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Abstract: This article concerns a Model Predictive Control (MPC) Framework for the
control of AUV formations. The strict resource constraints - communications (which are
acoustic), computation, and power - make the problem of decentralized control of AUV
formations extremely difficult. Here, we present the first developments in the investigation
of this problem. It involves the development of a simulation environment implementing a
numerically efficient scheme based on a linear quadratic optimization problem. The next stage
concerns the reformulation of this framework so that minimal information is exchanged.
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1. INTRODUCTION

Real world challenges that human kind perceives to-
day, such as climate change, bio-diversity, environ-
ment, natural resources management, territory man-
agement, security and surveillance, to name just a
few, impose a number of increasingly sophisticated
requirements for field studies data gathering. Spatial
and temporal distribution, persistence, combination
of wide area with local area data sampling, etc, are
some general requirements calling for a concerted
instrumentation of the earth which encompass net-
worked fixed, mobile sensor platforms, and other de-
vices. Moreover, one can easily devise many instances
of missions involving, possibly heterogeneous, net-
worked unmanned vehicles, say Autonomous Under-
water Vehicles (AUVs), in which there is the need to
distribute different sensors by different vehicles that
should move in a certain formation defined to fulfill
the needed data sampling requirements.

The underwater milieu poses tremendous challenges
for the design of advanced data gathering systems.
Onboard space and energy (required for the actua-
tion, sensing, computation, and communication) are
at a premium and acoustic communications feature
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very low data rates, are unreliable and power hun-
gry. This makes the case for systems for which the
overall management of onboard resources has to be
carefully optimized. Moreover, hydrodynamic effects
make precise models too complex from the computa-
tional point of view and this implies that operational
AUV models have necessarily to be approximated by
simpler concentrated parameter models. The price to
pay for this is that modeling becomes more difficult
and uncertainty increases which is aggravated by the
impact of typical pervasive underwater perturbations.

In order to answer these challenges in the context
of controlling a formation of AUVs tracking a given
trajectory, a decentralized Model Predictive Control
(MPC) framework is proposed.

Each vehicle runs an MPC algorithm that, by taking
into account its own and its neighbors’ navigation
data, generates a control strategy that balances a mini-
mal quadratic error to the reference trajectory and de-
viation from the pre-specified formation pattern with
minimal employed control effort over time. Control
and state constraints are also considered to reflect con-
trol saturations as well as to avoid the collision with
obstacles. The obtained control is applied for a short
time interval, after which the state is sampled and in-
formation is exchanged among the pertinent neighbor-
ing vehicles via acoustic communication links. Then,
the cycle is restarted with the new optimization carried



out over a shifted time horizon and with the most
recent data.

The partiality of the information available to each
AUV motivates a decentralized version of this prob-
lem. However, this calls for a level of communication
and of computation in each vehicle that strongly con-
flicts with the available onboard resources. Thus, two
main issues may arise in the networked MPC scheme.

• acoustic communications may exhibit delays and
packets loss.
• computational complexity which, while taking

into account the strict limitations of the AUV
onboard resources, also has to meet real-time
requirements.

A substantial amount of research work has been done
on the control of formations of autonomous vehicles,
(Franco et al., 2004; Franco et al., 2008; Keviczky
et al., 2006; Keviczky et al., 2008; Fax and Mur-
ray, 2004; Olfati-Saber and Murray, 2004; Semsar-
Kazerooni and Khorasani, 2008; Goodwin et al.,
2004; Fontes et al., 2009; Gruene et al., 2009; Allen
et al., 2002; Liu et al., 2001). However, to the best of
our knowledge, there are no satisfactory developments
meeting the requirements of our applications.

This article is organized as follows: In the next section
we discuss the various ingredients of the formation
control problem and justify the options made. Then,
in section 3, we present an overview of the state-of-
the-art on MPC. In section 4, we discuss our decen-
tralized MPC framework for the control of formations
of AUVs and its implementation in a simulation envi-
ronment. Finally, some brief conclusions are drawn.

2. AUV FORMATION CONTROL PROBLEM

In this section, we formulate the AUV formation con-
trol problem to control a set of vehicles that have to
track a trajectory and, at the same time, keep a given
formation pattern while satisfying state (safety re-
quirements) and control (saturations) constraints. Typ-
ically, modeling the AUV motion is difficult. Because
of the hydrodynamic effects, AUVs are distributed
parameter systems and, thus, represented by extremely
complex models. For this reason, we use in our devel-
opments the following model with coefficients based
on results in (Prestero, 2001) and on our own field
experiments.

