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ABSTRACT

Background. The “One Health” concept recognizes that human health and animal
health are interdependent and bound to the health of the ecosystem in which they
(co)exist. This interconnection favors the transmission of bacteria and other infectious
agents as well as the flow of genetic elements containing antibiotic resistance genes.
This problem is worsened when pathogenic bacteria have the ability to establish as
biofilms. Therefore, it is important to understand the characteristics and behaviour
of microorganisms in both planktonic and biofilms states from the most diverse
environmental niches to mitigate the emergence and dissemination of resistance.
Methods. The purpose of this work was to assess the antibiotic susceptibility of
four bacteria (Acinetobacter spp., Klebsiella pneumoniae, Pseudomonas fluorescens and
Shewanella putrefaciens) isolated from wild animals and their ability to form biofilms.
The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm
removal was also assessed. Screening of resistance genetic determinants was performed
by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial
surface hydrophobicity was determined by sessile drop contact angles.

Results. The susceptibility profile classified the bacteria as multidrug-resistant. Three
genes coding for B-lactamases were detected in K. pneumoniae (TEM, SHV, OXA-
aer) and one in P. fluorescens (OXA-aer). K. pneumoniae was the microorganism that
carried more 3-lactamase genes and it was the most proficient biofilm producer, while
P. fluorescens demonstrated the highest adhesion ability. Antibiotics at their MIC,
5 x MIC and 10 x MIC were ineffective in total biofilm removal. The highest biomass
reductions were found with IPM (54% at 10 x MIC) against K. pneumoniae biofilms
and with CIP (40% at 10 x MIC) against P. fluorescens biofilms.

Discussion. The results highlight wildlife as important host reservoirs and vectors for
the spread of multidrug-resistant bacteria and genetic determinants of resistance. The
ability of these bacteria to form biofilms should increase their persistence.
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INTRODUCTION

Every year tons of antibiotic residues are discarded into natural resources, making the
environment a reservoir of bacteria carrying resistance genes (Davies ¢ Davies, 2010;
Fukuda et al., 2016). Moreover, antibiotic resistance is a natural phenomenon in that the
microorganisms from the environment and human pathogens share the same resistome
(Dantas et al., 2008; Forsberg et al., 2012; Kraemer et al., 2017). In recent years it has been
observed that a drastic increase of pathogenic bacterial strains resistant to multiple
antibiotics, including Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa and other Gram-negative pathogenic species (Finley et al., 2013; Moyaert et
al., 2017). In Gram-negative bacteria, one of the most important mechanisms of antibiotic
resistance is the production of (3-lactamases (Hawkey ¢ Jones, 2009). These enzymes are
usually acquired by horizontal gene transfer and confer resistance to 3-lactams, the most
commonly used class of antibiotics for the treatment of human and animal infections
(Henriques et al., 2006). Another major factor contributing to antibiotic resistance is

the ability of microorganisms to form sessile communities on both biotic and abiotic
surfaces (Hoiby et al., 2010). Biofilms can be defined as a dynamic biological system of
microbial cells that are strongly associated with a surface and embedded in an organic
polymeric matrix of microbial origin. It is estimated that more than 65% of microbial
infections are caused by microorganisms when they grow in biofilms (Cook & Dunny,
2014). Tt is known that bacterial cells during their transition from planktonic to sessile state
undergo extensive changes (e.g., behaviour, structure and physiology) which are reflected
in the phenotypic and metabolic characteristics of biofilm cells (O’Toole, Kaplan ¢ Kolter,
2000). Resistance mechanisms described for planktonic cells such as antibiotic modifying
enzymes, target modification, and efflux pumps cannot solely explain the high resistance of
biofilm cells (Hughes ¢ Andersson, 2017; Penesyan, Gillings ¢ Paulsen, 2015; Vanegas et al.,
2009). In fact, the mechanisms of antibiotic resistance in biofilms are not fully understood
(Mah & O’Toole, 2001). Biofilm resistance is known to vary from one microorganism to
another, being a combination of several mechanisms strongly influenced the environmental
conditions (Anderson & O’Toole, 2008; Dufour, Leung & Lévesque, 2010).

