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Abstract— An impulsive control formulation suitable for
analyzing hybrid systems is presented. Besides a continuous
evolution, the trajectory of an impulsive control system may
also exhibit jumps. The jump trajectory is well characterized
in this impulsive framework. These jumps can be interpreted
as the discrete evolution of an hybrid system. Several examples
of hybrid systems modeled in the impulsive framework are
given. An impulsive formulation of a formation control problem,
regarded as an hybrid system is detailed. Finally, an overview
of important classes of control results available for impulsive
control systems, notably, stability and optimality, attest the
importance of this paradigm for the control of hybrid systems.
These results are essential to investigate the properties of model
predictive control schemes for hybrid systems.

I. INTRODUCTION

Hybrid systems have been considered a convenient mod-
eling framework to describe large classes of systems and
extensively used in a wide range of applications, [1]. The
trajectory of a hybrid system evolves as a result of the
interaction between continuous and discrete dynamics. This
interaction reflects the compositional properties underlying
the hybrid system model.

On the other hand, an impulsive dynamic system can be
regarded as a composition of multiple dynamic systems, and,
hence, it is suited to model the behavior of some classes
of hybrid systems. By exhibiting jumps in the trajectory,
the impulsive control paradigm encompasses evolutions due
to the interaction of continuous and discrete dynamics. A
concept of trajectory that has been considered in [28],
[25] provides a detailed description of a “path” joining the
endpoints of any jump. This is required to ensure consistency
of a solution to the measure driven dynamics.

The relationship between hybrid and impulsive systems
enables the usage for hybrid control problems of a wealth
of results available for impulsive systems [21], [22], [23],
[27], [30], [29], [25], [4], [8], [18]. In [5], the relationship
between differential impulsive inclusions and hybrid systems
in the context of reachability and viability theory has been
recognized. A distinguishing feature of this work and the one
discussed here is precisely the way we describe the system
behavior “during” the jump.

The article is organized in six sections. In section II, we
introduce the impulsive control framework and discuss some
key concepts and results. Then, in section III, we show how
we can model hybrid systems as impulsive systems. We
follow the taxonomy of [10] and we also use its examples
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de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465
Porto, Portugal {slfraga,rgomes,flp}@fe.up.pt

for illustrative purposes. In section IV, we give an on control
of a formation, which may be seen as an hybrid system.
It is formulated an optimal impulsive control problem in
order to synthesize the formation controller. In section V,
we discuss some of the main results on optimality as well as
stability conditions for impulsive control systems. We close
with some concluding remarks.

II. THE IMPULSIVE CONTROL FRAMEWORK

In our impulsive control framework we consider the fol-
lowing class of measure driven dynamic control systems:

dx(t)∈f(t, x(t), u(t))dt+G(t, x(t))µ(dt), ∀t∈[0, 1] (1)

with x(0) = x0, and where f : [0, 1]×Rn×Rm → Rn and
G : [0, 1]×Rn → P(Rn×q) are given function and set-valued
map, respectively. A control process for this system is a triple
(x, u, µ) where the “conventional control” component u is a
Borel measurable function satisfying u(t) ∈ Ut L-a.e. and
the impulsive control µ ∈ K is a nonnegative vector valued
measure. K ⊂ C∗([0, 1];K) is a convex cone of measures
with range in a pointed, convex cone K ⊂ Rq , i.e., µ(A) ∈
K for any Borel set A ⊂ [0, 1].

In what follows, we consider the canonical decomposition
of the control measure

µ(dt) = wac(t)dt + wsc(t)|µsc|(dt) + µsa(dt), (2)

where wac(t)dt, µsc(dt), and µsa(dt), are, respectively,
the absolutely continuous, singular continuous and atomic
components, |ν|(dt) denotes the total variation measure of
the measure ν and wsc is the Radon-Nicodym derivative of
µsc w.r.t. its total variation measure.