η̇ =

 u cos(ψ)− v sin(ψ)
u sin(ψ) + v cos(ψ)

r

, (1)

ν̇ =


τu − (m− Yv̇)vr −Xu|u|u|u|

m−Xu̇
(m−Xu̇)ur − Yv|v|v|v|

m− Yv̇
τr − (Yv̇ −Xu̇)uv −Nr|r|r|r|

Izz −Nṙ

, (2)

where η = [x, y, ψ]T (from here onwards, a “T ” in
upper script will denote transposed), ν = [u, v, r]T ,
τ = [τu, τr], the coefficients Xu̇, Yv̇ , Nṙ represents
hydrodynamic added mass, Xu|u|, Yv|v|, Nr|r| the
hydrodynamic drag and m the vehicle mass.

From the above, we are interested in control strategies
which, for each AUV i, i = 1, . . . , nv , minimize,
over a given time interval, a cost functional with two
terms, one that penalizes the trajectory tracking error
forcing vehicles to follow the desired path, ηiref , and
another that penalizes the control effort, thus saving
the limited energy on board of vehicles, i.e.,

t+T∫
t

(ηi(s)− ηiref (s))TQ(ηi(s)− ηiref (s))

+τ iT (s)Rτ i(s)ds, (3)

and, at the same time, satisfies the following:

(i) Kinematic and dynamic equations constraints
(vehicle dynamics) given by (1) and (2);

(ii) Endpoint state constraints, ηi(t+ T ) ∈ Ct+T ;
(iii) Control constraints, τ i(s) ∈ Ui;
(iv) State constraints, (ηi(s), νi(s)) ∈ Si;
(v) Communication constraints

gci,j(η
i(s), ηj(s)) ∈ Cc

i,j , ∀j ∈ Gc(i); and
(vi) Formation constraints

gfi,j(η
i(s), ηj(s)) ∈ Cf

i,j , ∀j ∈ Gf (i).

While the control constraints (iii) include, for exam-
ple, saturations, the state constraints (iv) are specified
to keep each vehicle in a specified set in order to
satisfy safety or some other requirement. For example,
to avoid collision with obstacles - known a priori or
detected on the fly - or to prevent some variables to
take on values that may damage components.

The satisfaction of the acoustic communication con-
straints (v) ensure that the motion of the vehicles is
such that the required connectivity is preserved. The
fact that closer the vehicles are, the lower the power
consumption and packets loss, makes a strong case
for each AUV to communicate with its neighbors and,
hence, for decentralized control structure. The com-
munications structure may be described by the triple
(gc, Cc,Gc), where gc : Rn×Rn → RM , Cc ∈ RM

(here,M ≤ n(nv−1)nv , being n the dimension of the
state space component of interest of each vehicle), and
Gc a graph whose ith component defines the vehicles
with which the ith vehicle communicates. We point
out that the communications graph is, in general, quite
different from the formation or control graphs that we
will introduce next.

Finally, the formation constraints (vi) specify the re-
lations between data (typically, relative positions) of
AUVs which have to be maintained with the help of
appropriate control activity. These relative positions
are specified in order to ensure the desired require-
ments of the activity (e.g., data gathering) undertaken
by the AUVs. The formation structure may be de-



scribed by triple (gf , Cf ,Gf ) where gf : Rn×Rn →
RM ,Cf ∈ RM (here,M ≤ n(nv−1)nv , being n the
dimension of the state space component of interest of
each vehicle), and Gf a graph whose ith component
defines the vehicles with which the ith vehicle has a
formation relation.

3. BRIEF STATE-OF-THE-ART ON MODEL
PREDICTIVE CONTROL

There is an extremely vast body of literature on MPC -
also designated by Receding Horizon Control (RHC)
- that we cannot hope to include in this overview. See,
for example, (Mayne et al., 2000). We will focus on
the key results that are pertinent to our approach and
focus on the class of systems addressed in this report -
coordinated control of formations of vehicles.

