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Abstract: In this article, a Model Predictive Control (MPC) scheme that, by taking advantage
of the control problem time invariant ingredients, replaces as much as possible the on-line
computational burden of the conventional schemes, by off-line computation, is presented and its
asymptotic stability shown. The generated data is stored onboard in look-up tables and recruited
and adapted on-line with small computation effort according to the real-time context specified
by communicated or sensed data. This scheme is particularly important to the increasing range
of applications exhibiting severe real-time constraints. The approach presented here provides a
better re-conciliation of onboard resources optimization with state feedback control - to deal with
the typical a priori high uncertainty - while managing the formation with a low computational
budget which otherwise might have a significant impact in power consumption.
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1. INTRODUCTION

The goal of this article is to discuss a new Model Predictive
Control (MPC) scheme that, by taking advantage of the
time invariant objects of the control problem, replaces as
much as possible the on-line computational burden of the
conventional schemes, by off-line computation. The class
of systems envisioned in this research effort are those for
which optimization, and robustness are key requirements,
and, at the same time, scarcity of computational, and
power resources, and time severe. A typical, and increas-
ingly important class of systems are those involving Au-
tonomous Underwater Vehicles (AUVs), either in stand-
alone configuration, or possibly networked and articulated
with other devices. The data generated by off-line compu-
tation - notably parameterized Attainable Sets and Value
Functions - is stored onboard in look-up tables and re-
cruited and adapted on-line with little computation effort
according to the real-time context specified by communi-
cated or sensed data. We call this scheme of Attainable Set
MPC (AS-MPC) which departs significantly from previous
ones as it is clear from state-of-the-art overview in 3.
The AS-MPC (and its robust version, RAS-MPC) were
presented and some of its properties discussed in Gomes
and Pereira (2018) for the management and control of
the AUV formations, which, in turn, follow from Gomes
and Pereira (2017a), and Gomes and Pereira (2017b). In
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these references, a control architecture is also presented
in order to also handle discrete events. Besides revisiting
some of these results, now, we extend the investigation
to encompass the asymptotic stability of the AS-MPC
scheme. Moreover, we expand the considerations, accom-
panied by an illustrative example, on the hybrid control
automaton in order to ensure the successful termination of
a given mission. These developments are in Gomes (2017).

In section 2, we state the problem of controlling an
AUV formation to track a planned trajectory along which
payload data is gathered. Then, a selected brief state-
of-the-art overview is given in 3. The presentation of
the AS-MPC scheme for AUV motion control and the
discussion of its properties is given in 4. Then, section
5 provides one of the main paradigmatic applications
which requires the extension of the AS-MPC to the hybrid
control systems. Some conclusions and prospective future
work are provided in the last section.

2. THE AUV FORMATION TRACKING PROBLEM

The AUV formation control problem is formulated in order
to define strategies for the relative behaviors of given set
the vehicles, regarded as a single reconfigurable generalized
vehicle. The operation in formation is required to fulfill the
activities requirements to achieve the mission goal. Here,
we focus in the mission of gathering payload data in a given
water column volume along a pre-planned path. The AUVs
motion control should be such that the integral error with
respect to a given reference trajectory and the total control
effort during a certain period of time is minimized subject
to constraints as indicated below. A general formulation of
the Optimal Control Problem (OCP) associated with this
mission is:



(PT ) Minimize g(x(t0+T ))+

t0+T∫
t0

f0(t, x(t), xr(t), u(t))dt

subject to ẋ(t)=f(t, x(t), xr(t), u(t)) L − a.e.
u∈U , x(t0+T )∈Cf
h(t, x(t))≤0, g(t, x(t), u(t))≤0

where g:IRn→IR is the endpoint cost functional, f0:IR×IRn×
IRm→IR is the running cost integrand, f :IR×IRn×IRm→IRn,
h : IR×IRn → IRq, and g : IR×IRn×IRm → IRk represent,
respectively, the vehicle dynamics, the state constraints,
and the mixed constraints, U :={u:[t0, T ]→IRm :u(t)∈Ω},
Ω⊂ IRm is the set of measurable controls, Cf ⊂ IRn is a
target set specified in order to either represent application
domain features or to ensure stability, and xr is the
trajectory to be tracked. The mappings g, f , f0, g and h,
and the sets Cf and Ω satisfy the following assumptions
(S): ∀(t, u)∈IR×Ω, are Lipschitz in x with constant Km

where m represents the respective map, and continuous
in (t, u) for all x∈IRn, ∃K≥0 such that ‖f(t, x,Ω)‖≤K,
∀(t, x)∈IRn+1, and Cf and Ω are compact.

