an example, polymerization might decrease after winter cold or after 

fining, and also after some years in the bottle. MED showed to have higher 

polymerization degree than CTR, and MBT similar degree. As for MAD and DMR, it 

displayed lower values for 2011 and similar or higher for 2013 - the 2012 

determinations displayed negative values, which imply that the samples show to have 

more stability after hydrochloric acid addition than in their natural state. These results 

were considered abnormal. In any case, the values obtained for this determination 

show that the grapes produced had potential to produce wines suitable for ageing.  
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4.4 Principal components analysis 

 

Information is not completely translated by a single variable and therefore univariate 

data contains marginal information rather than complete information. We might be able 

to obtain a 'data structure' from observations and also 'noise', that can arise from other 

components, from the measurement, from the instrument, etc. The separation of the 

important data structure related to our study and the “noise” (information that has no 

significance as it is due to variations of instrumental signal and other processes) is a 

major problem when we are analyzing a set of observations, even because the data 

structure hides part of the information when we analyze only one variable. 

With the aim to enlighten some more information about relations between viticultural 

aspects and the studied modalities, a Principal Components Analysis (PCA) was 

implemented. PCA  was made using the inverse of standard deviation as scaling factor, 

followed by Cross validation, using Uncertainty test with optimal PC‟s and a Full Size 

model. 

Figure 16 shows the graph in which the different modalities and the viticultural 

variables were projected simultaneously according to PCA. The first three main 

components PC1, PC2 and PC3 explain 75% of the variance (46%, 17% and 12%, 

respectively). The first component (PC1) was predominantly characterized by the 

variables %Gaps, %IL and LA/Yield in the positive side of the axis, and Ravaz index, 

Yield, Cluster weight, and Berry weight in the negative side of the PC1. The second 

component (PC2) was characterized by the number of Berries, %Fruit set, LA and 

Cluster weight in the positive part of the PC2, and LLN, Botrytis incidence and Berry 

weight in the negative part of the PC2. The third component (PC3) was characterized 

by Botrytis incidence, Cluster compactness and LA in the positive part of the axis, and 

Bud break and Fertility indexes in the negative part (Figure 17). Regarding the 

samples/modalities of the study, PC1 was mainly defined by the modalities of the 2013 

vintage in the positive part of the axis, and the modalities of the 2012 vintage in the 

negative part; PC2 by modalities CTR and MBT from 2012 and 2013 vintages in the 

positive part, and MAD, MED and DMR modalities from 2011 vintage in the negative 

part of the axis; finally, PC3 was characterized by modalities CTR and MBT from 2011 

and 2013 vintages in the positive part, and MAD, MED and DMR modalities from 2012 

and 2013 vintages in the negative part of the axis. 

From these multivariate analysis results, a statistical relationship between variables, 

variables and modalities/samples, and between samples/modalities:  



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

97 

 

 
 

Using PC1, %Gaps, %IL and Leaf Area-Yield ratio were related, and also relate with 

the modalities of the 2013 vintage; Ravaz index, Yield, Cluster weight, and Berry 

weight were related and also relate with the modalities of the 2012 vintage;  

From PC2, Berries, %Fruit set, LA and Cluster weight were related and also relate 

with modalities CTR and MBT from 2012 and 2013 vintages; LLN, Botrytis incidence 

and Berry weight were related and also relate with MAD, MED and DMR modalities 

from 2011 vintage; 

Using PC3, Botrytis incidence, Cluster compactness and LA are related and also 

relate with modalities CTR and MBT from 2011 and 2013 vintages; Bud break and 

Fertility indexes are related and also relate with MAD, MED and DMR modalities from 

2012 and 2013 vintages. 
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Figure 16 - Principal components analysis (PCA) Scores and Loadings Biplot of viticultural variables and modalities 
(PC1 46%; PC2 17% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟).  
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Figure 17 - Principal components analysis (PCA) Scores and Loadings Biplot of viticultural variables and modalities 
(PC1 46%; PC3 12% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟).  
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Figure 18 shows the graph in which the different modalities and the Berry 

components variables were projected simultaneously. The first three main components 

PC1, PC2 and PC3 explain 94% of the variance (72%, 13% and 09%, respectively). 

The first component (PC1) was characterized only by the variable Skin-pulp ratio in the 

positive side of the axis, and all the remaining variables showed similar importance in 

the negative side of the axis. The second component (PC2) was characterized by the 

Seed weight, Seed number and Skin-pulp ratio in the positive part of the axis, and Pulp 

weight in the negative part of the axis. The third component (PC3), Figure 19, was 

characterized by Skin-pulp ratio and Skin weight in the positive part of the axis, and 

Seed weight in the negative part. Regarding the samples/modalities of the study, PC1 

was mainly defined by the modalities of the 2013 vintage in the positive part of the axis, 

and the modalities of the 2012 and 2011 vintage in the negative part; PC2 by 

modalities from 2012 vintage in the positive part, and modalities from 2011 vintage and 

CTR and MBT from 2013 vintage in the negative part of the axis; finally, PC3 was 

characterized by DMR samples and modalities from 2011 and 2012 vintages in the 

positive part, and modalities from 2013 vintage in the negative part of the axis. 

From these multivariate analysis results, we might point a statistical relation 

between variables, variables and modalities/samples, and between 

samples/modalities:  

Using PC1, Skin-pulp ratio was related with the modalities of the 2013 vintage; 

modalities of the 2012 and 2011 vintage were related between them;  

From PC2, Seed weight, Seed number and Skin-pulp ratio were related and also 

relate with modalities from 2012 vintage; Pulp weight relate with modalities from 2011 

vintage and CTR and MBT from 2013 vintage; 

Using PC3, Skin-pulp ratio and Skin weight were related and also relate with DMR 

samples and modalities from 2011 and 2012 vintages; Seed weight relate with 

modalities from 2013 vintage. 

 

 

 

 

 

 

 

 

 

 



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

101 

 

 
 

 

Figure 18  - Principal components analysis (PCA)  Scores and Loadings Biplot of Berry components and modalities 
(PC1 72%; PC2 13% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟).  
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Figure 19  - Principal components analysis (PCA) Scores and Loadings Biplot of Berry components and modalities 
(PC1 72%; PC3 09% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟).  
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Figure 20 shows the graph in which the different modalities and the ripening 

variables were projected simultaneously according to PCA. The first three main 

components PC1, PC2 and PC3 explain 90% of the variance (67%, 15% and 8%, 

respectively). The first component (PC1) was predominantly characterized by the 

variables ºBrix and spectroscopic variables (colour, IPT, etc.) in the positive side of the 

axis, Berry volume, Sugar load and Berry weight in the negative side of the axis. The 

second component (PC2) was characterized by the pH and Anthocyanins 

concentration in the positive part of the axis, and Titratable acidity and ºBrix in the 

negative part of the axis. The third component (PC3) was characterized by TC, HCl 

index and pH in the positive part of the axis, and Anthocyanins concentration in the 

negative part (Figure 21). Regarding the samples/modalities of the study, PC1 was 

mainly defined by the DMR and modalities of the 2013 vintage in the positive part of 

the axis, and the modalities of the 2012 and 2011 vintages in the negative part; PC2 by 

modalities from 2013 vintage in the positive part, and DMR and modalities from 2012 

and 2011 vintages in the negative part of the axis; finally, PC3 was characterized by 

modalities MED and MBT in the positive part, and MAD and DMR modalities in the 

negative part of the axis. 

From these multivariate analysis results, we might point a statistical relationship 

between variables, variables and modalities/samples, and between 

samples/modalities:  

Using PC1, º Brix and spectroscopic variables were related, and also relate with the 

DMR and modalities of the 2013 vintage; Berry volume, Sugar load and Berry weight 

were related and also relate with the modalities of the 2012 and 2011 vintages;  

From PC2, pH and Anthocyanins concentration were related and also relate with 

modalities from 2013 vintage; Titratable acidity and º Brix were related and also relate 

with DMR and modalities from 2012 and 2011 vintages; 

Using PC3, TC, HCl index and pH are related and also relate with modalities MED 

and MBT; Anthocyanins concentration relate with MAD and DMR modalities. 
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Figure 20  - Principal components analysis (PCA) Scores and Loadings Biplot of ripening variables and modalities 
(PC1 67%; PC2 15% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟).  
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Figure 21 - Principal components analysis (PCA) Scores and Loadings Biplot of ripening variables and modalities 
(PC1 67%; PC3 8% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟).  
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V Carotenoids and chlorophylls - Results and discussion 

 

5.1 Introduction 

Carotenoid degradation reactions may occur during the ripening of the grapes, with 

the consequent norisoprenoid formation and their contribution for juice and wine 

aroma. Their impact might be relevant to the wine aroma, depending on the viticultural 

conditions that influence carotenoid profile and content, and subsequent degradation 

during ripening and wine production. 

 

The chlorophyll function in photosynthesis is known and it was suggested that this 

compound class has effect in occurrence of berry sunburn symptoms [323]. On other 

hand, carotenoids perform critical and complementary functions, collecting light and 

photo-protection [324] - they are able to quench chlorophylls on their excited states, 

releasing the energy in form of heat. Chlorophyll and carotenoid have also important 

function in grape pigmentation, especially in white grape, were anthocyanins are not 

present. Following events of extreme radiation and oxidative stress, some of the 

common occurrences are chlorophyll loss, formation of brown areas or even tissues 

death [323,325]. Small damages, associated with small chlorophyll losses, might be 

resolved by the plant mechanisms. However, there might be conditions when the light 

damage exceeds the plant protection capability and might result in tissues damage and 

chlorophyll degradation. 

 

 

  



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

107 

 

 
 

5.1 Carotenoid and chlorophylls content 

 

The determination of carotenoid compounds was performed using samples of 

previously frozen grapes, below -32º C. The quantified compounds were 

antheraxanthin, -carotene, chlorophyll a, chlorophyll b, lutein, neoxanthin, pheophytin, 

violaxanthin and zeaxanthin. Antheraxanthin, chlorophyll a, neoxanthin, violaxanthin 

and zeaxanthin exhibited analytical responses below the detection limit of the method 

(< 1.5 g/g dry weight). 

The obtained results were divided in two tables: Table 35 and Table 36 display the 

amounts of carotenoids and chlorophylls per berry and also the concentration per dry 

weight, respectively. The amount present per berry is useful for viticulture studies 

because it is independent from the dilution effect if some rain occurs, or a long drought 

period. The concentration per dry weight is important for winemaking studies because 

represents the conditions to be used to produce wine. It is important to have in 

consideration that the amount of each compound present in the berry contributes to the 

concentration that could be present in the wine but the contribution is not proportional 

to the berry concentration because of the extraction of the compounds from the grapes.   

As mentioned above and as expected, -carotene and lutein were the major 

carotenoids detected, with all other being not detected in all samples, for all vintages.  

When observing the carotenoid and chlorophylls content per berry (Table 35), 

similar average values for total carotenoids were found for 2011 and 2012 vintages, 

with lower value for 2013 vintage; as for average values of total chlorophylls, the 

highest value was found in 2012, with the lowest value found in 2013.  

-Carotene displayed averages with highest value for 2012, with 2011 content being 

a slightly smaller and 2013 even smaller. CTR displayed similar values for all three 

vintages, slightly above 400 g per berry; MAD showed lower content than CTR for 

2011 and 2013, and higher for 2012; MED presented values smaller than CTR for all 

vintages, the same behaviour as DMR; MBT showed smaller values than CTR for 2011 

and 2013 vintages, and higher for 2012. Overall, CTR had the highest values in 2011 

and 2013, MAD alternated between the lowest value in 2011 and 2013 and the highest 

value in 2012; and MED, MBT and DMR displayed similar values through the vintages. 

Regarding the 3-vintage averages for all modalities, -carotene displayed similar 

values with only small differences, and CTR having the highest content of -carotene. 
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Table 35 - Carotenoid and chlorophylls content per berry, for 2011, 2012 and 2013 vintages Average values and 
standard error (between brackets).  

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Antheraxanthin, chlorophyll a, neoxanthin, violaxanthin and zeaxanthin had 

concentrations below the detection limit of the method (< 1.5 g/g dry weight).n.q. - not quantified. n.a. - not available. 

 

Modality

CTR 0.459 (0.021) 0.449 (0.022) 0.419 (0.023) 0.442

MAD 0.375 (0.031) 0.522 (0.029) 0.307 (0.012) 0.401

MED 0.434 (0.019) 0.350 (0.027) 0.358 (0.016) 0.381

MBT 0.380 (0.020) 0.476 (0.018) 0.325 (0.003) 0.394

DMR 0.425 (0.020) 0.424 (0.024) 0.302 (0.024) 0.384

DMR30 n.q. n.q. 0.254 (0.019) n.a.

BIO n.q. n.q. 0.382 (0.009) n.a.

Average 0.415 0.444 0.342 n.a.

CTR 1.890 (0.027) 1.980 (0.054) 0.910 (0.031) 1.593

MAD 1.820 (0.132) 1.780 (0.072) 0.910 (0.027) 1.503

MED 1.840 (0.049) 1.580 (0.041) 1.210 (0.055) 1.543

MBT 1.630 (0.043) 1.840 (0.051) 1.150 (0.039) 1.540

DMR 1.680 (0.042) 1.750 (0.047) 1.360 (0.052) 1.597

DMR30 n.q. n.q. 0.780 (0.045) n.a.

BIO n.q. n.q. 0.890 (0.050) n.a.

Average 1.772 1.786 1.108 n.a.

CTR 0.810 (0.103) 1.360 (0.129) 0.320 (0.027) 0.830

MAD 1.060 (0.125) 0.810 (0.071) 0.270 (0.024) 0.713

MED 1.180 (0.103) 1.060 (0.099) 0.390 (0.032) 0.877

MBT 1.050 (0.094) 1.200 (0.101) 0.370 (0.041) 0.873

DMR 0.960 (0.095) 0.870 (0.076) 0.470 (0.037) 0.767

DMR30 n.q. n.q. 0.280 (0.032) n.a.

BIO n.q. n.q. 0.370 (0.031) n.a.

Average 1.012 1.060 0.364 n.a.

CTR 0.782 (0.047) 1.033 (0.092) 0.844 (0.057) 0.886

MAD 1.263 (0.039) 1.440 (0.092) 1.067 (0.075) 1.257

MED 0.946 (0.079) 0.929 (0.079) 1.077 (0.080) 0.984

MBT 0.804 (0.057) 0.827 (0.063) 1.132 (0.106) 0.921

DMR 0.780 (0.062) 1.055 (0.089) 0.844 (0.064) 0.893

DMR30 n.q. n.q. 0.549 (0.045) n.a.

BIO n.q. n.q. 0.519 (0.044) n.a.

Average 0.915 1.057 0.993 n.a.

CTR 2.349 2.429 1.329 2.036

MAD 2.195 2.302 1.217 1.905

MED 2.274 1.930 1.568 1.924

MBT 2.010 2.316 1.475 1.934

DMR 2.105 2.174 1.662 1.980

DMR30 n.q. n.q. 1.034 n.a.

BIO n.q. n.q. 1.272 n.a.

Average 2.187 2.230 1.450 n.a.

CTR 1.592 2.393 1.164 1.716

MAD 2.323 2.250 1.337 1.970

MED 2.126 1.989 1.467 1.861

MBT 1.854 2.027 1.502 1.794

DMR 1.740 1.925 1.314 1.660

DMR30 n.q. n.q. 1.034 n.a.

BIO n.q. n.q. 1.272 n.a.

Average 1.927 2.117 1.357 n.a.

2011 

Averages

2012 

Averages

2013 

Averages

Total 

chlorophylls 

(g/berry)

Total 

carotenoids 

(g/berry)

pheophytin 

(g/berry)

chlorophyll b 

(g/berry)

3-Vintage 

Average

lutein (g/berry)

-carotene 

(g/berry)
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Average content in lutein per berry had similar values for 2011 and 2012, differing 

for 2013 - this behaviour was more or less similar in all studied modalities. CTR 

displayed close values for 2011 and 2012 (around 1.9 g per berry), and a significantly 

smaller value for 2013; MAD displayed smaller or equal values than CTR for all 

vintages; MED, MBT and DMR showed similar behaviour, with smaller values than 

CTR for 2011 and 2012, and higher values for 2013. CTR showed the highest lutein 

content between all modalities for 2011 and 2012 vintages, and the lowest for 2013; 

MBT displayed the smallest for 2011, MED for 2012 and CTR and MAD for 2013. 

Regarding the 3-vintage averages for all modalities, lutein displayed similar values 

(between 1.5 and 1.6 g per berry) with MBT and CTR having the highest content and 

MAD the lowest.  

Concerning the chlorophyll b, vintage averages showed higher and similar content 

per berry for 2011 and 2012 vintages, and a significantly lower value for 2013. CTR 

chlorophyll b content increased from 2011 to 2012, and 2013 was much lower than the 

previous vintages. MAD showed lower values than CTR for 2011 and 2013, and higher 

for 2012; MED, MBT and DMR displayed higher values for 2011 and 2013 and lower 

for 2012. The highest values for each vintage were for MED for 2011, CTR for 2012 

and DMR for 2013, and the lowest CTR for 2011 and MAD for 2012 and 2013 vintages. 

About the 3-vintage averages for all modalities, chlorophyll b displayed values between 

0.7 and 0.9 g per berry, with MED and MBT having the highest content and MAD the 

lowest. 

Pheophytin displayed a more consistent trend through the vintages, showing similar 

vintage averages values. CTR pheophytin content increased from 2011 to 2012 

vintage, and decreased again in 2013. MAD showed higher values than CTR for all 

vintages; MED and MBT displayed higher values than CTR for 2011 and 2013 and 

lower values for 2012; DMR pheophytin content was similar to CTR for all vintages. 

Comparing the modalities for each vintage, the highest values for all vintages were for 

MAD, with CTR and DMR showing the lowest values for 2011 and 2013, and MBT for 

2012. Regarding the 3-vintage averages for all modalities, CTR, MED, MBT and DMR 

displayed similar values (around 0.9 g per berry) with MAD having the highest content 

of all. 

 

Beside the content per berry, the concentration of carotenoids and chlorophylls can 

also have important information to understand the impact of the modalities over fruit 

qualities (Table 36). -Carotene vintage averages increase from 2011 until 2013 and 

concentration in CTR samples followed the same trend. MAD displayed higher 
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concentrations than CTR for 2011 and 2012 and lower for 2013; MED presented higher 

concentration than CTR for 2011 and lower for 2012 and 2013; MBT showed lower 

concentrations than CTR in 2011 and 2013, and higher in 2012; and DMR displayed 

lower concentrations than CTR in all vintages. Regarding the 3-vintage averages for all 

modalities, CTR displayed highest concentration and DMR the lowest. 

 

Table 36 - Carotenoid and chlorophylls content per dry weight of skin, for 2011, 2012 and 2013 vintages. Average 
values and standard error (between brackets).  

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Antheraxanthin, chlorophyll a, neoxanthin, violaxanthin and zeaxanthin had 

concentrations below the detection limit of the method (< 1.5 g/g dry weight). n.q. - not quantified. n.a. - not available. 

 

Lutein average concentrations increase from 2011 to 2012 and dropped for 2013, 

with CTR having the same tendency. MAD showed higher concentrations than CTR in 

2011 and 2013, and lower in 2012; MED displayed higher concentrations than CTR in 

2011 and lower for 2012 and 2013; MBT and DMR presented lower concentrations 

Modality

CTR 12.63 (0.59) 15.20 (0.74) 22.46 (1.24) 16.76

MAD 13.89 (1.13) 16.56 (0.92) 17.30 (0.70) 15.92

MED 14.46 (0.64) 12.88 (1.01) 14.02 (0.63) 13.79

MBT 11.23 (0.60) 15.52 (0.59) 16.54 (0.17) 14.43

DMR 12.37 (0.58) 13.61 (0.78) 11.07 (0.87) 12.35

DMR30 n.q. n.q. 10.97 (0.83) n.a.

BIO n.q. n.q. 17.97 (0.43) n.a.

Average 12.92 14.75 16.28 n.a.

CTR 51.85 (0.76) 66.94 (1.84) 48.83 (1.65) 55.87

MAD 67.43 (4.90) 56.37 (2.30) 51.34 (1.53) 58.38

MED 61.14 (1.62) 58.13 (1.50) 47.35 (2.13) 55.54

MBT 48.18 (1.29) 59.99 (1.65) 58.56 (2.00) 55.58

DMR 48.82 (1.21) 56.12 (1.50) 49.78 (1.90) 51.57

DMR30 n.q. n.q. 33.58 (1.94) n.a.

BIO n.q. n.q. 41.75 (2.34) n.a.

Average 55.48 59.51 51.17 n.a.

