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ABSTRACT

Usually, Aspect-Oriented Programming (AOP) languages
are an extension of a specific target language (e.g., AspectJ
for Java and AspectC++ for C++). This coupling can im-
pose drawbacks such as arbitrary limitations to the aspect
language. LARA is a DSL for source-to-source transforma-
tions inspired by AOP concepts, and has been designed to be
independent of the target language. In this paper we propose
techniques to overcome some of the challenges presented by a
language-independent approach to source code transforma-
tions, and present and discuss possible solutions and their
impact. Additionally, we present some of the benefits and
opportunities of this approach. We present an evaluation
of our approach, show that we can significantly reduce the
effort to develop weavers for new target languages and that
the proposed techniques contribute to more concise LARA
aspects and safer semantics.

CCS Concepts

eSoftware and its engineering — Compilers; Source
code generation; Domain specific languages;
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1. INTRODUCTION

Aspect-Oriented Programming (AOP) is a paradigm that
aims at increasing program modularity by specifying code
related with crosscutting concerns (e.g., logging, profiling,
autotuning) into separate entities called aspects.
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It is common for an AOP approach to be focused on a spe-
cific target language (e.g., Aspect] [13] for Java and As-
pectC++ [21] for C++). When moving crosscutting con-
cerns to an aspect, we are effectively moving code from a
source file to an aspect file. So for seamless integration we
need access and support to language features. In fact, most
traditional AOP languages are extensions of their target lan-
guage [10].

Despite the benefits provided by such approaches, coupling
an AOP language to a target language can present draw-
backs (e.g., restrictions in the AOP model due to target
language limitations) and prevent opportunities (e.g., tool-
ing reuse between AOP approaches of different target lan-
guages).

LARA [4] is a domain-specific language (DSL) for source-to-
source transformations and analysis, inspired by AOP con-
cepts [12]. LARA explores the idea that it is possible to have
a single, target-independent language capable of express-
ing source-code transformations for any language. However,
this approach poses some challenges, namely querying spe-
cific program points in a language-independent fashion and
specifying additional behavior on the target program. In
this paper we propose techniques that allow to overcome
the challenges of this approach, as well as present some of
its benefits.

The remainder of this paper is organized as follows. In Sec-
tion 2 we explain our motivation for a language-independent
AOP approach, its opportunities and challenges. Section 3
briefly introduces LARA and presents techniques to over-
come some of the challenges of this approach. Section 4
discusses the results obtained by applying the techniques in
this paper. Section 5 presents the related work, and Section
6 concludes the paper.

2. MOTIVATION

Common AOP approaches usually use aspect-definition lan-
guages that are an extension of the target language (e.g., As-
pectd [13], AspectC++ [21], AspectMatlab [1]). The most
relevant benefits from this approach is being able to specify
additional behavior transparently in the aspect language,



and a possibly lower learning curve for aspect developers,
since they should be familiar with the target language.

However, tying an aspect language to its target language
has at least two drawbacks. First, extending the target lan-
guage can impose arbitrary limitations on the aspect lan-
guage itself (e.g., since AspectC++ [21] extends C++, it
inherits its limited reflection capabilities). Second, devel-
oping an aspect-oriented approach for a new language from
the ground up is non-trivial and a significant undertaking,
in part because the common parts between AOP approaches
that can be reused are few or non-existent.

We propose that these two problems can be solved, or sig-
nificantly reduced if we adopt an AOP approach which uses
a single Domain Specific Language (DSL) agnostic to the
target language. We consider that, on one hand, it allows
the development of an AOP language with features that are
independent of the target language; on the other hand, it en-
ables tooling reuse, which can significantly reduce the effort
needed to support new target languages. This can include
compilers and/or interpreters for the DSL in addition to a
well-defined API. There are also new opportunities to ex-
plore, such as the possibility to reuse aspect code between
different target languages.

An aspect-oriented approach that is agnostic to the target
language presents new challenges. We consider that two
of the main challenges of a language-agnostic approach are
how to specify, in a target-independent way, 1) queries of
specific points in the code and 2) additional behavior for the
target language. Previous work on the LARA language [4, 5]
provides a solution for the first challenge, which is briefly
presented in Section 3.1.