To instance (PT ) in the context of AUV formation of N
vehicles tracking a reference trajectory xr, consider, for
the AUV i:

• x=col(ηi, νi), and u=τ i, i=1, . . . , N .
• f0(·, ·, ·)=(ηi(t)−ηir(t))TQ(ηi(t)−ηir(t))+τ iT (t)Rτ i(t),
g(·)=0, being ηir(·) the ith vehicle reference trajectory,
and τ i its control (denoted by u in (PT )).

• By considering, for each vehicle (we drop the index
i), the state and the controls given by η=[x, y, ψ]T

and ν = [u, v, r]T and τ = [τu, τr]
T , respectively, the

dynamics are given in Fossen (1994). For details,
Gomes and Pereira (2018).

• Other constraint types include: (i) endpoint state
constraints, ηi(t + T )∈Ct+T , (ii) control constraints,
τ i(s) ∈ U i, (iii) state constraints, (ηi(s), νi(s)) ∈ Si,
(iv) communication constraints gci,j(η

i(s), ηj(s)) ∈
Cci,j ,∀j∈Gc(i), and (v) formation constraints

gfi,j(η
i(s), ηj(s))∈Cfi,j ,∀j∈Gf (i).

The OCP formulation can be either centralized or decen-
tralized. In the later case, each vehicle has its own con-
troller requiring two components: one underlying its own
motion and other activities, and another concerning the
cohesion of the required formation pattern. Each vehicle
communicates acoustically with its neighbors, and their
relative positions have to be such that full connectivity
of the formation bidirectional communication graph is
guaranteed. Each vehicle is a node of this graph whose
arcs are the communication links. Communicating vehicles
navigate sufficiently close to one another to mitigate the
packets loss. Modes of operation include data gathering,
obstacle collision avoidance, communication, and loitering.
Each mode operation mode has its own formation pattern.

3. BRIEF STATE-OF-THE-ART

A good reference in AUV motion control problems is Fos-
sen (1994). Extended versions of these control systems for
very diverse robot craft have been considered for single and
multiple vehicles. Non-linear control theory and geometric

control provide tools led to very popular design techniques,
Kristiansen and Nicklasson (2009); Ren and Beard (2002);
Lv et al. (2011). Early on, it became clear that, along with
feedback control, resources optimization plays a key role in
contexts of scarce resources. Thus, MPC became a design
approach of choice for many applications. Conventional
MPC schemes generate feedback control syntheses concili-
ating near optimization with feedback control. For details,
see Gomes (2017). Moreover, MPC schemes inherit from
optimal control a huge flexibility enabling the handling of
very complex dynamics subject to very diverse types of
constraints, encompassing those in vehicle formations. A
wide variety of MPC controllers for formations of robotic
vehicles were designed to deal with key challenges such
as communications failures and delays in continuum and
discrete times, centralized and decentralized contexts, lin-
ear and nonlinear dynamics, leader-follower and leaderless
schemes, collision-free motion, cooperative and competi-
tive strategies, single and multiple objectives. Moreover,
a wide range of applications (surveillance, exploration,
tracking paths and trajectories), have been considered in a
vast literature of which we single out Mayne et al. (2000);
Franco et al. (2004, 2008); Keviczky et al. (2006, 2008);
Consolini et al. (2008); Chao et al. (2011); Quintero et al.
(2015); Bertrand et al. (2014); Andrade et al. (2016); Shen
et al. (2016). Many of these MPC approaches are weakly
suitable for AUVs: (i) intense on-line computational bur-
den, and (ii) design issues to ensure the required per-
formances do note consider onboard resource constraints.
This work considers some of these issues, and, in line
of the one proposed in Gomes and Pereira (2017a) and
is an extension of Gomes and Pereira (2018),concerns a
substantially different approach to AUV formation control.

