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Abstract—In this article, we focus on the motion control of
an AUV formation in order to track a given path along which
data will be gathered. A computationally efficient architecture
enables the conciliation of onboard resources optimization with
state feedback control - to deal with the typical a priori
high uncertainty - while managing the formation with a low
computational and power budgets. To meet these very strict
requirements, a novel Model Predictive Control (MPC) scheme
is used. The key idea is to pre-compute data which is known
to be time invariant for a number of likely scenarios and store
it on-board in appropriate look-up tables. Then, as the mission
proceeds, sampled motion sensor data, and communicated data
is processed in each one of the AUVs and fed to the onboard
proposed MPC scheme implemented with the dynamics of the
formation that, by combining with information extracted from
the pertinent on-board look-up tables, determine the best control
action with inexpensive computational operations.

Index Terms—Model predictive control, Attainable set, AUV
formation control, Obstacle collision avoidance

I. INTRODUCTION

This article concerns the design of a general control scheme
satisfying very hard requirements usually arising in networked
AUV systems applications such as vehicle formations which
are important for data gathering missions. Typically, these
requirements consist in the conciliation of the optimization of
scarce onboard resources with motion control robustness and
adaptivity, while subject to strict real-time constraints due to
limited onboard computational resources and power. Figure 1
shows current typical state-of-the-art vehicles, where it is clear
that the scarcity of power follows from the need to pack
all sub-systems for data gathering and motion autonomy for
reasonably long endurance missions in a very small volume.

In order to ensure the above mentioned requirements, a new
Model Predictive Control (MPC) scheme - denoted by AS-
MPC - that, by assuming the reasonable hypothesis of time-
invariance of the dynamics as well as of some key features
of the environment, replaces a significant amount of the on-
line computational burden of the conventional MPC, [1]–[3],
by off-line computation, being the generated data stored in
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Fig. 1. Set of AUVs (courtesy of LSTS, https://lsts.fe.up.pt)

appropriate onboard look-up tables. In the course of the mis-
sion execution, pertinent data from these look-up tables will
be retrieved and processed according to the prevailing context
perceived by the communicated and sensed data. The AS-MPC
is designed in such a way that the necessary on-line processing
involves a computational burden significantly lower than the
one required by the usual MPC schemes. Properties of closed
loop stability, asymptotic optimality, and robustness have been
proved, thus showing that the proposed arrangement is able to
handle an increasing range of applications for which severe
real-time constraints impose on-line computational parsimony
in computing state and environment feedback control strategies
optimizing the consumption of scarce resources. Moreover,
examples illustrating how the AS-MPC scheme accommodates
controlled systems with hybrid dynamics that naturally arises
in the considered class of applications is presented.

Here, we present further refinements of the control archi-
tecture presented in [4] for the management and control of the
formation of AUVs. This development is in the sequel of [5] in
which an MPC scheme with very low on-line computational
budget obtained by taking advantage of time invariance of
the dynamics and some environmental features. This allows
to pre-compute a priori objects which are key for the on-line
feedback control synthesis. This is the essential feature of the
AS-MPC developments and are an integral part of the PhD
thesis [6]. Clearly, this approach is substantially distinct from
all previous MPC schemes as it is clear from state-of-the-art



overview in the next section.
In the next section, a typical AUV formation control

problem to track a reference trajectory along which payload
data is to be gathered, followed by comments on pertinent
previous work. The presentation and derivation of the AS-
MPC scheme for AUV motion control is given in section III.
This section also includes an outline of the stability, sub-
optimality and robustness properties. Then, section IV shows
how the proposed framework may accommodate controlled
hybrid systems, thus defining a control architecture enabling
multiple event-triggered modes of operation. Section V states
brief conclusions and comments on future work.

II. THE AUV FORMATION TRACKING PROBLEM

The formulation of AUV formation control problem can
be either centralized or decentralized, depending on whether
the data available to each AUV is either global or generated
by its neighbours. The overall goal is to control the pattern
or patterns of AUVs positions while tracking or following a
given reference trajectory or path along which payload data
is gathered according to given requirements while accommo-
dating unforseen events such as emergence of obstacles, AUV
failures, etc. Below, we state the basic abstract optimal control
problem.