MPC is a control scheme in which the control action
for the current time subinterval - control horizon -
is obtained, at each sampling time, by solving on-
line an optimal control problem over a certain large
time horizon - the prediction horizon - with the state
variable initialized at the current best estimate updated
with the latest sampled value. Once the optimization
yields an optimal control sequence, this is applied to
the plant during the control horizon. Then, once this
time interval elapses, the process is re-iterated. The
MPC scheme involves the following steps:

1. Initialization. Let t0 be the current time, and set
up the initial parameters or conditions specifying
x0, T , ∆, initial filter parameters (in case the
sampled data requires filtering, initial control for
the recursive control optimization procedure, etc.

2. Sample the state variable at time t0.
3. Compute the optimal control strategy, u∗, in the

prediction optimal, i.e., [t0, t0 + T ], by solving
the optimal control problem (P ).

4. Apply the obtained optimal control during the
current control horizon, [t0, t0 + ∆].

5. Slide time by ∆, i.e., t0 = t0 + ∆, and adapt
parameters and models as needed.

6. Go to step 2.

where x0 is the initial state, T is the prediction horizon
for control optimization, and ∆ is the control hori-
zon. A number of variants to this scheme have been
considered by enriching some of steps with additional
processing:

• For the networked systems implementation, the
data obtained in step 4. might be a composition
of locally sampled data and data communicated
from other vehicles or subsystems. For this class
of systems, it might be of interest to replace data
that failed to be transmitted by simulated data.
• Filtering the sampled state variable is usually

required, being the Kalman filter widely used.
• For situations in which models are significantly

uncertain or may vary over time, it might be of

interest to use the sampled data to identify or
refine the value of model parameters.

• Likewise, if external perturbations act on the
vehicles/systems are sensed or estimated, they
can be used to improve the models entering in the
optimization procedure, and to change the MPC
parameters.

• Communication may introduce delays and data
packets might fail to arrive with serious conse-
quences to the controller performance. To ad-
dress this, true data may be replaced by simu-
lated data or MPC parameters may be adjusted.

A typical general formulation of the optimal control
problem (P ) may be as follows:

(P ) Minimize g(x(t0 + T )) +

t0+T∫
t0

f0(t, x(t), u(t))dt

subject to ẋ(t) = f(t, x(t), u(t)) L − a.e.
u(t) ∈ Ω L − a.e.
h(t, x(t)) ≤ 0

g(t, x(t), u(t)) ≤ 0

x(t0 + T ) ∈ Cf

where g is the endpoint cost functional, f0 is the
running cost integrand, f , h, and g represent, respec-
tively, the vehicle dynamics, the state constraints, and
the mixed constraints, C is a target that may also be
specified in order to ensure stability. If one wants to
take into account the uncertainty with respect to the
initial state, then one may consider an initial state
constraint, i.e., x(t0) ∈ Ci where Ci is an estimate
of the uncertainty set, being the minimization taken
over the worst case of the initial state.

Now, we overview some of the typical basic issues
and approaches for stability and robustness (Mayne et
al., 2000; Langson et al., 2004; Mayne et al., 2009).

Stability. Two major MPC approaches have been con-
sidered to stability:

a) Direct method using the fixed horizon value
function as a Lyapunov function; and

b) Indirect approach employing the monotonicity
property of a sequence of value functions.

Regardless of the approach, a number of formulations
involving either a certain terminal state constraint set
C, or terminal cost f0, or both, have been consid-
ered. In order to ensure the asymptotic stability of
the obtained feedback control law, say u = k(x), the
required typical assumptions are:

• 0 ∈ C with C closed;
• k(x) ∈ Ω the control constraint set;
• C is positively invariant under k(·); and
• f0 is locally a Lyapunov function.

Robustness. Robustness concerns the ability of the
system in preserving a certain property - e.g., stability
or performance - in the presence of uncertainties. For



stability, this can be checked by concluding that the
Lyapunov function for the nominal closed-loop sys-
tem keeps the descent property for sufficiently small
disturbances. While this is not very difficult to show
for unconstrained problems, the consideration of con-
straints on states and controls raises substantial chal-
lenges as it is required to ensure that the constraints
remain satisfied. Inherent robustness, min-max open
loop control and feedback control are the general
contexts considered to investigate robustness of MPC
schemes.