4. ATTAINABLE SET MPC

Now, we present the AS-MPC introduced in Gomes and
Pereira (2017a, 2018) including some additional results.
The key ideas are: (i) Replace the infinite dimensional
optimization problems by simpler finite dimensional ones;
(ii) Take advantage of time-invariant data such as vehicle
dynamics, and environment features to pre-compute off-
line and store on-board approximations to reference, short
term, Attainable Set (AS), and Value Function (VF)
in an appropriate grid of points to be recruited on-line
depending on real-time data.

Let Tf >0 be a large number, with possibly Tf =∞ and
consider the short term “equivalent” cost functional, and
the attainable set for the dynamic control system on the
time horizon [0, Tf ], and let (PTf

) be (PT ) with T=Tf and
(only for the sake of simplicity) without state and mixed
constraints. Let ∆ be the control horizon length and t0 the
current time. By defining

a) Value Function. V (t, z) := min
u∈U,ξ∈Cf

{J(ξ, u)}, where ξ=

x(Tf ), ẋ(τ) =f(τ, x(τ), u(τ)), L-a.e., x(t) = z, u∈U , and

J(ξ, u)=g(ξ)+
∫ Tf

t
f0(τ, x(τ), u(τ))dτ , and

b) Attainable Set. (Kurzhanski and Varaiya (2001))

Af (t; t0, x0)={x(t):ẋ=f(t, x, u), u∈U , x(t0)=x0}, t>t0.
we have, by the Principle of Optimality, that (PTf

) and
(P aTf

) are equivalent, being



(P aTf
) Minimize V (t+∆, z)) subject to z∈Af (t+∆; t, x(t)).

Note that the integrand was removed by a standard change
of variable (no relabelling), Gomes and Pereira (2018). The
principle of optimality states that, for ∆< Tf − t0, the
solution to (PTf

) restricted to [t0, t0+∆] is also a solution
to (PTf

).

The simplicity of (P aTf
) is merely apparent due to the

complexity of the AS and VF computation. The com-
putational burden associated with Af leads to select a
suitable approximation. Polyhedral of either inner or outer
type, Baturin et al. (2006); Graettinger and Krogh (1991),
ellipsoidal, Kurzhanski and Vályi (1997), and “cloud of
points” as endpoints of trajectories generated by piecewise
constant controls have been proposed. A trade-off analysis
between the on-line complexity and extent of the preci-
sion led us to opt for the latter. For positional systems,
Krasovskii and Subbotin (1988), the VF may be computed
by solving the Hamilton-Jacobi-Bellman equation (HJBE)
which are known to be very computationally intensive, in
spite of, the enormous research effort that lead to a number
of efficient software packages, Sethian (1999); Michel et al.
(2005). Generally, a set of VFs for given typified situations
is defined. In real-time “mission” execution, the relevant
VF is identified via on-line data and invoked to compute
the optimal control at any (t, x). The time invariance of
the dynamics allows the off-line pre-computation of an
approximation to Af (t0 + ∆; t0, x0) and of V (t0+∆, z)
depicted in figure 1.
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Fig. 1. i) Unicycle AS and (ii) Position control VF

Let ∆ be the control horizon, and t0 the current time. The
AS-MPC scheme is follows:

1. Initialization: t0, x(t0), other MPC parameters.
2. Solve (P aTf

) to obtain z∗ and compute u∗ on [t0, t0+∆]

to steer the system from x0 at t0 to z∗ at t0+∆.
3. Apply u∗ during [t0, t0+∆]
4. Sample x at t0+∆ to obtain x̄ = x(t0+∆)
5. Slide time, i.e., t0=t0+∆, update the AS with the new
x(t0) by appropriate translation and rotation, update
the VF at the new t0+∆, and goto 2.