The World Health Organization recently recognised antibiotic resistance as a serious
global problem, not only in terms of human health but also for the animals (both domestic
and wildlife) and the environment (Gibbs, 2014). Indeed, some bacteria can spread between
different ecosystems, from animals and humans to water and soil. Besides, the exchange
of resistance genes among bacterial strains from different environments can also occur,
suggesting that when resistance arises it is not restrained to the niche where it first
appeared (Da Costa, Loureiro ¢ Matos, 2013). Several studies have demonstrated that
antibiotic-resistant strains are present in a wide variety of ecological niches, including
wild bird species that inhabit in remote ecosystems (Smiith et al., 2014; Freitas et al., 2018).
However, the knowledge on the propensity of these strains to establish sessile communities
and on the consequent advantages to survive under adverse conditions is scarce (Davies
¢ Davies, 2010). This study characterizes phenotypically and genotypically the antibiotic
resistance pattern of four bacterial strains (Acinetobacter spp., Klebsiella pneumoniae,
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Pseudomonas fluorescens and Shewanella putrefaciens) isolated from faecal samples of
different species of wild animals. These bacteria were selected from 370 different isolates
based on their potential threat for public health and due to their resistance to imipenem
(IPM), an antibiotic restricted for hospital use (Dias et al., 2014). The ability of the selected
bacteria to form biofilms in vitro was assessed as well as the effects of the antibiotics
ciprofloxacin (CIP) and IPM on biofilm removal. The relationship between antibiotic
resistance, the presence of resistance genetic determinants and biofilm production was also
assessed.

MATERIALS AND METHODS

Sample collection and bacterial isolation

Bacterial isolates were collected aseptically from freshly voided faecal samples of different
species of wild animals, including birds, reptiles and mammals, at the north of Portugal
(Dias et al., 2014). Collection was done as soon as the animal entered the Centre for
Treatment of Wild Animals (Veterinary Hospital of the University of Tras-os-Montes and
Alto Douro). MacConkey agar (Merck, Germany) was used for bacterial isolation and the
plates were incubated at 37 °C for 24 h. Afterwards, the pure cultures were checked for
oxidase activity (1% tetramethyl phenylenediamine; Merck, Darmstadt, Germany) before
cryopreservation in Brain Heart Infusion broth (BHI; Oxoid, Cheshire, UK) with 30%
(v/v) glycerol at —70 °C.

Antibiotic susceptibility testing

The antimicrobial sensitivity profile of recovered bacteria was determined using the
disk diffusion assay on Muller-Hinton agar (MH; Oxoid, Cheshire, UK) according
to the standards and interpretive criteria described by the Clinical and Laboratory
Standards Institute guidelines (CLSI, 2014). The strains were tested for susceptibility
to a panel of antibiotics (Oxoid, UK): amoxicillin (AMLjg), amoxicillin/clavulanic acid
(AMCs3), ticarcillin (TICys), ticarcillin/clavulanic acid (TIMgs), piperacillin (PRL;qp),
piperacillin/tazobactam (TZP;,¢), cephalothin (KFs), cefoxitin (FOX3g), ceftriaxone
(CRO3y), cefoperazone (CFPs3), ceftazidime (CAZ3), cefotaxime (CTX3q), cefepime
(FEP39), imipenem (IPMg), aztreonam (ATMs3g), streptomycin (S;9), kanamycin
(Ks0), amikacin (AKj3p), gentamicin (CNjg), tobramycin (TOB,g), nalidixic acid
(NA3p), ciprofloxacin (CIPs), erythromycin (E;5), tetracycline (TEj3p), trimethoprim-
sulfamethoxazole (SXT5s), chloramphenicol (Csy) and fosfomycin (FOSs).

Identification of bacterial resistant isolates

Identification was performed by 16S rRNA gene sequence analysis. For that, general
bacterial 5 AGA GTT TGA TCA TGG CTC AG 3’ forward primer and 5° GGT TAC CTT
GTT ACG ACT T 3’ reverse primer were used to amplify nearly full-length 16S rRNA gene
as described previously (Macfarlane et al., 2004; Soler et al., 2004). Sequencing analysis were
performed using the BigDye Terminator V3.1 cycle sequencing kit ant the ABI Prism®
3100 Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The nucleotide
sequences were edited using the software Chromas 2 and compared with published
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sequences in the Nacional Center for Biotechnology Information (NCBI) databases using
BLAST. Phylogenetic tree was produced by the neighbor-joining method (Saitou & Nei,
1987) with Kimura’s 2-parameter method (Kimura, 1980) using the MEGA4-molecular
evolutionary genetic analysis program (Tamura et al., 2007).

Minimal inhibitory concentration (MIC) determination

Standardized planktonic MIC’s of ciprofloxacin (CIP) (Sigma-Aldrich Co., Lisbon
Portugal) and imipenem (IPM) (Cayman Chemical, Ann Arbor, MI, USA) were assessed
by the microdilution method outlined by CLSI (2014). Overnight cell cultures (18 h
incubation) were adjusted to a cell density of 1 x 10° cells/ml and added to sterile 96-well
polystyrene microtiter plates (Orange Scientific, USA) containing different concentrations
(CIP-6, 8, 10, 14, 16, 24, 32, 36, 40, 44, 52, 56 and 60 wg/ml; IPM-2, 4, 6, 8, 10, 12 pg/ml)
of each antibiotic in a final volume of 200 pl. A bacterial suspension without antibiotic
was used as negative control. Microtiter plates were then incubated at 30 °C for 24 h. MIC
matched to the lowest concentration in which the final optical density (OD) at 620 nm was
equal or lower than the initial OD.