Regarding the second challenge, one of the ways LARA cur-
rently deals with it is to allow insertions of arbitrary strings
around the points of interest it captures. Figure 1 shows a
LARA aspect that modifies source code to log function calls.
Line 3 queries the code and selects all calls inside functions
(i.e., select function.call end). The join point function
represents the code for a function while the join point call
represents the code a function call. To this selection, we ap-
ply the rule inside the apply block (lines 4-8), which inserts
the code inside the brackets (i.e., %{}%) before all captured
calls. The inserted code prints the name of function where
the call happened (i.e., $function.name), and of the called
function (i.e., $call.name).

Although a powerful mechanism, raw code insertion can also
become complex and error prone. For instance, syntax ver-
ification of the inserted code during aspect compilation is
not guaranteed and is dependent on the implementation of
the tool. Also, this example is not inserting the necessary
includes (<stdio.h>) for the function printf. In this paper
we build upon our current solution and present techniques
to better overcome this second challenge.

3. OUR APPROACH

In this section we describe our approach, starting by briefly
describing the LARA language and then explaining the tech-
niques we use, LARA libraries, generic weaver actions and
join point aliases.
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aspectdef LogCall

select function.call end
apply
$call. %{
printf ("[[$function.name]]l->[[$call.name]]\n");
Yhs

end

end

Figure 1: An example of a LARA aspect that inserts
a ’print’ instruction before function calls.

3.1 The LARA Language

LARA [4] is a domain-specific language for source-to-source
transformations and analysis, inspired by AOP concepts [12].
LARA provides semantics that allow to query and modify
points of interest in the target source code, and supports
arbitrary JavaScript code to provide general-purpose com-
putation.

Unlike most AOP approaches, the authors of LARA de-
signed it to be independent from the target language and
to be used to transform any kind of target code. This was
achieved by decoupling LARA from the specification of the
points of interest of the target language (i.e., the Language
Specification). When using LARA code to transform a spe-
cific target language we need to build a weaver, which con-
nects the language specification and the target code repre-
sentation, e.g., an Abstract Syntax Tree (AST).

Syntactically, LARA aspects have three main keywords, se-
lect, apply and exec. For more detailed information please
refer to previous work [4, 5]. The first two can be seen in
the aspect presented in Figure 1 and they are used to se-
lect points of interest in the code and apply actions over
them. The exec keyword is used inside apply blocks to call
a weaver-specific action over a join point. LARA has two
default actions, def and insert, which have their own spe-
cific syntax and are used to define the value of a join point
attribute and to inject code in the program, respectively.
All other actions are added by the weaver developer and are
called with the exec keyword. An example can be seen in
Figure 5, where the DeclareVariable action is used.

Figure 2 shows the high-level structure of MANET, a LARA
weaver for the C language. The LARA engine, which is
generic and can be used by all LARA weavers, contains a
compiler and interpreter for the LARA language. It needs
a language specification (e.g., C' Lang. Specs in the figure)
to know which points in the code are available (join points,
in AOP jargon [12]), and a Weaving Engine that performs
the translation between LARA points (e.g., function, loop)
and the real points in the source-code representation (e.g.,
Procedure, ForLoop). In this case, the Weaving Engine uses
Cetus [7], a tool that already provides an AST for C code.
The Language Specification does not need to provide a 1:1
mapping to the target language, only the points of interest.
It is possible to have a Language Specification that, for in-
stance, only captures the loops (and associated information)
of a target language.
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Figure 2: Block diagram of MANET, a LARA-based
tool for C source-to-source transformations.

LARA considers two separate groups of developers: the
weaver developers and the aspect developers. This sepa-
ration is similar to "Stephanies” and ”Joes” introduced by
Pingali [2]. The weaver-developers ("Stephanies”) are few,
but their work enable AOP approaches for new languages
that can be used by many aspect-developers ("Joes”). Addi-
tionally, the effort spent on the side of the weaver-developer
has the potential to multiply its payoff, in proportion to the
number of users of the weaver.

Several techniques presented in the next sections (e.g., li-
braries) take this into account, and consider that their im-
plementation effort need to be done only once per weaver.