The trajectory x ∈ BV +([0, 1]; Rn) is an Rn-valued
function on [0, 1], of bounded variation, which are continuous
from the right on (0, 1], defined by x(0) = x0, and, ∀t > 0,

x(t) = xac(t) + xs(t) ∀t > 0 (3)

where

ẋac(t) ∈ f(t, x(t), u(t))+G(t, x(t))wac(t), L − a.e.

xs(t) =
∫

[0,t]

G(t, x(t))wsc(t)|µsc|(dt)+
∫

[0,t]

g̃(t)|µsa|(dt).

Here, G is a µ-measurable selection of G and g̃ is defined
by

g̃(t) ∈ {|µsa|({t})−1[ξ(1)− ξ(0)] : ξ ∈ AC([0, 1]; Rn),
ξ̇(s) = G(t, ξ(s))v(s) a.e., ξ(0) = x(t−), (4)

v(s) ∈ K,

∫ 1

0

v(s)ds = µsa({t})}.



This term clearly shows the final endpoint of a jump is
a point in the state space that can be reached with the
“singular dynamics” defined by G. This solves the apparent
ill-posedness of the measure driven differential form (1)
where, due to the discontinuity of x at time t, it is not clear a
priori which value of x should be plugged in in the argument
of G whenever the control measure µ has an atom.

Remark that the emergence of the “additional control” v is
due to the non-uniqueness of the integral w.r.t. the measure
µsa of the matrix-valued function G in the absence of the
commutativity property of the vector fields defined by its
columns.

The driving control measure can be regarded as an ide-
alization of a non-negative control that enters linearly into
the dynamics and takes large values over small time subsets.
The consistency of this concept requires the trajectory to be
endowed with the property of robustness. By this, it is meant
that solutions to dynamic system of equation (1) are “close”
to solutions of a conventional differential equation in which
µ is approximated by a conventional control m(t) associated
with a measure via m(t)dt.

To be consistent with the interpretation of µ, we need
to be sure that the state trajectory x corresponding to the
idealized µ can be suitably approximated by a sequence of
conventional trajectories corresponding to an approximating
sequence of conventional controls, i.e.,

xi(t) → x(t), ∀t ∈ Cµ ∪ {0, 1}, (5)

where Cµ denotes the points in [0, 1] which are not atoms of
µ, and {xi(t)} is a sequence of state trajectories, with initial
value x(0), corresponding to the sequence of conventional
L-integrable controls {mi(t)}, with mi(t) ∈ K a.e. for each
i, and u(t) ∈ Ut, such that

mi(t)dt →∗ µ(dt) weak∗. (6)

Here, weak∗ convergence means that
∫ 1

0

h(t)mi(t)dt →
∫

[0,1]

h(t)µ(dt), as i →∞, (7)

for every continuous function h on [0, 1].
This solution concept is a direct consequence of that

defined in [24], [25] which extends the one developed in
[28] that, in turn, follows the work in [16], [17] which use
the reparameterization techniques in line with those in [27],
[31].

We also observe that this solution concept for the im-
pulsive control system can be interpreted in terms of the
composition of several dynamic systems which one driving
the state variable subject to the “weight” dictated by the
measure µ. In particular, when µ has an atom, the singular
dynamics “explains” the path joining the trajectory jump
endpoints. In figure 1, it is depicted an illustration of this
solution concept.

Finally, we note that if the control measure µ is scalar-
valued or the vector fields associated with the columns of
the set valued map G are commutative (see [11]), then the
definition of the jump becomes significantly simpler.

Fig. 1. Solution concept sketch for impulsive systems

III. HYBRID SYSTEMS MODELED AS IMPULSIVE
CONTROL SYSTEMS

The impulsive solution concept described in the last sec-
tion is not only amenable to a physical interpretation but
also supports the analysis and control synthesis since is
provided a characterization of the trajectory arc during the
jump. Thus, instead of considering just a discrete transition
in the state trajectory, in the impulsive formalism we also
have the process that leads to that transition. Hence, if we
model an hybrid system as an impulsive control system, then
the results and methods associated with the later can be used
to address hybrid systems.

