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Abstract

The Attainable Set Model Predictive Control scheme is discussed and shown to meet the needed system behavioral properties
while satisfying real-time requirements underlying the control of Autonomous Underwater Vehicle formations, including the strict
on-board resource constraints. More specifically, the proposed approach targets the on-line computational complexity and relies
on taking advantage of the control problem time invariant elements, in order to replace, as much as possible, on-line by off-line
computation, while guaranteeing asymptotic stability, and promoting the best trade-off between feedback control near optimality,
and robustness to perturbations (due to disturbances, and uncertainties), and adaptivity to the environment variability. The data
computed off-line is stored onboard in look-up tables, and recruited and adapted on-line with small computation effort according
to the real-time context specified by communicated or sensed data. This scheme is particularly important to an increasing range of
applications exhibiting severe real-time constraints.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the XIIth International Symposium “Intelligent Systems”.
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1. Introduction

Systems of autonomous – air, surface, and underwater – robotic vehicles are increasingly regarded as options of
choice to gather data required to respond to an widening range of societal needs in science, environment, exploitation
of natural resources (geologic and biomass), surveillance, security, defense, and leisure,1. In this article, we discuss
the Attainable Set Model Predictive Control, AS-MPC, which is essentially concerned with the computational com-
plexity of control systems designed to optimize motion control of one or more Autonomous Underwater Vehicles
(AUVs) in order to execute complex missions. The nuclear challenge consists essentially in de-conflicting require-
ments inherent to the computational complexity generally associated with typical Model Predictive Control(MPC)
schemes, and those associated with the satisfaction of very strict constraints on time, power, and computation that
arises in the real-time running this class of marine systems. More specifically, a computationally efficient architecture
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to control formations of AUVs is presented and discussed. These features are critical for AUV systems as they operate
in contexts of scarce resources and high uncertainty or environmental variability. The proposed control structure, and
the various underlying results, enabling the articulation of resources optimization with state feedback control while
keeping the onboard computational burden very low, were developed in the context of2, and were partially published
in a number of papers,3,4. The key idea to tackle this challenge consists in, by taking advantage of time-invariant data
underlying the formulation of the involved optimization problems, computing a priori (i.e., off-line) a number of, as
comprehensive as possible, simple building blocks required for optimal or sub-optimal control synthesis as a function
of a set of parameters associated with a satisfactory number of more likely typified on-line situations. This, possibly
large, amount of data is stored on onboard in appropriate look-up tables. Then, the actual on-line control synthesis
is performed by computing the parameter values that take into account the sampled data to retrieve the best control
values from the look-up table. The scheme is such that the computation involved in the on-line adaptivity requires
several orders of magnitude less time and computational power relatively to the conventional MPC schemes. For a
recent reference, see5.

The hybrid nature of the controller enables different modes of operation, notably, in dealing with unanticipated
obstacles. Optimization and feedback control are brought together in a novel MPC scheme constructed with pre-
computed Attainable Sets and Value Functions by taking advantage of the time-invariance subsystems and leaving to
the real–time context, adaptivity operations requiring relatively low computational burden.

The research underlying this article was driven by the need to design optimizing control systems for single and
formation of AUVs with requirements extracted from concrete operational applications in marine sciences and en-
vironment carried out by LSTS, the Laboratory of Underwater Systems and Technologies (https://lsts.fe.up.pt/) of
Faculty of Engineering of Porto University. LSTS has, over the years, been devoting a very significant R&D effort
to the advancement of theoretical research in systems and control, as well as technologies to design and build such
systems. The notorious achievements that gained worldwide visibility makes LSTS a reference institution with a con-
solidated leadership in many key niches of the pertinent very interdisciplinary contexts. This is attested by leadership
of the EU wide Marine Research Infra-structure Network (https://www.eumarinerobots.eu/) by Porto University.