The only on-line computational burden is due to the
need on adapting the AS and VF for the current AUV
configuration and the environment context.

In Gomes (2017), the properties considered in the Propo-
sitions of this section are stated and proved. Denote
by (x∗T,∆, u

∗
T,∆) the AS-MPC scheme with (PT ) as opti-

mal control process 1 . Let J(x, u) be the cost functional,
with the state endpoint term replaced by the running
time equivalent, evaluated at (x, u) over [0,∞), and by

1 This differs from the stated AS-MPC, where T =∞

J(x, u)|[α,β] and Jk(x, u), its restriction to [α, β], and to
[k∆, (k + 1)∆].

Proposition 1. Consider (x∗, u∗) to be an optimal control
process for the infinite horizon OPC such that lim

t→∞
x∗(t) =

ξ∗, where ξ∗ is an equilibrium in C∞. Let (x∗T,∆, u
∗
T,∆) be

s.t. lim
t→∞

x∗T,∆(t) = ξ∗. Then,

(i) lim
∆↓0,T↑∞

∞∑
k=1

Jk(x∗T,∆, u
∗
T,∆) = J(x∗, u∗)

(ii) lim
k→∞

∣∣Jk(x∗T,∆, u
∗
T,∆)−J(x∗, u∗)|[k∆,(k+1)∆]

∣∣=0.

Since we are using the cloud of points as approximation
to the AS, an estimate of the Hausdorff distance between
these sets is required to determine the worst case of sub-
optimality. Let Ωε = {ui ∈ Ω : i = 1, . . . , Nε} such that:

(i) Ω ⊂
⋃Nε

i=1(ui+εB), and (ii) ∀i ∃j s.t. ‖f(t, x, ui)−
f(t, x, uj)‖<ε. Denote by Af (t1; t0, x) and Aεf (t1; t0, x) the
points attainable at t1>t0 from x at t0, by the dynamic
system with controls, respectively, in L∞ with values in Ω,
and piecewise constant with values in Ωε.

Proposition 2. Let ∆> 0. Under the considered assump-
tions on the dynamics, we have,∀(t, x)∈IR×IRn,

dH
(
Af (t+∆; t, x),Aεf (t+∆; t, x)

)
≤∆(ε+∆KfK).

The fact that x̄∈ IRn to which the system is steered at
a given time is likely not listed in the VF look-up table,
prompts the following VF interpolation estimate.

Proposition 3. Assume that V is not known at x̄, and
consider a grid of points Gδ in IRn s. t. the maximum
distance between neighboring points in Gδ is less than δ>0.
Then, ∃ a simplex 2 Sx̄={xi:i=1, . . . n+1}⊂Gδ whose points

are the closest to x̄ s. t. the estimate Ṽ of V at x̄ is

Ṽ (x̄)=

∑n+1
i=1 Vi‖x̄−xi‖−1∑n+1
i=1 ‖x̄−xi‖−1

where, for i= 1, . . . , n+1, Vi = V (xi)+∇V (xi) · v̄i, with
v̄i = x̄−xi and the n×(n+1) unknowns of the vectors
∇V (xi), are given as a solution of the n+1 equations

∇V (xi)·(v̄i−v̄k)= V (xk)−V (xi)
‖xi−xk‖ . Moreover, ∃c>0, such that

‖V (x̄)−Ṽ (x̄)‖≤ max
xi,xj∈Sx̄

{|V (xi)−V (xj)|}+cδ.

In order to discuss the stability of the AS-MPC, we will
consider first the corresponding conventional MPC scheme
with the optimal control problem (PT ) with finite T .
Let us denote by (x̄∗, ū∗) the control process generated
by this MPC scheme. A given equilibrium ξ∗ ∈ Cf is
asymptotically stable if, under the above assumptions
∀ε>0, ∃N ∈ IN s.t. ‖x̄∗(k∆)−ξ∗‖≤ ε ∀k>N . There is a
vast literature on the stability for MPC schemes, in which
some of the MPC ingredients - terminal, and running
cost functionals, optimization, and control horizons, and
terminal constraints - are chosen and/or endowed with
properties to ensure the asymptotic stability of the control
process generated by the MPC is asymptotically stable.
Although not exhaustive, in Jadbabaie and Hauser (2005),
various stability results are presented and the trade-off of
the design intrusiveness is clearly discussed.