CTR 22.41 (2.82) 45.96 (4.39) 17.17 (1.47) 28.51

MAD 39.43 (4.62) 25.64 (2.26) 15.00 (1.37) 26.69

MED 39.22 (3.42) 38.85 (3.63) 15.20 (1.25) 31.09

MBT 30.93 (2.77) 39.05 (3.28) 19.01 (2.09) 29.66

DMR 28.04 (2.77) 27.87 (2.42) 17.38 (1.36) 24.43

DMR30 n.q. n.q. 12.08 (1.40) n.a.

BIO n.q. n.q. 17.40 (1.48) n.a.

Average 32.01 35.47 16.75 n.a.

CTR 21.50 (1.30) 34.98 (3.11) 45.18 (3.04) 33.89

MAD 46.79 (1.44) 45.83 (2.93) 60.10 (4.24) 50.91

MED 31.50 (2.61) 34.20 (2.90) 42.15 (3.12) 35.95

MBT 23.78 (1.68) 26.97 (2.06) 57.58 (5.41) 36.11

DMR 22.71 (1.81) 33.84 (2.84) 30.94 (2.35) 29.16

DMR30 n.q. n.q. 23.68 (1.95) n.a.

BIO n.q. n.q. 24.43 (2.08) n.a.

Average 29.26 35.16 47.19 n.a.

2011 

Averages

2012 

Averages

2013 

Averages

3-Vintage 

Average

pheophytin 

(g/g DW)

chlorophyll b 

(g/g DW)

lutein (g/g DW)

-carotene (g/g 

DW)
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than CTR for 2011 and 2012 and higher 2013. Concerning the 3-vintage averages, 

MAD had the highest average and DMR the lowest.  

 As for the chlorophylls, chlorophyll b concentration increased from 2011 to 2012 

and lowered for 2013, and concentration for CTR samples followed the same trend. 

MAD and MED displayed higher concentrations than CTR for 2011 and lower for 2012 

and 2013; MBT and DMR showed higher concentrations than CTR for 2011 and 2013 

and lower for 2012. Regarding the 3-vintage averages, MED had the highest average 

and DMR the lowest. 

Finally, pheophytin concentrations increased from 2011 until 2013, with CTR 

following the same behaviour. MAD showed higher concentrations than CTR for all 

vintages; MED displayed higher concentration than CTR for 2011 and lower for 2012 

and 2013; MBT presented higher concentrations than CTR for 2011 and 2013 and 

lower for 2012; DMR showed higher concentration than CTR for 2011 and lower for 

2012 and 2013. Concerning the 3-vintage averages, MAD had the highest average and 

DMR the lowest. 

 

Regarding the violaxanthin, antheraxanthin, and zeaxanthin xanthophylls 

carotenoids (VAZ) that act like non-photochemical quenchers, these compounds were 

not present at harvest time. This behaviour could be due to earlier degradation, earlier 

than the rest of quantified carotenoids. 

Lutein and -carotene were cited as skin protection compounds [326] and so, their 

content might be strongly related with cluster sunlight exposure but light exposure also 

is associated with faster temperature-related degradation. On another hand, 

carotenoids are formed and then degraded during ripening, alcoholic fermentation and 

wine conservation phases. The found values do not provide conclusions because 

carotenoid act as intermediates and there was only a sampling moment, not being 

possible to ascertain the magnitude of carotenoid formation before veraison and the 

extent of degradation during ripening until the harvest moment (and also the extent of 

norisoprenoid formation).  

The determinations were performed using berries collected at harvest time so these 

results are not able to present a broad insight about carotenoids content behaviour. It is 

known that carotenoids are formed during berry formation until veraison, and 

degradation begins to occur after this moment [98]. Because of using one-point sampling 

timing, it is not possible to know the total amount formed for each carotenoid, the 

extent of degradation that was occurring until the sampling moment and how the 

extension of degradation contributed to aromatic compound formation.  
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The carotenoid content for CTR was higher than any other studied modality, for -

carotene and for lutein. These results might be associated with the faster ripening 

mechanism observed for all modalities other than CTR and so, the lower carotenoid 

content might be due to faster degradation of these compounds.  

Since the carotenoid content determinations were performed in berries and not in 

wines, there was not possible to observe the higher-age/lower-carotenoid trend 

mentioned above.  

Observing the chlorophylls content for the 3-vintage average, all values were similar 

and close except for MAD. MAD displayed the lowest value for chlorophyll b content, 

and the highest value for pheophytin. Knowing that chlorophylls function in the plant, 

the premature and prolonged light exposure of the clusters due to MAD might explain 

difference of behaviour of MAD when compared with the other modalities. The higher 

total content in chlorophylls of MAD and MED might help to agree with this finding.  

DMR showed to have the lowest 3-year average concentration of chlorophylls, 

displaying consistently low values through the vintages. One might expect high values 

for DMR because of dehydration, which enables the concentration of the compounds 

present. On the other hand, degradation might also occur faster because of the 

reducing biological functions of the shoots and leaves due to the cutting of the shoot. 

Chlorophyll b content for 2013 was substantially lower than the other vintages. The 

lower vegetative development of the plants in this vintage might explain the lower 

content, because of having less leaves to protect the clusters and having a higher risk 

of light exposure skin damage.  

  It may be interesting to quantify the evolution of chlorophylls from cluster formation 

until harvest with the aim to determine if Baga variety is more or less susceptible to 

light damage and if early light exposure of the cluster due to leaf removal induces 

change in chlorophylls mechanisms.  
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5.3 Principal components analysis  

 

With the aim to enlighten some more information about relationship between 

carotenoid composition and the studied modalities, a Principal Components Analysis 

was performed. Again, PCA  was performed using the inverse of standard deviation as 

scaling factor, followed by cross validation, using uncertainty test with optimal PC‟s and 

a full size model. 

 

Figure 22 displays the graph in which the different modalities and the carotenoid 

content per berry were projected simultaneously according to PCA. The first three main 

components PC1, PC2 and PC3 explain 98% of the variance (60%, 26% and 12%, 

respectively). The first component (PC1) contained the variables in the positive side of 

the axis. The second component (PC2) was characterized by the pheophytin and -

carotene content in the positive part of the axis, and chlorophyll b content in the 

negative part of the axis. The third component (PC3) was characterized by -carotene 

content in the positive part of the axis, and chlorophyll b, lutein and pheophytin content 

in the negative part (Figure 23). Regarding the samples/modalities of the study, PC1 

was mainly defined by the modalities of the 2012 and 2011 vintages in the positive part 

of the axis, and the modalities of the 2013 vintage in the negative part; PC2 by MAD 

and 2013 vintage modalities in the positive part, and CTR and MBT modalities in the 

negative part of the axis; finally, PC3 was characterized by CTR from 2013 vintage in 

the positive part, and MAD, MED and DMR modalities from 2012 and 2013 vintages in 

the negative part of the axis. 

From these multivariate analysis results, we might point a statistical relation 

between variables, variables and modalities/samples, and between 

samples/modalities:  

Using PC1, all variables were related, and also relate with modalities of the 2012 

and 2011 vintages; modalities of the 2013 vintage had no direct positive relation with 

other variables or samples; 

From PC2, pheophytin and -carotene content were related and also relate with 

MAD and 2013 vintage modalities; chlorophyll b content relate with CTR and MBT 

modalities; 

Using PC3, -carotene content relate with CTR from 2013 vintage; chlorophyll b, 

lutein and pheophytin content were related and also relate with MAD, MED and DMR 

modalities from 2012 and 2013 vintages. 
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Figure 22 - Principal components analysis (PCA) Scores and Loadings Biplot of carotenoid content per berry 
variables and modalities (PC1 60%; PC2 26% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Figure 23 - Principal components analysis (PCA) Scores and Loadings Biplot of carotenoid content per berry 
variables and modalities (PC1 60%; PC3 12% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Figure 24 shows the graph in which the different modalities and the carotenoid 

concentration were projected simultaneously according to PCA. The first three main 

components PC1, PC2 and PC3 explain 99% of the variance (49%, 39% and 11%, 

respectively). The first component (PC1) was predominantly characterized by the 

chlorophyll b and lutein concentration in the positive side of the axis, and pheophytin 

and -carotene concentration in the negative side of the axis. The second component 

(PC2) was characterized by all variables in the positive part of the axis. The third 

component (PC3) was characterized by -carotene and chlorophyll b concentration in 

the positive part of the axis, and pheophytin and lutein concentration in the negative 

part (Figure 25). Regarding the samples/modalities of the study, PC1 was mainly 

defined by the modalities of the 2012 and 2011 vintages in the positive part of the axis, 

and the modalities of the 2013 vintage in the negative part; PC2 by modalities MAD 

and MED in the positive part, and DMR and modalities from 2011 vintage in the 

negative part of the axis; finally, PC3 was characterized by CTR modalities in the 

positive part, and modalities from 2013 vintage in the negative part of the axis. 

From these multivariate analysis results, we might point a statistical relation 

between variables, variables and modalities/samples, and between 

samples/modalities:  

Using PC1, chlorophyll b and lutein concentration were related, and also relate with 

the modalities of the 2012 and 2011 vintages; pheophytin and -carotene concentration 

were related and also relate with the modalities of the 2013 vintage;  

From PC2, all variables were related and also relate with modalities MAD and MED; 

DMR and modalities from 2011 vintage were related and were represented in the 

negative part of the axis; 

Using PC3, -carotene and chlorophyll b concentration were related and also relate 

with CTR modalities; pheophytin and lutein concentration are related and also relate 

with modalities from 2013 vintage. 
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Figure 24  - Principal components analysis (PCA) Scores and Loadings Biplot of carotenoid concentration variables 
and modalities (PC1 49%; PC2 39% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Figure 25 - Principal components analysis (PCA) Scores and Loadings Biplot of carotenoid concentration variables 
and modalities (PC1 49%; PC3 11% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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VI Aroma composition of Baga wines - Results and discussion 

 

6.1 Introduction 

 

Unfortunately, there are only a few of papers regarding Baga varietal aroma and 

wine composition and none of the existing papers had an organized sensorial analysis 

or used a tasting panel.  

The first work studying Baga aroma composition reported a total of 53 compounds 

identified and quantified [179] in wines, with the majority being aliphatic and aromatic 

alcohols, acids, esters, and small quantities of lactones, amides and phenols. Of these 

identified compounds, nine were recognized to be the odorants with higher impact: 

guaiacol, 3-methylbutanoic acid, 4-ethoxycarbonyl--butyrolactone, isobutyric acid, 2-

phenylethanol, -nonalactone, octanoic acid, ethyl octanoate and 4-(1-hydroxyethyl)--

butyrolactone.  

Other research work [180] focused on the evolution of aroma compounds in grapes of 

Baga variety during ripening and monitored the ripening for 7 weeks, since veraison 

until full ripening. A significant number of sesquiterpenoids, monoterpenoids and 

norisoprenoids were identified during the ripening, with the authors concluding that 

sesquiterpenoids were an important group for grape aroma of Baga. These data 

suggest that Baga grapes have a fruity-type aroma correlated to a restricted number of 

compounds. The identified and quantified compounds were not similar to the ones 

described in the first work [179].  

Apart from these works, little more information regarding Baga aromatic content was 

found and none on scientific research papers. Another important aspect to be 

mentioned is that it is regionally accepted that Baga wines need some time in wood 

barrel before being ready for consumption, so it is difficult to find Baga wines 

commercially available that did not have been a period of time in barrel [312].  

Apart from carotenoids, there are other compounds able to participate in adaptive 

mechanisms of the grapevine to sun light. Phenolic compounds are key secondary 

metabolites present in grapevine leaves and, principally, in the skins and berries‟ 

seeds. They are responsible for most of the sensorial quality aspects of grape and wine 

composition, such as colour, taste and mouthfeel [327]. Phenolic compounds may have 

the role of filtering UV radiation and act as antioxidants. Their accumulation in leaves 

and berries is one of the most important adaptive mechanisms of grapevine to UV light 

[328,329]. 
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6.2 Aromatic compound content 

 

The evaluation of the aromatic compounds has the objective of identifying and 

quantifying these substances present in the wines in each vintage and from grapes 

originated from the vines subject to different canopy management techniques: Manual 

early leaf removal (MAD), Mechanical early leaf removal (MED), Manual bunch thinning 

(MBT) and „Double maturation raisonnée‟ (DMR), compared with the Control samples 

(CTR). Grapes were destemmed and crushed after arriving at the „winery‟, and 

inoculated at once, in order to prevent any delay in starting the alcoholic fermentation. 

After finishing fermentation, a small volume of sulphur dioxide solution was added to 

each individual wine/modality, enough to achieve a concentration of 90 mg/L. No other 

products were added to the must and/or wines. 

The wines were analysed at the same time, in 2014 (harvest, fermentation and wine 

conservation is described in Chapter III). 

Wines from 2011 and 2012 had significant quantities of volatile acidity (ethyl acetate 

and acetic acid) which affected the sensory perception of the other compounds as well 

as the chromatographic feature of each wine extract. Probably due to this aspect, 

several compounds were only identified and quantified in the 2013 wines, and others 

were only identified in 2011 and 2012 wines. Some commercial wine (some included 

barrel ageing during their production) and DMR30 and BIO wines were also analysed 

and their results were included for comparison with the studied modalities.  

The list of volatile compounds identified using the SPME-GC-MS method [307] in 

monovarietal Baga red wines are shown in Table 37. The list also includes odour 

descriptors, odorant series and odour threshold for each compound. A total of 40 

compounds were quantified, and 34 were identified as well, including ethyl esters, 

acetates, alcohols, terpenes, sesquiterpenes, norisoprenoids and volatile phenols. 

The largest groups of compounds identified and quantified were esters and 

terpenes. Table 38 displays esters concentrations in the wines from the study and 

several commercially obtained wine references (only for comparison) and Table 39 

shows esters analytical chromatographic areas‟ in the wines from the study and several 

commercial wine references. Even though the chromatographic areas do not provide 

information about the concentration of these compounds in each sample, it could still 

provide some information about how do every modality influences grape and/or wine 

quality in each vintage.  
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Table 37 - Compounds quantified by SPME-GC-MS method, odour descriptors, odorant series and odour threshold. 

 

1 = Fruity; 2 = Floral; 3 = Green, Fresh; 4 = Sweet; 5 = Spicy; 6 = Fatty; 7 = Others 
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Regarding ethyl butanoate, MBT, CTR and MAD showed to have the highest 3-year 

average values, with MED and DMR having lower averages. There were some 

significant differences between the values in each vintage but all the concentrations 

were small. Overall, the concentration values were in the range of micrograms to tenths 

of micrograms per litre for each modality. The range of concentration of the study 

samples was similar to the range of the commercially obtained wine references. 

As for ethyl hexanoate, the concentration values were also in the range of 

micrograms to tenths of micrograms per litre for each modality, and just a few 

significantly different averages. CTR showed smaller 3-year average value when 

compared with all other modalities, which have shown similar averages. The range of 

concentration of the studied samples was similar to the range of the commercially 

obtained wine references. 

Concerning ethyl heptanoate, even though some significant differences, the 3-year 

averages were very closed, and the concentration values were in the range of 

micrograms grams per litre for each modality. The range of concentration of the studied 

samples was similar to the range of the commercially obtained wine references. 

For ethyl octanoate, the average concentration of all modalities, for 2012 vintage 

samples, was higher than the remaining vintages, having significant differences 

between modalities in each vintage, the 3-year averages for MED and DMR were 

highest than for the other modalities. The concentration values were in the range of 

hundreds of micrograms to milligram per litre for each modality. The range of 

concentration of the studied samples was similar to the range of the commercially 

obtained wine references. 

In relation to ethyl decanoate, despite the significant differences within each vintage, 

the 3-year average values were approximated and only DMR average was different 

and was the highest average of the group. The values for 2011 were smaller than for 

the remaining vintages. The concentration values were in the range of hundreds of 

micrograms to milligram per litre for each modality. The range of concentration of the 

studied samples was not similar to the range of the commercially obtained wine 

references, which were substantially higher. 

Regarding ethyl dodecanoate, the 3-year average values were approximate, 

although the significant differences in each vintage. The values for 2011 were smaller 

than the other vintages. The concentration values were in the range of hundreds of 

micrograms per litre for each modality. The range of concentration of the study 

samples was not similar to the range of the commercially obtained wine references, 

which were substantially higher. 
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Table 38 - Ester content of the wines per modality, for 2011, 2012 and 2013 vintages. Average concentration values 
and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. 

 

Concerning isoamyl acetate, the concentration values were in the range of hundreds 

of micrograms per litre for each modality. The values for 2011 were higher than for the 

other vintages. MAD and MED showed the highest 3-year average. The range of 

Esters Modality Wine Averages

CTR 0.014 (0.001) c 0.015 (0.001) c 0.003 (0.001) a 0.011 2013DMR30 0.007 (0.000)

MAD 0.003 (0.000) a 0.021 (0.003) d 0.007 (0.001) a 0.010 2013BIO 0.009 (0.001)

MED 0.002 (0.001) a 0.012 (0.001) b 0.010 (0.001) a 0.008 2011M 0.005 (0.001)

MBT 0.002 (0.001) a 0.013 (0.000) bc 0.024 (0.023) a 0.013 2012M 0.019 (0.004)

DMR 0.007 (0.001) b 0.003 (0.000) a 0.012 (0.001) a 0.007 2008MM 0.016 (0.002)

Average 0.006 0.013 0.011 2005PR 0.008 (0.001)

CTR 0.011 (0.001) a 0.019 (0.002) a 0.009 (0.001) a 0.013 2013DMR30 0.010 (0.000)

MAD 0.013 (0.002) a 0.051 (0.006) c 0.013 (0.001) b 0.026 2013BIO 0.013 (0.001)

MED 0.012 (0.003) a 0.039 (0.006) b 0.013 (0.001) b 0.021 2011M 0.022 (0.004)

MBT 0.011 (0.001) a 0.037 (0.002) b 0.012 (0.001) b 0.020 2012M 0.040 (0.004)

DMR 0.017 (0.002) b 0.035 (0.004) b 0.012 (0.000) b 0.021 2008MM 0.034 (0.002)

Average 0.013 0.036 0.012 2005PR 0.037 (0.001)

CTR 0.003 (0.000) a 0.007 (0.001) c 0.003 (0.001) ab 0.005 2013DMR30 0.022 (0.002)

MAD 0.003 (0.001) a 0.004 (0.001) ab 0.006 (0.001) c 0.004 2013BIO 0.004 (0.001)

MED 0.002 (0.001) a 0.004 (0.001) ab 0.004 (0.000) b 0.003 2011M 0.004 (0.001)

MBT 0.008 (0.000) b 0.005 (0.001) b 0.003 (0.000) a 0.005 2012M 0.002 (0.000)

DMR 0.009 (0.001) c 0.003 (0.001) a 0.007 (0.001) c 0.006 2008MM 0.005 (0.001)

Average 0.005 0.004 0.005 2005PR 0.004 (0.001)

CTR 0.490 (0.023) c 1.170 (0.056) ab 0.557 (0.016) a 0.739 2013DMR30 0.542 (0.005)

MAD 0.216 (0.007) a 1.435 (0.275) b 0.727 (0.007) b 0.793 2013BIO 0.756 (0.034)

MED 0.274 (0.011) b 1.905 (0.012) c 0.888 (0.024) c 1.022 2011M 0.866 (0.037)

MBT 0.270 (0.008) b 1.029 (0.060) a 0.742 (0.033) b 0.680 2012M 1.805 (0.254)

DMR 0.466 (0.045) c 1.448 (0.247) b 0.857 (0.005) c 0.924 2008MM 1.619 (0.084)

Average 0.343 1.397 0.754 2005PR 1.550 (0.202)

CTR 0.403 (0.029) c 0.314 (0.000) a 0.393 (0.005) a 0.370 2013DMR30 0.818 (0.029)

MAD 0.110 (0.011) a 0.312 (0.044) a 0.518 (0.027) b 0.313 2013BIO 0.668 (0.022)

MED 0.098 (0.022) a 0.335 (0.014) a 0.595 (0.010) b 0.343 2011M 1.064 (0.078)

MBT 0.186 (0.064) b 0.274 (0.015) a 0.586 (0.013) b 0.349 2012M 1.986 (0.130)

DMR 0.213 (0.017) b 1.174 (0.339) b 0.924 (0.109) c 0.770 2008MM 1.398 (0.096)

Average 0.202 0.482 0.603 2005PR 0.820 (0.017)

CTR 0.099 (0.006) b 0.067 (0.005) a 0.112 (0.016) a 0.093 2013DMR30 0.427 (0.043)

MAD 0.052 (0.001) a 0.094 (0.023) a 0.261 (0.013) c 0.136 2013BIO 0.439 (0.001)

MED 0.040 (0.004) a 0.123 (0.012) a 0.390 (0.035) d 0.184 2011M 0.109 (0.006)

MBT 0.108 (0.033) b 0.070 (0.014) a 0.183 (0.012) b 0.120 2012M 0.344 (0.063)

DMR 0.044 (0.007) a 0.333 (0.063) b 0.182 (0.045) b 0.186 2008MM 0.153 (0.004)

Average 0.069 0.137 0.226 2005PR 0.278 (0.211)

CTR 0.059 (0.008) a 0.071 (0.006) a 0.149 (0.023) a 0.093 2013DMR30 0.168 (0.004)

MAD 1.118 (0.187) c 0.150 (0.020) bc 0.330 (0.004) c 0.533 2013BIO 0.183 (0.009)

MED 0.670 (0.161) b 0.166 (0.028) c 0.239 (0.003) b 0.359 2011M 0.079 (0.018)

MBT 0.210 (0.016) a 0.137 (0.010) bc 0.165 (0.009) a 0.171 2012M 0.167 (0.010)

DMR 0.104 (0.013) a 0.125 (0.014) b 0.144 (0.016) a 0.125 2008MM 0.068 (0.004)

Average 0.432 0.130 0.205 2005PR 0.036 (0.002)

CTR 0.075 (0.006) b 0.050 (0.001) b 0.137 (0.001) d 0.087 2013DMR30 0.047 (0.001)

MAD 0.735 (0.031) e 0.044 (0.001) ab 0.234 (0.001) e 0.337 2013BIO 0.087 (0.001)

MED 0.404 (0.006) d 0.066 (0.007) c 0.111 (0.003) c 0.194 2011M 0.032 (0.002)

MBT 0.102 (0.004) c 0.100 (0.010) d 0.096 (0.012) b 0.099 2012M 0.060 (0.001)

DMR 0.045 (0.006) a 0.038 (0.003) a 0.038 (0.006) a 0.040 2008MM 0.028 (0.006)

Average 0.272 0.059 0.123 2005PR 0.055 (0.014)

CTR 1.153 1.713 1.364 1.410 2013DMR30 2.041

MAD 2.249 2.110 2.097 2.152 2013BIO 2.160

MED 1.503 2.649 2.251 2.134 2011M 2.181

MBT 0.898 1.664 1.812 1.458 2012M 4.422

DMR 0.905 3.158 2.175 2.079 2008MM 3.320

Average 1.341 2.259 1.940 1.847 2005PR 2.788

2011 Averages 2012 Averages 2013 Averages

ethyl 

dodecanoate 

(mg/l)

isoamyl acetate 

(mg/l)

phenylethyl 

acetate (mg/l)

Total esters 

(mg/l)

3-Vintage 

Average

ethyl butanoate 

(mg/l)

ethyl hexanoate 

(mg/l)

ethyl heptanoate 

(mg/l)

ethyl octanoate 

(mg/l)

ethyl decanoate 

(mg/l)
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concentration of the studied samples was not similar to the range of the commercially 

obtained wine references, which were substantially lower. 