In the next section we provide a statement of the AUV formation control problem, followed by brief outline of
some representative developments on AUV control in section 3. The main definitions and the main ideas of the
novel MPC scheme, denoted by AS-MPC Scheme are the subject of section 4 which also includes the statement of
some key properties as well as a version with an inner feedback loop to ensure additional robustness. In section 5, an
extension o hybrid systems revealing how the approach suits the context of high unexpected variability present in most
applications. A simulation example involving collision avoidance illustrates the approach. Some general conclusions
and prospective research and developments are outlined in the last section.

2. General Problem Statement

The AUV formation control problem is formulated in order to define strategies for the relative behaviors of given
set the vehicles, regarded as a single reconfigurable generalized vehicle. The operation in formation is required to
fulfill the activities requirements to achieve the mission goal. Here, we focus in the mission of gathering payload
data in a given water column volume along a pre-planned path. The AUVs motion control should be such that the
integral error with respect to a given reference trajectory and the total control effort during a certain period of time is
minimized subject to constraints as indicated below. A general formulation of the optimal control problem associated
with this mission is:

(PT ) Minimize g(x(t0 + T )) +

∫ t0+T

t0
f0(t, x(t), xr(t), u(t))dt

subject to ẋ(t) = f (t, x(t), xr(t), u(t)) L − a.e.

u ∈ U, x(t0 = x0, x(t0 + T ) ∈ CT

h(t, x(t)) ≤ 0, g(t, x(t), u(t)) ≤ 0

where g : IRn → IR is the endpoint cost functional, f0 : IR × IRn × IRm → IR is the running cost integrand, being, for e.g.,
for some Q � 0 and R �, given by 1

2

(
‖x(t) − xr(t)‖2Q + ‖u(t)‖R

)
, with f : IR × IRn × IRm → IRn, h → IR × IRn → IRq, and
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g : IR × IRn × IRm → IRk represent, respectively, the vehicle dynamics, the state constraints, and the mixed constraints,
U := {u : [t0, t0 + T ] → IRm : u(t) ∈ Ω}, Ω ⊂ IRm is the set of measurable controls, CT ⊂ IRn is a target set imposed
by the application domain, and xr is the trajectory to be tracked. The mappings g, f , f0, g and h, and the sets CT

and Ω satisfy the following standing assumptions (SA): ∀(t, u) ∈ IR × Ω, are Lipschitz in x with constant Km where m
represents the respective map, and continuous in (t, u) for all x ∈ IRn, ∃K ≥ 0 such that ‖ f (t, x,Ω)‖ ≤ K, ∀(t, x) ∈ IRn+1,
and CT and Ω are compact.

To instance (PT ) in the context of AUV formation of N vehicles tracking a reference trajectory xr, consider, for the
AUV i: x = col(ηi, νi), and u = τi, i = 1, . . . ,N; f0(·, ·, ·) = (ηi(t) − ηi

r(t))
T Q(ηi(t) − ηi

r(t)) − τ
iT (t)Rτi(t); g(·) = 0; being

ηi
r(·) the ith vehicle reference trajectory, and τi its control (denoted by u in (PT )). By considering, for each vehicle (we

drop the index i), the state and the controls given by η = [x, y, ψ]T and ν = [u, v, r]T and τ = [τu, τr]T , respectively, the
dynamics are given in6. For details,4. Other types of constraints that might usually be present in AUV formations are:
endpoint state constraints, ηi(t + T ) ∈ Ct+T , control constraints, τi(s) ∈ Ui, state constraints, (ηi(s), νi(s)) ∈ Si, com-
munication constraints gc

i, j(η
i(s), η j(s)) ∈ Cc

i, j,∀ j ∈ Gc(i), and formation constraints g f
i, j(η

i(s), η j(s)) ∈ C f
i, j,∀ j ∈ G f (i).