3.2 Libraries

LARA was developed as a modular AOP approach and sup-
ports importing code, such as libraries. LARA supports
two kinds of libraries, Javascript and LARA. Javascript li-
braries are standard Javascript code, that can be called any-
where in a LARA aspect. LARA libraries are composed of
LARA aspects that in addition to what Javascript libraries
do, can also perform queries and transformations over the
target code.

Javascript libraries are useful for developing utility libraries
that deal with code generation. Consider the example in
Figure 1. If we have a Javascript library CodeGen that pro-
vides the function println that returns the code for printing
a line, lines 5-7 can be replaced with:

var code = CodeGen.println(
"[[$function.namel]]->[[$call.namel]l");
$call. ’[[codell’;

Although there is little improvement from the previous ver-
sion, this technique is used as a stepping stone for more
complex examples.

LARA libraries are used when there are common tasks that
either query or modify the target code. Examples include
monitoring techniques such as timing parts of the program
(e.g., function and loop execution) and logging activities
such as error conditions and function calls.

While aspect developers can use these facilities to write bet-
ter structured code, weaver developers can take the most
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import lara.inst.Timer;
aspectdef main
select function{"main"}.loop end

apply

call timer : NewTimer ("timer_" + $loop.rank);
timer.aroundAndPrint ($loop);
end
end

Figure 3: LARA aspect using a Timer library to
measure loop execution time in the main function.

#include <stdio.h>

#include "Timer.h"

Timer* timl = NULL;

int main ()

{
int i, a = 42;
timer_init( timl );
timer_start ( timl );
for (i = 0; i < 100;

(i+a);

i ++ ) {
i =

}

timer_stop( timl );

timer_print ( timl );

timl = timer_destroy( timl );

return O;

Figure 4: The resulting C code when applying the
aspect presented in Figure 3. We highlight the code
inserted for setup and timing and printing calls.

advantage from it by providing APIs that hide complexity
from the aspect developer. Figure 3 shows a LARA aspect
that uses a Timer LARA library that can be used to perform
simple timing measures of points in the code. Line 1 imports
the library, and line 5 creates an instance of a timer aspect.
Line 7 selects all the loops inside the function main and line 9
uses the timer aspect to insert a timing measure around the
loop and a print of the result. Multiple weavers can provide
their own implementation of this LARA library for their tar-
get language. This results in a generic library, which allows
aspect developers to write strategies at a higher abstrac-
tion level while also being closer to language-independent
aspects. The LARA aspect presented in Figure 3 can be
used to weave source code from multiple target languages,
as long as their weavers implement their version of the Timer
library.

For an example input program, a C weaver would generate
the code in Figure 4. The program now measures and prints
the execution time of all loops in the main function, us-
ing a C library (Timer.h) provided by the weaver-developer.
This specific Timer LARA library exposes a number of other
functions for a more fine grained control over the timing fea-
tures. For instance, there are functions to insert start, pause
and stop calls, which can be used to time arbitrary parts of a
program. Instead of directly printing the value of the timer,
there is a library function to store the value in a named vari-
able, which can be used in a more elaborated print message,
or stored in a file.
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aspectdef DeclareVariableInLoop
select loop end
apply
DeclareVariable (Type.FLOAT, ’X’+$loop.rank,3);

end
condition
/* ... %/
end
end

Figure 5: An example of how a LARA action can be
used to perform actions such as declaring variables.

A further step is to standardize libraries between weavers.
Since libraries can be developed at the weaver level, if two
weavers share the same API (e.g., lara.inst.Timer) we can
enable aspect code compatibility between weavers, at the
library level. If besides the used APIs, the weavers also
share the part of the Language Specification that is used in
an aspect (e.g., join points function and loop, in Figure 3),
the aspect can be fully compatible between weavers, even in
cases where the target language is not the same.