(PT ) Minimize g0(x(t0 + T )) +

∫ t0+T

t0

g(t, x(t), z(t), ū(t))dt

subject to ẋ(t)=f(t, x(t), z(t), ū(t)) L − a.e.
ū(t)∈Ω, h(t, x(t))≤ L− a.e.,
x(t0) = x0, x(t0 + T ) ∈ Ct0+T ≤ 0

where g0 is the endpoint cost functional, g is the running cost
integrand, f , h, are the vehicle dynamics, and the inequality
state constraints functions, t0, and x0 are the current time and
state values, Ct0+T is the desired target set at t0 + T , and z
is the reference trajectory to be tracked.

To instance (PT ) in the context of AUV formation of N
vehicles tracking a reference trajectory z, consider, for the
AUV i:
• x = col(ηi, νi), and ū = col(τ i), i = 1, . . . , N .
• g0(·) = 0, g(t, x(t), u(t)) = (ηi(t)−ηir(t))TQ(ηi(t)−
ηir(t))+τ

iT (t)Rτ i(t), where ηir(·) is the reference trajec-
tory for the ith vehicle.

• By considering, for each vehicle (we drop the index i), the
state and the controls given by η = [x, y, ψ]T and ν =
[u, v, r]T and τ = [τu, τr]

T , respectively, the dynamics
are given in [7]. For details, [4].

• Other constraint types include: (i) endpoint state con-
straints, ηi(t + T ) ∈ Ct+T , (ii) control constraints,
τ i(s)∈U i, (iii) state constraints, (ηi(s), νi(s))∈Si, (iv)
communication constraints gci,j(η

i(s), ηj(s))∈ Cci,j ,∀j∈
Gc(i), and (v) formation constraints
gfi,j(η

i(s), ηj(s))∈Cfi,j ,∀j∈Gf (i).
The interpretation of the data of this problem has been made

in the context of formation control. Each AUV communicates
acoustically with its neighbors or all other AUVs according

to the communication graph connectivity. Each vehicle is a
node of this graph whose arcs are the communication links.
The vehicles navigate sufficiently close to each other so that
there is no loss of packets. Modes of operation include data
gathering, obstacle collision avoidance, communication, and
loitering. Each mode of operation requires its own formation
pattern.

In the decentralized control version, the feedback control
scheme requires two components, one underlying its own
motion and that of its neighbors, and another concerning the
generation of a consensus to promote the cohesion and evo-
lution of the formation. The information distribution pattern
shapes the components of the state and trajectory reference
variables.

MPC schemes generate a feedback control synthesis con-
ciliating sub-optimization with discrete feedback control. By
and large, the basic versions consists in computing the control
action for the current control horizon starting at each sampling
time, by solving the on-line optimal control problem (PT ) over
the prediction horizon [t0, t0 + T ], being the state variable
initialized at the current best estimate updated with the latest
state sample, x0. Then, the obtained optimal control strategy
is applied during the first control horizon, [t0, t0 + ∆], where
∆ is much smaller than T . The cycle is repeated after the
needed parameters update, [6].

Extended versions of models and control systems of AUVs -
see [7] for a comprehensive overview - for very diverse robot
craft have been considered for single and multiple vehicles.
Non-linear control theory and geometric control provide tools
that led to very popular design techniques, [8]–[10]. The need
of resources optimization and control problem versatility made
MPC schemes very popular in this area, [1], [2], [11]–[19].
In this sample of references and work cited therein, issues
such as underwater communications failures and delays in
continuum and discrete times, centralized and decentralized
schemes, linear and nonlinear dynamics, leader-follower and
leaderless schemes, collision-free motion, output feedback,
cooperative motion, and competitive strategies, single and
multiple objectives, as well as a varied range of applications
(surveillance, exploration, tracking paths and trajectories),
have been considered. However, the typically required intense
on-line computational burden seems to have been overlooked
and stimulated the emergence of the approach considered in
this article.