Although (PT ) seems to be centralized, it also serves for decentralized implementations in which each vehicle has its
own controller involving its own motion and other activities control, and the formation pattern cohesion. Typically,
each vehicle communicates acoustically with its neighbors, being the relative positions such that full connectivity is
ensured. With the appropriate, possibly distributed, coordinated controllers, the decentralized schemes provide better
power, communications and computation budgets. It is important to remark that (PT ), and the motion pattern have to
be reconfigurable for various modes of operation. These may include, among others, data gathering, obstacle collision
avoidance, communication, and loitering.

3. Brief State-of-the-Art

The main difficulties to model accurately, and, hence, to control, AUVs are due to hydrodynamic effects, partic-
ularly if they are moving in significant flow fields. Typically, a number of motion modes are considered and, for
each one of them, a concentrated parameter model (ordinary differential equation) is obtained by using identifica-
tion methods,7,6. Extended versions of these control systems for very diverse robot craft have been considered for
single and multiple vehicles. Linear, and non-linear control theories provide tools that led to very popular design
techniques,6,8,9,10. Early on, it became clear that, along with feedback control, resources optimization plays a key
role in contexts of scarce resources. Thus, MPC became a design approach of choice for many applications. Thus,
the huge available literature on MPC schemes and their properties is no surprising,5. Let a given optimization and
control horizons T and ∆, with T substantially greater than ∆, be given, then a typical conventional MPC scheme is
as follows:

1. Initialization. Let (t0, x0) be the current time and state value estimate, i.e., x(t0) = x0, and set up the vari-
ous initial parameters or conditions like filter parameters, initial control for the recursive control optimization
procedure, cost functional weights, model parameter estimates, etc.

2. Sample the state variable at time t0 and generate the associate state estimate, x̄0.
3. Compute the optimal control strategy, u∗, in the prediction horizon, i.e., [t0, t0 + T ], by solving the optimal

control problem (PT ).
4. Apply the obtained optimal control during the current control horizon, [t0, t0 + ∆].
5. Slide time by ∆, i.e., t0 = t0 + ∆, and adapt parameters and models as needed.
6. Goto step 2.

Here, (PT ) can be any application specific optimal control problem such as the one in the previous section. Moreover,
as it can be perceived from the literature sample below, there is a wide range of schemes that can be considered.

All these conventional MPC schemes generate feedback control syntheses that attempt to conciliate optimization
with feedback control,11,12,13,14. For details, see2. Moreover, MPC schemes inherit a huge versatility from the optimal
control framework that allows the consideration of very complex dynamics subject to very diverse types of constraints,
encompassing those arising in vehicle formations. A wide variety of MPC controllers for formations of robotic
vehicles were designed to deal with key challenges such as communications failures and delays in continuum and
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discrete times, centralized and decentralized contexts, linear and nonlinear dynamics, leader-follower and leaderless
schemes, collision-free motion, cooperative and competitive strategies, single and multiple objectives. Moreover, a
wide range of applications (surveillance, exploration, tracking paths and trajectories), have been considered in a vast
literature of which we single out15,16,17,18,19,20,21,22,23. The power and computational requirements for running most
of these MPC schemes in a are weakly suitable for AUVs: (i) intense on-line computational burden, and (ii) design
issues to ensure the required performances do note consider onboard resource constraints. This work considers some
of these issues, and, in line of the one proposed in3 and is an extension of4,concerns a substantially different approach
to AUV formation control.

4. The Attainable Set MPC

4.1. The Basic AS-MPC

Let ∆ be the control horizon, and t0 the current time. The AS-MPC scheme is follows:

1. Initialization: t0, x(t0), and other specific parameters
2. Solve (PA

T L ) to obtain z∗ and, from the look-up table, extract the associated piecewise constant u∗ on [t0, t0 + ∆]
to steer the system from x0 at t0 to z∗ at t0 + ∆

3. Apply u∗ during [t0, t0 + ∆] as time elapses from t0 to t0 + T .
4. Sample x at t0 + ∆ to obtain x̄ = x(t0 + ∆), and get data from neighboring AUVs, some of which might obtain

the new x0 as an improvement of the state estimate x̄.
5. Slide time by ∆, i.e., t0 = t0 + ∆

6. Update the Attainable Set (AS) with the new x(t0) by appropriate translation and rotation, and update the Value
Function (VF) at the new t0 + ∆, by taking into account the data from Step 4.