3.3 Generic Weaver Actions

Since weavers have access to the complete AST of the origi-
nal program, certain source code transformations (e.g., loop
unrolling, adding C includes) might be easier to implement
in the weaver itself than within LARA aspects. The lan-
guage specification allows the definition of custom actions,
that are implemented by the weaver developer. For instance,
consider the case where we intend to declare a variable in-
side a given scope. Depending on the language, there can
be several syntactic and semantic rules associated with this
action. While this could be done with insertions of native
code, a weaver action provides greater control and safety
(e.g., check whether there is a variable with the same name
in the given scope, update the symbol table, warn the user
if the declaration shadows another variable, etc). Figure 5
shows an example of a LARA aspect that uses a weaver ac-
tion to declare a variable inside the scope of all the loops in
the given code.

If several weavers conform to the same standard and im-
plement an API with the same actions providing the same
semantics, we can say we have generic weaver actions, even
if such actions are considered weaver specific, as mentioned
in Section 3.1. For instance, if two weavers, one for Java
and one for C, both implement the DeclareVariable ac-
tion (seen in Figure 5) for their target language, with the
same interface and semantics, it is considered a generic ac-
tion. These actions improve the development of language-
independent aspects using LARA.

3.4 Join Point Aliases

In certain cases, there are points of interest in the code that
are similar between languages, but that can have different
names due to the history of the language and conventions
(e.g., function in C vs method in Java). To increase compat-
ibility between weavers, the language specification supports
the definition of join point aliases, which allows referring
to the same join point using different names. Instead of

forcing a single denomination to all languages, weavers can
use their "natural” denomination and still have compatibility
with more generic aspects.

For instance, in Kadabra, a Java weaver, it is possible to
capture methods with the following code:

// these select statements are equivalent
// because function is an alias for method
select method end

select function end

4. EVALUATION

In this section we evaluate the approach using three weavers
that target different languages: Kadabra' for Java, MANET?
for C and MATISSE® for MATLAB.

4.1 Tooling Reuse

One of the objectives of this approach was to enable tooling
reuse between weavers that target different languages, using
LARA as their aspect language. We assume that when de-
veloping a new weaver, developers will most likely reuse ex-
isting grammars, parsers and ASTs for the target language,
and this should not count towards the programming effort.
For instance, both MANET and Kadabra use third-party
compiler frameworks (Cetus [7] and Spoon [17], respectively)
to parse the code and obtain the AST. MATISSE reuses a
custom parser and AST that was originally developed to
translate MATLAB to C.

The LARA Framework, written in Java, contains a LARA
compiler, a LARA interpreter and a Weaver Generator. The
compiler parses LARA aspects and creates an intermediate
representation in XML which can be executed by the LARA
interpreter. The Weaver Generator is a tool that accepts a
Language Specification and generates a skeleton weaver for
that specification. The generated implementation already
includes the LARA compiler and the LARA interpreter, and
can be immediately executed. The task of the weaver devel-
oper is to fill in the blanks and write the code that connects
the points in the specification to the nodes in the AST of
the source code. Using the Weaver Generator, and having
a parser and AST for the target language, it is possible to
have a working prototype in a few hours.

Figure 6 shows the logical source lines of code (L-SLOC)*,
for the Kadabra, MANET and MATISSE weavers, divided
into four components. LARA is the code size of the LARA
framework, which is shared by all weavers. This represents
a large part of the total code that takes care of compiling
and interpreting LARA aspects. The Generated slice rep-
resents LARA API code that is automatically generated by
a tool of the framework. This is the interface between a
weaver implementation and the LARA framework and con-
sists mainly of abstract classes that the weaver developer
needs to implement. Compiler accounts for the code of the
source-to-source compiler used by each weaver, Spoon for

"https://specs.fe.up.pt/tools/kadabra
2 .
https://specs.fe.up.pt/tools/manet
3https://specs.fe.up.pt/tools/matisse
“Provided by LocMetrics: http://www.locmetrics.com/
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Figure 6: Lines of code for each weaver divided
into components: LARA framework, auto-generated
API, weaver engine and compiler framework.