III. THE AS-MPC SCHEME

This section starts with the work described [4], [5] and
encompasses with additional properties proved since then. The
main idea of the approach consists in solving a sequence of
finite dimensional optimization problems instead (PT ) of the
usual MPC schemes. This is enabled by the time-invariance
data or predictable time evolution of much of the problem data,
such as vehicle dynamics, and features of the environment,
since it allows the to pre-computation of the attainable set
and the value functions associated with (PT ), which are, then,



stored on-board the AUV to be used for the on-line control
synthesis with low cost computational effort.

Let us simplify the notation by omitting the reference
trajectory and consider the control variable u instead of ū.
Define the Value Function VT (t0, y) as

min
u∈U,ξ∈Ct0+T

{
g0(ξ)+

∫ t0+T

t0

g(τ, x(τ), u(τ))dτ

}
subject to x(t0 + T )=ξ, x(t0)=y, ẋ=f(t, x, u), L-a.e., and
the Forward Attainable Set by

Af (t0+∆; t0, x0)={x(t0+∆): ẋ=f(t, x, u), u∈Ω, x(t0)=x0}

Let ∆ < T . By taking into account the Principle of Optimality
(we assume the problem to be positional, [20]), and by
performing a straightforward change of state variable, see [4],
and by not relabelling, it is easy to conclude that (PT ) is, for
the control horizon [t0, t0 + ∆], equivalent to

(P∆
T ) Minimize VT (t0 + ∆, x̄))

subject to x̄ ∈ Af (t0 + ∆; t0, x0).

Both the Value Function and the Attainable Set are, from
the computational point of view, extremely complex objects,
and, thus, approximation schemes are required. With respect
to the latter, the literature offers several approaches, notably,
polyhedral of either inner or outer type, [21], [22], ellipsoidal,
[23], and “cloud of points” as endpoints of trajectory segments
generated by constant controls. The last one was chosen as the
one computationally more efficient for the AS-MPC scheme.
For the former, methods for solving the Hamilton-Jacobi-
Bellman equation can be used. Albeit numerically complex,
several methods, [24], [25], notably level set methods, are
currently available in optimized software packages. In general,
we may consider a number of value functions for given typified
situations. In real-time “mission” execution, the relevant Value
Function is identified via sensed data and invoked to compute
the next optimal control at any (t, x).

The AS-MPC scheme is follows:
1. Initialization: t0, x(t0)
2. Solve (P∆

T ) over [t0, t0 + ∆] to obtain z∗ and compute
u∗ steering the system from t0 to t0 + ∆.

3. Apply u∗ during [t0, t0 + ∆]
4. Sample x at t0 + ∆ to obtain x̄ = x(t0 + ∆)
5. Slide time, i.e., t0 = t0 + ∆, estimate the new x0,

update the Attainable Set with the new x0 (in some cases
with simple translation and rotation), update the Value
Function at the new t0 + ∆, and goto 2.

It is important to observe if [0, Tf ] is the mission time horizon,
the AS-MPC achieves the true optimum in the absence of per-
turbations if Tf is chosen instead of t0 +T in the computation
of the Value Function. It is clear that, in general, the real-
time computational burden of this scheme is extremely low
as it involves only very simple computational operations. For
relatively small values of ∆ the on-line operations of updating
the Value Function and the Attainable Set are computationally
inexpensive. In figure 2, it is shown: (i) the Forward Attainable

Set for the unicycle, and (ii) the Value Function in the absence
of obstacles. The controls to be applied to the vehicle are
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Fig. 2. AUV Forward Attainable Set, and Position control Value Function

found by searching for the minimum value within the vehicle’s
Forward Attainable Set.

Next we present the asymptotic optimality and stability
properties of the presented AS-MPC scheme derived in [6]. In
what follows, we consider the mission running on [0, Tf ) with
Tf =∞. Denote by (x∗T,∆, u

∗
T,∆) the associated MPC optimal

control process. Let J(x, u) be the value of integral form
equivalent of the cost functional associated with the (x, u),
by J(x, u)|[α,β] its restriction to the interval [α, β], and by
Jk(x, u) its restriction to the interval [k∆, (k + 1)∆].