Screening of resistance genetic determinants: f-lactamases

Detection of genetic determinants was done for TEM-type, SHV-type, CTX-M-type,
MOX and FOX variants of extended-spectrum-[3-lactamases (ESBLs) and for the CphA,
IMP-type, VIM-type and OXA-type carbapenemases. The mixture of PCR was performed
in a final volume of 50 pl containing 5 pl of Biotools PCR buffer (10x), 200 uM of each
nucleotide, 10 pmol of each primer (Table 1), 1 ul (1U) of Taq DNA polymerase (Biotools)
and 1 pl of template genomic DNA (100-200 ng). The conservative oligonucleotide
primers used were developed by Fontes (2009). The amplification conditions were: initial
denaturation for 5 min at 95 °C, 35 amplification cycles composed of a denaturation step
for 15 s at 94 °C, an annealing step at 55 °C for 30 s, except for blarox, in which 60 °C
were used, and an extension period at 72 °C for 45 s. The reaction was completed with an
extension step at 72 °C for 3 min.

Bacterial surface hydrophobicity evaluation

Surface hydrophobicity was evaluated after contact angle measurement according to the
procedure described by Simades, Simaoes ¢ Vieira (2010). Lawns of each bacterium were
prepared as described by Busscher et al. (1984) and their contact angles were determined by
the sessile drop contact angle measurements using a model OCA 15Plus (DATAPHYSICS,
Germany), with three pure liquids (water, formamide, and a-bromonaphthalene). The
surface tension components of the three liquids were obtained from the literature (Janczuk
et al., 1993). Afterwards, the hydrophobicity (AG;%T ) and surface tension parameters
(YAB—Lewis acid-base component, Y T—electron acceptor parameter, Y~ —electron
donor parameter) of the strains were evaluated according to the method of Van Oss et al.
(1989).

Initial adhesion assay
In vitro initial adhesion was determined according to the method of Simaes et al. (2007)
and Simaes, Simaoes & Vieira (2010). Sterile microtiter plates (12-well) with 2 ml of cell
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Table 1 Oligonucleotide primers used (Fontes, 2009).

Target Primer pair Sequence 5'—3 Amplicon size (bp)
TEM-F CTG GAT CTC AAC AGC GGT AAG

bluTEM 403
TEM-R ACG TTG TTG CCA TTG CTG CAG
SHV-F TTC GCC TGT GTA TTA TCT CC

blagyy 373
SHV-R GTT ATC GCT CAT GGT AAT GG
CTX-BF GCC TGC CGA TCT GGT TAA C

blacrx-m 209
CTX-BR GGA ATG GCG GTATTC AGC G
MOX-F CGT GCT CAA GGA TGG CAA G

blayiox 634
MOX-R CTG CTG CAA CGC CTT GTCA
FOX-F TGT TCG AGA TTG GCT CGG TC

blaFox 282
FOX-R GGG TTG GAA TAC TGG CGA TG
CphA-3F CTG GAG GTG ATCAACACCA

blacoha 410
CphA-7R TTG ATC GGC AGC TTC ATC GC
VIM-F GGT GTT TGG TCG CAT ATC GC

blayim 195
VIM-R CAT GAA AGT GCG TGG AGA CTG
OXA-aerF GAC TAC GGC AAC CGG GAT C 5
OXA-aerR CTT GCC GTG GAT CTG CCA G
OXA-BF GAT AGT TGT GGC AGA CGA ACG

blaoxa 453
OXA-BR CTT GAC CAA GCG CTG ATG TTC
OXA-CF GTT CTC TGC CGA AGC CGT CA -
OXA-CR GAC TCA GTT CCC ACA CCA G
IMP-F GAAGGCGTTTATGTTCATAC

bluIMp 559
IMP-R CTTCACTGTGACTTGGAAC

suspension (1 x 108 cells/ml in MH) and coupons (dimensions of 1 x 1 cm) of polystyrene
(PS) horizontally placed were incubated at 30 °C for 2 h in an orbital shaker at 150
rpm. PS coupons were prepared by successive immersions in a solution (5% v/v) of
commercial detergent (Sonasol Pril; Henkel Ibérica S.A, Barcelona, Spain) and ultrapure
water with gentle shaking (30 min). All experiments were performed in triplicate, with
three independent repeats. After 2 h incubation the coupons were removed and washed in
2 ml of sterile saline solution (0.85% w/v) and the biomass was quantified by crystal violet
(CV) staining (Borges et al., 2017).

Biofilm formation

Biofilm formation was performed in 96-well polystyrene microplates following the method
of Stepanovic et al. (2000). Briefly, overnight cultures were adjusted to an initial OD (620
nm) of 1 x 108 cells/ml in MH and 200 pl aliquots were added to the microplate. The
microtiter plate was incubated for 24, 48 and 72 h at 30 °C and agitated at 150 rpm. The
medium (MH) was carefully and aseptically replaced daily by fresh one, after a washing step
with saline solution (0.85% v/v). Negative controls contained MH broth without bacteria.