Kadabra, Cetus in the case of MANET, and a custom parser
and AST available in the MATISSE framework. Our ap-
proach allows a weaver developer to use an already existing
compiler, significantly reducing the effort when developing
a weaver from the start. Finally, Weaver Engine refers to
code that is actually implemented by the weaver developer.
This is a fairly small part of the total code and illustrates
how much work one saves by using our framework when de-
veloping a weaver for a new target language. In contrast,
the amount of code of the LARA Framework is indicative of
the possible effort required to start an AOP approach from
scratch. It is a medium-sized project and we estimate that,
with its current features and field-testing, represents well
over an year of investment for a small team. Please note
that the code of the LARA framework is shared by all three
presented weavers. The compiler, interpreter and weaver
generator used by these weavers is the same.

All the weavers in Figure 6 have been in development for
at least a year and support rich language specifications.
MANET is the weaver that has had most investment, and
this is reflected in the amount of lines of code. Even though,
their size is still a fraction of the LARA Framework, and in
the case of MATISSE, it is an order of magnitude lower.

4.2 Techniques Impact

Table 1 presents several metrics taken from a set of LARA
aspects that were developed following two approaches, one
that uses APIs and actions provided by the weaver, and
another that does not (API and Native in column Version,
respectively). The former uses specific actions and LARA
libraries (developed and distributed by weaver developers)
providing functionality that intends to reduce user effort, na-
tive code insertion and accidental fault injection, while the
latter only uses code insertion for the target concern. All
aspects target C code and are compatible with the MANET
weaver, except for the aspect Func. Interface, which tar-
gets Java code and is compatible with Kadabra.

The first metric, LOC, is the number of lines of code of the
LARA aspect, while NLOC is the number of lines of na-
tive code (C or Java, in this case) that appear in insert
actions. The column Applies represents the number of ap-
ply blocks. The column Actions (Inserts) shows how many
weaver actions are executed and, from those, how many are
the insert action. After that, calls represents the number

of calls to other aspects (using the call keyword). The fi-
nal two columns of the table show the reduction of the lines
of aspect code and native code inserted (by the user) when
moving from the native approach to the API approach.

These metrics represent static information about the as-
pects, as if they were written by an aspect-developer, and do
not take into account the code inside libraries. Also, please
consider that the number of lines of native code in insert ac-
tions in an aspect may not be representative of the number
of lines of code that are actually inserted, since the same
insert action can be apply on several points of interest.

The aspect OMP adds OpenMP pragmas to two loops. The
native version inserts the necessary include and manually
selects the loops and inserts the pragmas. The API version
only has two calls, one per loop, which accept the name of a
function and the name of a iteration variable to identify the
loop, and the pragma to insert. In this case, it significantly
reduces the number of lines of code.

The aspect Type Def. changes the data type of the variables
in a given function. The native version textually replaces
the original declarations with declarations that use the new
type. The API version uses the action def to redefine the
attribute type of the declaration, performing type validation
and symbol table update.

The aspect DCG injects code that enables the generation
of a dynamic call graph when the program executes. The
aspect inserts counters for each < caller, callee > pair and
increments them when calls occur. The native version uses
raw code insertions to declare global variables in multiple
files as well as defining helper functions to deal with the
counters. With the API version, we manage to greatly re-
duce the amount of inserted native code by using a code
generation library. We also use an action to declare global
variables, which lessens the amount of work needed and pro-
vides more safety.

The aspect Func. Interface creates a Java functional inter-
face based on a given method, and replaces its calls with
a field access. This aspect is important in the context of
Java weaving, since it allows to safely insert arbitrary Java
methods and fields outside of the scope of methods. The
native code approach injects the new interface before the
target method, introduces a new field of the interface type
and replaces the call with an access to the new field. The
API approach provides actions for interface extraction, field
creation, and method call replacement, which significantly
reduces the native LOC and makes the aspect safer.

The aspect Time Calls inserts code to time calls to a given
function by wrapping calls with code to start and pause a
timer. The aspect also inserts code to print the result at
the end of main function. Overall, the code insertion in
the native version includes header directives in several files,
global variables and timing code. The API version uses a
library that automatically creates the timer and deals with
its setup. The library exposes an API that provides the
required code to control the timer, eliminating the need for
the user to write native code.

Finally, VariableRangeMonitor is an aspect that injects code
to monitor the ranges of a set of variables of a given function.
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The native version inserts arrays to store the minimum and
maximum values taken by each variable, as well as code
to update the array and print the result at the end. The
API version reduces the native code by half, but overall
slightly increases the size of the aspect. However, since the
new aspect uses a library for code generation and variable
declaration, it provides more secure native code generation.