2 A simplex in IRn is any set of n+1 points whose n vectors given by
the difference to one of them form a linearly independent set.



We choose a result akin to the one in Jadbabaie and Hauser
(2005) or in chapter 6 of Gruene and Pannek (2017) (albeit
in discrete time), which are natural in the sense that they
dispense with the need to shape Cf for this purpose and, in
order to cover a wider as possible for the AS-MPC design,
we might either require the terminal cost to be Control
Lyapunov Function (guaranteeing exponential stability) in
the attraction region, or, for more general terminal costs
(including the null case), a certain asymptotic controlla-
bility assumption on the cost-to-go functional.

To facilitate the exposition, we consider only autonomous
systems, g0 ≡ 0, xref = 0, and t0 = 0. Since, due to its
infinite horizon VF, the stability of the AS-MPC follows
in a straightforward manner from that for the conventional
MPC in which the OPC is solved on a finite optimization
horizon [0, T ], we will start by considering this context.

Denote by {P lT }∞l=0 the sequence of OPCs of the MPC
scheme on the interval [l∆, l∆+T ], and, in what follows,
we have T = N∆ for some N∈IN .

Asymptotically Controllable (AC) Assumption. The sys-

tem is AC with respect to f0 with rate β∈KL0
3 if and

only if, ∀x0 ∈ IRn and T > 0, ∃ an admissible control
sequence {ul}, ∀ul ∈U l(x0), satisfying f0(xx0

(t), ul(t))≤
β(f̄0(x0), t), ∀ t∈[0, T ].

Here, U l(x0) is the subset of feasible controls from the lth

iteration onwards with f̄0(x0)=min
u∈Ω
{f0(xx0,u, u)}, x(0)=

x0, xx0,u(·) is a trajectory starting at x0 driven by u (either
sub-index might be omitted, whenever obvious), UT (x0) is
the set of feasible controls on [0, T ] for x(0)=x0.

In Gruene and Pannek (2017), it is shown that, from
(CA) follows that, if for a given x0 ∈ IRn, ∃ū∗, optimal
control for (PT ) with the specificities adopted for this

result s. t. λk=
∫ (k+1)∆

k∆
f0(xx0,ū∗ , ū

∗(t))dt are nonnegative

for k = 0, . . . , N−1, then
∑N−1
j=k λj ≥

∫ T
k∆
β(λk, t)dt for

k=0, . . . , N−2. Moreover, by letting ν=VT (xx0,ū∗(1)), then,

for k=0, . . . , N−2, we have ν≤
∑k−1
j=0λj+1+

∫ T
k∆

β(λk+1, t)dt,

being β ∈ KL0. Then, it is shown that, if ∃α ∈ (0, 1]

s.t.
∑N−1
k=0 λk − ν ≥ αλ0, we have that for such α and

(PT ) satisfying (AC), the relaxed dynamic programming
inequality

VT (x) ≥ α
∆∫

0

f0(xx,ū∗(t), ū
∗(t))dt+VT (xx,ū∗(∆))

holds for all x∈ IRn, and u∗ is the feedback control law
generated by the MPC. A suitable value of α is the smallest
one satisfying all the conditions, being a procedure to
compute it presented in Gruene and Pannek (2017).

In the sequel, we will assume the additional assumptions
(AS): (i) (PT ) with T=∞ has a feasible solution, and (ii)
∃α1, α2∈K∞ 4 s. t. α1(|x|)≤f̄0(x)≤α2(|x|), ∀x∈IRn.