Proposition 1. Asymptotic Optimality. Let (x∗, u∗) be an
optimal control process such that lim

t→∞
x∗(t) = ξ∗, where ξ∗is

an equilibrium point in C∞. Then,

1. lim
∆↓0,T↑∞

∞∑
k=1

Jk(x∗T,∆, u
∗
T,∆) = J(x∗, u∗)

2. lim
k→∞

∣∣Jk(x∗T,∆, u
∗
T,∆)−J(x∗, u∗)|[k∆,(k+1)∆]

∣∣=0.

To facilitate the exposition, we consider (g, f) to depend
only (x, u) and that either g0(·) ≡ 0 or g0 is absorbed into
the integral term. The stability property of the closed loop
AS-MPC requires the following additional assumptions that
denote be (ES):
• (g, f)(·, ·) is C2 and f is linearly controllable at (0, 0)
• ∃ Kg such that g(x, u)≤Kg(‖x‖2+‖u‖2)
• ∀T>0, ∀x0, ∃ solution (x̄T , ūT ) to (PT ) with x̄(0)=x0,

being JT (x0) the cost.
Let DT={x∈IRn: JT (x)<∞}, DT,a={x∈IRn: JT (x)<a}.

Proposition 2. Exponential Stability. Assume that (ES) holds
and take some a > 0. Then,
• ∀∆>0, ∃ T̃ <∞ s.t., ∀T ≥ T̃ , the (T,∆) - AS-MPC is

exponentially stabilizable.
• Moreover, ∀b s.t. DT−∆,b⊂D∞,a, DT−∆,b⊂Attraction

Domain of (T,∆) - AS-MPC.

We remark, that slightly different variants of these two
results st if we consider the appropriate time and state space
discretizations. Since we are using the cloud of points as
approximation to the Attainable Set, a good estimate of the
Hausdorff distance between these sets to determine the worst
case of sub-optimality.

Let Ωε denote the set {ui ∈ Ω : i = 1, . . . , Nε} satisfying
the following properties: (i) Ω ⊂

⋃Nε

i=1(ui + εB), and (ii)



∀i∃j s.t. ‖f(x, ui) − f(x, uj)‖ < ε. Denote by Af (t1; t0, x)
and Aεf (t1; t0, x) the points attainable at t1 > t0 from x at
t0, by the dynamic system with controls, respectively, in L∞

with values in Ω, and piecewise constant with values in Ωε.

Proposition 3. Let ∆ be a positive number. Under mild as-
sumptions on the dynamics, we have, for any (t, x) ∈ IR×IRn,

dH
(
Af (t+ ∆; t, x),Aεf (t+ ∆; t, x)

)
≤ ∆εeKf∆.

Another key issue concerns the fact the point x̄ ∈ IRn to
which the system is steered at a given time is very likely not
listed in the stored Value Function look-up table. Thus, the
following result on estimates of the space extrapolation of the
Value Function is important.

Proposition 4. Assume that VT at x̄ is not known, and that
there is a grid of points Gδ in IRn such that the maximum
distance between neighboring points in Gδ is less than δ > 0.
Then, there is a simplex Sx̄ = {xi : i = 1, . . . n + 1} which
are the closest to x̄ s.t. the estimate Ṽ of V at x̄ is given by

Ṽ (x̄) =

∑n+1
i=1 Vi‖x̄− xi‖−1∑n+1
i=1 ‖x̄− xi‖−1

where, for i = 1, . . . , n + 1, Vi = V (xi) +∇V (xi) · v̄i, with
v̄i = x̄ − xi and the n × (n + 1) unknowns of the vectors
∇V (xi), i = 1, . . . , n + 1 are given as a solution of the set
of n+ 1 set of equations ∇V (xi) · (v̄i − v̄k) = V (xk)−V (xi)

‖xi−xk‖ .
Moreover, we have that, for some c > 0,
‖V (x̄)− Ṽ (x̄)‖ ≤ max

xi,xj∈Sx̄

{|V (xi)− V (xj)|}+ cδ.