7. Goto Step 2.

Here, (PA
T L ) is stated as follows:

Minimize V(t0 + ∆, z) over z ∈ A f (t0 + ∆; t0, x0).

We recall the definitions of two key objects invoked, AS and VF, in (PA
T L ):

(AS) In24, the Attainable Set at t from (t0, x0) with x(t0) = x0 is given by

A f (t; t0, x0) = {z : z = x(t), ẋ = f (t, x, u), u ∈ U|[t0,t], x(t0) = x0}, t ≥ t0

(VF) Let T L ≥ 0 be a large number, with, possibly, T L = ∞, and J(ξ, u) = g(ξ) +

∫ T L

t
f0(τ, x(τ), u(τ))dτ. Then,

V(t, z) := min
u∈U,ξ∈CT L

{J(ξ, u) : ξ = x(TT L ), ẋ = f (τ, x, u), L-a.e., x(t) = z, u∈U}

First, we remark that, for the sake of simplicity, we omitted the state and the mixed constraints. Observe that the
computation of AS and of VF are extremely demanding. However, for a certain number of parameters, some of which
may correspond to different operation scenarios, both AS and VF can be computed off-line due to the time invariance
of the data of interest. Moreover, we note that for T = T L, by a standard change of state variable that eliminates the
running cost, and by using the principle of optimality (we are considering only positional functionals,25), we conclude
that (without relabelling) (PT ) and (PA

T L ) are equivalent. See4 for details.
The need to consider approximations are due to the fact that, in general, the computational complexity of the AS

and VF are huge even for relatively small systems. In2, it is discussed why the “ε-dense cloud of points” defined
as endpoints of trajectories generated by piecewise constant controls are preferable to approximate AS relatively to
the other two types of approximations: Polyhedral,26,27, and ellipsoidal,28. For positional systems,25, the VF may
be computed by solving the Hamilton-Jacobi-Bellman equation (HJBE) which are known to be very computationally
intensive, in spite of, the enormous research effort that lead to a number of efficient software packages,29,30.

It is important to remark that the main computational effort is due to the need on adapting the AS and VF for
the current AUV configuration and the environment context. Given that, typically, this involves only translations and
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rotations of the AS, incorporating penalization terms in the VF, or, in the worst case recompute an approximation of
the VF either by interpolation or solve a low dimension dynamic programming problem in a very short time and space
regions, the on-line computational complexity is very small.

4.2. Properties of the AS-MPC

We start by considering the asymptotic stability for conventional MPC schemes, and, then, show how these results
naturally migrate to the AS-MPC, in the context of absence of perturbations. There is a large number of approaches
to design the closed loop stability of MPC schemes which may require the specification of appropriate time endpoint
state constraints, terminal cost, control constraints, certain relation between terminal and running costs, of simply,
additional assumptions on the data of the problem for sufficiently long optimization horizons,5,31,32. We focus on the
later class of results since they are less intrusive in the specification of the optimal control problem whose statement
mirrors the actual specification of the application objectives and constraints. For this purpose, we follow closely the
results discussed in31.

Let us consider (PT ) with t0 = 0 of section 2 and add the following assumptions to the ones already considered
there:(i) col( f , f0)(0, 0) = (0, 0) ∈ IRn+1, (ii) col( f , f0) is C2 in both arguments, (iii) f has a linearly controllable critical
point at (0, 0), (iv) ∃K0 > 0 such that f0(x, v) ≤ K0