Proposition 4 (Theorem 6.18 of Gruene and Pannek
(2017)). Consider that the data of (PT ) with T =∞ sat-

3 KL0 is the class of functions β : IR+× IR+ → IR+ for which
β(·, t)∈K∞, i.e., it satisfies β(0, τ) = 0 and lim

r→∞
β(r, τ) =∞, and

∀r>0, lim
τ→0

β(r, τ)=0

4 This class of functions was defined in the previous footnote.

isfying (S), (AC) and (AS) and that ∃α∈(0, 1] as above.
Then, in the absence of disturbances, the conventional
MPC scheme with horizon T generates a feedback control
process (x∗, u∗) which is asymptotically stable. Moreover,

∀x ∈ IRn, J∞(x, u∗)≤VT (x)
α ≤V∞(x)

α .

It is important to note that the main interest of this result
lies in the fact that, at the price of more elaborated argu-
ments, the global scope and constructive nature to support
the design of asymptotically stable MPC are obtained.
The proof of the discrete version of this result appears
in Gruene and Pannek (2017) and, it is straightforward in
the light of previous results. Its continuum time version
involves some additional technicalities but the underly-
ing ideas remain. We recall that this was shown to the
conventional MPC scheme. Since the AS-MPC scheme is
equivalent to the conventional MPC with T=∞ it turns
out that the asymptotic stability is even easier to hold
since the larger the value of T , the closer to a Lyapunov
function JT (x, u∗) is in the attraction domain, Jadbabaie
and Hauser (2005).

5. THE CONTROL ARCHITECTURE

The control architecture emerges from the application of
the AS-MPC scheme to an hybrid automata encompassing
the desired modes of operations and the discrete events
triggering the transitions between them. In this way, it
organizes the motion control of the generalized vehicles in
terms of simpler AUV formation control problems. These
are required either due to the complexity of the mission -
typically involving multiple phases - or to the variability
of the environment due to the emergence of events with
impact in the mission execution. This amounts to regard
the overall formation model as a hybrid dynamic control
system, i.e., a collection of dynamic control systems - one
per mode of operation -, and a set of either controlled
or uncontrolled discrete events associated each one of
them. Thus, the implementation of the AS-MPC controller
described in section 4 in the context of hybrid dynam-
ics requires the need of an event-driven control strategy
ensuring liveness and nonblocking properties, Cassandras
and Lafortune (2008), to be embedding of the AS-MPC
controller. The general approach consists in designing an
hybrid supervisory controller that, once composed with
the original system ensures the specified set of properties.
This “closed loop” hybrid automaton will constitute the
dynamics of the AS-MPC scheme. To eliminate the burden
inherent to the explanation of general contexts, we focus
in the motion control of a three AUVs formation in a
plane carrying the required navigation and payload sensors
whose mission consists in gathering data along a given
path such that the observation requirements are satisfied.
The automata representing the highest layer of the con-
trol architecture is shown in Figure 2. The considered

Begin 
AUV formation 

plan execution

Replan tasks 

and/or reorganize 

formation

Mission 

accomplished

Perturbations 

to mission plan

End 

Reset

Mission 

Start

Abort 

mission 

Success

Failure

Fig. 2. Main System Automaton

tasks are: (i) Gather data along a given path while the



AUVs keep the triangle formation and the decentralized
controller simultaneously ensures path tracking and for-
mation pattern; (ii) Avoid collision with obstacles by de-
tecting obstacles, characterizing them, collision-avoidance
path replanning, and, possibly, formation reconfiguration;
(iii) Communication required to transmit gathered data,
enable mission follow-up, and receive new commands if
necessary. The set of discrete modes and events triggering
transitions are depicted in Figure 3. Once the mission

B

Tx 

data

Thin 

Passage

Obstacle 

in range

C

Wide 

Passage

D

Obstacle

Overcome

ABegin

Start 

Survey

EOT

End

Mission

accomplished

Fig. 3. Main operation modes and events

starts, the AUVs enters in the nominal mode A - data
gathering while tracking the given path in a triangle forma-
tion. The Mission Accomplished event triggers the recovery
operation. The mission follow-up requires monitoring the
gathered - mode D - which involves the surfacing of an
AUV from time to time (pre-planned or not) to transmit
the gathered data and the AUVs health status, which,
after a scrutiny, might entail mission changes. Once mode
D is complete, the operation mode A is reactivated. If
an Obstacle in range event is detected, then mode B -
obstacle characterization and a collision avoidance path
computation - is activated. Then, either a Wide passage
is available and the formation is kept unchanged and the
system returns to mode A tracking the original path, or a
Thin passage is available and the system transits to mode
C where the formation is reconfigured to overcome de
obstacle, and, once the obstacle is overcame, the system
returns to mode A.

