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1 Introduction

The secular tendency for spatial agglomeration of economic activity is well known and
has always been a matter of profound debate. Recent developments have allowed a more
rigorous treatment of such phenomena, with recourse to microeconomic foundations.1 The
benchmark in this literature is the Core-Periphery (CP) model, introduced by Krugman
(1991b).

An analytically solvable version of this model, dubbed the Footloose Entrepreneur (FE)
model, was introduced by Forslid and Ottaviano (2003). The only difference with respect
to the original CP model is that, in the FE model, the variable input in the mobile sector
is immobile labor instead of mobile labor. The role of mobile (footloose) labor becomes
limited to the fixed input (entrepreneurship) in the mobile sector. This subtle modification
renders the model analytically solvable because the marginal production cost becomes
exogenous.

Theoretical insights on a 3-region model would be interesting for different reasons. As
pointed out by Fujita et al. (1999), considering only two regions stems from the attractive-
ness in dealing with manageable sized problems, although it seems implausible that the
geographical dimension of economic activity can be reduced to a 2-region analysis. It is im-
portant, therefore, to understand to what extent the main conclusions that were obtained
using 2-region models extend to models with more regions.

This motivated Castro et al. (2012) to study a 3-region version of the CP model by
Krugman (1991b).2 Comparing the behaviour of the 3-region model relatively to the 2-
region model, their main conclusion was that the 3-region model favours the agglomeration
of economic activity while the 2-region model favours the dispersion of economic activity.

The inherent technical difficulties that Castro et al. (2012) made evident in their analysis
of the 3-region CP model call for a base model that is more tractable than the original CP
model (Krugman, 1991b). This motivates us to consider (in this paper) a 3-region version
of the analytically solvable Footloose Entrepreneur model by Forslid and Ottaviano (2003).
Though we are able to obtain closed form solutions for expressions that are crucial for the
study of the model, the added complexity that stems from the inclusion of one more region
in the aforementioned framework thwarts our efforts to fully assess analytically the dynamic

1 See, for example, Fujita et al. (1999) and Baldwin et al. (2003).
2 It is also worthwhile mentioning the core-periphery model with n equidistant regions by Puga (1999).
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properties of the model.

Our main finding is that, comparing our 3-region model with the original 2-region model
by Forslid and Ottaviano, agglomeration is more likely in a 3-region framework while
dispersion is more likely in a 2-region framework.3 We also establish a sufficient condition
whereby partial dispersion cannot be stable and present numerical evidence that (even
without this condition) it is never stable, whatever the parameter values.

We conclude that the impact of considering an additional region in the FE model is
analogous to that of considering an additional region in the CP model. In this sense, the
FE model behaves similarly to the CP model (as desired by its creators). However, we
also find that the difficulties faced in the analytical treatment of the 3-region CP model
are still present in the 3-region FE model. This may be interpreted as a sign that a base
model that is even more tractable than the FE model may be necessary to allow significant
advances in the analytical study of core-periphery models with more than two regions.

The remainder of the paper is structured as follows. In Section 2, we underline the
main assumptions of the FE model with 3 regions. In Section 3, we obtain the general
expressions for nominal and real wages as explicit functions of the spatial distribution of
the entrepreneurs. In Section 4, we address the dynamics of the model and find the stability
conditions for three possible kinds of equilibria: concentration, total dispersion and partial
dispersion. We also discuss how each of these outcomes becomes more or less likely as the
parameters of the model change. In Section 5, we compare the behaviour of our 3-region
model with that of the original 2-region FE model. In Section 6, we make some concluding
remarks.

2 Economic environment

The economy is composed by three regions that are assumed to be structurally identical
and equidistant from each other. The framework is exactly as that of the 2-region FE
model by Forslid and Ottaviano (2003), except for the fact that 3 regions are considered.