For phenylethyl acetate, the concentration values were in the range of hundreds of 

micrograms per litre for each modality. MAD and MED showed the highest 3-year 

average, and the values for 2011 were higher than the remaining vintages. The range 

of concentration of the study samples was not similar to the range of the commercially 

obtained wine references, which were substantially lower. 

 

Overall, there were four compounds with concentrations above all others - ethyl 

octanoate and ethyl decanoate (both ethyl esters) and isoamyl acetate and phenylethyl 

acetate (both acetates). These compounds displayed substantial vintage differences, 

with 2011 more favourable for acetate formation and ethyl esters were present in 

higher concentrations for 2012 and 2013. Using the total ester concentration and the 3-

year average for each modality, it was observed that MAD and MED had the highest 

concentrations of esters from all modalities. This behaviour was very clear in 2011 and 

2012 vintages, not so pronounced in 2013. CTR and MBT showed to have the lowest 

ester concentration and DMR displayed intermediate values. The range of total 

concentration of the study samples was lower when compared to the range of the 

commercially obtained wine references. These differences could be related with the 

ageing of commercial wines and the different fermentation conditions.  

 

As for the remaining volatile esters (Table 39), only chromatographic areas were 

available (the concentrations were not calculated), the values for ethyl malate for 2011 

were higher than for the other vintages. MBT and DMR showed the highest 3-year 

average and MED the lowest average. The range of areas of the studied samples was 

not similar to the range of the commercially obtained wine references, which were 

higher. 

Regarding ethyl 2-methyl-butanoate, the areas of 2013 vintage were smaller than for 

the other vintages. MBT showed the highest 3-year average and CTR the lowest 

average. The range of areas of the studied samples was not similar to the range of the 

commercially obtained wine references, which were smaller. 

Concerning ethyl 3-methyl-butanoate, the areas of 2011 vintage were higher than 

those for the other vintages. MAD and MED showed the highest 3-year average and 

CTR the lowest average. The range of areas of the study samples was not similar to 

the range of the commercially obtained wine references, which were smaller. 

As to ethyl trans-4-decenoate, the areas of 2011 vintage were smaller than those for 

the remaining vintages. The 3-year average values were similar. The range of areas of 
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the study samples was similar to the range of the commercially obtained wine 

references. 

About isoamyl hexanoate, the areas of 2012 vintage were higher than those for the 

other vintages. The 3-year average values were similar. The range of areas of the 

studied samples was similar to the range of the commercially obtained wine 

references. 

Concerning ethyl 2-hexenoate, MBT showed the highest value and the range of 

areas of the study samples was similar to the range of the commercially obtained wine 

references. 

 

Table 39 - Esters content of the wines per modality, for 2011, 2012 and 2013 vintages. Average chromatographic 
area values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. 

 

Table 40 shows terpene concentrations in the wines from the study and for several 

commercial wine used as references.  

Esters Modality Wine Averages

CTR 0.046 (0.002) b 0.015 (0.003) a n.d. 0.030 2013DMR30 n.d.

MAD 0.046 (0.002) b 0.022 (0.002) ab n.d. 0.034 2013BIO n.d.

MED 0.033 (0.006) a 0.006 (0.001) a n.d. 0.020 2011M 0.028 (0.006)

MBT 0.123 (0.008) d 0.015 (0.001) a n.d. 0.069 2012M 0.005 (0.000)

DMR 0.084 (0.002) c 0.038 (0.025) b n.d. 0.061 2008MM 0.016 (0.001)

Average 0.066 0.019 n.a. 2005PR 0.020 (0.002)

CTR 0.013 (0.002) a 0.008 (0.001) a n.d. a 0.010 2013DMR30 n.d.

MAD 0.554 (0.023) d 0.013 (0.002) b 0.003 (0.000) c 0.190 2013BIO n.d.

MED 0.290 (0.072) c 0.028 (0.001) c 0.002 (0.000) b 0.107 2011M 0.023 (0.001)

MBT 0.114 (0.012) b 0.012 (0.003) b 0.002 (0.000) b 0.042 2012M 0.007 (0.001)

DMR 0.028 (0.001) a 0.032 (0.003) d n.d. a 0.030 2008MM 0.024 (0.002)

Average 0.200 0.019 0.002 2005PR 0.057 (0.005)

CTR 0.023 (0.003) a 0.012 (0.001) a 0.023 (0.003) c 0.019 2013DMR30 0.009 (0.000)

MAD 0.355 (0.026) d 0.015 (0.002) a 0.001 (0.000) a 0.123 2013BIO 0.002 (0.000)

MED 0.263 (0.053) c 0.027 (0.002) b 0.002 (0.001) a 0.097 2011M 0.024 (0.001)

MBT 0.104 (0.018) b 0.014 (0.002) a 0.010 (0.002) b 0.043 2012M 0.007 (0.001)

DMR 0.023 (0.004) a 0.033 (0.002) c 0.012 (0.001) b 0.023 2008MM 0.022 (0.002)

Average 0.154 0.020 0.009 2005PR 0.055 (0.004)

CTR 0.061 (0.006) c 0.208 (0.008) b 0.156 (0.006) b 0.142 2013DMR30 0.156 (0.002)

MAD 0.033 (0.014) b 0.224 (0.020) b 0.205 (0.003) a 0.154 2013BIO 0.069 (0.013)

MED 0.014 (0.002) a 0.128 (0.018) a 0.193 (0.007) c 0.112 2011M 0.148 (0.007)

MBT 0.029 (0.005) b 0.159 (0.009) a 0.135 (0.006) cd 0.108 2012M 0.171 (0.014)

DMR 0.138 (0.004) d 0.203 (0.028) b 0.069 (0.008) d 0.137 2008MM 0.219 (0.018)

Average 0.055 0.184 0.152 2005PR 0.103 (0.003)

CTR 0.013 (0.001) b 0.012 (0.000) b 0.007 (0.001) a 0.011 2013DMR30 0.005 (0.001)

MAD n.d. 0.018 (0.004) c 0.011 (0.001) b 0.014 2013BIO 0.015 (0.001)

MED n.d. 0.034 (0.004) d 0.012 (0.000) b 0.023 2011M 0.004 (0.000)

MBT n.d. 0.014 (0.001) bc 0.011 (0.001) b 0.013 2012M 0.016 (0.003)

DMR n.d. 0.004 (0.000) a 0.007 (0.000) a 0.005 2008MM 0.004 (0.000)

Average 0.013 0.016 0.010 2005PR 0.003 (0.001)

CTR n.d. n.d. 0.002 (0.000) c 0.002 2013DMR30 0.002 (0.000)

MAD n.d. n.d. 0.002 (0.000) a 0.002 2013BIO 0.004 (0.000)

MED n.d. n.d. 0.002 (0.000) b 0.002 2011M n.d.

MBT n.d. n.d. 0.005 (0.000) d 0.005 2012M n.d.

DMR n.d. n.d. 0.002 (0.000) c 0.002 2008MM n.d.

Average n.a. n.a. 0.003 2005PR n.d.

2011 Averages 2012 Averages 2013 Averages
3-Vintage 

Average

ethyl malate 

(A/10^7)

ethyl-2-methyl-

butanoate 

(A/10^7)

ethyl-3-methyl-

butanoate 

(A/10^7)

ethyl-trans -4-

decenoate 

(A/10^7)

isoamyl 

hexanoate 

(A/10^7)

ethyl-2-

hexenoate 

(A/10^7)
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Despite the significant differences observed within each vintage, for -linalool, the 3-

year average values were approximate and only DMR average was lower than the 

average of the group. The values for 2013 were higher than for wines from the other 

vintages. The concentration values were in the range of micrograms per litre for each 

modality. The range of concentration of the studied samples was similar to the range of 

the commercial wines, even though the average from BIO modality was higher than for 

the other samples. 

Limonene was detected and quantified in only one vintage, 2013. The values were 

all significantly different, with MAD, CTR and MED obtaining the highest values and 

DMR showing a concentration 5-fold lower than this group. The concentration values 

were in the range of micrograms per litre for each modality. The range of concentration 

of the study samples was similar to the range of the commercial wine references. 

Geranyl acetone was only detected and quantified in 2013 vintage. The values were 

all significantly different, with CTR being the highest value and the remaining modalities 

showing lower concentrations than CTR. The concentration values were in the range of 

micrograms per litre for each modality. The range of concentration of the studied 

samples was similar to the range of the commercial wines. 

For nerolidol, the concentration values were in the range of decimal micrograms per 

litre for each modality. MAD and MBT showed the highest 3-year average, and the 

values for 2013 were smaller than for the other vintages. The range of concentration of 

the studied samples was similar to the range of the commercially obtained wine 

references. 

Neryl acetate was detected and quantified in wines from 2011 and 2012 vintages. 

DMR showed to have the lowest significant concentration for both vintages, and the 

other modalities displayed similar values for both vintages. MAD and MED had the 

highest concentrations, with CTR with approximate values, and MBT lower than these 

three. The concentration values were in the range of micrograms per litre for each 

modality. The range of concentration of the studied samples was similar to the range of 

the commercial wines. 

The values for -terpineol, for 2011 and 2012 vintages, showed significant 

differences between the modalities, with DMR showing the lowest values. CTR, MAD 

and MED showed the highest 3-year average. The range of concentration of the 

studied samples was similar to the range of the commercial wines. 
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Table 40 - Terpene and terpene derivatives content of the wines per modality, for 2011, 2012 and 2013 vintages. 
Average concentration values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. 

 

Concerning -cis-terpineol, the concentration values were in the range of 

micrograms per litre for each modality. The values for all vintages were similar, having 

some significant differences within each vintage. CTR and MAD presented the highest 

3-year average. The range of concentration of the studied samples was similar to the 

range of the commercial wines. 

Terpenes Modality Wine Averages

CTR 0.005 (0.001) d 0.005 (0.001) b 0.330 (0.046) c 0.114 2013DMR30 0.083 (0.003)

MAD 0.001 (0.000) a 0.012 (0.000) e 0.377 (0.008) cd 0.130 2013BIO 0.318 (0.007)

MED 0.001 (0.000) a 0.007 (0.000) c 0.400 (0.020) d 0.136 2011M 0.006 (0.000)

MBT 0.002 (0.000) b 0.010 (0.001) d 0.264 (0.029) b 0.092 2012M 0.012 (0.000)

DMR 0.003 (0.000) c 0.002 (0.000) a 0.076 (0.003) a 0.027 2008MM 0.010 (0.001)

Average 0.002 0.007 0.289 2005PR n.d.

CTR n.d. n.d. 0.604 (0.017) d 0.604 2013DMR30 0.211 (0.004)

MAD n.d. n.d. 0.662 (0.037) e 0.662 2013BIO 0.486 (0.009)

MED n.d. n.d. 0.547 (0.002) c 0.547 2011M n.d.

MBT n.d. n.d. 0.461 (0.036) b 0.461 2012M n.d.

DMR n.d. n.d. 0.177 (0.011) a 0.177 2008MM n.d.

Average n.a. n.a. 0.490 2005PR n.d.

CTR n.d. n.d. 0.332 (0.024) c 0.332 2013DMR30 0.045 (0.001)

MAD n.d. n.d. 0.086 (0.012) b 0.086 2013BIO 0.117 (0.016)

MED n.d. n.d. 0.091 (0.001) b 0.091 2011M n.d.

MBT n.d. n.d. 0.086 (0.001) b 0.086 2012M n.d.

DMR n.d. n.d. 0.039 (0.008) a 0.039 2008MM n.d.

Average n.a. n.a. 0.127 2005PR n.d.

CTR 0.005 (0.000) a 0.003 (0.000) a 0.003 (0.001) c 0.004 2013DMR30 0.001 (0.000)

MAD 0.007 (0.002) a 0.056 (0.006) d 0.003 (0.000) bc 0.022 2013BIO 0.002 (0.000)

MED 0.004 (0.001) a 0.041 (0.007) c 0.004 (0.000) d 0.017 2011M 0.029 (0.003)

MBT 0.031 (0.002) c 0.076 (0.005) e 0.002 (0.001) b 0.037 2012M 0.472 (0.092)

DMR 0.017 (0.005) b 0.014 (0.004) b 0.001 (0.001) a 0.011 2008MM 0.030 (0.003)

Average 0.013 0.038 0.003 2005PR n.d.

CTR 0.026 (0.0033) c 0.015 (0.0023) b n.d. 0.021 2013DMR30 n.d.

MAD 0.028 (0.0035) c 0.015 (0.0019) b n.d. 0.021 2013BIO n.d.

MED 0.030 (0.0028) c 0.015 (0.0036) b n.d. 0.023 2011M 0.005 (0.0009)

MBT 0.014 (0.0012) b 0.016 (0.0025) b n.d. 0.015 2012M 0.017 (0.0014)

DMR 0.005 (0.0007) a n.d. n.d. 0.003 2008MM 0.015 (0.0030)

Average 0.021 0.012 n.a. 2005PR 0.015 (0.0014)

CTR 0.010 (0.0000) d 0.007 (0.0006) b 0.005 (0.0000) b 0.007 2013DMR30 n.d.

MAD 0.005 (0.0010) b 0.010 (0.0000) d n.d. 0.005 2013BIO n.d.

MED 0.007 (0.0006) c 0.008 (0.0012) bc n.d. 0.005 2011M 0.002 (0.0000)

MBT 0.003 (0.0012) a 0.009 (0.0006) c n.d. 0.004 2012M 0.005 (0.0006)

DMR 0.003 (0.0006) a n.d. n.d. 0.001 2008MM 0.008 (0.0010)

Average 0.006 0.007 0.001 2005PR 0.004 (0.0006)

CTR 0.009 (0.0001) c 0.005 (0.0001) b 0.005 (0.0003) b 0.006 2013DMR30 0.005 (0.0004)

MAD 0.010 (0.0003) d n.d. 0.006 (0.0006) c 0.005 2013BIO 0.005 (0.0001)

MED 0.003 (0.0003) a n.d. 0.005 (0.0004) ab 0.003 2011M 0.002 (0.0002)

MBT 0.005 (0.0006) b n.d. 0.005 (0.0001) bc 0.003 2012M 0.012 (0.0002)

DMR 0.003 (0.0002) a 0.029 (0.0006) c 0.004 (0.0003) a 0.012 2008MM n.d.

Average 0.006 0.007 0.005 2005PR n.d.

CTR n.d. n.d. 0.111 (0.0006) d 0.111 2013DMR30 0.078 (0.0015)

MAD n.d. n.d. 0.116 (0.0010) e 0.116 2013BIO 0.097 (0.0000)

MED n.d. n.d. 0.107 (0.0010) c 0.107 2011M n.d.

MBT n.d. n.d. 0.095 (0.0010) b 0.095 2012M n.d.

DMR n.d. n.d. 0.067 (0.0010) a 0.067 2008MM n.d.

Average n.a. n.a. 0.099 2005PR n.d.

CTR 0.055 0.035 1.391 0.494 2013DMR30 0.424

MAD 0.051 0.093 1.249 0.464 2013BIO 1.025

MED 0.045 0.071 1.153 0.423 2011M 0.044

MBT 0.055 0.111 0.914 0.360 2012M 0.517

DMR 0.032 0.045 0.364 0.147 2008MM 0.063

Average 0.048 0.071 1.014 2005PR 0.019

2011 Averages 2012 Averages 2013 Averages
3-Vintage 

Average

-cis -terpineol 

(g/l)

terpinolene 

(g/l)

Total terpenes 

(g/l)

 - linalool (g/l)

limonene (g/l)

geranyl acetone 

(g/l)

nerolidol (g/l)

neryl acetate 

(g/l)

-terpineol 

(g/l)



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

128 

 

 
 

Terpinolene was detected and quantified in only one vintage, 2013. The values were 

all significantly different, with MAD, CTR and MBT having the highest values. DMR 

displayed the lowest value for all modalities. The concentration values were in the 

range of micrograms per litre for each modality. The range of concentration of the 

studied samples was similar to the range of the commercial wines. 

Globally, and using the total terpenes 3-year average concentration, it was observed 

that 2011 and 2012 vintages had lower total terpene concentration than 2013. The 

range of total concentration of the study samples was similar to the range of the 

commercially obtained wine references. The only exception was 2013 BIO that 

displayed a concentration twice higher than average values. 

Table 41 displays some terpenes content of the wines per modality, displaying 

average chromatographic areas.   

cis--Farnesene was identified only in wines from 2013 vintage, and the values 

showed significant differences. Wines from DMR modality was obtained the lowest 

value and MED the highest, with CTR and MAD having an intermediated value. The 

obtained chromatographic areas were similar to the range of the commercial wines.  

trans--Bisabolene was only identified in the 2013 wine vintage. The obtained 

chromatographic areas for all modalities were similar, except for CTR that displayed a 

significantly higher area. The values were similar to the range of the commercially 

obtained wine references.  

trans-Nerolidol was only identified in the 2013 vintage wines. The area values 

showed significant differences. DMR was the lowest value and MED, MAD and MBT 

were in an intermediate level. CTR presented the highest chromatographic area. The 

obtained areas were similar to the range of the commercial wines.  

Table 42 displays other than ester or terpene compounds concentrations in the 

wines from the study and several commercially obtained wine references (only for 

comparison) and Table 43 shows analytical chromatographic areas for the wines from 

the study and references. Even though the chromatographic areas do not provide 

information about the concentration of these compounds in each sample, it could still 

provide some information about how each modality influences grape and/or wine 

quality in each vintage.  

 

 

 

 

 



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

129 

 

 
 

Table 41 - Terpenes content of the wines per modality, for 2011, 2012 and 2013 vintages. Average chromatographic 
area values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. 

 

 

 

Terpenes Modality Wine Averages

CTR n.d. n.d. 0.000 (0.000) a 0.000 2013DMR30 0.013 (0.001) 

MAD n.d. n.d. 0.002 (0.001) ab 0.002 2013BIO 0.007 (0.001) 

MED n.d. n.d. 0.004 (0.001) c 0.004 2011M n.d.

MBT n.d. n.d. 0.002 (0.000) bc 0.002 2012M n.d.

DMR n.d. n.d. 0.012 (0.002) d 0.012 2008MM n.d.

Average n.a. n.a. 0.004 2005PR n.d.

CTR n.d. n.d. 0.026 (0.010) a 0.026 2013DMR30 0.070 (0.002) 

MAD n.d. n.d. 0.053 (0.004) bc 0.053 2013BIO 0.052 (0.007) 

MED n.d. n.d. 0.058 (0.003) c 0.058 2011M n.d.