Biofilm control
To determine whether antibiotics had capability to remove 24 h old biofilms, CIP and IPM
at MIC, 5 x MIC and 10 x MIC were used according to Borges et al. (2017). After 24 h
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exposure at 30 °C the antibiotic solutions were discarded and the biofilms were analyzed
in terms of biomass by CV staining. The results are presented as percentage of biofilm
mass removal when compared to biofilms non-exposed to antibiotics. The assays were
performed in triplicate with three independent repeats.

Mass quantification of adhered cells and biofilms
The mass of adhered cells and biofilm was quantified by CV staining according to Borges
etal. (2017). The OD was measured at 570 nm using a Microplate Reader (BIO-TEK,
Model Synergy HT). Biofilm mass removal percentage (%BR) was given by the following
equation:

ODn — ODw

%BR= ————x100.
ODn

Where the ODn are the absorbance values of the biofilms non-exposed to the antibiotics
(CIP and IPM) and ODw are the absorbance values of the biofilms exposed to antibiotics
(CIP and IPM).

Adherent/biofilm bacteria classification

Based on the cutoff of the ODc quantification (value defined as three standard
deviation values above the mean OD of the negative control) the bacteria were
classified according to Stepanovic et al. (2000) as: non-adherent/non-biofilm producer
(0)-OD < ODc; weakly adherent/weak biofilm producer (+)-ODc < OD < 2 x ODg;
moderately adherent/moderate biofilm producer (++)-2 x ODc < OD < 4 x ODc; strongly
adherent/strong biofilm producer (+++)-4 x ODc < OD.

Statistical analysis

Data were analyzed by analysis of variance (ANOVA) using the statistical program SPSS
version 22.0 (SPSS, Inc., Chicago, IL, USA) and statistical calculations were based on a
confidence level > 95% (P < 0.05 was considered statistically significant).

RESULTS

Bacteria and antibiotic susceptibility profile

The selected bacteria belong to different genera: Acinetobacter, Klebsiella, Pseudomonas
and Shewanella. S. putrefaciens was obtained from a sample of red deer (Cervus elaphus),
P. fluorescens from a red fox (Vulpes vulpes) and K. pneumoniae and Acinetobacter spp.
were isolated from the same sample of a greater rhea (Rhea americana). These four strains
were identified through 16S rDNA sequencing and were selected due to their antibiotic
resistance profiles. Acinetobacter spp. was only identified at the genus level. According to
the analysis of the phylogenetic tree generated (See Fig. S1), this strain can represent a new
species.

The susceptibility profile against 27 antibiotics belonging to different classes was assessed.
All bacteria were multidrug-resistant, i.e., resistant to at least two antibiotics belonging
to different chemical classes (Godebo, Kibru ¢ Tassew, 2013; Exner et al., 2017) (Table 2).
It was possible to observe that Acinetobacter spp. and K. pneumoniae, showed identical
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Table2 Resistance phenotypes and bla genotypes of the four selected bacteria.

Strains identification
(16S rRNA gene sequencing)

Resistance phenotype B-lactamase genes

Acinetobacter spp.
K. pneumoniae
P. fluorescens

S. putrefaciens

AML, AMC, TIM, ATM, IPM, KF, FOS, FOX, CFP, CIP, S, =

E, C, SxT, TE

AML, AMC, TIM, ATM, IPM, KF, FOS, FOX, CFP, CIP, S, blaoxa-aers blatems blasuy
E, C, SxT, TE

AML, AMC, TIC, TIM, ATM, IPM, KF, FOS, FOX, CTX, E, blaoxa-aer

C, ST, TE

AML,AMC, IPM, KF, FOS, E —

Notes.

Amoxicillin (AML), amoxicillin/clavulanic acid (AMCsy), ticarcillin (TICys), ticarcillin/clavulanic acid (TIMgs), piperacillin (PRL;o), piperacillin/tazobactam (TZPyy),
cephalothin (KFs), cefoxitin (FOX3), ceftriaxone (CRO3y), cefoperazone (CFP3), ceftazidime (CAZ3), cefotaxime (CTX3), cefepime (FEP3), imipenem (IPM)), aztreonam
(ATMs), streptomycin (Syo), kanamycin (K3p), amikacin (AK3 ), gentamicin (CNyj), tobramycin (TOB), nalidixic acid (NAj), ciprofloxacin (CIPs), erythromycin (E;s),
tetracycline (TEsp), trimethoprim-sulfamethoxazole (SXT,s), chloramphenicol (Csy) and fosfomycin (FOSs).

resistance profiles. This could be related to the fact that these bacteria were isolated from
the same sample, indicating an exchange of resistance genes. Among all the isolates,

S. putrefaciens was the most susceptible to the antibiotics tested. All bacteria were resistant
to amoxicillin, amoxicillin/clavulanic acid, cephalothin, fosfomycin and erythromycin.
Of particular concern was the resistance of all the selected bacteria to the carbapenem
imipenem (IPM), an intravenous broad-spectrum antibiotic of the 3-lactams group that is
of exclusive hospital use (Papp-Wallace et al., 2011).