(
‖x‖2 + ‖u‖2

)
, and ∀T > 0 (including T = ∞), and (v) ∃ a

feasible control process with x(0) = x, (x̄T
x (·), ūT

x (·)) that solves (PT ). From optimal control theory,33, there several
classes of assumptions that which are sufficient for optimality, and we will not dwell on this point here. Denote by
JT (x) the cost associated with the optimal control process (x̄T

x (·), ūT
x (·)), ΓT the set {x ∈ IRn : JT (x) < ∞}, and let

ΓT
r {x ∈ ΓT : JT (x) ≤ r2}. Now, let us state the main result (Theorem 9) from31:

Proposition 1. Let r > 0 be given and suppose that the terminal g is nonnegative, C2, and locally quadratically
bounded. Then, for each ∆ > 0, ∃T̄ < ∞ such that ∀T ≥ T̄ , the (T,∆)-MPC, i.e., the MPC scheme with the
optimization and control horizons, respectively, T and ∆, is exponentially stabilizable. Moreover, Γs

T−∆
⊂ Γr

∞ for
some s > r is contained in the region of attraction of the (T,∆)-MPC scheme.

This result shows that there exists a finite horizon length in which the stability of the receding horizon scheme
is, under a controllability assumption, guaranteed in an appropriate sub-level set of a finite horizon cost for a general
quadratically bounded terminal cost. A result ensuring mere asymptotic stability, could be derived under much weaker
controllability assumptions, (see, e.g.,32) but this is not the key point. However, this is marginal to the main objective
of this part of this subsection. The key point here, is to recall that the AS-MPC is equivalent to the conventional MPC
with T = ∞, and, thus, it turns out that the closed loop stability is even easier to hold since the larger the value of T ,
the closer to a Lyapunov function JT (x) is in the attraction domain,31.

Now, we address issues related to robustness. The fact that the AUV is in open loop control during [t0, t0 + ∆],
implies that persistent perturbations, even of low intensity may prevent the point z∗ to e reached at t0 + ∆ by the
associated u∗ with serious consequences to AS-MPC performance. In the presence of uncertainties or disturbances,
the optimal control problem solved online depends on the sampled state, and, thus, the decision variable is now a
sequence of control laws, designated in the literature by feedback MPC. Since, now, the optimization is carried out
over the possible realizations of the disturbances or uncertainties, the feedback MPC is naturally superior relatively
to that of ordinary MC in the same context. However, there is a price o pay: the optimal control problem is much
more complex than the deterministic context one since its solution is a control state feedback law and, thus, infinite
dimensional,5. This calls for trading optimality for lower complexity of the control problem for each disturbance or
uncertainty realization. Among the several schemes to address this huge challenge, the so-called tube-MPC has been
gaining popularity. The basic idea is, instead of considering a bundle of trajectories, each one corresponding to a
specific disturbance or uncertainty realization, to synthesize a nominal controller by using an ordinary MPC scheme
that involves solving the optimal control problem without perturbations, and, at the same time, applying an auxiliary
controller – possibly defined by simple linear feedback – that steers the current realization of the trajectory, obtained
by sampling, to the nominal trajectory.

In the context of the AS-MPC addressed in this article, we propose a scheme that, in many ways correspond to
the tube-MPC but restricted to a certain class of perturbations. In this context, to mitigate the impact of disturbances,
the role of the “auxiliary controller” is played by a higher frequency feedback control, i.e., involving sampling at
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intermediate points of [t0, t0 + ∆], being the intermediate controls chosen, without any optimization, to steer the state
to a neighborhood of the nominal trajectory. The idea becomes clearer with the presentation of the Robust AS-MPC
(RAS-MPC), first developed in2. For this, consider the set Ct0

ε = {z ∈ IRn : V(t0 + ∆, z) ≤ V(t0 + ∆, z∗) + εt0 } ∩ [z∗ +

εt0 B1(0)] where εt0 > 0 depends on the expected level of perturbations and B1(0) is the unit ball around the zero.
Compute N t0

ε as a function of the overall level of perturbations in relation with the propulsion of the AUV and let
∆̄ = ∆

N t0
ε

. Then, the RAS-MPC scheme is obtained from the AS-MPC, by replacing Steps 2. and 3. by

2. Solve (PA
T L ) to obtain z∗, extract the associated piecewise constant u∗ on [t0, t0 + ∆] to steer the system from x0

at t0 to z∗ at t0 + ∆ from the look-up table, and compute z̄1 as the state of the system at t0 + ∆̄.
3. Let z̄0 = x0. Apply u∗ obtained in Step 2. restricted to [t0, t0 + ∆̄) during the interval [t0, t0 + ∆̄).