MBT n.d. n.d. 0.048 (0.000) b 0.048 2012M n.d.

DMR n.d. n.d. 0.080 (0.004) d 0.080 2008MM n.d.

Average n.a. n.a. 0.053 2005PR n.d.

CTR n.d. n.d. 0.028 (0.005) a 0.028 2013DMR30 0.034 (0.001) 

MAD n.d. n.d. 0.034 (0.000) c 0.034 2013BIO 0.023 (0.001) 

MED n.d. n.d. 0.028 (0.001) a 0.028 2011M n.d.

MBT n.d. n.d. 0.029 (0.001) ab 0.029 2012M n.d.

DMR n.d. n.d. 0.033 (0.002) bc 0.033 2008MM n.d.

Average n.a. n.a. 0.030 2005PR n.d.

CTR n.d. n.d. 2.377 (0.176) b 2.377 2013DMR30 0.885 (0.067) 

MAD n.d. n.d. 2.224 (0.356) b 2.224 2013BIO 1.608 (0.225) 

MED n.d. n.d. 3.407 (0.205) c 3.407 2011M n.d.

MBT n.d. n.d. 1.898 (0.301) b 1.898 2012M n.d.

DMR n.d. n.d. 0.641 (0.245) a 0.641 2008MM n.d.

Average n.a. n.a. 2.109 2005PR n.d.

CTR n.d. n.d. 2.959 (0.162) b 2.959 2013DMR30 2.270 (0.366) 

MAD n.d. n.d. 1.922 (0.118) a 1.922 2013BIO 1.280 (0.121) 

MED n.d. n.d. 1.610 (0.112) a 1.610 2011M n.d.

MBT n.d. n.d. 1.599 (0.148) a 1.599 2012M n.d.

DMR n.d. n.d. 1.795 (0.444) a 1.795 2008MM n.d.

Average n.a. n.a. 1.977 2005PR n.d.

CTR n.d. n.d. 0.982 (0.108) b 0.982 2013DMR30 0.470 (0.014) 

MAD n.d. n.d. 0.997 (0.182) b 0.997 2013BIO 0.632 (0.001) 

MED n.d. n.d. 1.256 (0.149) c 1.256 2011M n.d.

MBT n.d. n.d. 0.806 (0.105) b 0.806 2012M n.d.

DMR n.d. n.d. 0.408 (0.091) a 0.408 2008MM n.d.

Average n.a. n.a. 0.890 2005PR n.d.

CTR n.d. n.d. 0.386 (0.008) a 0.386 2013DMR30 3.848 (1.851) 

MAD n.d. n.d. 0.960 (0.555) a 0.960 2013BIO 0.948 (0.310) 

MED n.d. n.d. 0.318 (0.005) a 0.318 2011M n.d.

MBT n.d. n.d. 1.161 (0.590) a 1.161 2012M n.d.

DMR n.d. n.d. 9.581 (3.877) b 9.581 2008MM n.d.

Average n.a. n.a. 2.481 2005PR n.d.

CTR n.d. n.d. 5.231 (0.059) c 5.231 2013DMR30 0.699 (0.004) 

MAD n.d. n.d. 4.633 (0.449) bc 4.633 2013BIO 3.547 (0.028) 

MED n.d. n.d. 9.307 (0.680) d 9.307 2011M n.d.

MBT n.d. n.d. 3.927 (0.607) b 3.927 2012M n.d.

DMR n.d. n.d. 0.899 (0.110) a 0.899 2008MM n.d.

Average n.a. n.a. 4.799 2005PR n.d.

CTR n.d. n.d. 19.594 (5.407) b 19.594 2013DMR30 0.251 (0.009) 

MAD n.d. n.d. 0.472 (0.050) a 0.472 2013BIO 0.219 (0.042) 

MED n.d. n.d. 0.525 (0.100) a 0.525 2011M n.d.

MBT n.d. n.d. 0.393 (0.090) a 0.393 2012M n.d.

DMR n.d. n.d. 0.258 (0.090) a 0.258 2008MM n.d.

Average n.a. n.a. 4.248 2005PR n.d.

CTR n.d. n.d. 172.624 (2.634) d 172.6 2013DMR30 0.662 (0.035) 

MAD n.d. n.d. 4.561 (0.457) b 4.561 2013BIO 3.554 (0.016) 

MED n.d. n.d. 9.404 (0.762) c 9.404 2011M n.d.

MBT n.d. n.d. 3.936 (0.601) b 3.936 2012M n.d.

DMR n.d. n.d. 0.914 (0.034) a 0.914 2008MM n.d.

Average n.a. n.a. 38.288 2005PR n.d.

2011 Averages 2012 Averages 2013 Averages
3-Vintage 

Average

unidentified 

sesquiterpene 4 

(A/10^7)

trans --

bisabolene 

(A/10^7)

trans -nerolidol 

(A/10^7)

S--pinene 

(A/10^7)

unidentifid 

terpene 1  

(A/10^7)

unidentifid 

terpene 2  

(A/10^7)

cis --farnesene 

(A/10^7)

unidentified 

sesquiterpene 1 

(A/10^7)

unidentified 

sesquiterpene 2 

(A/10^7)

unidentified 

sesquiterpene 3 

(A/10^7)
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Table 42 - Several classes of compounds content of the wines per modality, for 2011, 2012 and 2013 vintages. 
Average concentration values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. 

 

Concerning phenylethyl alcohol, the concentration values were in the range of 

several milligrams per litre for each modality. The average values for all vintages were 

similar. CTR and MBT showed the highest 3-year average and DMR the lowest 

average. The range of concentration of the study samples was similar to the range of 

the commercially obtained wine references. 

 Diethyl succinate concentrations range of hundreds of micrograms to milligrams per 

litre for each modality. The values for 2011 were higher than the remaining vintages. 

CTR and DMR showed the highest 3-year average and MAD the lowest average. The 

range of concentration of the study samples was not similar to the range of the 

commercially obtained wine references, which were substantially higher. 

-Damascenone was only identified and quantified in 2013 vintage. There were 

significant differences between the concentrations obtained, being highest 

concentration found in MAD, followed by CTR, MED and MBT, with DMR having the 

lowest concentration. The concentration values were in the range of micrograms per 

litre for each modality. The range of concentration of the studied samples was similar to 

the range of the commercial wines. 

The chromatographic areas obtained for several classes of compounds are present 

in Table 43.  

4-Ethylguaiacol was identified only in wines from 2013 vintage, and the 

chromatographic area values showed significant differences. DMR has had the lowest 

value and MED the highest, with MAD having an intermediated level. CTR and MBT 

displayed similar low values. The obtained areas were similar to the range of the 

Modality Wine Averages

CTR 11.273 (0.483) d 6.888 (0.028) b 7.295 (0.030) b 8.485 2013DMR30 3.312 (0.090)

MAD 4.724 (0.541) b 7.966 (0.347) bc 7.170 (0.280) b 6.620 2013BIO 8.093 (0.133)

MED 3.660 (0.100) a 6.970 (1.396) b 9.650 (0.100) d 6.760 2011M 5.953 (0.639)

MBT 5.166 (0.238) b 8.933 (0.151) c 8.493 (0.088) c 7.531 2012M 7.311 (0.196)

DMR 5.984 (0.135) c 3.801 (0.553) a 3.840 (0.161) a 4.541 2008MM 5.625 (0.421)

Average 6.161 6.911 7.289 2005PR 5.550 (0.173)

CTR 3.749 (0.145) c 2.982 (0.021) d 1.375 (0.024) d 2.702 2013DMR30 0.423 (0.013)

MAD 0.541 (0.034) a 1.433 (0.091) b 0.567 (0.015) b 0.847 2013BIO 4.330 (0.050)

MED 0.640 (0.060) a 1.026 (0.113) a 2.408 (0.036) e 1.358 2011M 8.141 (0.218)

MBT 2.401 (0.060) b 1.043 (0.019) a 0.675 (0.010) c 1.373 2012M 2.227 (0.105)

DMR 3.704 (0.029) c 1.662 (0.197) b 0.389 (0.001) a 1.918 2008MM 7.636 (0.347)

Average 2.207 1.629 1.083 2005PR 11.753 (0.415)

CTR n.d. n.d. 0.012 (0.001) d 0.012 2013DMR30 0.003 (0.000)

MAD n.d. n.d. 0.014 (0.001) e 0.014 2013BIO 0.010 (0.001)

MED n.d. n.d. 0.011 (0.000) c 0.011 2011M n.d.

MBT n.d. n.d. 0.009 (0.001) b 0.009 2012M n.d.

DMR n.d. n.d. 0.002 (0.001) a 0.002 2008MM n.d.

Average n.a. n.a. 0.010 2005PR n.d.

2011 Averages 2012 Averages 2013 Averages

diethyl 

succianate (mg/l)

phenylethyl 

alcohol (mg/l)

-damascenone 

(g/l)

3-Vintage 

Average
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commercially obtained wine references. 4-Ethylguaiacol was identified in commercial 

samples only.  

For benzyl alcohol, the values for vintages were similar and similar to the range 

obtained for the commercial wine references. MAD showed the highest 3-year average. 

 

Table 43 - Several classes of compounds content of the wines per modality, for 2011, 2012 and 2013 vintages. 
Average chromatographic area values and standard deviation (between brackets). 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). Different letters indicate significantly different averages, according to Duncan test 
p<0.05. 

 

TDN was detected in 2011 and 2012 vintages. The obtained values were 

significantly different, with MAD and MED being the highest values and MBT and DMR 

showing the lowest values of the group. The range of the chromatographic areas of the 

studied samples was similar to the range of the commercial wines. 

Dihydro pseudoionone was only detected in wines from 2013 vintage. The 

chromatographic areas obtained were significantly different, with MAD, CTR having the 

highest values and MBT the lowest. The range of areas of the studied samples was 

similar to the range of the commercial wines.  

Others Modality Wine Averages

CTR n.d. n.d. 1.893 (0.062) a 1.893 2013DMR30 0.841 (0.026) 

MAD n.d. n.d. 11.732 (2.073) b 11.732 2013BIO 1.292 (0.199) 

MED n.d. n.d. 113.283 (6.369) c 113.3 2011M n.d.

MBT n.d. n.d. 3.774 (0.847) a 3.774 2012M n.d.

DMR n.d. n.d. 0.361 (0.068) a 0.361 2008MM n.d.

Average n.a. n.a. 26.21 2005PR n.d.

CTR n.d. n.d. n.d. n.d. 2013DMR30 n.d.

MAD n.d. n.d. n.d. n.d. 2013BIO n.d.

MED n.d. n.d. n.d. n.d. 2011M n.d.

MBT n.d. n.d. n.d. n.d. 2012M 0.024 (0.004) 

DMR n.d. n.d. n.d. n.d. 2008MM 0.000 (0.000) 

Average n.a. n.a. n.a. n.a. 2005PR 0.136 (0.020) 

CTR 0.014 (0.003) a 0.011 (0.001) b 0.011 (0.001) a 0.012 2013DMR30 0.009 (0.001) 

MAD 0.020 (0.003) b 0.024 (0.002) c 0.062 (0.050) b 0.035 2013BIO 0.040 (0.001) 

MED 0.029 (0.002) c 0.024 (0.003) c 0.017 (0.001) a 0.023 2011M 0.016 (0.001) 

MBT 0.021 (0.002) b 0.021 (0.002) c 0.016 (0.001) a 0.020 2012M 0.032 (0.001) 

DMR 0.033 (0.002) c 0.004 (0.001) a 0.011 (0.001) a 0.016 2008MM 0.022 (0.001) 

Average 0.023 0.017 0.023 2005PR 0.031 (0.003) 

CTR 0.293 (0.013) b 0.032 (0.005) b n.d. 0.163 2013DMR30 n.d.

MAD 0.650 (0.032) d 0.037 (0.003) b n.d. 0.343 2013BIO n.d.

MED 0.458 (0.082) c 0.049 (0.003) c n.d. 0.254 2011M 0.046 (0.001) 

MBT 0.077 (0.004) a 0.031 (0.003) b n.d. 0.054 2012M 0.025 (0.002) 

DMR 0.105 (0.006) a 0.021 (0.002) a n.d. 0.063 2008MM 0.121 (0.008) 

Average 0.317 0.034 n.a. 2005PR 0.348 (0.035) 

CTR n.d. n.d. 0.855 (0.008) d 0.855 2013DMR30 0.949 (0.016) 

MAD n.d. n.d. 0.944 (0.026) e 0.944 2013BIO 0.057 (0.021) 

MED n.d. n.d. 0.315 (0.007) b 0.315 2011M n.d.

MBT n.d. n.d. 0.244 (0.050) a 0.244 2012M n.d.

DMR n.d. n.d. 0.392 (0.022) c 0.392 2008MM n.d.

Average n.a. n.a. 0.550 2005PR n.d.

2011 Averages 2012 Averages 2013 Averages
3-Vintage 

Average

4-ethylguaiacol 

(A/10^7)

4-ethylphenol 

(A/10^7)

dihydro 

pseudoionone 

(A/10^7)

benzyl alcohol 

(A/10^7)

TDN (A/10^7)
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6.2 Odour Activity Values (OAV). Baga varietal aroma compounds 

 

Although the numerous volatile compounds present in a wine, only a restricted 

number of them contribute effectively to the aroma of the wine perception. The 

calculation of the odour activity (OAV) of each compound allows knowing the impact of 

this compound on the global aroma of a particular wine. The odour activity of a 

compound can be estimated by the ratio between the concentration of a volatile 

compound and its corresponding perception threshold, if described in literature [330]. 

Theoretically, when a value of odour activity for an individual compound is higher than 

the unity, this compound might be sensorially perceived and could have an impact on 

the overall aroma. One problem that might arise with the use of this odour activity 

estimation is that the odour thresholds for the studied variety, wine style or type or even 

for the same beverage are frequently not available in the literature. This leads to 

assumption that odour threshold available in literature is similar and equivalent, even if 

not estimated for the same beverage. Another problem is that each compound suffers 

influence from the matrix of the sample, not over the descriptors perceived but over its 

odour intensity [331]. Because of these problems, it was found in literature several 

suggestions to consider as valid sensorial contribution of compounds if OAV is about 

0.2 (at least 20% of the threshold concentration) [332,333]. 

The odour activity values of the esters family compounds are displayed in Table 44. 

The estimation of OAV for each compound followed the threshold concentration 

obtained from literature for that specific compound.  

From all the esters that odour activity estimation was possible (Table 37), ethyl 

hexanoate, ethyl octanoate, ethyl decanoate and isoamyl acetate, showed OAV values 

above the unity - these compounds should have impact on the aroma of Baga wines. 

Ethyl butanoate, ethyl heptanoate, ethyl dodecanoate and phenylethyl acetate 

displayed OAV values above 0.2 so their contribution on the aroma should not be 

neglected, even if the individual contribution could not be performed by individual 

tasters.  

Another large group of compounds quantified were the terpenes. From all the 

terpenes that odour activity estimation was possible (Table 45), -linalool and 

terpinolene showed OAV values below 1 but above 0.2, thus their contribution on the 

aroma should not be ignored. Given the numerous terpenes present in Baga wines, 

even if present in low concentrations, some synergic contributions for the global aroma 

between these compounds might occur.  
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Table 44 - Odour activity values (OAV) for esters of the wines per modality, for 2011, 2012 and 2013 vintages and 
for commercially obtained wine references. Average values. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 

 

Esters Modality 2011 2012 2013 Wines OAV

CTR 0.68 0.75 0.17 0.53 2013DMR30 0.35

MAD 0.15 1.05 0.37 0.52 2013BIO 0.45

MED 0.12 0.58 0.50 0.40 2011M 0.27

MBT 0.12 0.65 1.20 0.66 2012M 0.97

DMR 0.33 0.15 0.60 0.36 2008MM 0.82

Average 0.28 0.64 0.57 n.a. 2005PR 0.42

CTR 0.81 1.33 0.64 0.93 2013DMR30 0.71

MAD 0.93 3.62 0.93 1.83 2013BIO 0.93

MED 0.86 2.79 0.95 1.53 2011M 1.57

MBT 0.79 2.64 0.88 1.44 2012M 2.83

DMR 1.19 2.48 0.86 1.51 2008MM 2.40

Average 0.91 2.57 0.85 n.a. 2005PR 2.62

CTR 0.14 0.33 0.15 0.21 2013DMR30 1.00

MAD 0.12 0.18 0.29 0.20 2013BIO 0.20

MED 0.11 0.17 0.18 0.15 2011M 0.17

MBT 0.36 0.21 0.14 0.24 2012M 0.09

DMR 0.42 0.12 0.30 0.28 2008MM 0.21

Average 0.23 0.20 0.21 n.a. 2005PR 0.18

CTR 98.1 234.1 111.5 147.9 2013DMR30 108.4

MAD 43.2 287.1 145.4 158.6 2013BIO 151.3

MED 54.9 380.9 177.7 204.5 2011M 173.2

MBT 54.0 205.9 148.3 136.1 2012M 360.9

DMR 93.2 289.5 171.5 184.7 2008MM 323.8

Average 68.7 279.5 150.9 n.a. 2005PR 310.0

CTR 2.01 1.57 1.96 1.85 2013DMR30 4.09

MAD 0.55 1.56 2.59 1.57 2013BIO 3.34

MED 0.49 1.67 2.98 1.71 2011M 5.32

MBT 0.93 1.37 2.93 1.74 2012M 9.93

DMR 1.06 5.87 4.62 3.85 2008MM 6.99

Average 1.01 2.41 3.02 n.a. 2005PR 4.10

CTR 0.07 0.04 0.07 0.06 2013DMR30 0.28

MAD 0.03 0.06 0.17 0.09 2013BIO 0.29

MED 0.03 0.08 0.26 0.12 2011M 0.07

MBT 0.07 0.05 0.12 0.08 2012M 0.23

DMR 0.03 0.22 0.12 0.12 2008MM 0.10

Average 0.05 0.09 0.15 n.a. 2005PR 0.19

CTR 1.97 2.35 4.95 3.09 2013DMR30 5.60

MAD 37.26 5.00 11.00 17.75 2013BIO 6.10

MED 22.34 5.55 7.98 11.96 2011M 2.63

MBT 6.99 4.56 5.51 5.69 2012M 5.55

DMR 3.48 4.18 4.80 4.15 2008MM 2.26

Average 14.41 4.33 6.85 n.a. 2005PR 1.20

CTR 0.30 0.20 0.55 0.35 2013DMR30 0.19

MAD 2.94 0.18 0.93 1.35 2013BIO 0.35

MED 1.62 0.26 0.44 0.77 2011M 0.13

MBT 0.41 0.40 0.38 0.40 2012M 0.24

DMR 0.18 0.15 0.15 0.16 2008MM 0.11

Average 1.09 0.24 0.49 n.a. 2005PR 0.22

ethyl hexanoate

ethyl octanoate

ethyl 

dodecanoate

phenylethyl 

acetate

3 Year 

Average

OAV

ethyl butanoate

ethyl heptanoate

ethyl decanoate

isoamyl acetate
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trans-Nerolidol showed OAV values above 1 and so, its contribution on the aroma 

should be perceptible. The value obtained for CTR in 2013 vintage was high, given 

some suspicion to the validity of this estimation.  

 

Table 45 - Odour activity values (OAV) for Terpenes of the wines per modality, for 2011, 2012 and 2013 vintages 
and for commercially obtained wine references. Average values. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 

Terpenes Modality 2011 2012 2013 Wines OAV

CTR 0.20 0.21 1.69 0.70 2013DMR30 0.00

MAD 0.04 0.48 0.00 0.17 2013BIO 0.00

MED 0.04 0.28 0.00 0.11 2011M 0.24

MBT 0.08 0.41 0.00 0.16 2012M 0.48

DMR 0.12 0.08 0.00 0.07 2008MM 0.41

Average 0.10 0.29 0.34 n.a. 2005PR 0.00

CTR n.a. n.a. 0.003 0.003 2013DMR30 0.001

MAD n.a. n.a. 0.003 0.003 2013BIO 0.002

MED n.a. n.a. 0.003 0.003 2011M n.a.

MBT n.a. n.a. 0.002 0.002 2012M n.a.

DMR n.a. n.a. 0.001 0.001 2008MM n.a.

Average n.a. n.a. 0.002 n.a. 2005PR n.a.

CTR n.a. n.a. 0.0018 0.0018 2013DMR30 0.0002

MAD n.a. n.a. 0.0005 0.0005 2013BIO 0.0006

MED n.a. n.a. 0.0005 0.0005 2011M n.a.

MBT n.a. n.a. 0.0005 0.0005 2012M n.a.

DMR n.a. n.a. 0.0002 0.0002 2008MM n.a.

Average n.a. n.a. 0.0007 n.a. 2005PR n.a.