Genetic bases of antibiotic resistance

The presence of 12 B-lactamase genes (blacpha; blaoxa-aer; blaoxa-s; blaoxa-c; blavoxs
blatem; blarox; blasyy; blaspv; blactxom; blapp and blayy) in the selected bacteria was
analyzed by PCR. The genotype results are summarized in Table 2. The blagxa-aer Was
detected in P. fluorescens and K. pneumoniae, isolated from faecal samples of a fox and a
rhea, respectively. Three 3-lactamases genes (blaoxa-aer; blatem; blayiy) were detected in
the same bacterium, K. pneumoniae. S. putrefaciens and Acinetobacter spp. were resistant
to IPM but apparently did not display any of the genetic determinants of IPM resistance
studied in this work. No PCR specific blacpha; blaoxa-; blaoxa-c; blavox; blarox; blasuvs
blactx-m; blapvp and blayy encoding sequences were detected.

Minimal inhibitory concentration of ciprofloxacin and imipenem

K. pneumoniae was the bacterium with lowest susceptibility to the action of CIP with MIC
of 60 pwg/ml (Table 3). S. putrefaciens was the most resistant to IPM with MIC of 12 pg/ml.
In general, IPM was the most efficient antibiotic against the four bacteria tested (MICs:
12 pg/ml for S. putrefaciens; 6 pg/ml for P. fluorescens, 6 pg/ml for K. pneumonia; 2 ng/ml
for Acinetobacter spp.). According to the CLSI (2014) guidelines all isolates are considered
resistant to CIP (MICs > 4 pg/ml). K. pneumonia , P. fluorescens and S. putrefaciens are
resistant to IPM (MICs > 4 pg/ml). Acinetobacter spp. is classified as intermediate (MIC
=2 pg/ml).
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Table 3 MIC of CIP and IPM against Acinetobacter spp., K. pneumoniae, P. fluorescens and S. putrefa-
ciens.

MIC (jLg/ml)
CIP IPM
Acinetobacter spp. 44
K. pneumoniae 60
P. fluorescens 6
S. putrefaciens 24 12

Table 4 Surface tension parameters (Y42, Y+ and Y ~); and hydrophobicity (mJ/cm?) AG;"‘,),,T. Values
are means =+ SDs of two independent experiments.

Surface tension parameters (mJ/cm?) Hydrophobicity— AGL9F
(mJ/cm?)
Y4B Tt Y-
Acinetobacter spp. 12.6 £ 0.6 0.7 £0.1 54.4 + 0.6 33.7+ 1.0
K. pneumoniae 19.3 £0.4 1.8 £0.1 52.1+£0.2 28.1£0.2
P. fluorescens 0.0 £ 0.0 0.0 £ 0.0 69.8 £ 0.1 60.2 £ 0.1
S. putrefaciens 26 £ 0.6 3.7+0.0 47.9 £ 0.0 22.4£0.0

Bacterial surface hydrophobicity

The four bacteria had hydrophilic surfaces (AG]9), being their values significantly
different ( P < 0.05) (Table 4). Also, all the bacteria were predominantly electron donors
(Y > Y*) and K. pneumonia and Acinetobacter sp. cell surfaces had similar electron donor
abilities (P > 0.05). For P. fluorescens no electron accepting character (Y™ =0 mJ/m?) was
observed. S. putrefaciens had the highest value of polar component (Y42) (P > 0.05).

Initial monolayer adhesion

The degree of bacterial attachment was found to follow the sequence: P. fluorescens >

S. putrefaciens > K. pneumoniae > Acinetobacter spp. (Fig. 1). S. putrefaciens,

K. pneumoniae and Acinetobacter spp. were classified as moderately adherent while

P. fluorescens was classified as strongly adherent (Table 5). P. fluorescens and Acinetobacter
spp. had the highest and lowest adhesion abilities, respectively. K. pneumoniae and
Acinetobacter spp. adhered with comparable extents (P > 0.05).

Biofilm formation
The isolates were studied for their biofilm-forming ability in 96-well polystyrene microtiter
plates during 24, 48 and 72 h. Figure 2 shows that all bacteria were able to form biofilms in
all the sampling times. P. fluorescens produced the smallest biomass amount for the three
sampling times, while on the other hand K. pneumoniae produced the highest biomass
amount. Biofilm production was directly proportional to the biofilm age for Acinetobacter
spp. and S. putrefaciens. Regarding P. fluorescens, the biomass decreased from 24 to 48 h
and remained constant for the 72 h old biofilms.