The versatility exhibited by optimal control problems
has been exploited in order to formulate and solve
problems of controlling formation of vehicles. These
typically have a substantially complex structure and
may be addressed by using MPC schemes in either a
decentralized or a centralized context which may in-
volve two stages: the planning phase - solved off-line
to provide the formation reference trajectory -, and
the execution phase - solved on-line with the help of
locally formulated control problems. Let us overview
a selected sample of some of these approaches.

In (Franco et al., 2008), the problem of cooperative
control of a team of distributed agents with decou-
pled nonlinear discrete-time dynamics operating in a
common environment and exchanging delayed infor-
mation is considered. Each agent is assumed to evolve
in discrete-time, based on locally computed control
laws, which are computed by exchanging delayed
state information with a subset of neighboring agents.
The cooperative control problem is formulated in a
receding-horizon framework, where the control laws
depend on the local state variables (feedback action)
and on delayed information gathered from cooperating
neighboring agents (feedforward action). A rigorous
stability analysis exploiting the input-to-state stability
properties of the receding-horizon local control laws
is carried out. The stability of the team of agents is
then proved by utilizing small-gain theorem results.

Building on the work reported in (Keviczky et al.,
2006), a decentralized scheme for the coordinated
control of formations of autonomous vehicles is pre-
sented in (Keviczky et al., 2008). A high level reced-
ing horizon control and coordination strategy is ob-
tained for each vehicle by solving a LQ optimization
problem featuring control saturation constraints, linear
dynamics constraints, and formation constraints with
neighboring vehicles defined by a graph. An appro-
priate graph structure describes the underlying com-
munication topology between the vehicles. On each
vehicle, information about neighbors is used to pre-
dict their behavior and plan conflict-free trajectories
that maintain the coordination and achieve the team
objectives. When feasibility of the decentralized con-
trol is lost, collision avoidance is ensured by invoking
emergency maneuvers that are computed via invariant
set theory. A stabilization analysis is also discussed in
(Keviczky et al., 2006).

Information exchange strategies that improve the for-
mation stability and performance and, at the same
time, are robust to changes in the communication
topology are considered in (Fax and Murray, 2004) to
address the problem of cooperative control of vehicle
formations. The sensed and communicated informa-
tion flow is modeled by a graph whose topology has
implications in the control stability. By exploiting the
interplay between communications and control, nec-
essary and sufficient conditions for the stability of
an interconnected system of identical vehicles can be
derived. Stated in terms of the Popov criterium for net-
worked control systems, these conditions involve the
eigenvalues of the graph Laplacian and reveal how to
shape the information flow in order to ensure stability
and achieve high performance.

The problem of unreliable communication channel
between the MPC controller output and the actuator
input, has been addressed in, among others, (Gruene
et al., 2009). Here, a mechanism for compensation of
packet dropouts has been incorporated in the MPC
scheme for discrete time problems. The basic idea
consists in extending the control horizon until the
next successful communication event happens and, in
the meantime, use the best available control estimate,
namely the one that has already been computed for the
longer time interval. This article also includes some
stability and sub-optimality analysis under an asymp-
totic controllability assumption. In order to show sta-
bility, the authors prove that, under the considered
assumptions, the value function associated with the
optimal control problem also exhibits properties of a
Lyapunov function.

4. A DECENTRALIZED MPC FRAMEWORK
FOR AUV FORMATIONS

In this section, we describe the implementation of a
decentralized version of a discrete time MPC system
to control a formation of AUVs in a simulation envi-
ronment. The main features are:

• The decentralized character of the overall MPC
controller is since each vehicle runs its own MPC
scheme (which also encompasses the models of
its neighboring AUVs) and communicates only
with its neighbors;

• Computational efficiency is achieved by replac-
ing the optimal control problem by a LQ opti-
mization problem (for which an efficient MAT-
LAB solver is used) and, for this, we consider (i)
quadratic cost functionals, (ii) approximation of
each AUV dynamics by a linear model, and (iii)
state and control constraints (saturations) given
by inequalities;

• Communication delays and packet dropouts can
easily be incorporated; and

• Noise and disturbances can be easily considered
in the vehicles simulated motion.



Now, we describe the optimization based control syn-
thesis that will be performed in each AUV as part of
the overall decentralized MPC scheme implemented
in the simulation environment.