CTR 0.007 0.004 0.005 0.005 2013DMR30 0.001

MAD 0.010 0.080 0.004 0.031 2013BIO 0.003

MED 0.006 0.059 0.006 0.024 2011M 0.042

MBT 0.045 0.109 0.003 0.052 2012M 0.674

DMR 0.024 0.020 0.002 0.015 2008MM 0.043

Average 0.018 0.055 0.004 n.a. 2005PR 0.000

CTR 0.00003 0.00002 n.a. 0.00002 2013DMR30 n.a.

MAD 0.00003 0.00002 n.a. 0.00002 2013BIO n.a.

MED 0.00003 0.00002 n.a. 0.00003 2011M 0.00001

MBT 0.00002 0.00002 n.a. 0.00002 2012M 0.00002

DMR 0.00001 0.00000 n.a. 0.00000 2008MM 0.00002

Average 0.00002 0.00001 n.a. n.a. 2005PR 0.00002

CTR 0.025 0.017 0.013 0.018 2013DMR30 0.000

MAD 0.013 0.025 0.000 0.013 2013BIO 0.000

MED 0.017 0.019 0.000 0.012 2011M 0.005

MBT 0.007 0.022 0.000 0.009 2012M 0.012

DMR 0.008 0.000 0.000 0.003 2008MM 0.020

Average 0.014 0.017 0.003 n.a. 2005PR 0.009

CTR 0.022 0.012 0.012 0.015 2013DMR30 0.012

MAD 0.026 0.000 0.014 0.013 2013BIO 0.012

MED 0.007 0.000 0.012 0.006 2011M 0.005

MBT 0.013 0.000 0.013 0.009 2012M 0.029

DMR 0.008 0.073 0.010 0.030 2008MM 0.000

Average 0.015 0.017 0.012 n.a. 2005PR 0.000

CTR n.a. n.a. 0.56 0.56 2013DMR30 0.39

MAD n.a. n.a. 0.58 0.58 2013BIO 0.49

MED n.a. n.a. 0.54 0.54 2011M n.a.

MBT n.a. n.a. 0.48 0.48 2012M n.a.

DMR n.a. n.a. 0.34 0.34 2008MM n.a.

Average n.a. n.a. 0.50 n.a. 2005PR n.a.

-Terpineol

-cis-Terpineol

Nerolidol

Neryl Acetate

OAV 3 Year 

Average

Terpinolene

Geranyl acetone

 - Linalol

Limonene
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Phenylethyl alcohol exhibited OAV values below the unity but above 0.2, therefore 

its contribution on the aroma should not be neglected. 

-Damascenone showed OAV values below 1 but above 0.2, consequently its 

contribution on the aroma should be considered.  

 

Table 46 - Odour activity values (OAV) for several classes of compounds of the wines per modality, for 2011, 2012 
and 2013 vintages and for commercially obtained wine references. Average values. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 

 

Summarizing, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isoamyl acetate 

and trans-nerolidol were present with odour activity above 1 and should have impact on 

the aroma of Baga wines. On the other hand, ethyl butanoate, ethyl heptanoate, ethyl 

dodecanoate, phenylethyl acetate, phenylethyl alcohol, -linalool, terpinolene and -

damascenone exhibited OAV values above 0.2 (but below the unity) so their 

contribution on the aroma should not be neglected, even if the individual contribution 

could not be performed by individual tasters. 

All other compounds showed OAV values below 0.2 or it was not possible to 

estimate odour activity because they do not have available odour threshold 

concentrations in literature, or the GC-MS method response coefficient for the 

compound was not available or not applicable. 

The present OAV determination was measured which must be taken into account 

when Baga varietal aroma is described. It is possible that other compounds might have 

also significant contribution even though not being identified and quantified during the 

Others Modality 2011 2012 2013 Wines OAV

CTR 1.13 0.69 0.73 0.85 2013DMR30 0.33

MAD 0.47 0.80 0.72 0.66 2013BIO 0.81

MED 0.37 0.70 0.97 0.68 2011M 0.60

MBT 0.52 0.89 0.85 0.75 2012M 0.73

DMR 0.60 0.38 0.38 0.45 2008MM 0.56

Average 0.62 0.69 0.73 n.a. 2005PR 0.56

CTR 0.019 0.015 0.007 0.014 2013DMR30 0.002

MAD 0.003 0.007 0.003 0.004 2013BIO 0.022

MED 0.003 0.005 0.012 0.007 2011M 0.041

MBT 0.012 0.005 0.003 0.007 2012M 0.011

DMR 0.019 0.008 0.002 0.010 2008MM 0.038

Average 0.011 0.008 0.005 n.a. 2005PR 0.059

CTR n.a. n.a. 0.25 0.25 2013DMR30 0.06

MAD n.a. n.a. 0.27 0.27 2013BIO 0.19

MED n.a. n.a. 0.22 0.22 2011M n.a.

MBT n.a. n.a. 0.18 0.18 2012M n.a.

DMR n.a. n.a. 0.05 0.05 2008MM n.a.

Average n.a. n.a. 0.19 n.a. 2005PR n.a.

diethyl succianate

-damascenone

phenylethyl 

alcohol

OAV 3 Year 

Average
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present research or the odour threshold was not known or available. The identified 

compounds were divergent from the ones listed in the literature, because of the 

different quantification methods used, and vintage fluctuations that might cause 

difference of varietal aroma content.   
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6.3 Principal components analysis  

 

With the aim to elucidate some relationships between aromatic composition and the 

studied modalities, a simple and exploratory Principal Components Analysis was 

performed. PCA  was made using the inverse of standard deviation as scaling factor, 

followed by Cross validation, using Uncertainty test with optimal PC‟s and a Full Size 

model. 

 

Figure 26 shows the graph in which the different modalities and the aromatic 

compounds concentration were projected simultaneously according to PCA. The first 

three main components PC1, PC2 and PC3 explain 65% of the variance (35%, 16% 

and 14%, respectively). The first component (PC1) was predominantly characterized by 

s--pinene,  ethyl-2-hexenoate and an unidentified terpene, content in the positive side 

of the axis, and terpinolene, -damascenone, geranyl acetone and limonene content in 

the negative side of the same axis. The second component (PC2) was characterized 

by the three unidentified sesquiterpenes and ethyl dodecanoate content in the positive 

part of the axis, and -terpineol, nerolidol and ethyl hexanoate content in the negative 

part of the axis. The third component (PC3) was characterized by 4-ethylguaiacol, cis-

-farnesene, terpinolene, -damascenone, and limonene content in the positive part of 

the axis, and trans-nerolidol, trans--bisabol and dihydro pseudo-ionone content in the 

negative part (Figure 27). Regarding the samples/modalities of the study, PC1 was 

mainly defined by the modalities of the 2012 vintage in the positive part of the axis, and 

the modalities of the 2011 vintage in the negative part; PC2 by modalities 2013 vintage 

in the positive part, and modalities from 2012 and 2011 vintages in the negative part of 

the axis; finally, PC3 was characterized by modalities from 2011 vintage in the positive 

part, and DMR from 2012 vintage in the negative part of the axis. 

From these multivariate analysis results, we might point a statistical relation 

between variables, variables and modalities/samples, and between 

samples/modalities:  

Using PC1, an unidentified terpene 1, s--pinene and ethyl-2-hexenoate content 

were related, and also relate with the modalities of the 2012 vintage; terpinolene, -

damascenone, geranyl acetone and limonene content were related and also relate with 

the modalities of the 2011 vintage;  
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Figure 26 - Principal components analysis (PCA) Scores and Loadings Biplot of aromatic compounds concentration 
variables and modalities (PC1 35%; PC2 16% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟). 
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From PC2, three unknown sesquiterpenes (1,2,3) and ethyl dodecanoate content 

were related and also relate with modalities 2013 vintage; -terpineol, nerolidol and 

ethyl hexanoate content were related and also relate with modalities from 2012 and 

2011 vintages; 

Using PC3, 4-ethylguaiacol, cis--farnesene, terpinolene, -damascenone, and 

limonene content are related and also relate with modalities from 2011 vintage; trans-

nerolidol, trans--bisabolene and dihydro pseudoionone content are related and also 

relate with DMR from 2012 vintage. 
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Figure 27 - Principal components analysis (PCA) Scores and Loadings Biplot of aromatic compounds concentration 
variables and modalities (PC1 35%; PC3 14% of explained variance). 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟). 
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VII Wine tasting and wine quality 

 

One of the most important aspects of the wine production is the wine quality and the 

consumer acceptance. This will greatly define the commercial success of the product 

and the future of a wine company.  

The sensorial analysis and tasting of wines produced in the three vintages was 

performed to simulate both the consumer preferences and also to characterize wines 

by a more detailed way. The aroma description can be used to characterize the 

sensorial Baga varietal aroma.  

The detailed sensorial wine analysis was performed by 7 tasters expert panel, using 

a sheet with a score having a scale between 0 to 5 (0 meaning „non-existent‟; 5 

meaning „intense‟) a list of previously selected aroma descriptors, selected using as 

varietals for Baga, the aromas reported in literature, magazine and journalist tasting 

notes. The tasters were asked to give overall score, between 0 and 100, for the global 

quality of each wine. Sensorial evaluation was limited to aroma analysis. 

 

7.1 Tasting scores 

 

The selected aroma descriptors are: Rose; Violet; Carnation; Apple; Pear; Quince; 

Tangerine; Grapefruit; Banana; Pineapple; Gooseberry; Raspberry; Cherry; Plum; 

Blackberry; Dried fruit; Jam; Chestnut; Hazelnut; Almond; Tea; Tobacco; Green Bell 

pepper; Herbs; Resin; White pepper; Liquorice; Cloves; Vanilla; Toasted; Cedar; Oak; 

Smoke; Leather; Bread; Yeast; Cream; Butter; Yogurt; Metallic; Honey; Coffee; 

Chocolate; Mushroom; Rancid/Cheese. 

The tasters used a chart (see annex) when tasting with these descriptors and 

scored each descriptor between 0 and 5 points; if no score was introduced in the 

tasting chart, it was considered that that descriptor was not present. It was allowed to 

talk after all the tasters had finished the section. Several commercial Baga varietal 

wines were tasted between the project wines in order to be used as references (Table 

47 and Table 48). 

 

The overall scores were evaluated and only the descriptors considered as „present‟ 

(score above 2) were used for detailed analysis. 
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Table 47 - Overall Sensorial analysis for wines of 2011, 2012 and 2013 vintages, and references. Average scores. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟). 
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Table 48 - Scores from selected descriptors. Average sensorial analysis scores for wines by modality and vintages, 
and all Baga commercial wine references. 

 

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 

DMR („Double maturation raisonnée‟). 

 

Figure 28 and Figure 29 display the sensorial scores averages for the modalities 

and vintages, with comparison with the reference wines. Wines from CTR modalities 

were described as having perceptive notes (high scores) for „Quince‟, „Mushroom‟, 

„Dried fruits‟, „Resin‟, and „Rose‟, and scoring 65 points out of 100 for overall quality. 

MAD wines were defined as having perceptive notes for „Mushroom‟, „Quince‟, „Rose‟, 

„Tobacco‟, „Resin‟, and scoring 72 points out of 100 for overall quality. Wines from MED 

modalities were characterized as having perceptive notes of „Mushroom‟, „Quince‟, 

„Rose‟, „Resin‟, „Grapefruit‟, Dried fruits‟, „Tobacco‟, „Leather‟, and scored 76 points out 

of 100 for overall quality. As for MBT wines, it were described as having perceptive 

Descriptor 2011CTR 2011MAD 2011MED 2011MBT 2011DMR

Rose 1,4 1,4 2,1 0,7 0,7

Violet 0,7 0,7 0,7 0,7 2,4

Quince 3,7 3,0 3,3 4,0 1,3

Grapefruit 0,7 0,0 0,7 0,7 1,4

Plum 0,0 0,0 0,0 0,0 1,4

Blackberry 0,0 0,0 0,0 1,7 2,3

Dried fruits 1,3 0,0 0,6 2,7 2,7

Tea 0,0 0,0 0,7 0,0 2,1

Tobacco 0,7 0,0 1,4 0,0 3,4

Resin 1,7 2,1 2,8 1,4 0,0

Pepper 0,7 0,0 2,1 0,7 0,0

Leather 1,4 0,7 2,1 1,2 0,7

Mushroom 2,3 2,7 3,0 4,7 2,3

Cheese 1,0 3,0 2,1 0,7 0,0

SCORE 60,0 71,5 71,5 68,0 86,5

Descriptor 2012CTR 2012MAD 2012MED 2012MBT 2012DMR

Rose 1,4 2,1 2,1 2,1 2,8

Violet 0,7 2,0 2,0 0,7 1,3

Quince 4,0 1,6 1,6 1,2 1,3

Grapefruit 2,3 3,4 2,7 1,3 2,4

Plum 3,0 0,7 1,4 1,3 1,7

Blackberry 0,7 0,7 1,4 0,7 0,0

Dried fruits 2,8 1,4 2,8 2,1 1,0

Tea 1,4 0,7 1,4 0,7 0,7

Tobacco 2,1 3,4 2,3 1,6 1,3

Resin 1,4 1,3 1,6 2,3 1,7

Pepper 0,7 0,7 0,7 0,7 0,7

Leather 1,4 0,7 0,7 1,4 3,7

Mushroom 2,7 2,7 2,7 3,7 2,7

Cheese 2,3 0,0 0,0 0,0 0,7

SCORE 73,5 78,5 78,5 69,4 81,5

Descriptor 2013CTR 2013MAD 2013MED 2013MBT 2013DMR REFS

Rose 2,1 2,1 2,8 3,5 3,5 1,4

Violet 0,7 1,4 1,4 0,7 0,0 1,4

Quince 3,7 3,0 2,3 4,0 4,0 2,8

Grapefruit 0,7 0,0 2,1 0,7 0,0 1,3

Plum 0,7 2,1 1,4 0,7 1,4 1,6

Blackberry 0,7 0,7 0,7 1,4 0,0 1,9

Dried fruits 1,4 0,7 1,4 2,8 0,7 1,8

Tea 2,1 1,4 1,4 2,8 2,1 1,1

Tobacco 2,0 2,0 1,0 3,7 3,3 1,2

Resin 2,1 2,1 1,4 2,8 2,8 3,1

Pepper 0,7 0,0 1,4 0,7 0,7 1,8

Leather 1,4 2,1 2,1 1,4 0,7 2,1

Mushroom 3,0 2,7 2,0 3,7 3,7 2,2

Cheese 2,0 1,4 0,7 0,7 1,4 0,2

SCORE 61,5 66,5 78,5 75,0 75,1 78,1
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notes of „Mushroom‟, „Quince‟, Dried fruits‟, „Resin‟, Rose‟, „Tobacco‟, and having 

scored 71 points out of 100 for overall quality. DMR wines were described as having 

perceptive notes of „Mushroom‟, Tobacco‟, „Rose‟, „Quince‟, Leather‟, „Tea‟, „Plum‟, 

„Dried fruits‟ and „Resin‟, and having scored 81 points out of 100 for overall quality. As 

for the Baga wines References, they had perceptive notes of „Resin‟, „Quince‟, 

„Mushroom‟, „Leather‟, „Blackberry‟, „Dried fruits‟, „Pepper‟ and „Plum‟, having scored 78 

points out of 100 for overall quality.  

Although the most important descriptors were almost the same for all the modalities, 

their intensity and overall richness were quite diverse and their influence over the wine 

quality was different. „Mushroom‟, „Quince‟ „Dried fruits‟, „Resin‟ and „Leather‟, for 

example, are descriptors described by the tasters as positive notes if low perceptive 

quantities but unpleasant if having stronger perception. On contrary, „Violet‟, 

„Grapefruit‟, „Plum‟, „Blackberry‟ were described as being interesting if present in the 

wine perceptive notes, even if present in high intensities. Other important aspect is the 

complexity and richness of the aroma. A more complex aroma, with more descriptors 

identified and with perceptive notes, might be more pleasant and interesting, resulting 

in overall higher scores. The more unpleasant notes might be attenuated in a complex 

wine aroma matrix because their unpleasant influence could be masked in the complex 

matrix.  

On average, the wines from DMR and MED modalities were scored as the most 

attractive, with DMR2011 and DMR2012 wines having higher scores for overall quality 

than the used commercial wine References. MAD2012, MED2012 and MED2013 

showed overall scores above the References, and these results displayed the potential 

of DMR, MED and MAD to produce high quality Baga wines, and even the ability to 

enhance the perceptive quality above the actual production methods. 
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Figure 28 - Average sensorial analysis scores from selected descriptors, for wines by modality and references.  

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Figure 29 - Average sensorial analysis scores, from selected descriptors,  for wines by vintage and references. 

 CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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7.2 Principal components analysis (PCA) 

 

Aiming to clarify some relationships between sensorial data and the studied 

modalities, a simple and exploratory Principal Components Analysis was performed. 

PCA  was made using the inverse of standard deviation as scaling factor, followed by 

Cross validation, using Uncertainty test with optimal PC‟s and a Full Size model. 

 

Figure 30 illustrates the graph in which the different modalities and the Selected 

Sensorial evaluation variables (descriptors and wine scores) were projected 

simultaneously according to PCA. The first three main components PC1, PC2 and PC3 

explain 66% of the variance (33%, 17% and 16%, respectively). The first component 

(PC1) was predominantly characterized by the variables „Resin‟, „Cheese‟ and „Quince‟ 

descriptors in the positive side of the axis, and „Violet‟, „Blackberry‟, „Grapefruit‟ 

descriptor and the Overall Score, in the negative side of the axis. The second 

component (PC2) was characterized by the „Rose‟, „Tea‟, „Tobacco‟, „Resin‟ and „Plum‟ 

descriptors in the positive part of the axis, and „Violet‟, „Cheese‟ and „Grapefruit‟ 

descriptors in the negative part of the axis. The third component (PC3) was 

characterized by „Leather‟, „Rose‟, „Grapefruit‟ and „Pepper‟ descriptors and the Score 

in the positive part of the axis, and „Mushroom‟, „Blackberry‟, „Dried fruit‟, and „Quince‟ 

descriptors in the negative part (Figure 31). Regarding the samples/modalities of the 

study, PC1 was mainly defined by the DMR, MAD and MED modalities in the positive 

part of the axis, and the CTR and MBT modalities in the negative part; PC2 by 

modalities from 2013 vintage in the positive part, and modalities from 2011 vintage in 

the negative part of the axis; finally, PC3 was characterized by DMR, MAD and MED 

modalities in the positive part, and MBT and CTR modalities in the negative part of the 

axis. 

From these multivariate analysis results, we might point a statistical relation 

between variables, variables and modalities/samples, and between 

samples/modalities:  

Using PC1, „Resin‟, „Cheese‟ and „Quince‟ descriptors were related, and also relate 

with the DMR, MAD and MED modalities; „Violet‟, „Blackberry‟, „Grapefruit‟ descriptors 

and the Overall Score were related and also relate with the modalities from 2011 

vintage;  
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Figure 30 - Principal components analysis (PCA) Scores and Loadings Biplot of sensorial evaluation variables and 
modalities (PC1 33%; PC2 17% of explained variance).  

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Figure 31 - Principal components analysis (PCA) Scores and Loadings Biplot of sensorial evaluation variables and 
modalities (PC1 33%; PC2 16% of explained variance).  

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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From PC2, „Rose‟, „Tea‟, „Tobacco‟, „Resin‟ and „Plum‟ descriptors were related and 

also relate with modalities from 2013 vintage; „Violet‟, „Cheese‟ and „Grapefruit‟ 

descriptors were related and also relate with modalities from 2011 vintage; 

Using PC3, by „Leather‟, „Rose‟, „Grapefruit‟ and „Pepper‟ descriptors and the 

Overall Score were related and also relate with DMR, MAD and MED modalities; 

„Mushroom‟, „Blackberry‟, „Dried fruit‟, and „Quince‟ descriptors are related and also 

relate with MBT and CTR modalities. 
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VIII Broad perspective over results and wine quality 

 

The experimental work was performed in a wine company context, with no 

environmental control, having the drawback that results are subjected to variation from 

one vintage to the other, due essentially to climatic conditions. This fact can be a 

significant limitation when performing research thus obtaining robust results can take 

several years of experiments. However considering this limitation the work can still help 

to understand the context of making decisions in the vineyard, where the reality is like 

this. 

 

It was decided to perform a Principal Component Analysis using the variables that 

appeared to contribute most for results variance of previous PCA (%GAPS, %IC, LLN, 

Cluster weight, Number of Berries, Cluster compactness, Botrytis incidence, Yield, 

LA/Yield ratio, Ravaz index, Skin/pulp ratio, Brix degree, juice pH, Titratable acidity, 

Sugar load, Anthocyanin concentration, Seed number, Carotenoids and Chlorophylls 

compounds, aromatic compounds with significant OAV). With the aim to get some 

more information about relations between the most important variables for results 

variance and the studied modalities, a simple and exploratory Principal Components 

Analysis was performed, using the inverse of standard deviation as scaling factor, 

followed by Cross validation, using Uncertainty test with optimal PC‟s and a Full Size 

model. 