Due to the fact that it illustrates well the point concern-
ing the interaction between mission planning and control,
Obstacle Collision Avoidance is analyzed in detail. The fol-
lowing is considered: (i) Obstacle detection and character-
ization data is obtained by a range finder; (ii) Unmapped
obstacles are relatively sparse; (iii) Obstacles are locally
modelled by circles; (iv) The range finder sensor distance
is much larger than that transversed by the AUV within ∆
time units. The automaton 4 shows the various modes and
associated transition events. Once an obstacle is detected,
it is characterized to compute a path remaining as close as
possible to the one to be tracked, while avoiding collision.
The formation pattern can be adjusted to facilitate the
obstacle characterization and overcoming. Whenever an
AUV is close to an obstacle, then its AS-MPC is modified
by adding penalization function to the VF to ensure a
safety distance ds to the obstacle. This procedure easily
handles multiple obstacles, being the event “safety of a
passage between obstacles” very relevant. Figure 5 depicts
the logic generating this event. The passage is safe if H1+
H2−R1−R2−2ds > 0 where ds is given, R1, R2, C1, C2, and
PL are estimated with the range finder, H1 =

√
R2

1+L
2
1,

H2=
√
R2

2+L
2
2, L2=|PL−A|, L1=|A−PV |−|
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Fig. 4. Obstacle Collision Avoidance Automaton
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Fig. 5. Safe passage detection
PV is the position of the AUV, and the point A is the
intersection of the segments C1, C2 and PV , PL.

Simulation results for the considered mission in the pres-
ence of unexpected obstacles are shown in Figure 6. Af-
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Fig. 6. Simulation results for obstacle avoidance
ter deployment, the AUVs are loitering in the triangle
formation for the survey around the departure point A.
Once the survey starts at time t1, mode A is activated
and the triangle formation tracks the given path to the
final destination B. At t2, obstacle O1 is detected. Then,
the formation switches to mode B to characterize the
obstacle. In order to do this efficiently the AUVs may
adapt the formation pattern and, once this is done, a path
to overcome is generated by the AS-MPC by modifying
the VF around O1 by adding an adequate penalization
function forcing the vehicle to overcome the obstacle by
the right. Since there is plenty of space, the AUVs return
to the triangle formation at t3 while circumventing the
obstacle. At t4, O2 is detected with O1 still in range on
the right. The VF modification due to O1 is kept while



a “safe passage between obstacles” event does not occur.
Once this event occurs the VF is now modified around O1

and O2 to prevent any collision, and, moreover the triangle
formation can be safely maintained. At t′4, O3 is detected
and mode B determines two alternatives to pursue the
mission:(i) Follow through a thin passage between O2 and
O3 with longitudinal formation along a path closer to the
original one and with loss of the gathered data quality; (ii)
Circumvent O3 by the left along a longer route far away
from the original path, but preserving the triangle forma-
tion. A simple onboard optimization procedure determines
that the first option is the best one. Once the obstacles
are overcome at t′6, the triangle formation is adopted until
point B is reached and the mission mode changes to D to
proceed with data transmission.

6. CONCLUSIONS

An AS-MPC scheme - conciliating limited onboard compu-
tational complexity with optimal feedback control - for a
single AUV presented in Gomes and Pereira (2018) to the
path tracking control of a formation of AUVs is considered
and its properties, with emphasis to stability analysis are
investigated. Moreover, by considering the dynamics given
by an hybrid automata, the flexibility of the AS-MPC is
revealed, via the simulation of a paradigmatic example, to
be able to avoid collisions with unmapped obstacles as well
as the various tasks of the mission and the management
of the formation pattern. The obtained simulation results
encourage the next step: migrate the developments to a
multiple AUV based system for field testing.
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