For i = 1 to N t0
ε − 1,

3.1 In the interval [t0 + (i−1)∆̄, t0 + i∆̄), compute z̄i+1 ∈ A f (t0 + (i+1)∆̄; t+ i∆̄, z̄i)∩Ab(t0 + (i+1)∆̄; t0 +∆,Ct0
ε ).

3.2 Once the subinterval [t0 + (i − 1)∆̄, t0 + i∆̄) is elapsed, sample the state at t0 + i∆̄ to obtain z̃i, compute ūi

to steer the state from z̃i to z̄i+1 on [t0 + i∆̄, t0 + (i + 1)∆̄].
3.3 Let i = i + 1, update the pertinent parameters, including εt0 , if necessary or convenient to either ensure

robustness or improve performance.
3.4 Goto intermediate Step [3.1].

In the above, the Backward Attainable Set is given by Ab(τ; t,Ct0
ε ) := {z ∈ IRn : z f ∈ A f (t; τ, z),∀z f ∈ Cεt0}, with

τ < t (see27,34,24). Since very short time intervals are considered, it is not difficult to devise computationally light
schemes, for example, based in linear approximations, in alternative to the off-line computation and on-board storage
of backward attainable sets. Although, we will not dwell on this here, it is possible to define abstract procedures to
compute the required thresholds based on sensed data that, for some general specification of the class of perturbations,
guarantee a predefined level of sub-optimality, see2 for details. Under the above conditions, it is guarantee that
z̄N t0

ε
∈ Ct0

ε , where the value of εt0 depends on the significance of the perturbations consistency.

Next, we address the issue, of approximation to optimality in the absence of perturbations, by stating a result
from2, where its proof appears. Denote by (x∗T,∆, u

∗
T,∆) the control process resulting from the application of the AS-

MPC scheme with (PT ) as optimal control problem. Notice, that this is quite different from the AS-MPC above
where T = ∞. Let J(x, u) be its cost functional, with the state endpoint term replaced by the running time equivalent,
evaluated at (x, u) over [0,∞), and by J(x, u)|[α,β] and Jk(x, u), its restriction to [α, β], and to [k∆, (k + 1)∆].
Proposition 2. Consider (x∗, u∗) to be an optimal control process for the infinite horizon optimal control problem such
that lim

t→∞
x∗(t) = ξ∗, where ξ∗ is an equilibrium in C∞. Let (x∗T,∆, u

∗
T,∆) be s.t. lim

t→∞
x∗T,∆(t) = ξ∗. Then,

lim
∆↓0,T↑∞

∞∑
k=1

Jk(x∗T,∆, u
∗
T,∆) = J(x∗, u∗), and lim

k→∞

∣∣∣Jk(x∗T,∆, u
∗
T,∆) − J(x∗, u∗)|[k∆,(k+1)∆]

∣∣∣ = 0.