Figure 32 shows the graph in which the different modalities and the high impact 

variables were projected simultaneously according to PCA. The first four main 

components PC1, PC2, PC3 and PC4 explain 77% of the variance (43%, 17%, 10%, 

and 7% respectively). The first component (PC1), that explained 43% of total variance, 

was predominantly characterized by having strong influence of %GAPS, LA/Yield ratio, 

anthocyanin concentration, juice pH, Skin/pulp ratio and Brix degree in the positive part 

of the axis; Ravaz index, Seed number, LLN, chlorophyll b content, lutein content, 

Yield, Cluster weight influence in the negative side of the axis. The positive part is 

influenced by 2013 samples and the negative part by 2012 samples. 

The second component (PC2), that explained 17% of total variance, was 

characterized by Cluster compactness, -damascenone content, linalool content, 

Number of berries, Fruit set, Cluster weight in the positive side of the axis; Titratable 

acidity, Brix degree, Skin/pulp ratio content, %IC, lutein content, chlorophyll b content 

show more influence in the negative part of the axis. The positive part is also 

influenced by 2013 samples and the negative part by DMR samples. 
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The third component (PC3), explained 10% of total variance, and was predominantly 

characterized by having strong influence of Botrytis incidence, Anthocyanin 

concentration, Sugar load and pheophytin content in the positive part of the axis; 

Number of berries, Fruit set, Skin/pulp ratio and Cluster weight influence in the 

negative side of the axis. The positive part is influenced by 2011 and 2013 MED 

samples and the negative part by 2013 and 2012 samples. 

The fourth component (PC4), explained 7% of total variance, and was 

predominantly characterized by having strong influence of Botrytis incidence, %IC, 

Cluster compactness, LLN and pH in the positive part of the axis; pheophytin content, 

nerolidol concentration and Number of seeds influence in the negative side of the axis. 

The positive part is influenced by CTR and MBT samples and the negative part by 

MAD and MED samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

153 

 

 
 

 

 

Figure 32 - Principal components analysis (PCA) Scores and Loadings Biplot of impact variables and modalities 
(PC1 43%; PC2 17% of explained variance).  

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Figure 33 - Principal components analysis (PCA) Scores and Loadings Biplot of impact variables and modalities 
(PC1 43%; PC3 10% of explained variance).  

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée’). 
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Figure 34 - Principal components analysis (PCA) Scores and Loadings Biplot of impact variables and modalities 
(PC1 43%; PC4 7% of explained variance).  

CTR (control); MAD (Manual early defoliation); MED (Mechanical early defoliation); MBT (Manual bunch thinning); 
DMR („Double maturation raisonnée‟). 
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Using a broad perspective over the results, with the concern of establishing a 

correlation between the viticultural conditions and the grape characteristics as the most 

important assets for wine production and wine quality, the results were interesting and 

not entirely expected. 

 

Summarizing: 

 

All the studied modalities reduced yield, as expected.  

MAD and MED results proved that temporary limitation of photosynthates during 

flowering causes berry abortion and fruit set reduction, only forming the fit berries, 

confirmed by the higher number of seeds produced. Both techniques reduced yield, 

with MAD being time consuming and labour demanding, and MED needing the use of 

machinery in early moment of the vegetative growth and may cause flowers and 

clusters damage. 

MBT reduced yield by decreasing the number of clusters in the vine. Besides being 

time consuming and labour demanding, MBT results showed to be unpredictable and 

inconsistent - the impact over yield reduction varies because of berry weight/volume 

compensation, which may also cause the dilution of berry compounds, resulting in a 

decrease of the quality of grapes. Moreover, at the time when cluster thinning is 

executed, there was an instantaneous increase of grape quality - if the less interesting 

grapes with lower quality or showing incidence of disease were removed, 

consequently, the average of the remaining fruits will have an improved quality, 

straightaway.  

DMR reduced yield by sunlight induced dehydration of the fruits. Besides the vast 

labour demand, and time consumption, there was a significant risk of losing yield due 

to separation of berries from the clusters caused by dehydration, combined with the 

fact of having a short ripening process, interrupted by performing DMR in the vine.  

 

Apart from the viticultural aspects of the research, there was also the consumer 

point of view, the quality perception of the wines. Even though alcoholic fermentations 

were not implemented in optimal conditions (small batches of juice fermenting, poor 

temperature control, malolactic fermentation difficult to undergo in some cases), and 

the fact that the wines were tasted at the same time in 2014 (wines from 2011, 2012 

and 2013 vintages), some data could even be taken from sensory analysis and it was 

elucidative for the quality determination of wines and to draw some conclusions of the 

possible impact of each modality in wine sensorial performance. DMR wines were 
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those that have obtained the highest global score, highly appreciated by all expert 

tasting panel. Comparing with the Baga References wines average score, which have 

obtained 78.1/100 points, DMR wines scored 86.5, 81.5 and 75.1 points out of 100 

(average from 3-vintage, 81.0 points). Wines from MED were also obtained high score 

(3-vintage average of 76.2 points), a bit lower than References wines average score, 

with 2012 and 2013 wines scoring 78.5 points. MAD and MBT scored lower (72.2 and 

70.8 respectively), and the lowest average was for CTR (65.0 points).  

Highest scores were closely related with „Quince‟ and „Mushroom‟ notes - intense 

perception of these two descriptors result in poorly scored wines. „Quince‟ is typically 

related with unripe fruits, and „Mushroom‟ with bacterial spoilage. „Resin‟ is associated 

with unripe fruits as well, but it is also a typical Baga descriptor. Nevertheless, intense 

perception of this descriptor might be negative. „Rose‟ and „Grapefruit‟ are positive 

descriptors and associated with ripe fruits and positive scores, and also „Plum‟ and 

„Violet‟ in smaller extent. The wines with better appreciation from the panel combine 

lower scores for unripe fruit descriptors and higher scores for ripe fruit descriptors. 

 

Relating both viticultural and fruit/wine quality perception, early leaf removal and 

„Double maturation raisonnée‟ might represent quality improvement for Baga variety, 

even regarding vines where cluster thinning is usually performed. There is no clear 

quality improvement of grapes and wines when performing cluster thinning was done. 

The labour cost might be too high (40 to 70 hours per hectare) to MBT effectively be 

positive for grape and wine production. There is a clear risk that the investment in 

labour will produce no superior results. Even though the labour cost of early leaf 

removal and DMR are also be high (around 40 hours per hectare to MAD, and 50 to 70 

hours per hectare for DMR), the positive results might overcome the costs. 
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IX Conclusions and Final Remarks 

 

In order to systematize the conclusions, they will be grouped taking into 

consideration each of the studied modalities. 

The conclusions about the present research thesis referring to manual early severe 

defoliation (MAD) are the following: 

Yield components 

MAD reduced significantly the grape production, by diminishing the fruit set (not 

significantly) and, therefore, the number of berries (significantly) - it produced lighter 

and looser clusters (both significantly). Cluster weight was significantly lower than CTR, 

Berry weight was not significantly affected by MAD (either using marked cluster or 

average weight at harvest), nevertheless lower weight than CTR was observed, and 

the cluster was significantly less compact. The effects of MAD on yield have been 

annual, overlapping climate effects occurring each year. These effects should not be 

considered cumulative since there was not a significant variation of bud fertility the 

subsequent years. The reduction of fruit set (not significant), cluster weight and yield 

(significant) show that the restriction of sources of carbohydrates during the flowering 

and fruit set might be an effective strategy to control yield. MAD altered the distribution 

of the components of the berry (skin with less weight and pulp with higher weight) but 

did not increase the skin/pulp ratio when compared with CTR. The number of seeds for 

MAD was higher than CTR, which can mean that only the most viable flowers are 

converted into berries. The leaf area to yield ratio was significantly similar to CTR. 

Vegetative growth and health status  

MAD removed 46 to 56% of the leaf area of the vines and laterals growth 

compensates removed leaf area until veraison. The dimensions of the canopy did not 

alter significantly over the three vintages when compared with CTR. Bud break and 

Potential Fertility indexes did not differ significantly from CTR. MAD did not alter the 

porosity of the canopy, the number of leaf layers or the interior leaves percentage - the 

removed leaf area was compensated until veraison. The percentage of interior cluster 

was significantly lower, increasing the light exposure of the clusters. Ravaz index was 

significantly similar to CTR but the values were always lower. MAD vines displayed 

significantly lower incidence of Botrytis. The combination of more exposed clusters and 

less compact clusters induced to lower disease incidence. 

Grape composition and wine quality 

MAD grapevines produced grapes with higher Brix degree than CTR (Probable 

alcohol) and similar acidity, with less weight and less volume berries. The estimate 
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Sugar Load for MAD grapes was higher than CTR, which means that the ripening was 

in a more advanced stage. Adding to this, grape juice displayed higher colour intensity, 

anthocyanins concentration per berry and total polyphenols are also higher. Better light 

exposure and cluster microclimate, combined with looser clusters and lower disease 

incidence might be the reason of the improved grape quality for MAD. MAD grapes 

showed to have higher content of carotenoids per berry, probably resulting from the 

better cluster microclimate and light exposure. MAD wines displayed less 

concentrations of esters, alcohols and sesquiterpenes, and higher concentrations of 

terpenes, norisoprenoids. This may result in more intense aromatic notes. 

Wine sensorial perception of quality 

MAD wines have had higher overall score than CTR wines. MAD wines showed to 

have descriptors like „Mushroom‟, „Quince‟, „Rose‟, „Tobacco‟ and „Resin‟ mentioned as 

perceptive and intense. MAD wines benefit from having a lower Botrytis incidence and 

so they displayed higher sensorial scores and consumer acceptance. 

These obtained results indicate that lower yield might be obtained from MAD and 

that this technique might be capable of improving the oenological and potential 

consumer acceptance of Baga wines. It must be remembered that MAD is a labour 

demanding technique and time consuming as well. 

 

The conclusions about the present research work referring to mechanical early 

severe defoliation (MED) are: 

Yield components 

MED reduced significantly the grape production, by reducing the fruit set (not 

significantly) and, therefore, the number of berries (significantly) - it produced lighter 

and looser clusters (both significantly). Cluster weight was significantly lower than CTR 

(either using marked cluster or average weight at harvest), Berry weight was 

significantly inferior than CTR, and the cluster was significantly less compact. The 

effects of MED on yield have been annual, overlapping the climate effects of the year. 

There should not be cumulative effects since there was not a significant variation of 

bud fertility the following years. The reduction of fruit set (not significantly) and the 

other consequences of yield components might display that the restriction of sources of 

carbohydrates during the flowering and fruit set might be an effective strategy to control 

yield. Additionally, there could be also the effect of flower and cluster destruction by 

leaf removal machinery, which might cause lowering of fruit set and yield. MED altered 

the distribution of the components of the Berry (skin with less weight and pulp with 

higher weight) but did not increase the skin/pulp ratio when compared with CTR. The 

number of seeds for MED was higher than CTR, which might mean that only the more 
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viable flowers are converted into berries. The leaf area to yield ratio was significantly 

similar to CTR. 

Vegetative growth and health status  

MED removed 22 to 30% of the leaf area of the vines and laterals growth will be 

compensated until veraison. The dimensions of the canopy did not alter significantly 

over the three vintages when compared with CTR. Bud break and Potential Fertility 

indexes did not differ significantly from CTR. MED did not alter the porosity of the 

canopy, the number of leaf layers or the interior clusters (leaves percentage), - the 

removed leaf area was compensated until veraison. Ravaz index was significantly 

similar to CTR but the average value was substantially lower. MED vines displayed 

significantly lower incidence of Botrytis. The less compact clusters induced to lower 

disease incidence. 

Grape composition and wine quality 

MED grapevines produced grapes with similar Brix degree than CTR (Probable 

alcohol) and higher acidity. The berries are weightier and with more volume than the 

CTR. 

The estimate Sugar Load for MED grapes was higher than CTR, which means that 

ripening occurs earlier. Adding to this, grape juice displayed less colour intensity, 

anthocyanins concentration and anthocyanins per berry are lower. It was also showed 

lower contents in total polyphenols. The better light exposure and cluster microclimate, 

combined with looser clusters and lower disease incidence in MED, was not enough for 

having improved grape quality. MED grapes showed to have higher content of 

carotenoids per berry; however, MED wines had lower concentrations of esters, 

alcohols, norisoprenoids, terpenes and sesquiterpenes.  

Wine sensorial perception of quality 

MED wines had higher overall score than CTR wines. MED wines showed to have 

descriptors like „Mushroom‟, „Quince‟, „Rose‟, „Resin‟, „Grapefruit‟, „Dried fruits‟, 

„Leather‟ and „Tobacco‟ and mentioned as perceptive and intense. MED wines benefit 

from having a lower Botrytis incidence and so they displayed higher sensorial scores 

and consumer acceptance (overall scores were similar to the Baga References). 

These results indicated that lower yield might be obtained from MED and this 

technique, even though not showing improvement in ripening, colour or aromatic 

content, might be capable of improving consumer acceptance potential of Baga wines. 

MED requires machinery to be available at early times and it is not a time consuming 

technique. 
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The conclusions about the present research work referring to „Double maturation 

raisonnée‟ (DMR) are the following: 

Yield components 

DMR reduced significantly the grape production, by reducing significantly cluster 

and berry weight - it produced lighter and looser clusters (both significantly). Cluster 

and berry weight were significantly lower than CTR, cluster were significantly less 

compact. The effects of DMR on yield have been annually, overlapping the climate 

effects of the year. Cumulative effects were not found since there was not a significant 

variation of bud fertility the following years. DMR altered the distribution of the 

components of the Berry, skin with less weight and pulp with much lower weight, 

increasing the skin/pulp ratio when compared with CTR. DMR dehydration produced 

lighter berries. The number of seeds for DMR was similar to CTR. 

Vegetative growth and health status  

The dimensions of the canopy did not alter significantly over the three vintages 

when compared with CTR. Bud break and Potential Fertility indexes did not differ 

significantly from CTR. DMR did not alter the porosity of the canopy, the number of leaf 

layers or the interior leaves. The percentage of interior cluster was higher than CTR 

but, with the DMR intervention in the vine, around 85% of the clusters became exposed 

to sun light. Ravaz index was significantly similar to CTR but the values were always 

lower. DMR vines displayed lower incidence of Botrytis, but not significantly. The 

combination of more exposed clusters, extensive dryness and less compact clusters 

induced to lower disease incidence. 

Grape composition and wine quality 

DMR grapevines produced grapes with higher Brix degree than CTR (Probable 

alcohol) and higher acidity, resulting from concentration of pulp constituents. The 

berries have less weight and less volume. The estimate Sugar Load for DMR grapes 

was lower than CTR, which means that the ripening was in a lower advanced stage - 

the shoots were disconnected from the vine from 2 weeks prior to expected harvest 

date, so ripening should have stopped before harvest (this finding was confirmed with 

lower anthocyanin content per berry). Adding to this, grape juice displayed higher 

colour intensity, anthocyanins concentration, in total polyphenols and lower 

anthocyanins content per berry. Berry dehydration, higher light exposure and cluster 

microclimate, combined with looser clusters and lower disease incidence might be the 

reason of improved grape quality for DMR. DMR grapes showed to have lower content 

of carotenoids per berry, probably resulting from shoot disconnection from the vine. 

DMR wines displayed similar concentrations of esters, lower concentrations of 

alcohols, terpenes, norisoprenoids and sesquiterpenes. 
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Wine sensorial perception of quality 

DMR wines had higher overall score than CTR wines. DMR wines showed to have 

descriptors like „Mushroom‟, „Tobacco‟, „Rose‟, „Quince‟, „Leather‟ and „Tea‟ mentioned 

as perceptive and intense. DMR wines benefit from having a lower Botrytis incidence 

and so they displayed higher sensorial scores and consumer acceptance, above the 

Baga wine References. 

These results indicated that lower yield might be obtained from DMR, this technique 

might be capable of improving the oenological and consumer acceptance potential of 

Baga wines, resulting in overall scores above the Baga wine References. DMR is a 

labour time consuming technique. 

 

The conclusions about the present research work referring to manual bunch thinning 

(MBT) are the following: 

Yield components 

MBT reduced significantly the grape production, by diminishing the number of 

clusters per vine. Cluster weight was lower than CTR, berry weight for MBT was also 

lower, and the cluster was less compact (all non-significantly). The effects of MBT on 

yield have been annually, overlapping by climate effects. There should not be 

cumulative effects since there was not a significant variation of bud fertility the following 

years. The fruit set ration was similar to CTR (significantly, although lower). MBT did 

not alter the distribution of the components of the Berry (pulp showed higher weight) 

but did not increase the skin/pulp ratio when compared with CTR. The number of seeds 

for MBT was higher than CTR, which can mean that only the more viable flowers were 

converted into berries. 

Vegetative growth and health status  

The dimensions of the MBT canopy did not alter significantly over the three vintages 

when compared with CTR. Bud break and Potential Fertility indexes did not differ 

significantly from CTR. MBT did not alter the number of leaf layers or the interior leaves 

percentage - the removed leaf area was compensated until veraison. The percentage 

of interior cluster and porosity of the canopy were significantly higher. Ravaz index was 

significantly similar to CTR but the values were always lower. MBT vines displayed 

significantly similar incidence of Botrytis.  

Grape composition and quality 

MBT grapevines produced grapes with similar Brix degree (Probable alcohol) and 

acidity than CTR. The berries had higher weight and volume. 

The estimate Sugar Load for MBT grapes was higher than CTR, which means that 

the ripening was in a more advanced stage. Adding to this, grape juice displayed lower 



FCUP 
Alternatives to bunch thinning in yield control and its effects on quality of the grapes and 

wine composition in cv. Baga (Vitis vinifera L.). 

163 

 

 
 

colour intensity, anthocyanins concentration and higher anthocyanins per berry. It also 

showed to have higher content in total polyphenols. Although there was a gain in 

ripening with MBT (higher sugar load and anthocyanins per berry), apparently there 

was also a dilution effect that did not help to improve fruit quality (also combined with 

similar incidence of Botrytis). MBT grapes have a similar content of carotenoids per 

berry as CTR. MBT wines displayed lower concentrations of esters, alcohols, terpenes, 

norisoprenoids and sesquiterpenes. This may result in lower aromatic varietal notes. 

Wine sensorial perception of quality 

MBT wines had higher overall score than CTR wines. MBT wines showed to have 

descriptors like „Mushroom‟, „Quince‟, „Dried fruits‟, „Resin‟, „Rose‟ and „Tobacco‟ 

mentioned as perceptive and intense. MBT wines displayed higher sensorial scores 

and consumer acceptance than CTR, but lower than wines from all other studied 

modalities. 

These results indicated that lower yield might be obtained from MBT; this technique 

may not be capable of improving the oenological and consumer acceptance potential of 

Baga wines. As MAD is a labour and time consuming technique, there should be 

careful considerate if there is some added-value in using MBT in these Baga vineyards 

and environmental conditions. 

 

MAD, MED and DMR proved to be alternatives to MBT as techniques that achieved 

yield reduction and control. All three techniques improved grape and wine quality, 

conducting to better results that those obtained using MBT and CTR. 
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Annex 1 - Aromatic description of wines produced 

 

Wine aroma compounds quantification was performed according to method 

described by Barros et al1 at Laboratório deToxicologia, Departamento de Ciências 

Biológicas da Faculdade de Farmácia, Universidade do Porto (Porto, Portugal). The 

substances quantified by the method were: Ethyl butanoate, Ethyl hexanoate, Ethyl 

heptanoate, Ethyl octanoate, Ethyl decanoate, Ethyl dodecanoate, Ethyl 2-methyl-

butanoate, Ethyl 3-methyl-butanoate, Ethyl trans-4-decenoate, Isoamyl acetate, 

Phenylethyl acetate, Diethyl succianate, Isoamyl hexanoate, Phenylethyl alcohol, 

Benzyl alcohol, -Terpineol, -cis-Terpineol,  - Linalol, Nerolidol, Cis--Farnesene, 

trans--Bisabolene, trans-Nerolidol, 4-Ethylguaiacol, Di-hydro pseudo-ionone, -

Damascenone, Limonene, Terpinolene, S--pinene, Geranyl acetone, Ethyl-2-

hexenoate, Unidentified Sesquiterpene 1, Unidentified Sesquiterpene 2, Unidentified 

Sesquiterpene 3, Unidentified Sesquiterpene 4, Unidentified Terpene 1, Unidentifid 

Terpene 2, TDN, Neryl Acetate, Ethyl dl Malate, 4-Ethyl Phenol. 

 

Table 1 shows the odour threshold limits for each quantified aromatic compound, 

odour descriptor and odorant series [2,3]. 

 



Table 1 - Compounds quantified by SPME-GC-MS method, odour descriptors, odorant series and odour threshold. 