IV. THE CONTROL ARCHITECTURE

The control architecture emerges from the application of
the AS-MPC scheme to a hybrid automata model of the
system which specifies the desired modes of operations and
the discrete events triggering the transitions between them. It is
worth remarking that the overall optimization incorporated in
the minimum cost to go plays a role in determining controlled
discrete events triggering the switch between modes in the
present of unanticipated “external” events. Thus, the motion
control of the generalized vehicle is organized into simpler
AUV formation control problems. This amounts to regard
the overall model of the formation as a hybrid dynamic
control system, and a set of either controlled or uncontrolled
associated discrete events. Thus, the implementation of the
AS-MPC controller described in section III in the context of
hybrid dynamics requires the need of an event-driven control
strategy ensuring liveness and nonblocking properties, to be
embedding of the AS-MPC controller.

To eliminate the burden inherent to the explanation of
general contexts, we focus in the motion control of a three
AUVs formation in a plane carrying the required navigation
and payload sensors whose mission consists in gathering data
along a given path such that the observation requirements
are satisfied. We consider the following tasks: (i) Gather data
along a given path. The AUVs keep the triangle formation and

B

Tx 

data

Thin 

Passage

Obstacle 

in range

C

Wide 

Passage

D

Obstacle

Overcome

ABegin

Start 

Survey

EOT

End

Mission

accomplished

Fig. 3. Formation Pattern Automaton

the decentralized controller as described in section II ensures
the simultaneous path tracking and formation maintenance;
(ii) Avoid collision with obstacles. This task, involves obstacle
detection, and characterization, path replanning, and, possibly,
reconfiguration of the formation; (iii) Communicate with the
external systems. This task is required to either transmit
gathered data to enable the mission follow-up and to receive
commands to change the mission if necessary.

The set of discrete modes and the events triggering the
transition between them are represented in figure 3. Once the
mission starts, the AUVs enters in the nominal mode A of data
gathering while tracking the given path on a triangle formation.
The Mission Accomplished event prompts the AUVs to the
recovery operation. The follow-up of the mission requires the
monitoring of the data being gathered. This is done in mode D
and it means that, from time to time, one of the AUV surfaces,
transmits the gathered data as well as the health status of the
vehicles, which after a scrutiny, might entail a change in the
mission. The occurrence instants can be pre-planned or the
result of either controlled or uncontrolled events. Once the
exchange of information is complete, the surfacing vehicle
joins the other two AUVs that, in the meantime, had been
waiting loitering, in order to pursue the operation mode A. If
an Obstacle in range event is detected by any of the AUVs,
then the system moves to mode B. In this mode, the obstacle
is characterized and a collision avoidance path is computed.
Then, two events might occur: either a Wide passage is
available and the formation is kept unchanged and the systems
moves to the nominal mode A tracking the original path,
or a Thin passage is available and the system transits to
mode C where the formation is reconfigured to overcome de
obstacle. Once this action is completed the systems resumes
its operation in the nominal mode A.

Special attention is paid to the obstacle collision avoidance
due to the fact that it illustrates well the point concerning the
interaction between mission planning and control. We impose
the following assumptions: (i) Data for obstacle detection and
characterization is obtained by using a range finder; (ii) The
unmapped obstacles in the environment are relatively sparse;
(iii) Obstacles are locally modelled by circles; (iv) The range
finder sensor reaches a distance larger than that transversed by
the vehicle within the time interval of length ∆.
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The automaton diagram in figure 4 shows the various modes
and associated transition events. Once an obstacle is detected,
it is characterized to compute the best strategy to avoid
collision and remain as close as possible to the path to be
tracked. Remark that the formation pattern can be deformed to
characterize the obstacle and to overcome it in an optimal way.
These issues are essential to a better replanning of the path of
each AUV. When an AUV is close to an obstacle, then its AS-
MPC is modified by adding penalization function guaranteeing
a safety distance ds to the obstacle. This procedure easily
handles multiple obstacles.

Simulation results obtained with the proposed control struc-
ture are shown in figure 5. The mission consists in gathering
data while tracking a path defined by the line segment joining
points A and B in a given triangle formation.