5. Extension of AS-MPC to Hybrid Systems

Now, we show how the AS-MPC can be extended to accommodate significant changes due to the occurrence of
uncontrolled discrete events. The notion of optimization is relative to a the known realization of discrete events and
considered for, the current state and the known chain of future events. Thus, the dynamics of the AS-MPC scheme
is given by a hybrid automaton encompassing the desired modes of operations and the discrete events triggering
the transitions between them. Thus, the design of the AS-MPC described previously, now, requires an event-driven
control strategy ensuring liveness and nonblocking properties,35. The general approach consists in designing an
hybrid supervisory controller that, once composed with the original system ensures the specified set of properties.
This “closed loop” hybrid automaton will constitute the dynamics of the AS-MPC scheme. Let us focus in the
motion control of a three AUVs formation in a plane carrying the required navigation and payload sensors whose
mission consists in gathering data along a given path. The considered tasks are: (i) Gather data along a given path
while the AUVs keep the triangle formation and the decentralized controller simultaneously ensures path tracking and
formation pattern; (ii) Avoid collision with obstacles by detecting obstacles, characterizing them, collision-avoidance
path replanning, and, possibly, formation reconfiguration; (iii) Communication required to transmit gathered data,
enable mission follow-up, and receive new commands if necessary. The higher level automata and the set of discrete
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modes and events triggering transitions are depicted in Figure 1. The Start Survey event triggers the operation nominal
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AUV formation
plan execution
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C
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D
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End

Mission
accomplished

Fig. 1. Left: Main System Automaton. Right: Main operation modes and events

mode A – data gathering while tracking the given path in a triangle formation – and the Mission Accomplished event
initiates the recovery mode. The mission follow-up requires the monitoring mode D - from time to time one AUV
surfaces for data transmission and receiving commands, returning to A once completed. If an Obstacle in range event
occurs, then mode B - obstacle characterization and a collision avoidance path computation - is activated. Then, either
a Wide passage is available and the formation is kept unchanged and the system returns to mode A tracking the original
path, or a Thin passage is available and the system transits to mode C where the formation is reconfigured to overcome
de obstacle, and, once the obstacle is overcame, the system returns to mode A. The automata associated with obstacle
avoidance and the respective simulation for an AUV triangle formation are depicted in 2. In the simulation run,
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Fig. 2. Left: Obstacle collision avoidance automaton. Right: Simulation results for obstacle avoidance

we considered: obstacle detection and characterization data obtained by a range finder, relatively sparse unmapped
obstacles, obstacles locally modelled by circles, and range finder sensor distance much larger than that travelled by the
AUV in ∆ time units, as well as event generators to support discrete motion decisions or formation, and cost function
changes based on the range finder data. Once an obstacle is detected, it is characterized to compute the remaining
path to the target as close as possible to the one to be tracked, while avoiding collision. The formation pattern can be
adjusted to facilitate the obstacle characterization and overcoming. Whenever an AUV is close to an obstacle, then
its AS-MPC is modified by adding penalization function to the value function to ensure a given safety distance to the
obstacle. The diagram of the simulation results is practically self-explanatory. This mission starts at t1 at point A in
the data gathering mode and the goal is to reach B along the segment B − A while avoiding collision with obstacles
and maintaining as much as possible the triangle formation. At t2 and t3 obstacles O1 and O2 are detected and at t4
a safe passage between them is detected. At t′4, O3 is detected and a simple specific modification of the AS-MPC
optimization at mode B determines which of the two alternatives - Follow through a thin passage between O2 and
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O3 with longitudinal formation along a path closer to the original one and with loss of the gathered data quality, or
Circumvent O3 by the left along a longer route far away from the original path, but preserving the triangle formation -
to pursue the mission. Once the obstacles are overcome at t′6, the triangle formation is adopted until point B is reached
and the mission mode changes to D to proceed with data transmission.

6. Conclusions

This article concerns the control of AUVs - either stand alone or in formation - with promising high societal im-
pact applications whose “autonomy” requirements raise huge challenges. The control structure proposed to conciliate
the huge computational complexity inherent to the optimal feedback control and decision-making, with the limited
onboard computational and power resources, designated by AS-MPC, is discussed and its properties, notably, opti-
mality, stability, and robustness are discussed. In order to handle also the effect of discrete events - that, typically,
are extremely relevant, the proposed framework is extended to control systems whose dynamics are given by hybrid
automata. The obtained simulation results with the AS-MPC scheme and its robust versions formulated in the hybrid
systems context to enable obstacle collision avoidance strategies are extremely encouraging of future developments
towards experimentation with AUV systems.
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