K. pneumoniae developed weak biofilms during the first 24 h. The biofilm formation
ability increased at 48 h and decreased at 72 h. It was found that the degree of biofilm
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Table 5 Adhesion and biofilm formation abilities of Acinetobacter spp., K. pneumoniae, P. fluorescens
and S. putrefaciens according to the classification proposed by Stepanovic et al. (2000).

Adhesion Biofilm
24h 48h 72h
Acinetobacter spp. ++ ++ S 44
K. pneumoniae ++ ++ ded L 4+
P. fluorescens 4FaFr + F +
S. putrefaciens ++ + SR 4t

Nme?b), Non-adherent/non-biofilm producer; (+), weakly adherent/weak biofilm producer; (++), moderately adherent/moder-
ate biofilm producer; (+++), strongly adherent/strong biofilm producer.

formation followed the sequence: 24 h old biofilms—K. pneumoniae > Acinetobacter spp.
> S. putrefaciens = P. fluorescens; 48 h old biofilms K. pneumoniae > Acinetobacter spp. =
S. putrefaciens > P. fluorescens and 72 h old biofilms—K. pneumoniae > Acinetobacter spp.
= S. putrefaciens = P. fluorescens. According to the classification proposed by Stepanovic et
al. (2000) concerning the bacterial biofilm production ability (Table 5), P. fluorescens and
Acinetobacter spp. showed weak and moderate biofilm production for the various sampling
times, respectively. S. putrefaciens presented weak biofilm formation ability at 24 h and
moderate biofilm formation ability at 48 and 72 h. K. pneumoniae demonstrated moderate
ability to form biofilms at 24 h and strong biofilm ability at 48 and 72 h.

Effect of ciprofloxacin and imipenem on biofilm removal

The effects of the IPM and CIP were tested on the removal of 24 h old biofilms of

S. putrefaciens, K. pneumoniae, P. fluorescens and Acinetobacter spp. (Fig. 3). In general, the
increase of CIP or IPM concentrations increased biofilm removal. A significant increase of
the P. fluorescens biomass reduction occurred with the increase of CIP from MIC to 5 x MIC
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(P <0.05). However, the increase to 10 x MIC did not produce significant improvement in
biofilm removal (P > 0.05). Similar results were observed for K. pneumoniae biofilms when
exposed to IPM. For S. putrefaciens the increase of CIP concentration from MIC to 5 x MIC
did not increase significantly its efficiency (Fig. 3). Moreover, for this bacterium 5 x MIC
and 10 x MIC caused similar biofilm mass reductions (36%). No biofilm mass removal
was obtained with IPM at MIC against S. putrefaciens, P. fluorescens and Acinetobacter
spp., and with CIP at MIC and 5 x MIC against Acinetobacter spp. IPM at 10 x MIC
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caused the highest reductions of S. putrefaciens (36% removal) and K. pneumoniae (54%
removal) biofilms. CIP at 10 x MIC caused the highest biomass reductions of P. fluorescens
biofilms (40%). Significant reduction was also observed for K. prneumoniae biofilms upon
the application of CIP at 10 x MIC. Acinetobacter spp. biofilms were highly difficult to
remove using CIP and IPM (a maximum removal of 10% was obtained with IPM at 10 x
MIC). In fact, Acinetobacter spp. biofilms were the most resistant to removal by CIP while
P. fluorescens biofilms were the most resistant to IPM (P < 0.05).

DISCUSSION

The emergence of multidrug-resistant microorganisms remains a serious global health
concern (Da Costa, Loureiro ¢ Matos, 2013). The guts of humans and animals are
important reservoirs of such microorganisms (Macfarlane et al., 2004). In general, most of
the microbiological studies have been focused on the gut of human and domestics/farm
animals. However, the role of wild animals as a reservoir of antibiotic resistant bacteria has
been acquiring attention in recent years (Son et al., 1997; Singer et al., 2003; Finley et al.,
20135 Smith et al., 2014).

In the present study, multidrug-resistant bacteria (Acinetobacter spp., K. pneumoniae,
P. fluorescens and S. putrefaciens) were obtained from faecal samples of wild animals of
the north of Portugal. Acinetobacter spp. and K. pneumoniae are important opportunistic
pathogens due to the rapid spread of resistance to most of the currently available antibiotics,
particularly to carbapenems (Poirel ¢ Nordmann, 2006; Snitkin et al., 2012). P. fluorescens
has been regarded generally to be of low virulence and an infrequent cause of human
infections. However, they have been associated with some infections such as blood
transfusion-related septicemia, catheter-related bacteremia, and peritonitis in peritoneal
dialysis patients (Wong et al., 2011). S. putrefaciens can be widely found in the nature and
especially in marine environments and, in some cases, can become pathogenic for humans
and produce a wide variety of clinical conditions including bacteremia (Patel et al., 2012).