After deployment, the AUVs are loitering in the triangle
formation for the survey around the departure point A. Once
the survey starts at time t1, mode A is activated and the
triangle formation tracks the given path to the final destination
B. At time t2, the leading vehicle detects obstacle O1. Then,
the formation switches to mode B to characterize the obstacle.
In order to do this efficiently the AUV formation changes to
a transversal line formation and, once this is done, a path
to overcome it is defined by the RAS-MPC by computing
minimum of a mapping obtained by adding a penalization to
the Value Function. Since there is plenty of space, at time t3
the AUVs return to the triangle formation while circumventing
the obstacle and trying to reach the mission path.

At time t4, obstacle O2 is detected on the right. RAS-
MPC determines that the best path is between O1 and O2.
Moreover, the safety criteria above determines that the passage
between O1 and O2 is safe for the whole formation, and the
triangle formation is kept. At time t′4, a third obstacle O3
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Fig. 5. Obstacle avoidance simulations results

is detected and its characterization in mode B together with
the safety criteria determines two different scenarios to pursue
the mission:(i) Follow through a thin passage between O2 and
O3 safe for a single vehicle. Choosing it means changing to
longitudinal line formation that results in being closer to the
mission path but with loss of quality of the gathered data due
to the adopted formation; (ii) Circumvent O3 by the left that
would entail a longer route far away from the mission path, but
would allow to preserve the triangle formation with a higher
quality of the data gathered.

A simple onboard optimization procedure determines that
the first option is the best one. Once the obstacles are overcome
at time t′6, the formation resumes to the normal triangle until
it reaches the final destination B where the mission mode
changes to D to proceed with data transmission. In this state
all the vehicles surface, transmit data, and remain loitering
around the final destination B.

Now, we present some simulation results for the AUV
unicycle model showing the effect of noise in the AS-MPC
behavior. The AUV is steered from an initial point to the final
point in an optimal fashion in two situations: first, without state
constraints and then, with state constraints. In the latter case,
these were incorporated by considering a penalization term in
the cost functional so that the optimization process prevents
the state constraints violation. Here, the Value Function is
computed by solving several instances of (PT ) with multiple
initial conditions in a 4 m by 10 m state space region.

In the first case - without state constraints - the following
levels of additive Gaussian noise were considered:
• No noise: (µx, σx)=(0, 0) and (µy, σy)=(0, 0) - solid

line trajectory.
• Noise level 1: (µx, σx)=(0, 0.01) and (µy, σy)=(0, 0.01)

- dashed line trajectory.
• Noise level 2: (µx, σx) = (0, 0.01) and (µy, σy) =

(−0.01, 0.01) - dotted line trajectory.



• Noise level 3: (µx, σx) = (0, 0.01) and (µy, σy) =
(−0.02, 0.01) - dash-dot line trajectory.

In figure 6 we can observe that the trajectory error increases as
the noise level increases. Moreover, the effect of a non zero
mean noise greatly impacts the tracking performance when
compared with a standard deviation only noise.
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Fig. 6. Trajectory without obstacles: noiseless, noise levels 1, 2, 3

For the case of the space cluttered with obstacles, it is inter-
esting to note that, in the absence of noise, the trajectory passes
between obstacles and close to them, while the presence of
noise forces it to pass away from the obstacles. The considered
Gaussian noise level for this example is (µx, σx) = (0, 0.01)
and (µy, σy) = (−0.015, 0.01) (sub-optimal).
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Fig. 7. Trajectory with obstacles: a) noiseless (solid), b) noise level (dashed)

V. CONCLUSIONS

The investigation of the AS-MPC scheme presented for path
tracking control of a single AUV or formation of AUVs was
further extended into two directions: Stability and the effect of
perturbations. The key issue of the AS-MPC is the mitigation
of the real-time computational burden and the ability of
adapting to unmapped obstacle avoidance. While the former
is motivated by limited onboard energy and computational
power, in a context of strict real-time constraints, it shows the
flexibility of the RAS-MPC scheme with a control architecture
to handle unmapped obstacle as well as its robustness to
additive noise. The obtained simulation results are encouraging
and point to the next step: migrate the developments to a
multiple AUV based system for field testing.
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