In aspects such as Time Calls, DCG, Func. Interface and
VariableRangeMonitor, we replace the raw insertion of cer-
tain elements (e.g., global variables, methods, include direc-
tives) with actions and libraries that add or declare these
elements in a more reliable fashion. With this, the weaver is
responsible to verify the action, generate the necessary code
and update its information (e.g., symbol table).

Aspects where the API approach leads to a significant re-
duction of native code represent cases were we can define
the aspect in a higher abstraction level. Instead of relying
on the direct insertion of code, we specify what functionality
we intend (e.g., insertion of timers). In the case of aspects
OMP, Type Def. and Func. Interface, we could replace all
insert actions with other more specific actions and library
calls.

The native code left in the API versions represent blocks of
code for which our current techniques would be more cum-
bersome to use than native code insertion, and would not
bring any apparent benefit. In these cases, we considered
that it was better to continue to use the native code.

4.3 Target-Language Independent Aspects

Figure 7 uses the previously presented techniques to rewrite
the aspect of Figure 1 in a target-language independent way.
Line 1 imports the Logger aspect, which is instantiated in
line 4. Lines 8-9 call an API function that prints a string
before the calls in the given source code. Although this ver-
sion is not that different from the original code, it has other
benefits. On one hand, it allows the aspect developer to
program in a higher abstraction level. On the other hand, it
can be safer to use, since APIs can hide essential complexity
(e.g., includes in C) and limit the insertion of native code
by the aspect developer.

6

8
9
10
11

import lara.inst.Logger;

aspectdef LogCall
call logger : NewLogger ();

select function.call end
apply
logger.log($call, ’before’,
$function.name+’->’+$call.name);
end
end

Figure 7: An example of a target-language indepen-
dent LARA aspect that is equivalent to the aspect
specified in Figure 1.

We present this case as a motivational example of the oppor-
tunities this approach can enable. We do not think aspect
developers should initially aim to write target-language in-
dependent strategies, as they should not sacrifice expressive-
ness and legibility for this purpose. They should, however,
follow a coding — refactoring — library cycle, as with any
other programming language. If it is possible to standard-
ize a set of common join points, actions and library APIs,
we think this can enable further reuse, more specifically if
performed at the weaver developer level. Keep in mind that
we do not think necessary for all weavers to implement all
common features; given the breath of variety in program-
ming languages, we consider partial (or none) compatibility
between weavers to be perfectly acceptable.

S. RELATED WORK

Most AOP approaches extend the target language with AOP
concepts. AspectJ [13] extends Java and aims at provid-
ing better modularity for Java programs. AspectJ describes
pointcuts lexically (e.g., call(set*(..))) and has a very
mature tool support®. AspectJ join points are limited to

®Spring framework (https://spring.io) and Eclipse plugin
(https://eclipse.org/aspect))



object-oriented concepts, such as classes, method calls and
fields, and several works try to complement AspectJ.

AspectC++ [21] is an AOP extension to the C++ program-
ming language inspired by AspectJ, and uses similar con-
cepts, adapted to C++. Both AspectJ and AspectC++
do not consider join points related to local variables, state-
ments, loops, and conditional constructs. AspectMatlab [1]
is another example of an AspectJ-inspired language, for MAT-
LAB in this case. It adds some distinctive features related
with MATLAB programs, such as the ability to capture mul-
tidimensional array accesses and loops.

Rajan and Sullivan [19] propose Eos-T, a version of the
aspect-oriented language Eos. Both Eos and Eos-T extend
C+# with AOP concepts to include branches and loops as join
points. Eos preceded Ptolemy [18], which uses an approach
based on events instead of pointcuts. Ptolemy is focused on
object-oriented languages and augments the target language
so that it can define event interfaces and handlers. They pro-
vide a compiler that translates Ptolemy augmented-Java to
plain Java. The triggering of events is inserted manually in
the code where they should happen. They conclude their
event-based approach is more resilient to changes than lexi-
cal pointcut descriptions, but is at a disadvantage when one
intends to capture certain kinds of general pointcuts (e.g.,
all methods of a function) [8].