We adopt the taxonomy for hybrid systems of [10] to
show that impulsive systems formulation may model some
classes of hybrid systems. We will give a formulation in
terms of impulsive systems for the four classes of hybrid sys-
tems of that taxonomy: autonomous switching, autonomous
impulses, controlled switching and controlled impulses. For
each of these classes, we will give the same example as
in [10] using impulsive systems formulation for comparison
purposes.

A. Autonomous switching

In this class of hybrid systems, the vector field may switch
during the system operation. Thus, to model this situation we
parameterize the vector field by a state variable q:

ẋ(t) = f(t, x(t), u(t), q(t)), t ≥ 0. (8)

We assume that vector field may also depend on time, state
and control u. The parameter q is assumed to be a state
variable that may change in discrete times

dq(t) = g(t, x(t))µ(dt). (9)

The measure µ will be responsible for the switching and its
support gives the instants where a transition in the vector
field f happens :

supp µ = {t : φ(t, x(t)) = 0}. (10)

Here, the function φ models the transition surface. There is
a switching in the vector field whenever the state trajectory
hits the surface defined by φ and this is the reason for the



designation autonomous switching. Obviously, there are an
infinite number of possible locations q, which constitutes an
advantage since more degrees of freedom are available to
optimize any given objective function. However, we show in
the next example that if finite number of locations is needed,
it is possible to model that situation by defining trajectory
constraints in the impulsive control problem.

Example 3.1: In this example we present a model of a
dynamical system with hysteresis:

ẋ = H(x) + u, (11)

where the state x and the control u are reals. The function
H is an hysteresis having a threshold of ∆ and is depicted
in figure 2 [10]. The impulsive control formulation is given
by:

ẋ = u + q, (12)
dq = −2σ(x)µ(dt), (13)

being σ a suitable Lipschitz continuous approximation to
the signal function, q(0) ∈ {−1, 1} and the measure µ being
characterized by

supp µ = {t : q(t)x(t) = ∆} (14)
µ(dt) = δ(t− tµ), (15)

where tµ are the instants of measure’s support and δ is the
Dirac measure.

This impulsive model has the same behavior as the system
of equation (11).

Fig. 2. Hysteresis function, [10]

B. Autonomous impulses

In this class of hybrid system, the state trajectory may
exhibit a discontinuity when hitting prescribed regions of the
state space. Once again, this situation may also be modeled
as an impulsive system as follows:

dx ∈ f(t, x, u)dt + G(t, x)µ(dt) (16)

being the measure supported on the set

supp µ = {t : θ(t, x(t)) = 0}. (17)

where θ is a given function. The function f determines the
system evolution in the continuous phase while set-valued
map G defines the singular dynamics, which is responsible
for determining the evolution of the state variable during the
jump. The singular dynamics is the corresponding discrete
evolution but with the added feature that, now, we have

infinitely many possible locations. In this formalism, the
control of the jump is enabled by choosing appropriate selec-
tions of G. The possible discrete locations will correspond
to points in the reachable set of the singular dynamics.

Example 3.2: In this example we consider a bouncing
ball subject to gravity. When the ball hits floor, it changes
abruptly its velocity due to the ground reaction force. Here,
we consider the floor as a transition surface. Instead of only
defining the final velocity after the impact we have, in the
impulsive control formalism, a description of what happens
during the jump. We model the impact by an under-damped
linear spring. Thus, the impulsive model for this system is
as follows:

dy = vdt + vµ(dt) (18)
dv = −gdt + (−ω2

ny − 2ωnζv)µ(dt) (19)

where ωn represents the natural frequency of the system
and ζ is called the damping coefficient and should be less
than one. The damped natural frequency is given by ωd =
ωn

√
1− ζ2. The measure is characterized by:

supp µ = {t : y(t) = 0} (20)
µ(dt) = αδ(t− tµ). (21)

Note that, when the initial condition is such that y = 0 and
v = 0, then the solution will be always ”evolving” due to
the singular dynamics. Hence, the solution is well defined
in the context of the robust solution concept introduced in
section II. For this problem, the singular dynamics is simply
a model of a linear spring with damping:

ẏs(s) = vs(s)α (22)
v̇s(s) =

[−ω2
nys(s)− 2ωnζvs(s)

]
α, s ∈ [0, 1] (23)

where α represents the total variation norm of the measure.
In order to be consistent with the robust solution presented
in section II and to avoid violate the trajectory constraint, the
measure’s norm should be α = π

ωd
(with this norm we will

have x = 0 for s = 1). Note that measure’s norm defines the
time scaling of the singular dynamics. Due to this particular
singular dynamics, the velocity at s = 1 will have its signal
inverted in relation to the initial instant s = 0. Note that when
no energy is lost during the impact, then damping coefficient
is zero and the velocity after the impact just changes its signal
without any attenuation.