The endowments of skilled labour (entrepreneurs) and unskilled labour are, respectively,

3 More precisely, we conclude that: (i) the set of parameter values for which agglomeration is stable in
the 2-region model is a subset of the set of parameters for which it is stable in the 3-region model; and
(ii) the set of parameter values for which dispersion is stable in the 3-region model is a subset of the set of
parameters for which it is stable in the 2-region model.
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H and L. The entrepreneurs can move freely between regions (H1 +H2 +H3 = H), while
the unskilled workers are immobile and considered to be evenly spread across the three
regions (L1 = L2 = L3 = L

3 ).
4

The representative consumer of region i has the usual utility function:

Ui = Xµ
i A

1−µ
i , (1)

where Ai is the consumption of agricultural products in region i and Xi is the consumption
of a composite of differentiated varieties of manufactures in region i, defined by:

Xi =
[
ˆ

sεN

di(s)
σ−1
σ ds

] σ
σ−1

, (2)

where di(s) is consumption of variety s of manufactures in region i, N is the set of existing
varieties, and σ > 1 is the constant elasticity of substitution between manufactured vari-
eties. From utility maximization, µ ∈ (0, 1) is the share of expenditure in manufactured
goods.

Production of a variety of manufactures requires, as inputs, α units of skilled labor and
β units of unskilled labor for each unit that is produced. Therefore, the production cost of
a firm in region i is:

Ci(xi) = wiα + wLi βxi, (3)

where wi is the nominal wage of skilled workers in region i and wLi is the nominal wage of
unskilled workers in region i.

Trade of manufactures between two regions is subject to iceberg costs τ ∈ (1,+∞). Let
τij denote the number of units that must be shipped at region i for each unit that is
delivered at region j. Since the three regions are equidistant from each other, we have the
following trade cost structure:




τij = 1, if j = i

τij = τ, if j 6= i.

4 Notice that, although similar, the 2-region model cannot be derived from the present one by eliminating
skilled workers from a single region. It would also be necessary to redistribute the unksilled workers. Hence,
the 3-region model does not contain the 2-region model of Forslid and Ottaviano (2003).
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The agricultural good is produced using one unit of unskilled labor for each unit that is
produced (constant returns to scale), and is freely traded across the three regions.

3 Short-run equilibrium

Let pji(s) and dji(s) denote the price and demand in region i of a variety, s, that is produced
in region j. Utility maximization by consumers in region i yields the following aggregate
regional demand:

dji(s) = pji(s)−σ
P 1−σ
i

µYi, (4)

where Pi is the regional price index, associated with (2):

Pi =



3∑

j=1

ˆ

sεN

pji(s)1−σds




1
1−σ

, (5)

and Yi is the regional income:
Yi = wiHi + wLi

L

3 , (6)

Turning to the supply side and starting with the agricultural sector, absence of transport
costs implies that its price is the same everywhere (pA1 = pA2 = pA3 ). Furthermore, under
perfect competition, we have marginal cost pricing: pAi = wLi . Consequently, there is
unskilled workers’ wage equalization among regions: wL1 = wL2 = wL3 . By choosing the
agricultural good as numeraire, we can set pAi = wLi = 1, ∀i. We assume that the non-full-
specialization (NFS) condition (Baldwin et al., 2003) holds, guaranteeing that agriculture
is active in the three regions.5

In the industrial sector, given the fixed cost α in (3), the number of varieties manufactured
in region i is ni = Hi/α. A manufacturing firm in region i facing the total cost in (3)
maximizes the following profit function:

πi(s) =
3∑

j=1
pij(s)dij(s)− β




3∑

j=1
τijdij(s)


− αwi. (7)

5 This condition requires world expenditure on agricultural goods to be greater than the total production
of agricultural goods in two regions, i.e., (1−µ)(Y1 +Y2 +Y3) > 2

3L. This is guaranteed if we assume that
µ < σ/(3σ − 2). In the 2-region model by Forslid and Ottaviano (2003), the corresponding assumption is
µ < σ/(2σ − 1).
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Total supply to region j 6= i is equal to τdij(s), because it also includes the fraction of
the product that melts. The first order condition for maximization of (7) yields the same
pricing equation as that of the 2-region model by Forslid and Ottaviano:

pij(s) = τijβ
σ

1− σ . (8)

Note that pij(s) is independent of s, which implies that dij(s) also is. All varieties
produced in region i are sold at the same price and are equally demanded in region j.

Using (8), the CES price index (5) becomes:

Pi = α
1

σ−1β
σ

1− σ




3∑

j=1
φijHi




1
1−σ

, (9)

where φij ≡ τ 1−σ
ij ∈ (0, 1) represents the “freeness of trade” between regions i and j.