 

1 = Fruity; 2 = Floral; 3 = Green, Fresh; 4 = Sweet; 5 = Spicy; 6 = Fatty; 7 = Others   
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Short chemical and sensorial description of quantified compounds 

 

Below there is a small description about each quantified compound, regarding 

nomenclature and odour description, based in an online library, The Good Scents 

Company4. 

 

Ethyl Butanoate 

Other names - Ethyl n-butanoate; Ethyl n-butyrate; Butanoic acid ethyl ester; Butyric 

acid ethyl ester; Butyric ether; UN 1180. 

Odour type: fruity; Odour strength: high. 

Odour description at 1.00 % in propylene glycol: fruity, juicy, fruit pineapple cognac.  

Odour description: Sweet, fruity, tutti frutti, lifting and diffusive. 

Taste description at 20.00 ppm: Fruity, sweet, tutti frutti, apple, fresh and lifting, 

ethereal.  

 

Ethyl Hexanoate 

Other names - Caproic acid ethyl ester; Ethyl butyl acetate; Ethyl n-hexanoate; 

Hexanoic acid ethyl ester; Hexanoic acid, ethyl ester; Hexanoic acid, monoethyl ester. 

Odour type: fruity. Odour strength: high. 

Odour description at 2.00 %: Sweet, fruity, pineapple, waxy, fatty and estery with a 

green banana nuance. 

Taste description at 7.00 ppm: Sweet, pineapple, fruity, waxy and banana with a 

green, estery nuance.  

 

Ethyl Heptanoate 

IUPAC name - Ethyl heptanoate; 

Other names - Ethyl enanthate; Ethyl heptylate, Heptanoic acid ethyl ester; Enanthic 

acid ethyl ester.  

Odour type: fruity; Odour strength: medium 

Odour description at 100.00 %: fruity pineapple cognac rum wine 

Odour description: Fruity, pineapple, sweet, estery, banana, berry, cognac and 

slightly green with a seedy nuance. 

Taste description at 20.00 ppm: Fruity, pineapple, banana and strawberry with a 

spicy, oily nuance.  

 

Ethyl Octanoate 



Other names - Ethyl caprylate; caprylic acid ethyl ester; ethyl caprylate;  ethyl 

N-octanoate; ethyl octanoate (ethyl caprylate); ethyl octoate; ethyl octylate; 

ethylcaprylate; ethyloctanoate; octanoic acid ethyl ester;  

Odour type: waxy; Odour strength: medium 

Odour description at 100.00 %: fruity wine waxy sweet apricot banana brandy pear 

Odour description: Waxy, sweet, musty, pineapple and fruity with a creamy, dairy 

nuance. 

Taste description at 7.50 ppm:   Sweet, waxy, fruity and pineapple with creamy, 

fatty, mushroom and cognac notes. 

 

Ethyl Decanoate 

Other names - capric acid ethyl ester; capric acid ethylester; capric acid, ethyl ester; 

decanoic acid ethyl ester; decanoic acid, ethyl ester; ethyl caprate; ethyl caprinate; 

ethyl decanoate; ethyl decylate; ethylcaprate. 

Odour type: waxy. Odour strength: medium. 

Odour description at 100.00 %: sweet waxy fruity apple grape oily brandy. 

Odour description: Sweet, waxy, fruity, apple. 

Taste description at 20.00 ppm:   Waxy, fruity, sweet apple. 

 

Ethyl Dodecanoate 

Other names -  dodecanoic acid ethyl ester; dodecanoic acid, ethyl ester;  ethyl 

dodecanoate; ethyl dodecylate; ethyl laurate (ethyl dodecanoate); ethyl laurinate; 

ethyllaurate; lauric acid ethyl ester. 

Odour type:  waxy. Odour strength: medium. 

Odour description at 100.00 %: sweet waxy floral soapy clean. 

Odour description: Sweet, waxy, soapy and rummy with a creamy, floral nuance. 

Taste description at 50.00 ppm:   Waxy, soapy and floral with a creamy, dairy and 

fruity nuance. 

 

Ethyl 2-methylbutanoate 

Other names - berry butyrate; butanoic acid, 2-methyl-, ethyl ester; butyric acid, 2-

methyl-, ethyl ester; dorintha; ethyl 2 methyl butyrate; ethyl 2 methyll butyrate synthetic; 

ethyl 2-methyl butanoate; ethyl 2-methylbutanoate; ethyl 2-methylbutyrate; ethyl a-

methylbutyrate; ethyl alpha-methyl butyrate; ethyl DL-2-methylbutyrate;  ethyl methyl 

butyrate-2; ethyl methyl butyrate-2 natural; ethyl methyl-2-butyrate; ethyl-2-methyl 

butyrate; 2-methyl butanoic acid ethyl ester; 2-methyl butyric acid ethyl ester; 2-



methylbutanoic acid ethyl ester; 2-methylbutyric acid ethyl ester; DL-2-methylbutyric 

acid ethyl ester. 

Odour type: fruity. Odour strength: medium, 

Odour description: Fruity, estery and berry with fresh tropical nuances. 

Taste description at 10.00 ppm:   Fruity, fresh, berry, grape, pineapple, mango and 

cherry notes. 

 

Ethyl 3-methylbutanoate 

Other names - butanoic acid, 3-methyl-, ethyl ester; butyric acid, 3-methyl-, ethyl 

ester; ethyl 3-methyl butanoate; ethyl 3-methyl butyrate; ethyl 3-methylbutanoate; ethyl 

3-methylbutyrate; ethyl beta-methyl butyrate; ethyl iso valerate; ethyl isopentanoate; 

ethyl isovalerianate; ethylisovalerate; 3-methyl butanoic acid ethyl ester; 3-methyl 

butyric acid ethyl ester; 3-methylbutanoic acid ethyl ester; 3-methylbutyric acid ethyl 

ester; iso-valeric acid ethyl ester; iso-valeric acid ethylester; iso valeric acid, ethyl 

ester. 

Odour type: fruity. Odour strength: high. 

Odour description: Sweet, diffusive, estery, fruity, sharp, pineapple, apple, green 

and orange. 

Taste description: at 30.00 ppm:  Sweet, fruity, spice, metallic and green with a 

pineapple and apple Iift. 

 

Ethyl trans-4-decenoate 

Other names - (4E)-4-decenoic acid ethyl ester; (E)-4- decenoic acid ethyl ester; 

trans-4-decenoic acid ethyl ester; 4-decenoic acid, ethyl ester, (4E)-; 4-decenoic acid, 

ethyl ester, (E)-; ethyl (4E)-dec-4-enoate; ethyl (E)-dec-4-enoate;  ethyl 4-decenoate 

(trans); ethyl trans-4-decenoate; pear decenoate. 

Odour type: green. Odour strength: medium. 

Odour description at 100.00 %: green fruity waxy cognac. 

Odour description: Green, fruity and oily with a pineapple, apple waxy nuance. 

Taste description at 10.00 ppm: Fatty, waxy, green, pineapple and pear nuances. 

 

Isoamyl acetate 

Other names - acetic acid 3-methyl butyl ester;  acetic acid 3-methylbutyl ester; 

acetic acid isoamyl ester; acetic acid isopentyl ester; acetic acid, 3-methylbutyl ester; 

acetic acid, isopentyl ester; iso-amyl acetate; butanol, 3-methyl-, acetate; 1-butanol, 3-

methyl-, acetate; 3-methyl butyl acetate; beta-methyl butyl acetate; iso pentyl acetate; 

iso pentyl alcohol acetate; iso pentyl alcohol, acetate; iso pentyl ethanoate. 



Odour type: fruity. Odour strength: high. 

Odour description: Sweet, banana, fruity with a ripe estery nuance. 

 

Phenylethyl acetate 

Other names - acetic acid 2-phenyl ethyl ester; acetic acid 2-phenylethyl ester; 

acetic acid phenethyl ester; acetic acid, 2-phenylethyl ester; acetic acid, phenethyl 

ester; benzyl carbinyl acetate; benzylcarbinyl acetate; 2-phenethyl acetate; beta-

phenethyl acetate; phenethyl alcohol acetate; phenethyl ethanoate; phenyl ethyl 

acetate; 2-phenyl ethyl acetate; beta-phenyl ethyl acetate; phenyl ethyl alcohol acetate; 

phenylethyl acetate; 2-phenylethyl acetate; 2-phenylethyl acetone. 

Odour type: floral. Odour strength: medium. 

Odour description at 100.00 %: floral, rose, sweet, honey, fruity, tropical. 

Odour description at 100.00 %: Sweet, honey, floral rosy, with a slight yeasty honey 

note with a cocoa and balsamic nuance. 

Taste description at 5.00 - 10.00 ppm: Sweet, honey, floral, rosy with a slight green 

nectar fruity body and mouth feel. 

 

Diethyl succinate 

Other names - butane dioic acid diethyl ester;  butanedioic acid diethyl ester; 

butanedioic acid, di-C8-26-alkyl esters; butanedioic acid, diethyl ester; diethyl butane 

dioate; diethyl butane-1,4-dioate; diethyl butanedioate;  diethyl ethane dicarboxylate; 

diethyl ethanedicarboxylate; diethyl succinate natural; diethyl succinate synthetic; ethyl 

succinate; succinic acid diethyl ester; succinic acid, diethyl ester. 

Odour type: fruity. Odour strength: low. 

Odour description at 100.00 %: mild, fruity, cooked apple, ylang. 

 

Isoamyl hexanoate 

Other names - iso amyl caproate; iso amyl hexanoate (caproate), natural; hexanoic 

acid 3-methyl butyl ester; hexanoic acid 3-methylbutyl ester; hexanoic acid isopentyl 

ester; hexanoic acid, 3-methylbutyl ester; hexanoic acid, isopentyl ester; 3-methyl butyl 

hexanoate; 3-methylbutyl hexanoate; iso pentyl alcohol hexanoate; iso pentyl alcohol, 

hexanoate; iso pentyl caproate; iso pentyl hexanoate; iso pentyl-N-hexanoate;  

Odour type: fruity. Odour strength: medium. 

Odour description at 100.00 %: fruity, banana, apple, pineapple, green. 

Odour description: Fruity, sweet, pineapple with a slightly pungent sour cheesey 

note. 

Taste Description at 25.00 ppm:   Fruity, green, pineapple with a waxy nuance. 



 

Phenylethanol 

Other names - benzene ethanol; benzeneethanol; benzyl carbinol; benzyl methanol; 

2-hydroxyethyl benzene; (2-hydroxyethyl)benzene; 2-hydroxyethylbenzene; b-

hydroxyethylbenzene; mellol; beta-p.e.a.; b-phenethanol; 2-phenethyl alcohol; 

phenethylalcohol; phenethylol; 2-phenyl ethan-1-ol; phenyl ethanol; 2-phenyl ethanol; 

beta-phenyl ethanol; phenyl ethyl alcohol; 2-phenyl ethyl alcohol; beta-phenyl ethyl 

alcohol; 1-phenyl-2-ethanol; phenylethanol; 2-phenylethanol; b-phenylethanol; b-

phenylethyl alcohol. 

Odour type: floral. Odour strength: medium. 

Odour description at 100.00 %: floral, rose, dried rose flower, rose water. 

Odour description: Sweet, floral, fresh and bready with a rosey, honey nuance. 

Taste description at 20.00 ppm: Floral, sweet, rosey and bready. 

 

Benzyl alcohol 

Other names - benzencarbinol; benzene carbinol; benzene methanol; 

benzenecarbinol; benzenemethanol; benzoyl alcohol; Benzylalcohol; benzylic alcohol; 

Benzylicum; (hydroxymethyl) benzene; (hydroxymethyl)benzene; hydroxytoluene; a-

hydroxytoluene; alpha-hydroxytoluene; methanol, phenyl-; phenol carbinol; phenyl 

carbinolum; phenyl methanol; phenyl methyl alcohol; phenyl-methanol; phenylmethan-

1-ol; phenylmethanol; phenylmethyl alcohol; a-toluenol; alpha-toluenol;  ulesfia. 

Odour type: floral. Odour strength: medium. 

Odour description at 100.00 %: floral, rose, phenolic, balsamic. 

Odour description: Sweet, floral, fruity with chemical nuances. 

Taste description at 50.00 ppm: Chemical, fruity with balsamic nuances. 

 

 Terpineol 

Other names - 3-cyclohexene-1-methanol, a,a,4-trimethyl-; lindenol; p-menth-1-en-

8-ol; para-menth-1-en-8-ol; 1-p-menthen-8-ol; 1-para-menthen-8-ol; 2-(4-methyl-1-

cyclohex-3-enyl)propan-2-ol; 2-(4-methyl-3-cyclohexen-1-yl)-2-propanol; 2-(4-methyl-3-

cyclohexenyl)-2-propanol; 1- methyl-4-isopropyl-1-cyclohexen-8-ol; 1-methyl-4-

isopropyl-1-cyclohexene-8-ol; 2-(4-methyl-cyclohex-3-enyl)-propan-2-ol; 2-(4-

methylcyclohex-3-en-1-yl) propan-2-ol; 2-(4-methylcyclohex-3-enyl) propan-2-ol; alpha-

terpilenol; 1--terpineol; -terpineol; DL-alpha-terpineol; alpha-terpineol (NQ) (natural); 

terpineol-alpha; terpineol alpha; tilianol NP; tilianol super; (1)-alpha,alpha,4-trimethyl 

cyclohex-3-ene-1-methanol; alpha,alpha,4- trimethyl-3-cyclohexene-1-methanol; (1)-

alpha,alpha,4- trimethylcyclohex-3-ene-1-methanol.  



Odour type: odourless. Odour strength: medium. 

Odour description at 100.00 %: pine, terpene, lilac, citrus, woody, floral. 

 

-cis-Terpineol 

Other names - cyclohexanol, 1-methyl-4-(1-methylethenyl)-; p-menth-8-en-1-ol; 

para-menth-8-en-1-ol; 1-methyl-4-(1-methyl ethenyl) cyclohexanol; 1-methyl-4-(1-

methyl vinyl) cyclohexan-1-ol; 1-methyl-4-(1-methylethenyl)cyclohexanol; 1-methyl-4-

(1-methylvinyl)cyclohexan-1-ol; 1-methyl-4-(prop-1-en-2-yl)cyclohexanol; 1-methyl-4-

isopropenyl cyclohexan-1-ol; 1-methyl-4-isopropenylcyclohexan-1-ol; 1- methyl-4-ethyl 

vinyl cyclohexanol; 1- methyl-4-prop-1-en-2-ylcyclohexan-1-ol; 4-isopropenyl-1-methyl-

1-cyclohexanol; 4-iso propenyl-1-methylcyclohexanol; terpin-1-ol. 

Odour type: woody. Odour strength: medium. 

Odour description at 10.00 % in dipropylene glycol: pungent, earthy, woody. 

 

Linalol 

Other names - coriander oil terpeneless; 3,7-dimethyl octa-1,6-dien-3-ol; 2,6-

dimethyl octa-2,7-dien-6-ol; (+/-)-3,7-dimethyl-1,6-octadien-3-ol; (±)-3,7-dimethyl-1,6-

octadien-3-ol; 3,7-dimethyl-1,6-octadien-3-ol; 2,6-dimethyl-2,7-octadiene-6-ol; (+/-)-3,7-

dimethyl-3-hydroxy-1,6-octadiene; (±)-3,7-dimethyl-3-hydroxy-1,6-octadiene; 3,7-

dimethyl-octa-1,6-dien-3-ol; 3,7-dimethylocta-1,6-dien-3-ol; 2,6-dimethylocta-2,7-dien-

6-ol; linalool; linalol natural isolate; (±)-linalool; beta-linalool; p-linalool; para-linalool; 

linalyl alcohol; 1,6-octadien-3-ol, 3,7-dimethyl-. 

Odour type: floral. Odour strength: medium. 

Odour description at 100.00 %: citrus, floral, sweet, bois de rose, woody, green, 

blueberry. 

Odour description: Citrus, orange, floral, terpenic, waxy and rose. 

Taste description at 10.00 ppm:  Citrus, orange, lemon, floral, waxy, aldehydic and 

woody. 

 

Nerolidol 

Other names - dodecatriene; 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene; 

Melaleucol; methyl vinyl homogeranyl carbinol; 3,7,11-trimethyl dodeca-1,6,10-trien-3-

ol; 3,7,11-trimethyl-1,6,10-dodecatrien-3-ol; 3,7,11-trimethyldodeca-1,6,10-trien-3-ol. 

Odour type: floral. Odour strength: low. 

Odour description at 100.00 %: floral, green, waxy, citrus, woody. 

Odour description: Floral, green and citrus like, with woody waxy nuances. 



Taste description at 25.00 ppm: Green, floral, woody with fruity-citrus and melon 

nuances. 

 

Cis--Farnesene  

Other names - (Z)-beta-farnesene; (6Z)-7,11-dimethyl-3-methylene-1,6,10-

dodecatriene; (6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene. 

Odour Type: Green. Odour Strength: medium 

Odour Description at 100.00 %:  citrus, green. 

 

trans--Bisabolene 

Other names - (9E)-bisabola-4,7(11),9-triene; trans-alpha-bisabolene; 4-[(1E)-1,5-

dimethylhexa-1,4-dien-1-yl]-1-methylcyclohexene; 1-methyl-4-[(2E)-6-methylhepta-2,5-

dien-2-yl]cyclohexene. 

 No organoleptic data was found. 

 

trans-Nerolidol  

Other names - 1,6,10-dodecatrien-3-ol, 3,7,11-trimethyl-, (6E)-; 1,6,10-dodecatrien-

3-ol, 3,7,11-trimethyl-, (E)-; (±)-trans-nerolidol; (6E)-nerolidol; trans-nerolidol; nerolidol 

(E); nerolidol trans-form; trans-3,7,11-trimethyl dodeca-1,6,10-trien-3-ol; trans-trimethyl 

dodecatrien-3-ol; (6E)-3,7,11-trimethyl-1,6,10-dodecatrien-3-ol; (E)-3,7,11-trimethyl-

1,6,10-dodecatrien-3-ol; trans-3,7,11-trimethyl-1,6,10-dodecatrien-3-ol; (E)-3,7,11-

trimethyl-dodeca-1,6,10-trien-3-ol; (6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol; (E)-

3,7,11- trimethyldodeca-1,6,10-trien-3-ol 

Odour Type: floral. Odour Strength: low. 

Odour Description at 100.00 %: floral, green, citrus, woody, waxy. 

Taste Description:  green, floral, woody, fruity, citrus, melon. 

 

4-Ethylguaiacol 

Other names - homo creosol; 4-ethyl guaiacol; p-ethyl guaiacol; para-ethyl guaiacol; 

4-ethyl-2-methoxyphenol;  ethyl-4 guaiacol; 4-ethylguaiacol; p- ethylguaiacol; para-

ethylguaiacol; guaiacol, 4-ethyl-; guaiacyl ethane; guaiacylethane; 1-hydroxy-2-

methoxy-4-ethyl benzene; 1- hydroxy-2-methoxy-4-ethylbenzene; 4-hydroxy-3-methoxy 

ethylbenzene; 4-hydroxy-3-methoxyethyl benzene; 4-hydroxy-3-methoxyphenyl ethane; 

4-hydroxy-3-methoxyphenylethane; 2-methoxy-4-ethyl phenol; 2-methoxy-4-

ethylphenol; phenol, 4-ethyl-2-methoxy- 

Odor type: spicy. Odor strength:  medium. 



Odor Description: Spicy and clove-like with medicinal, woody and sweet vanilla 

nuances. 

Taste Description at 30.00 ppm: Woody, smokey and spicy with a sweet vanilla 

background. 

 

Di-hydro pseudo-ionone 

 No information found. 

 

-Damascenone 

Other names - 2- buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (2E)- 

2- buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (E)-; damascenone; 

beta-damascenone; fermentone; floriffone;  roastarome natural; rose ketone-4; 

rosenone; 4-(2,6,6-trimethyl cyclohexa-1,3-dienyl) but-2-en-4-one; trimethyl 

cyclohexadienyl butanone; trans-2,6,6-trimethyl-1-(2-butenoyl)cyclohexa-1,3-diene; 

(E)-1-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl)but-2-en-1-one; 2,6,6-trimethyl-1-trans-

crotonoyl-1,3-cyclohexadiene; (2,6,6-trimethyl-1,3-cyclohexadien-1-yl) butanone; (2E)-

1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one; (E)-1-(2,6,6-trimethyl-1,3-

cyclohexadien-1-yl)-2-buten-1-one; 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-

1-one; (2E)-1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one 

Odor type:  floral. Odor strength:  high. 

Odor Description:  Woody, sweet, fruity, earthy with green floral nuances. 

Taste Description at 20.00 ppm:  Woody, floral, herbal, green and fruity with spicy 

tobacco nuances. 