The occurrence of multidrug-resistant bacteria in wild animals that live in extremes
and remote environments with low contact with antimicrobials or even never exposed
to them has been previously described (Son et al., 1997; Singer et al., 2003; Da Costa,
Loureiro & Matos, 2013; Smith et al., 2014). For instance, Simaes et al. (2012) reported the
occurrence of multidrug-resistant Escherichia coli hosting virulence factors in faeces of
Iberian wolves (Canis lupus signatus). The presence of multidrug-resistant bacteria in wild
animals represent a public health concern due to the increased occurrence of zoonotic
diseases (Taylor, Latham ¢ Woolhouse, 2001). Moreover, antibiotic resistance and animal
health are disregarded, even if antibiotics used in human and veterinary medicine are the
same (Dias et al., 2014).

Resistance to multiple antibiotics was observed in the bacteria studied in the present
work. Bacteria showed resistance to IPM, a B-lactam antibiotic typically used for the
treatment of complex multi-resistant human infections. p-lactam antibiotics are an
important group of broad-spectrum antibiotics used in both human and animal health for
the treatment of bacterial infections (Li et al., 2007). The intensive use of these antibiotics
has contributed to the emergence of resistant bacteria, including bacteria of animal origin.

Dias et al. (2018), PeerJ, DOI 10.7717/peerj.4974 11/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.4974

Peer

The production of B-lactamases, a family of enzymes that hydrolyze the p-lactam
ring, thereby inactivating the antibiotic molecule prior to binding with penicillin binding
proteins (PBP’s), is the principal mechanism of resistance to -lactam antibiotics. They also
play a major role in intrinsic and acquired resistance of bacteria, mainly in Gram-negative
(Liet al, 2007). To understand the genes conferring resistance to -lactam antibiotics,
several genetic determinants were amplified by PCR. These results revealed the presence
of genes coding for (-lactamases in P. fluorescens and K. pneumoniae. In addition, it
was possible to observe that the extended spectrum p-lactamase-producing (ESBL)

K. pneumoniae carries multiple (3-lactamase genes: blaoxa-aer> blatepm and blagyy. This
result reinforces that ESBL-mediated plasmids are capable of transporting more than one
B-lactamase gene (Rottier, Ammerlaan ¢ Bonten, 2012). ESBL as well as TEM and SHV type
producing bacteria are frequently present in the gastrointestinal tract of animals (Carattoli,
2008; Rottier, Ammerlaan ¢ Bonten, 2012) and were already detected in wild animals
(Coque, Baquero ¢ Canton, 2008; Rottier, Ammerlaan ¢ Bonten, 2012). It is important to
note that large numbers of 3-lactamases and ESBL resistant to $-lactamase inhibitors have
derived from TEM and SHV enzymes as a consequence of amino acid substitution in
their sequences (Paterson ¢ Bonomo, 2005). In P. fluorescens only the blagxa-aer gene was
detected. In S. putrefaciens and Acinetobacter spp. the presence of the studied f-lactamase
genes was not detected, which suggest that resistance to -lactam antibiotics in these
bacteria can be mediated by other mechanisms, namely the decrease of the intracellular
concentration of the antibiotic as a result of poor penetration into the bacterium or the
presence of efflux pumps, and the alteration of the antibiotic target by post-translational
modification of the target or genetic mutation (Bradford, 2001). Overall, the results of
this study support the hypothesis that wild animals constitute a reservoir for antibiotic
resistance.

During the course of their evolution, bacteria have continuously evolved their
metabolism and physical characteristics adapting to almost all environments (Costerton
et al., 1995). In order to survive in hostile environments bacteria have adapted to exist
as communities of sessile cells (Mah ¢ O’Toole, 2001). A direct relationship between the
occurrence of microorganisms in sessile communities and infectious diseases has been
reported in animals (De la Fuente-Nunez et al., 2013). According to studies conducted
by Bakker et al. (2004), bacterial pathogens (Marinobacter hydrocarbonoclasticus ATCC
27132, Halomonas pacifica ATCC 27122, Psychrobacter sp. strain SW5H, Staphylococcus
epidermidis GB 9/6, A. baumannii 2 and P. aeruginosa) obtained from two different niches
(medical and marine) exhibited different abilities of adhesion to a surface. They concluded
that this behaviour can be related to external factors like substrata, nutrients, ionic
strength, pH values and temperature but also to the presence of different cell structural
components (e.g., fibrils, fimbriae and adhesive surface proteins). Therefore, depending
on the environmental conditions bacteria from a given niche can use different mechanisms
for adhesion and biofilm formation.

Despite the central role of bacterial biofilms in infectious diseases, they are usually
neglected and studies are mostly developed with cells in planktonic state. With the present
work, new data is provided on the ability of bacteria isolated from wild animals to form
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biofilms. All the bacteria adhered on PS and produced biofilms. However, with distinct
magnitudes. P. fluorescens was the microorganism showing the highest adhesion, but
demonstrated low ability to form biofilm. K. pneumoniae had the highest ability to form
biofilms, was the most resistant to CIP and carried multiple types of p-lactamase genes. It
has been described that K. pneumoniae can form biofilms in the gastrointestinal tract and
natural cavities of humans (Chen et al., 2014).