In this example, we have seen that we may describe
the system dynamics “during” the ideally instantaneous
collision. This extra information may be beneficial in some
circumstances. For example, imagine that we can control the
surface orientation during the contact [7]. This orientation
control leads to an extra control over the ball namely its
orientation and angle of departure from the surface. If we had
assumed no description of the arc jointing the jump points
this control would not be possible.

C. Controlled Switching

Unlike in the autonomous switching case, in controlled
switching hybrid systems the vector field of equation (8)



commutes not autonomously but in response to a control
command. Thus, in the impulsive paradigm, instead of
the measure be activated autonomously by predefining its
support, it is defined by the controller. Once again, in the
impulsive formalism the number of possible states q in
equation (9) may be infinite. However, this formalism may
also be applied in situations where it is required a finite
number of vector fields. This is accomplished by introducing
trajectory constraints as it is illustrated in the next examples.

Example 3.3: Consider a simple satellite system where we
can control the orientation by means of reaction jets:

ω̇(t) = τv(t), t ≥ 0. (24)

Here, ω is the angular speed, τ is the constant force applied
by the jets and v ∈ {−1, 0, 1} is a variable that controls the
direction of the jets (reverse, off and forward). This hybrid
system can be formulated as an impulsive control system as
follows:

dω(t) = τv(t)dt (25)
dv(t) ∈ Aµ(dt) (26)

subject to:

−1 ≤ v(t) ≤ 1, v(0) ∈ {−1, 0, 1} (27)
A ∈ {−2,−1, 1, 2}, µ(dt) = δ(t− tµ). (28)

We remark that tµ stands for the measure’s support instants.
As we can see from this example the measure’s support is
not defined a priori and it is chosen by the controller.

D. Controlled impulses

Hybrid systems of controlled impulses class are similar to
the autonomous impulses except that now we do not have a
pre-specification of the measure support. The state may jump
whenever the controller activates the measure. We reinforce
here that, by using the impulsive control formalism, we have
a well defined description of the arc linking the point before
and after the jump. This will enable us to develop results
and methods for controller synthesis.

Example 3.4: We consider an inventory management
model

dx(t) = −a(t)dt + µ(dt) (29)

where x represents the stock level, the function a represents
the stock consumption rate and the measure µ is the control
variable that restores the stock level. By suitable choice of the
measure support and norm we may control the level stock.
An optimization problem could be defined to decide about
the best strategy.

IV. CONTROL OF FORMATIONS

In the control of formations we have a network of vehicles
that may interact between each other in order to define
multiple configurations. Besides the continuous evolution of
each element, these problems also include the control of the
formation configuration. The change of configuration may
be considered as a discrete transition. For this reason we
may designate this type of control system as hybrid. Hence,

formations control is another class of problems for which
we may use the impulsive formulation in order to derive an
optimal controller. The formulation of this problem as an
optimal impulsive control problem is part of our quest in
establishing a bridge between hybrid and impulsive systems.
The impulsive framework will enable the description of
system’s trajectory during the reconfiguration period, which
may be seen as an added feature in relation to conventional
hybrid control formulation.

A. Network description

We wish to model a network where each node can position
itself to make a formation with other nodes. There are
dynamic constraints and optimizing costs that may cause the
system to change the configuration. The problem concerns
the computation of an optimal controller such that each
component of the network must be as close as possible
to a reference xr(t) while the network’s elements should
be as disperse as possible. These requirements models that
the formation should follow a predefined trajectory while
covering the biggest area possible (for inspection purposes
for instance). The reconfiguration should be taken in a very
short period. To simplify matters and focus on the impulsive
benefits we will present an example where each node is
modeled by one dimension dynamics.