LARA has been inspired by many AOP approaches, includ-
ing AspectJ and AspectC++, but differs from these efforts
in several ways. Unlike most approaches, LARA has been
designed so that it is decoupled from a specific target lan-
guage. In a similar way, Jackson and Clarke [11] envision
a language-independent approach, SourceWeave.NET, using
an XML AOP language in the context of the .NET frame-
work. This approach is tied to .NET and every new language
one wants to support needs a parser that builds a CodeDOM
graph, the representation expected by SourceWeaver. NET.
Having the same intermediate representation allows the us-
age of reusable aspects, agnostic to the target language.
However, the join points that one can select are already
defined, coarse-grained and cannot be changed. These char-
acteristics impose a limitation on what can be exposed from
the target language and captured within aspects.

Other approaches address language-independent tools [15]
for weaving existing components with aspects written in the
language of choice. Others, such as UniAspect [16] target ap-
plication components in different languages and use a com-
mon representation of the components to apply the aspects.
UniAspect keeps a similar syntax to AspectJ and introduces
"@" annotations for identifying the target language.

Compared to other approaches, LARA provides more flexi-
bility in the join point model, which is based on composable
select expressions (similar to functional queries [9]). Hence,
LARA supports arbitrarily complex join point hierarchies,
including different models of join points, e.g., MATISSE in-
cludes annotation-based join points using a proof of con-
cept implementation based on comments. The way LARA
supports attributes and actions is conceptually similar to
the variables thisJoinPoint and tjp used in AspectJ and
AspectC++, respectively, which contain meta-information
related to the join point. However, attribute information

in LARA is specified in the language description (attribute
model) and can be extended by the weaver developer with-
out changing any part of the LARA language.

There are a number of approaches that address concerns
that are usually out of scope of traditional AOP (e.g., code
transformations, compiler optimizations). CHILL [20] is a
declarative language focused on recipes for loop transforma-
tions. CHILL recipes are scripts, written in separate files,
which contain a sequence of transformations to be applied
in the code during a compilation step. The PATUS frame-
work [6] defines a DSL specifically geared toward stencil
computations and allows programmers to define a compi-
lation strategy for automated parallel code generation using
both classic loop-level transformations (e.g., loop unrolling)
and architecture-specific extensions (e.g., SSE). LARA takes
a similar approach to source-to-source transformations with
the use of actions, which are defined in the language speci-
fication and implemented by a weaver. One can select join
points for optimization (e.g., loops), filter them based on
their attributes and then apply transformation actions.

There are several term rewriting-inspired approaches for code
analysis and transformation, such as Stratego/XT [3] and
Rascal [14]. Such approaches require the complete grammar
for each target language, which makes it possible to reuse
the framework for different languages. Strategy reusabil-
ity between languages is possible, as long as the grammars
have common parts. LARA, on the other hand, promotes
the usage of existing compiler frameworks (e.g. Cetus [7],
Spoon [17]) for parsing, analysis and transformations, and
its join point model does not require a one-to-one corre-
spondence to the provided AST. Another distinct feature of
LARA, for the weaver developer side, is that weavers can
be built in an incremental fashion, adding join points, at-
tributes and actions as needed.

6. CONCLUSIONS

This paper focused on the use of LARA in the context
of multiple target languages and presented recent improve-
ments to the LARA technology. We briefly presented LARA,
an AOP approach that is independent of the target language,
and extended this approach with techniques to overcome
some of its challenges, more precisely, specifying additional
behavior. We discussed the impact of the proposed tech-
niques, and showed that this approach improves aspect code
reuse, enables more concise and safer aspects and that the
LARA framework can significantly reduce the effort needed
to support new target languages.

As future work we intend to further explore the oppor-
tunities provided by a single-language approach to AOP
in projects that require several target languages and cus-
tomized tool flows. On a separate note, LARA currently
performs static source-to-source transformations. We intend
to extend the LARA framework to support dynamic actions,
as a way to instruct the weaver that the LARA code in those
actions should be executed during application runtime, in-
stead of relying only on insertion of native code.
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