Absence of entry barriers in the manufacturing industry translates into zero profits in
equilibrium. Operating profits must totally compensate fixed costs, which are equal to the
wages paid to the entrepreneurs:

αwi =
3∑

j=1
pijdij − β




3∑

j=1
τijdij


 ,

which becomes, considering the prices in (8):

wi = βxi
α(σ − 1) , (10)

where xi ≡
∑
j τijdij is total production by a manufacturing firm in region i.

Using (4), (8) and (9), we can derive an expression for xi that depends on regional incomes
and the number of firms in the three regions:

xi = µ(σ − 1)
αβσ

3∑

j=1

φijYi∑3
m=1 φmjnm

. (11)

Replacing (11) in (10) and knowing that ni = Hi/α we have:

wi = µ

σ

3∑

j=1

φijYj
Rj

, (12)
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where Rj ≡
∑3
m=1 φmjHm. By (6), income equals:

Yi = L

3 + wiHi. (13)

The system of three linear equations in wi, for i = 1, 2, 3, using (12) and (13), can be
solved to obtain the equilibrium (nominal) wages of the skilled workers as a function of
their spatial distribution.

Proposition 1. The nominal wages of skilled workers in region i are given by:

wi =

µ

σ

L

3





3∑

j=1

φij

Rj
+ µ

σ


φ (φ− 1)

∑

k 6=i

Hk

∏

k 6=i

Rk

+ φ2 − 1
Ri

∑

k 6=i

Hk

Rk


+ µ2

σ2

(
2φ3 − 3φ2 + 1

) 1
Ri

∏

k 6=i

Hk

Rk





1− µ

σ

3∑

j=1

Hj

Rj
+ µ2

σ2 (1− φ2)
(
H1H2
R1R2

+ H1H3
R1R3

+ H2H3
R2R3

)
− µ3

σ3 (2φ3 − 3φ2 + 1)
3∏

j=1

Hj

Rj

. (14)

Proof. See Appendix A.

The regional distribution of skilled workers can be described, in relative terms, by a pair
(hi, hj), where hi ≡ Hi/H and hj ≡ Hj/H. The fraction of skilled workers in the third
region is hk ≡ Hk/H = 1− hi − hj.
We can, then, rewrite the nominal wage wi as function of hi and hj:

wi (hi, hj) = Dwi (hi, hj)
D (hi, hj)

,

where:

Dwi = µL

3Hσ

{ 3∑

m=1

φim
rm

+ µ

σ

[
φ (φ− 1) hj + hk

rjrk
+ φ2 − 1

ri

(
hj
rj

+ hk
rk

)]
+

+µ2

σ2
(
2φ3 − 3φ2 + 1

) hjhk
rirjrk

}
, (15)

D = 1− µ

σ

3∑

j=1

hj
rj

+ µ2

σ2
(
1− φ2)

(
h1h2
r1r2

+ h1h3
r1r3

+ h2h3
r2r3

)
− µ3

σ3
(
2φ3 − 3φ2 + 1

) 3∏

j=1

hj
rj
, (16)

with ri ≡ Ri
H

and rk ≡ Rk
H

= 1 + (φ− 1)(hi + hj).

The price index Pi becomes, after (8):

Pi(hi, hj) = β
σ

σ − 1

(
H

α
ri

) 1
1−σ

. (17)
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4 Long-run equilibria and stability

Entrepreneurs migrate to the region that offers them the highest indirect utility. For
simplicity, we consider that the flow of entrepreneurs to a region is proportional to the
difference between the region’s real wage and the weighted average real wage in the three
regions, and that it is also proportional to the stock of skilled workers in the region. In
this dynamical system, migration to empty regions has to be started exogenously.