B. Optimal impulsive control formulation

We show how we could model the previous problem as
an optimal impulsive control problem. The dynamic model
of each network component i is given by:

dxi(t) ∈ c(xi)dt + G(xi)µi
sa(dt), i = 1, .., N (30)

where the set-valued map G is given by:

G(x) := {g(x, u) : u ∈ [−1, 1]}. (31)

The variable xi is the node’s position, the function c(x)
models deviations due to external modeled factors (wind,
aquatic currents,...), the set-valued map models the node’s
dynamics during the reconfiguration period while µi

sa models
the reconfiguration activation. For simplicity and without loss
of generality, we assume similar dynamics for all network’s
nodes. In this abstract model we assume the reconfiguration
to be instantaneous which in practice means that each node
has capacity for strong actuation during short periods of time
(the µsa practical implementation). Due to the impulsive
solution concept we may say that the ’real’ trajectory is close
to the ideal one in the sense described in section II.

The optimal impulsive control problem is formulated as
follows:

min
µsa

N∑

i=1

(∫ 1

0

|xi(t)− xr(t)|2dt−

−
N∑

j=1,j 6=i

∫ 1

0

|xi(t)− xj(t)|dt +
∫

[0,1]

µi
sa(dt)


(32)

subject to dynamic equation 30, with xi(0) = xi
0 for i =

1, .., N and t ∈ [0, 1].



The first component of the objective function models the
tracking objective with reference trajectory xr, the second
component models the dispersion objective while the third
component is an actuation cost. The square in the tracking
objective is necessary to model the requirement of maxi-
mizing communications between vehicles. Note that weights
could be placed in the cost function to obtain different trade-
offs.

We would like to emphasize that this impulsive framework
is well suited for systems with discrete transitions but whose
transition trajectory is also important to characterize. The
previous example shows this issue since the network recon-
figuration is viewed as a result of a ’strong’ actuation and
consequently the transition’s trajectory is well characterized.
Possibly, it would be possible to synthesize the controller
for this formation with resource of the analytical results for
impulsive systems, which are surveyed in the next section.
However, this issue is out of scope of this paper. We expect
to address this important issue in a future publication.

V. OVERVIEW OF SOME RESULTS

Previously, in section III, we presented the possibility
of modeling hybrid systems by impulsive systems while
in section IV we formulated an optimal impulsive control
problem for an hybrid system. Now, we provide some insight
on the relevance of this framework through an overview of
some relevant results on impulsive systems. We will focus
on conditions for optimality and for stability. These play
a critical role on the design of optimality driven feedback
control schemes such as model predictive control [6]. Al-
though these schemes have been extremely successful for
many conventional control problems, there is very little work
for general nonlinear hybrid systems for which the proposed
impulsive framework is particularly pertinent.

A. Optimality conditions

An impulsive optimal control problem may be formulated,
in its more general form, as follows:

(P) min h(x(0), x(1))

subject to dynamics of equation (1) and to the constraints

(x(0), x(1)) ∈ C, Φ(t, x(t)) ≤ 0, t ∈ [0, 1]. (33)

Here, C is a closed subset of Rn×Rn and Φ : [0, 1]×Rn →
Rq and h : Rn × Rn → R are given functions.

Necessary and sufficient optimality conditions for variants
of this problem already exist and may be useful to compute
the optimal solution analytically. In one hand, necessary
conditions have a local character and give clues about how
to compute the measure’s support and the conventional
control. On the other hand, sufficient conditions have a
global character and involve the computation of the value
function. Also, with optimality conditions at hand, it will be
possible to explore numerical algorithms that approximates
the analytical solution.