Surface hydrophobicity is recognized as relevant for microbial adhesion (Donlan, 2002).
Liu et al. (2004) studied the role of hydrophobic and hydrophilic interactions in microbial
adhesion to a surface and verified that hydrophobicity is directly related to the degree of
surface adhesion. In the present study, no correlation between hydrophobicity and adhesion
was found. This was particularly evident for P. fluorescens. This bacterium had the highest
adhesion ability and the highest hydrophilic character. This result proposes that other
factors, in addition to the physico-chemical surface properties, account for the adhesion
process. These include the presence of extracellular structures (e.g., pili, flagella and
outer membrane proteins) and genetic factors (Donlan ¢ Costerton, 2002; Pawar, Rossman
& Chen, 2005). Hennequin et al. (2012), study the resistance to antibiotics and plasmid
transfer capability of clinical K. pneumoniae isolates in both planktonic and biofilm state.
They stated the influence of capsule and ESBLs encoding plasmids upon K. pneumoniae
adhesion. Other work developed by Yang ¢ Zhang (2008) with K. pneumoniae isolated
from sputum and urine demonstrated the existence of a relationship between the ability
to form biofilms and the production of ESBL. These observations corroborate the results
obtained in the present study, as the bacterium that encoded more [-lactamase genes
was the most proficient biofilm producer. Pavlickova et al. (2017) studied the correlation
between antibiotic resistance, virulence factors and biofilm formation in E. coli strains
isolated from chicken meat and wildlife. They found a significant association between the
occurrence of antibiotic resistance and the ability to form biofilm, i.e., highest prevalence
of antibiotic resistance was verified in weak biofilm producers. Recent evidences on the
ability of bacteria isolated from wild animals to form biofilms and the data supporting the
correlation of such sessile behaviour with development of antibiotic resistance aware for
the putative public health hazard of microorganisms inhabiting wild animals (Schillaci ¢
Vitale, 2012).

Microorganisms in biofilms are more resistant to the action of the antimicrobial agents
and host defence mechanisms due to several mechanisms, particularly the presence of a
matrix of extracellular polymeric substances, low growth rate, presence of persister cells
and the expression of possible biofilms specific resistance genes (Stewart ¢ Costerton,
2001; Stewart, 2002). Biofilms are also important in the spread of antibiotic resistance by
horizontal genes transfer (Fux et al., 2005). In the present study the effects of CIP and IPM
(applied at MIC, 5 x MIC and 10 x MIC) on biofilm removal were evaluated. IPM and CIP
are antibiotics commonly used to control bacterial infections and present wide spectrum
of activity (Tamma, Cosgrove & Maragakis, 2012). In general, a dose-dependent effect was
observed and the maximum percentage of biofilm mass reduction was <55%. For two of the
tested bacteria (P. fluorescens and Acinetobacter spp.) both antibiotics caused no biomass
removal at MIC. Acinetobacter spp. and P. fluorescens biofilms were also the most difficult to
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remove by CIP and IPM, respectively. No reports are available on the action of the selected
antibiotics against biofilms formed by bacteria isolated from animals or other unexploited
environmental source. However, high levels of resistance to CIP and/or IPM has been
reported among biofilms of clinical strains of A. baumannii and P. aeruginosa (Abdi-Ali
et al., 2014; Hengzhuang et al., 2011). In the present study, IPM was the most effective in
S. putrefaciens and K. pneumoniae biofilm mass removal, however, total removal was not
achieved, which is a critical aspect in biofilm control. In fact, antibiotics can promote
significant killing of biofilm cells without causing their dispersal/removal (Roizman et al.,
2017).

CONCLUSIONS

In conclusion, the existing levels of resistance to antibiotic in wild animals can create

a continuous selective pressure on f3-lactamases, which is a huge concern to public and
animal health. The analysis of the phenotypic and genotypic resistance profile of the bacteria
studied in this work demonstrated their multidrug-resistant character, and some of them
possess antibiotic resistance determinants. Taking into account that wildlife isolates do
not contact directly with antibiotics, the resistance observed among the studied bacteria
is alarming. This is mainly related to the overuse of antibiotics not only in human but
also in veterinary medicine, leading to the spread of resistance genes to the environment.
The selected bacteria also demonstrated the ability to form biofilms on PS surfaces, and
further tests revealed the inefficacy of two broad-spectrum antibiotics, CIP and IPM,
to induce strong biofilm dispersal. Biofilm formation was independent on the bacterial
surface properties.

The overall study proposes that regular monitoring of multidrug-resistance and
proper characterization and assessment of the antimicrobial resistance determinants
among bacteria of animal origin could prevent the dissemination of antibiotic resistant
microorganisms and genetic determinants containing antibiotic resistance genes.
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