Given that h1 + h2 + h3 = 1, the dynamics is constrained to the 2-simplex and can be
described by the following system of two ordinary differential equations:6




ḣi = (ωi − ω̄)hi
ḣj = (ωj − ω̄)hj

, hi, hj ∈ [0, 1] , i 6= j, i, j ∈ {1, 2, 3}, (18)

where ωi = wi/P
µ
i stands for the real wage in region i and ω̄ (h1, h2) = h1ω1 + h2ω2 + h3ω3

is the weighted average of real wages in the three regions. The dynamics for the remaining
region can be obtained from ḣk = −ḣi−ḣj or, equivalently, from ḣk = (ωk − ω̄)hk. Without
loss of generality, we set i = 1 and j = 2 when using coordinates in the 2-simplex.

On the boundary of the 2-simplex at least one of the regions is empty. The corresponding
differential equation for the dynamics is ḣi = 0 which, given the initial condition hi = 0,
means that the region remains empty. Hence, the boundary of the 2-simplex is invariant
for the dynamics.

Direct substitution in equations (18) shows that the configurations:

(h1, h2, h3) = (1, 0, 0) ,
(

1
3 ,

1
3 ,

1
3

)
,
(
0, 1

2 ,
1
2

)

and their permutations are equilibria. The equilibria represented by (1, 0, 0) and its permu-
tations correspond to full agglomeration of industry in one of the regions while the other
two remain empty. We call this outcome concentration or agglomeration. The second con-
figuration describes an even distribution of industry among the three regions. This we call
total dispersion. The last configuration represents an even distribution of industry between
only two of the three regions, while the third remains empty of industry. This is called
partial dispersion.

6 Note that, even though the model can be described using just any two coordinates, we sometimes use
all three coordinates to convey the full picture.

8



The description of the dynamics relies on the study of the stability of the aforementioned
equilibria. The equilibrium corresponding to total dispersion is fully symmetric, while
the other two are partially symmetric.7 The stability of each equilibrium is preserved
by permutation so that the same stability conditions hold for concentration or partial
dispersion in any of the regions. Equilibria are stable if, due to occurrence of some marginal
exogenous migration of skilled workers to any of the regions, the spatial distribution of
skilled workers is pulled back to the initial one.8

4.1 Stability of total dispersion

Since total dispersion is an interior configuration, its stability is given by the sign of the
real part of the eigenvalues of the Jacobian matrix of the system in (18) at (h1, h2, h3) =(

1
3 ,

1
3 ,

1
3

)
.

This matrix has a double real eigenvalue (see Appendix B), given by:

α ≡ ∂ω1

∂h1

(
1
3 ,

1
3

)
, (19)

and full dispersion is stable if it is negative. When this occurs, we may write

∂w1/∂h1

w1
<

∂P µ
1 /∂h1

P µ
1

,

and describe the stability of dispersion in terms of semi-elasticities.

Skilled workers remain equally dispersed across the three regions if a migration of skilled
workers to a region induces a percentage change in the nominal wage smaller than the
corresponding percentage change in the real prices. In this case, the loss in purchasing
power due to an increase of the share of skilled workers, hi, leads to an exodus of some
skilled workers from that region until the initial share of skilled workers is restored, that
is, until hi = 1

3 .

7 We can permute either the populated or unpopulated regions but not all of the three regions.
8 For configurations in the interior of the 2-simplex, stability depends on the sign of the real part

of the eigenvalues of the jacobian matrix for the dynamics. For configurations on the boundary, such
as concentration and partial dispersion, we need to look at the difference between the real wage of the
populated regions and the weighted average real wage in the three regions.
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Proposition 2. Total dispersion is a stable configuration if:9

φ < φb ≡
(σ − µ)(σ − µ− 1)

µ2 + σ(σ − 1) + 2µ(2σ − 1) . (20)

Note that φb < 1.

The proof is straightforward given that the eigenvalue of the Jacobian at full dispersion
is given by:

BP (φ) ≡ µ2(φ− 1) + (σ − 1)σ(φ− 1) + µ(−1 + 2σ)(1 + 2φ), (21)

which is a linear function of φ with positive coefficient.

As in the 2-region model, low transportation costs (high φ), discourage dispersion. Fol-
lowing Fujita et al. (1999), we call the critical value φb such that BP (φb) = 0 the break
point.

Note that if φb is negative, total dispersion is never a stable outcome. We rule out this
possibility throughout the paper by assuming that σ > µ + 1 (no black-hole condition).10

With φb > 0, there always exists a level of transportation costs above which dispersion is
stable (for any given values of µ and σ). On the other hand, the fact that φb < 1 means
that there always exists a level of transportation costs below which dispersion is unstable.