As a short overview, we mention that there are necessary
conditions for problems without trajectory constraints where

set-valued map G does not depend on state x and the
conventional control is assumed constant at measure’s atoms
[27], [30]. When the set-valued map G is equal to a function
g(t, x) and the measure is scalar we have the necessary
conditions of [29]. In [25], [24] are given necessary con-
ditions for measure driven differential inclusions. Necessary
conditions considering trajectory constraints are addressed
in [4], [3], [2]. In what concerns sufficient conditions of
optimality, characterizations of the value function for variants
of problem (P ) are given in [8], [14], [19], [20]. Also
in [10], sufficient conditions of optimality were presented
but the characterization of the singular dynamics was not
considered. Necessary and sufficient conditions for optimal
impulsive control problems of a different character have also
been considered in [18].

B. Stability

Stability of hybrid systems has been subject of intensive
research [13]. For switched systems, some authors have an-
alyzed the possibility of using multiple Lyapunov functions
for constructing a nontraditional Lyapunov function [9], [13].
In [9], for example, it is stated that if the derivative of the
Lyapunov function of each vector field is nonincreasing and
at the transition times the Lyapunov function is nonincreasing
then we have stability. A less restrictive result is presented in
[13] where it is allowed ”small” increases of the derivative
of Lyapunov function in some vector fields provided other
vector fields overcome this ”small” increase. At the transition
instants it is only required that the value of the Lyapunov
function of a vector field at the initial instant is lower than the
last time that vector field was active (evaluated at the initial
instant). Besides these results for switched systems, in [32]
were also given stability results for systems having impulses.
The more restrictive result states that the Lyapunov function
derivative should be nonincreasing and in the discontinuities
of the trajectory the value of the Lyapunov function is only
allowed to decrease. In the more general result it is only
required that during the jumps the Lyapunov function be
nonincresing and in the continuous phase it is required that
the Lyapunov function V be bounded by the combination of
a prespecified bounded function and the right limit of V at
the initial instant. We should mention that these results were
developed without assuming any description of the singular
dynamics.

For impulsive systems using the robust solution presented
in section II there are two results concerning stability. In [21]
and [22] are given sufficient conditions for asymptotically
stability for impulsive control systems in terms of Lyapunov
functions analogous to the one for conventional control
systems (see for example [12]). The stability conditions
were stated in [21] in terms of a control Lyapunov pair
of functions satisfying the uniform decay condition. This is
due to the fact that these conditions were found by applying
ordinary stability theory to a standard problem obtained by a
reparameterization of the original control system. The effect
of these conditions in singular dynamics is that at measure’s
atoms the Lyapunov function jumps downwards. However,



these conditions are useless in numerous cases since they
are too restrictive. Therefore, in [22], this result is weakened
and the notion of a controllable Lyapunov pair of functions
is extended in such a way that V may increase at each
jump. The price we pay for this approach is that we have
to consider only control problems with a control measure
such that either the total variation of its singular component
is finite or its total variation on any finite interval tends to
zero as its lower bound tends to infinity. This is a rather
general scheme from the viewpoint of applications, although
it might seem restrictive. This view is slightly different form
the hybrid systems approaches since, here, we state that the
continuous evolution of the system should compensate the
eventual increase of the Lyapunov function value during the
jumps.

When, for modeling reasons, it is necessary to model the
singular dynamics, then the previous mentioned results on
stability of impulsive systems are applicable. Besides this
advantage, the solution concept presented in section II is
robust in the sense that the set of solutions has closure
properties with respect to the driving measure µ and the
initial state [28]. These properties are crucial for deducing
necessary optimality conditions and may also be useful for
studying robust stability for hybrid systems. This robustness
concept was introduced in [26] and the requirements for such
solution were given in [15].

VI. CONCLUSION
A robust solution concept developed for impulsive con-

trol systems was applied to model some classes of hybrid
systems. Not only this solution concept may give additional
modeling information due to the characterization of the tra-
jectory during the jump but also it has robustness properties
that allows the derivation of necessary optimality conditions
in the form of a maximum principle.

There are still many open questions concerning issues
related with the currently body of results discussed in
this article which are required to design optimality based
feedback control schemes such as model predictive control.
Among these, it is of importance to establish results on
the asymptotical optimization and on the stability of the
synthesized controls. The robustness issue for the optimal
controller is also an important issue that could be addressed
using this impulsive framework.
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