LetNp, nv , and T be, respectively, the prediction hori-
zon, the number of vehicles, and the sampling period.
Then, according to the previous considerations, the
discrete time linear model of vehicle i = 1, . . . , nv ,
is, for k = 0, . . . , Np − 1, given by:

xik+1 = Φi(T )xik + Ψi(T )uik, y
i
k = Cixik (4)

where Φi(T ) = eA
iT , Ψi(T ) =

T∫
0

eA
i(T−s)dsBi,

and xik ∈ Rns , uk ∈ Rnc , and yk ∈ Rno are respec-
tively the system state, input and output variables, and
ns, nc and no are the associated space dimensions.

From the considerations of the formation control prob-
lem formulation and assumed simplifications, it fol-
lows that the underlying optimal control problem for
AUV i, (LQP i), involves data from all its neigh-
boring vehicles as specified by the formation graph,
consisting in minimizing the quadratic cost functional

Np∑
k=1

‖yref,it+k − yit+k‖2Qi +

Np−1∑
k=0

‖uit+k‖2Ri

+

Np∑
k=1

∑
j∈G(i)

‖Dij(yit+k − yjt+k)− dij‖2Lij

(5)

subject to: xjt+k+1 = Φj(T )xjt+k + Ψj(T )ujt+k,(6)

yjt+k = Cjxjt+k (7)

xjt+k ∈ [xjLB,t, x
j
UB,t] (8)

ujt+k ∈ [ujLB , u
j
UB ] (9)

xjt = xj0, (10)

where constraints hold for j ∈ {i} ∪ G(i), being,
for each time k, G(i) the set of nodes of the graph
specifying the vehicles linked to AUV i. Here, yit+k

and yref,it+k are, respectively, the vector of outputs of
vehicle i and its reference, xj0 is the initial state of
vehicle j at the initial time t,Dij is a matrix reflecting
the formation relation between vehicles i and j, dij

is a parameter vector specifying distances between
vehicles i and j, xjLB,t, x

j
UB,t, u

j
LB , and ujUB are

bounds for state and control at time t, respectively.

Now, we describe the implemented version of the
MPC scheme for the control of a formation of AUVs.
This scheme runs in each vehicle and will be the same
for all AUVs. Thus, if there is no loss of information
in the communication, then, all the vehicles have
the same data and the control strategy generated for
each vehicle is known to all of them. In the event of
packet dropouts or communication delays, the missing
sampled data is replaced by simulated data, and there
will be some differences between the control strategies
computed by the various vehicles for a given vehicle.
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Fig. 1. Formation control scheme for 2 AUVs

The implemented MPC scheme in AUV i is as fol-
lows:

1. Initialization: prediction and control horizons,
other optimal control problem parameters that
depend on specific mission requirements, such
as, level of perturbations, existence of obstacles,
relative importance of trajectory tracking and
formation pattern errors.

2. Sample the state variable, compute its estimate,
and communicate it to its neighbors via acoustic
modem.

3. Obtain the state variable of its neighbors via
acoustic modem.
(a) If data is available go to step 4.
(b) Otherwise, generate estimates of the neigh-

bors’ state by running their models.
4. Solve the linear quadratic optimization problem

(LQP i) at the current time t, and for the current
prediction horizon (of length Np) and the given
reference output trajectory. This yields an opti-
mal control sequence for vehicle i.

5. Apply the control ui∗ for the current control
horizon.

6. Slide time for the optimization problem and ad-
just parameters if needed.

7. Let time elapse until the end of the current con-
trol horizon, and go to step 2.

Simulation results were obtained with the developed
simulation environment in which the MATLAB linear
quadratic programming solver is used in the context
of simple formation of two vehicles that have to travel
side by side (see the diagram of figure 1).

This framework exhibits the following features:

• Quadratic cost function weighting reference tra-
jectory tracking error, control effort, and forma-
tion pattern error.

• Control systems with linear dynamics and sub-
ject to Gaussian noise with “adjustable” mean
and variance, added as an additional input in
the vehicle dynamics. Once the vehicle state is
sampled, a Kalman filter yields a state estimate
which is fed in the optimization solver and com-
municated to neighboring vehicles.

• Control constraints enabling saturations.