 

Limonene 

Other names - acintene dp dipentene; cajeputene; cinene; citrene; dipanol; 

dipentene; (±)-dipentene; eulimen; limonene; (±)-alpha- limonene; dextro,laevo-

limonene; DL- limonene; limonene X; (±)- limonene; p-mentha-1,8-diene; para-

mentha-1,8-diene; dextro,laevo-para-mentha-1.8-diene; DL-p-mentha-1.8-diene; 

1,8(9)-p-menthadiene; 1,8(9)-para-menthadiene; 1-methyl-4-(1-methyl ethenyl) 

cyclohexene; 1-methyl-4-(1-methyl vinyl) cyclohexene; 1-methyl-4-isopropenyl-1-

cyclohexene; 1-methyl-4-prop-1-en-2-ylcyclohexene; orange tetrarome;  orange 

tetrarome # 987431; 4-isopropenyl-1-methyl-1-cyclohexene; delta-1,8-terpodiene. 

Odor Type: citrus. Odor Strength: medium. 

Odor Description at 100.00 %: citrus, herbal, terpene, camphor. 

 

Terpinolene 



Other names - cyclohexene, 1-methyl-4-(1-methylethylidene)-; cyclohexene, 3-

methyl-6-(1-methylethylidene)-; p- menth-1,4,8-diene; para-menth-1,4,8-diene; p-

menth-1,4(8)-diene; p-mentha-1,4,8-diene; para-mentha-1,4,8-diene; p-mentha-1,4(8)-

diene; para-mentha-1,4(8)-diene; 1,4(8)-p-menthadiene; 1,4(8)-para-menthadiene; p-

meth-1-en-8-yl-formate; 1-methyl-4-(1-methyl ethylidene) cyclohexene; 1-methyl-4-(1-

methylethylidene)-1-cyclohexene; 1- methyl-4-(1-methylethylidene)cyclohexene; 1-

methyl-4-(propan-2-ylidene)cyclohexene; 1-methyl-4-isopropylidene-1-cyclohexene; 1-

methyl-4-propan-2-ylidenecyclohexene; 4-iso propylidene-1-methyl cyclohexene; 4-iso 

propylidene-1 methylcyclohexene; 4-iso propylidene-1-methylcylohexene; 1,4,8-

terpadiene; 1,4(8)-terpadiene; iso terpinene; terpineolene. 

Odor Type: herbal. Odor Strength: medium. 

Odor Description at 1.00 %: Sweet, fresh, piney, citrus with a woody old lemon peel 

nuance. 

Taste Description at 2.00 - 25.00 ppm:  Woody, terpy, lemon and lime-like with a 

slight herbal and floral nuance. 

 

S--pinene 

Other names - (-)- pin-2(3)-ene; (-)-a-pinene; (1S,5S)-2-pinene; (1S)-(-)-alpha-

pinene; L-(-)-alpha-pinene; L-alpha- pinene; laevo-alpha- pinene; alpha- pinene L-, 

natural; alpha- pinene laevo natural; alpha- pinene laevo-; (1S,5S)-2,6,6- trimethyl 

bicyclo(3.1.1)hept-2-ene; (1S,5S)-4,7,7-trimethylbicyclo[3.1.1]hept-3-ene. 

Odor Type: terpenic. Odor Strength: medium. 

Odor Description at 10.00 % in dipropylene glycol: sharp, warm, resinous, fresh, 

pine. 

 

Geranyl acetone 

Other names - 6,10-dimethyl undeca-5,9-dien-2-one; 6,10-dimethyl-5,9-undecadien-

2-one; 6,10-dimethyl-undeca-5,9-dien-2-one; 6,10-dimethylundeca-5,9-dien-2-one; 5,9-

undecadien-2-one, 6,10-dimethyl-. 

Odor Type: floral. Odor Strength: medium. 

Odor Description at 100.00 %: fresh, rose, leaf, floral, green, magnolia, aldehydic, 

fruity. 

Taste Description:  floral, rose, fresh, soapy. 

 

Ethyl-2-hexenoate  

Other names - ethyl hex-2-enoate; hex-2-enoic acid ethyl ester; 2-hexenoic acid 

ethyl ester; 2- hexenoic acid, ethyl ester; 2- hexenoic acid, ethylester. 



Odor Type: fruity. Odor Strength: medium. 

Odor Description at 100.00 %: rum, fruity, green, sweet, juicy. 

  

TDN 

Other names - 1,2-dihydro-1,1,6-trimethyl naphthalene; 1,2-dihydro-1,1,6-

trimethylnaphthalene; naphthalene, 1,2-dihydro-1,1,6-trimethyl-; 1,1,6-trimethyl-1,2-

dihydronaphthalene; 1,1,6-trimethyl-2H-naphthalene 

 

Odor Type: licorice. Odor Strength: medium. 

Odor Description at 10.00 % in dipropylene glycol: Licorice. 

 

Neryl Acetate 

Other names - acetic acid neryl ester; cis-3,7-dimethyl-2,6-octadien-1-ol acetate; 

(Z)-3,7-dimethyl-2,6-octadien-1-yl acetate; cis-3,7- dimethyl-2,6-octadien-1-yl acetate; 

(Z)-3,7-dimethyl-2,6-octadien-1-yl ethanoate; cis-3,7-dimethyl-2,6-octadien-1-yl 

ethanoate; (2Z)-3,7-dimethylocta-2,6-dien-1-yl acetate; (Z)-3,7- dimethylocta-2,6-

dien-1-yl acetate; [(2Z)-3,7-dimethylocta-2,6-dienyl] acetate; (Z)- geranyl acetate; nerol 

acetate; neryl /geranyl acetate natural; (Z)- neryl acetate; cis-neryl acetate; neryl 

acetate pure;  neryl ethanoate; 2,6- octadien-1-ol, 3,7-dimethyl-, acetate, (2Z)-; 2,6-

octadien-1-ol, 3,7-dimethyl-, acetate, (Z)-. 

Odor Type: floral; Odor Strength: medium 

Odor Description at 100.00 %: floral, rose, soapy, citrus, dewy, pear. 

 

Ethyl dl Malate 

Other names - butanedioic acid, 2-hydroxy-, diethyl ester; butanedioic acid, hydroxy-

, diethyl ester; butanedioic acid, hydroxy-, diethyl ester, (±)-; diethyl 2-hydroxy-1,4-

butane dioate; diethyl 2-hydroxybutanedioate; diethyl DL-malate;  diethyl 

hydroxybutane dioate; diethyl hydroxybutanedioate; diethyl-2-hydroxybutandioate; ethyl 

malate; hydroxybutane dioic acid diethyl ester; malic acid diethyl ester;  malic acid, 

diethyl ester. 

Odor Type: caramellic. Odor Strength: medium. 

Odor Description at 100.00 %: brown sugar, sweet, wine, fruity, herbal. 

 

4-Ethyl Phenol 

Other names - benzene,1-ethyl,4-hydroxy; p-ethyl phenol; para-ethyl phenol; 1-

ethyl-4-hydroxybenzene; 4-ethylphenol; p-ethylphenol; para-ethylphenol; 1-hydroxy-4-

ethyl benzene; 1-hydroxy-4-ethylbenzene; 4-hydroxyethyl benzene; 4-



hydroxyethylbenzene; 4-hydroxyphenyl ethane; (4- hydroxyphenyl)ethane; 4-

hydroxyphenylethane; phenol, 4-ethyl-; phenol, p-ethyl-. 

Odor Type: smoky. Odor Strength: high. 

Odor Description at 1.00 %: Smoke, phenolic, creosote and savory. 

Taste Description at 2.50 ppm:   Phenolic, smoke, bacon and ham 

 

                                                
1
 Barros EP, Moreira N, Pereira GE, Leite SGF, Rezende CM, Guedes de Pinho P. 

Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass 
spectrometry method for analysis of volaties in wines. Talanta 2012; 101: 177-186. 

2
 Xie K, Feng T, Lin W, Zhuang H, Xu Z, Bing F. Correlations between aroma profiles and 

sensory characteristics of red wines by using Partial Least Squares regression method. 
Advance Journal of Food Science and Technology. 2016. 12(5): 271-280.  

3
 Tao Y, Zhang L. Intensity prediction of typical aroma characters of cabernet sauvignon 

wine in Changli County (China). LWT - Food Science and Technology. (2010). 431550-1556. 
4
 Consulted online at December 2015; http://www.thegoodscentscompany.com  
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Carattere: Grappolo: compattezza Codes Nos 
Caractère: Grappe: compacité OIV 204  
Merkmal: Traube: Dichte UPOV 33 
Characteristic: Bunch: density IPGRI 6.2.3 
Carácter: Racimo: compacidad   
Livelli di espressione / Notation / Bonitierung / Notes / Notación: 
 1 3 5 7 9 
 molto spargolo spargolo medio compatto molto compatto 
 très lâche lâche moyenne compacte très compacte 
 sehr locker locker mittel dicht sehr dicht 
 very loose loose medium dense very dense 
 muy suelto suelto medio compacto muy compacto  
Varietà di riferimento / Exemples de variétés / Beispielssorten / Example varieties / Ejemplos de variedades: 
 1 3 5 7 9 
 V. amurensis Perle von Csaba B Chasselas B Barbera N Meunier N 
 Uva rara N Cardinal Rg Schiava Grossa N Sauvignon B Silvaner B 
  Prosecco B  Chenin B 
  Vermentino B  
Indicazioni / Définitions / Definitionen / Definitions / Indicaciones:  
 I: Osservazione da effettuare a maturità. Rilievo sui grappoli più grandi di 10 germogli. 1 = acini nettamente staccati, 

molti pedicelli visibili; 3 = acini appena staccati l’uno dall’altro, qualche pedicello visibile; 5 = acini appressati, pedicelli 
non visibili, acini che si possono muovere; 7 = acini che non si possono muovere direttamente; 9 = acini deformati 
dalla compressione.  

 F: Observation à faire à la maturité. Notation sur les plus grandes grappes de 10 rameaux. 1 = baies nettement  
  séparées, nombreux pédicelles visibles; 3 = baies séparées les unes des autres, quelques pédicelles visibles; 
  5 = baies serrées, pédicelles non visibles, baies peuvent bouger; 7 = baies ne peuvent pas bouger directement;  
  9 = baies déformées par la pression.  
 D: Feststellung bei der Reife. Beurteilung der größten Trauben von 10 Trieben. 1 = Beeren deutlich getrennt, viele 
  sichtbare Beerenstielchen; 3 = Beeren lose miteinander verbunden mit einigen sichtbaren Beerenstielchen; 5 = dicht 
  verteilte Beeren, Beerenstielchen nicht sichtbar, Beeren beweglich; 7 = Beeren nicht frei beweglich; 9 = Beeren 
  durch Druck deformiert.  
 E: Observation at maturity. Examination of the largest bunches of 10 shoots. 1 = berries clearly separated, many visible 

pedicels; 3 = berries in loose contact with each other with some visible pedicels; 5 = densely distributed berries, 
pedicels not visible, berries are movable; 7 = berries not readily movable; 9 = berries deformed by compression.  

 S: Observación a realizar en racimos maduros. Notación de los racimos mayores de 10 sarmientos. 1 = bayas muy 
sueltas, con muchos pedicelos visibles; 3 = bayas separadas unas de otras, con algunos pedicelos visibles;  
5 = bayas apretadas con pedicelos no visibles, bayas movibles; 7 = bayas dificilmente movibles; 9 = bayas 
deformadas por la presión. 
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Annex 2 - OIV204 - Cluster compactness



Rosa

Violeta

Cravo

Maça

Pera

Marmelo

Tangerina

Toranja

Banana

Ananás

Groselha

Framboesa

Cereja

Ameixa

Amora

Passa ameixa

Compota

Noz

Avelã

Amêndoa

Chá

Tabaco

Pimento

Ervas

Resina

Pimenta

Alcaçuz

Doce Cravinho

Baunilha

Tostado

Cedro

Carvalho

Fumo

Animal Animal Couro

Pão

Levedura

Natas

Manteiga

Iogurte

Metálico

Mel

Tabaco

Café

Chocolate

Cogumelo

Gordura Gordura Ranço/Queijo

0 (nada); 1 (muito pouco); 2 (pouco); 3 (notório); 4 (intenso); 5 (muito intenso)

Annex 3 - Score tasting table for Baga

Madeira Madeira

Fermentação

Autolíticos

FML

Maturação Maturação

Frutos secos Frutos secos

Herbáceo 

Herbáceo seco

Herbáceo 

fresco

Especiarias
Picante

4 5

Floral Floral

Frutado

Fruta verde

Citrinos

Frutos tropicais

Frutos 

vermelhos

Fruta seca

4 5 0 1 2 34 5 0 1 2 34 5 0 1 2 34 5 0 1 2 3Família de aromas Aroma 0 1 2 3

Grau de intensidade

CTR MAD MED MBT DMR



Annex 4 - Baga description  
 
 
Segue-se um pequeno resumo das características varietais da Baga (Vitis Vinifera L.) tendo por base 
alguma documentação publicada anteriormente [i,ii]. 
 
 
Origem da casta: Aguiar (1867) e Vila Maior (1875) limitam a classificação da casta à Bairrada. 
Região de maior expansão: Ocupa mais de metade da superfície vitícola bairradina. 
Sinónimos oficiais (nacional e OIV): Bagrina Crvena (YU). 
Sinónimos históricos e regionais: Paga Dívida (Dão), Poeirinho (Ribatejo, Cantanhede, Coimbra), Tinta 
da Bairrada (Douro), Carrasquenho (Tomar), Baga de Louro (Dão e Bairrada). 
Homónimos: Desconhecidos. 
Superfície vitícola actual: 9.200 ha. 
Utilização actual a nível nacional: 0,6% 
Tendência de desenvolvimento: Decrescente. 
Intravariabilidade varietal da produção: Intermédia. 
Qualidade do material vegetativo: Material policlonal RNSV. Material clonal RNSV em processo de 
admissão à certificação. 
 
VVMD5  VVMD7  VVMD27  VrZag62  VrZag79  VVS2 
Alelo1  Alelo2  Alelo1  Alelo2  Alelo1  Alelo2  Alelo1  Alelo2  Alelo1  Alelo2  Alelo1  Alelo2 
232  240  235  235  179  189  188  204  247  251  145  157 
 
Classificação Regional 
Vinho de Qualidade DOC: «Douro», «Bairrada», «Beira interior», «Alenquer», «Ribatejo», sub-regiões 
de Almeirim, Cartaxo, Chamusca, Tomar; 
Vinho de qualidade IPR: «Encosta de Aire», «Alcobaça». 
Vinho regional: «Minho», «Beiras» em todas as sub-regiões, «Estremadura»,«Ribatejano», 
«Alentejano», «Algarve». 
 
Morfologia 
Extremidade do ramo jovem: Aberta, com forte densidade de pêlos prostrados e orla carmim fraca. 
Folha jovem: Verde com placas bronzeadas, página inferior com forte densidade de pêlos prostrados. 
Flor: Hermafrodita. 
Pâmpano: Estriado de vermelho, média intensidade antociânica dos gomos. 
Folha adulta: Tamanho médio, pentagonal, com cinco lóbulos; limbo verde-médio a escuro, 
ligeiramente revoluto, bolhosidade fraca, página inferior com forte densidade de pêlos prostrados; 
dentes curtos e convexos; seio peciolar pouco aberto, com a base em V, seios laterais fechados em 
U. 
Cacho: Médio, cónico, compacto, pedúnculo de comprimento médio. 
Bago: Arredondado, médio e negro-azul; película de espessura média, polpa mole. 
Sarmento: Castanho-escuro. 
 
Fenologia 
Abrolhamento: Época média, 10 dias após a Castelão. 
Floração: Época média, 6 dias após a Castelão. 
Pintor: Época média, 2 dias após a Castelão. 
Maturação: Tardia, duas semanas após a Castelão. 
 



Potencial Vegetativo 
Vigor: Médio-forte. 
Porte (tropia): Semi-erecto, algumas varas prostradas e retombantes. 
Entrenós: Médios. 
Tendência para o desenvolvimento de netas: Forte. 
Rebentação múltipla: Pouca. 
Índice de fertilidade: Elevado. 
Produtividade: Medianamente produtivo (até 15.000 l/ha). Valores RNSV: 2,2 kg/pl (média de, no 
mínimo, 40 cultivares, registada em Anadia, durante 5 anos). 
Estabilidade da produção (diferentes anos e localidades): Estável. 
Homogeneidade de produção (entre as plantas): Uniforme. 
Índice de Winkler (somatório de temperaturas activas): Elevado. Por isso, surgem problemas na 
maturação com as chuvas de Setembro. 
Producção recomendada: 5.000 l/ha. 
Sensibilidade abiótica: Geralmente apresentam bom comportamento. 
Sensibilidade criptogâmica: Pouco sensível ao Míldio e ao Oídio, é muito sensível à podridão de 
cachos. 
Estado sanitário (sistémico) antes da selecção: 45% GLRaV 3, <50% GFkV. 
Sensibilidade a parasitas: Medianamente sensível à Cigarrinha Verde. 
Tamanho do cacho: 260 g em média, mas heterogéneo. 
Compactação do cacho: Muito compacto. 
Bago: Médio (1,5 g). 
Película: Média espessura, delicada. 
Nº de graínhas: 2,6 por bago. 
 
Potencial Agronómico 
Sistema de condução: Alta, cordão bilateral, forma tradicional guyot múltiplo. 
Solo favorável para obter qualidade: Adapta-se a todos os tipos de solo, mas recomenda-se terrenos 
de média fertilidade e humidade, bem drenados, com limitada disponibilidade hídrica; são favoráveis 
zonas argilo-calcárias jurássicas, mas dá-se mal com pH baixo. 
Clima favorável: De intensa insolação e de Verão prolongado. 
Compasso: Adapta-se a todos os intervalos que consideram o vigor desta casta. 
Porta-enxertos: Boa afinidade com todos os porta-enxertos. Para obter boa qualidade do vinho, 
especialmente em solos férteis devem ser utilizados porta-enxertos de reduzido vigor. 
Desavinho/Bagoinha: Não susceptível. 
Conservação do cacho após maturação: Baixa. 
Protecção contra ataques de pássaros: Reduzida. 
Aptidão para vindima mecânica: Boa. 
 
Potencial Enológico 
Tipo de vinho: Vinho de qualidade, espumante tinto e vinho rosado. 
Grau alcoólico provável do mosto: Médio. Devido à elevada fertilidade, a casta não consegue 
amadurecer em solos férteis e húmidos. Consegue-se muito boa qualidade desta casta, através do 
controlo da produção. Valores RNSV: 10,35% vol. (média de, no mínimo, 40 cultivares, registada em 
Anadia, durante 7 anos). 
Acidez natural: Relativamente elevada (6-7 g/l). Valores RNSV: 5,88 g/l (média de, no mínimo, 40 
cultivares, registada em Anadia, durante 7 anos). 
Autocianinas totais: Valores RNSV: 865,86 mg/l (média de, no mínimo, 40 cultivares, registada em 
Anadia, durante 2 anos). 
Índice de polifenóis totais (280nm) do mosto: Valores RNSV: 30,52 (média de, no mínimo, 40 
cultivares, registada em Anadia, durante 2 anos). 
Sensibilidade do mosto à oxidação: Apenas quando o estado sanitário das uvas é impróprio. 



Intensidade da cor: Elevada. 
Tonalidade: Rubi granada. 
Sensibilidade do vinho à oxidação: Muito estável. 
Análise laboratorial dos aromas: Presença de elevado número de compostos terpenóides, 
sesquinóides e norisoterpenóides. 
Capacidade de envelhecimento do vinho: Excelente. Boa aptidão para envelhecimento em madeira. 
Recomendação para lote: Touriga Nacional, Syrah. 
Potencial para vinho elementar: Possível, originando vinhos equilibrados. 
Caracterização habitual do vinho: Os vinhos apresentam cor intensa, rubi ou granada, por vezes com 
tons violáceos. O aroma é muito frutado, com notas de amora, compota, mel e cânfora. Na boca, os 
vinhos de Baga jovem são, frequentemente, um pouco delgados, com taninos fortes e pouco 
cobertos. Com uma maturação correcta, os taninos arredondam e os vinhos ganham volume e 
persistência (Cardoso, 2005). 
Qualidade do vinho: Casta muito polémica devido à sua extrema capacidade produtiva. Em condições 
adequadas fornece dos melhores vinhos do país. 
 
Particularidade da casta: A folha adulta aparece muitas vezes com um «dente» num dos seios 
laterais superiores. Cacho pequeno, compacto e alado, porte retombante. Vinho muito taninoso, 
mas de elevada frescura e longevidade. 
 
 
                                                           
i
 Böhm J. Portugal Vitícola. O Grande Livro das Castas. 1ª Edição. 2007. Chaves Ferreira-Publicações SA. Lisboa. 
ii
 IVV, Faustino R (Coordenador), Castro R (Coordenador Técnico-Científico). Catálogo das Castas Para Vinho 

Cultivadas Em Portugal. Volume 1 - 1ª Edição. 2011. Chaves Ferreira-Publicações SA. Lisboa. 