5.1: Com off 0 5.2: Com off 0.05

5.3: Com on 0.01 5.4: Com on 0.2

5.5: Com on 0.01 150 5.6: Com on 0.2 150

Figure 5: Simulations results

6.1: Com on 0.1 150m current=0.1 R=005 6.2: Com on 0.1 150m current=0.1 R=001

Figure 6: Current simulations results

7.1: Com on 0.1 obstacle avoidance, distance=0 7.2: Com on 0.1 obstacle avoidance, dis-
tance=150m

Figure 7: Obstacle avoidance simulations results

Noise level Noise 0.00 0.01 0.05 0.10 0.2

COMMSOFF
R = 0.01

TMetric
FMetric
Cost
TMetricReal
FMetricReal

6.48
0.31
106
6.48
0.31

6.46
0.32
106
5.82
1.01

6.29
0.34
108
8.14
1.55

6.30
0.35
110
9.74
1.62

6.33
0.34
112
10.7
1.69

COMMSON
Distance
= 0m
R = 0.05

TMetric
FMetric
Cost
TMetricReal
FMetricReal

11.39
0.36
183
11.4
0.36

11.40
0.36
184
9.20
0.65

11.02
0.42
197
13.6
4.80

11.04
0.46
220
15.7
6.76

11.18
0.49
260
15.6
6.84

COMMSON
Distance
= 150m
R = 0.05

TMetric
FMetric
Cost
TMetricReal
FMetricReal

11.4
0.36
183
11.4
0.36

11.4
0.36
184
9.85
0.80

11.20
0.41
191
22.6
7.02

11.22
0.45
201
28.5
11.4

11.30
0.46
215
25.0
10.3
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Fig. 2. Formation of 2 AUVs with obstacle avoidance

Figure 8: Triangle formation simulation

Figure 9: Formation control of two vehicles in a side-by-side formation

Noise level Noise 0.01

Distance
= 150m
R = 0.05

Tmetric
Fmetric
Cost

15.84
5.02
781

Distance
= 150m
R = 0.01

Tmetric
Fmetric
Cost

26.17
7.03
1214

Noise level Noise 0.01

Distance
= 0m
R = 0.05

Tmetric
Fmetric
Cost

35.70
0.50
531.54

Distance
= 150m
R = 0.05

Tmetric
Fmetric
Cost

46.4
0.49
648

??????????????????????????????????????????????? VER FIG The simulation result given all
previous considerations are shown in picture 9.

Notes:

• red refers to vehicle 1, green refers to vehicle 2, + represents the reference, solid represents
the feedback of the position where the vehicle thinks it is (model with noise/disturbances), o
represents the real position when the control of the previous system is applied to this model.
This model acts as a monitor of how far is the disturbed feedback system from reality.

• the controller performance looks very good both in terms of trajectory tracking and formation

• The same noise realization in all simulations for fair comparison

Control weights in 16 were tuned to achieve best performance. It is clear that more importance
have been given to the formation keeping than to the trajectory tracking and the control. For
instance if the equal weights were given, we would assist to a loss of performance in the formation
keeping. The weight on the control allows us to be careful how energy is used.

several simulations as the next table shows.

29

Fig. 3. Formation of 3 AUVs with obstacle avoidance

• Inequality state and output constraints. These en-
able the incorporation of obstacles and the per-
formance assessment the proposed MPC scheme
with obstacle avoidance.
• Communication model. Communicated data is

time stamped and may exhibit a time delay pro-
portional to the distance between the vehicles ex-
changing data. Gaussian random packet dropouts
can also be considered. The MPC scheme was
assessed in the presence of time delays. Each
vehicle has a linear buffer enabling the reception
of multiple data samples from other vehicles and
whose implementation is described in the previ-
ous section.
• Two performance metrics enabling to measure

how far the AUVs are from the trajectory to be
tracked and how far they are from the defined
formation pattern, are used. These measures pro-
vide a good assessment of the controller’s perfor-
mance.

Figures 2 and 3 gives the reader an idea of the perfor-
mance of the MPC controller in the considered cases.

5. CONCLUSIONS

Multiple simulations runs revealed that the proposed
framework produced the intended control strategies
according to the requirements. Many research chal-
lenges remain in order to achieve the computational
tractability for problems with more complex forma-
tions and larger number of vehicles. This will require
new ways of taking into account the decentralization
character and are the subject of current research.
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