Observing that the derivative of BP with respect to µ is positive, we conclude that a
higher fraction of spending on manufacturing discourages total dispersion. In the extreme
case in which µ tends to zero, φb approaches unity. Therefore, dispersion becomes stable.

The effect of σ can be understood by noting that when σ tends to infinity, φb approaches
unity. This means that if the preference for variety is sufficiently low (high σ), dispersion
is stable.

9 For a necessary condition, replace “<” with “≤”.
10 The underlying economic interpretation is that if skilled workers have a very strong preference for

variety (σ < 1 + µ), agglomeration in a single region is always a stable equilibrium, independently of the
magnitude of transportation costs.
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4.2 Stability of agglomeration

The equilibrium of agglomeration (h1, h2, h3) = (1, 0, 0) is a corner solution placed on a
vertex of the 2-simplex. At this equilibrium, by symmetry, the real wages in regions 2 and
3 are the same. Given the absence of population in the other regions, the weighted average
real wage is simply ω̄ = h1ω1.

Lemma 3. Full agglomeration is a stable configuration if:11

ωj < ωi,

for all j such that hj = 0 and with hi = 1.

Proof. Without loss of generality, assume h2 = h3 = 0. Then ω̄ = ω1, that is, the weighted
average real wage is the same as the real wage in region 1. That ωj < ωi is sufficient follows
from the fact that skilled workers migrate to regions with higher real wages, together with
continuity of real wages with respect to spatial distribution. Thus, if an empty region, j,
has a lower real wage than region i, an exogenous migration of skilled workers from region
i to region j will be followed by their return to region i.

If regions 2 and 3 are to remain empty over time, then there can be no incentives for
skilled workers to migrate to other regions. That is, skilled workers’ indirect utility must
be higher in region 1 compared to the other regions:

w1

P µ
1
>
w2

P µ
2
⇔ w1

w2
>
(
P1

P2

)µ
⇔ w1

w2
> τ−µ ⇔ w1

w2
> φ

µ
σ−1 .

Note that τ−µ < 1 so that an easily checked sufficient condition for the stability of
concentration is that the nominal wages be higher in the industrial region. Naive inspection
of the above inequality also shows that as transport costs decrease (τ → 1) the sufficient
condition w1 > w2 becomes necessary, enhancing the stability of concentration.

Proposition 4. Full agglomeration is a stable equilibrium if:12

SP (φ) ≡ σ − µ+ (σ − µ)φ+ (σ + 2µ)φ2 − 3σφ1− µ
σ−1 < 0. (22)

11 For a necessary condition, replace “<” with “≤”.
12 For a necessary condition, replace “<” with “≤”.
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Observe that, since SP (φ) is a convex function and we have SP (0) > 0, SP (1) = 0 and
SP ′(1) > 0, the function SP (φ) has exactly one zero in φ ∈ (0, 1). This value, denoted
φs, is the 3-region FE model’s sustain point (name used by Fujita et al. (1999)), i.e., it is
the threshold of φ above which concentration is a stable equilibrium. Strong non-linearity
of SP (φ) means that we are not able to derive an analytical expression for the sustain
point φs. It is expected that, for a high enough “freeness of trade”, or, conversely, for low
enough transport costs, full agglomeration of industry in one of the regions will be stable.
This is because low transport costs imply that price indices become relatively higher in the
regions that are deserted and thus real wages become relatively lower. One can also verify
that as σ approaches infinity or as µ approaches zero, SP becomes positive.13 This means
that φs → 1. For a given φ ∈ (0, 1), concentration becomes unstable for a sufficiently high
σ or a sufficiently low µ. One limit case (µ → 0) refers to a situation of absence of the
manufacturing sector, because µ is the fraction of expenditure on manufactures. The other
(σ → +∞) corresponds to the manufacturing sector operating under perfect competition,
since σ close to infinity means that variety in good X is not valued at all, so it is as if X
were a homogenous good.

4.3 Stability of partial dispersion

Now we address the stability of a configuration in which all skilled workers are equally
dispersed between two of the three regions, leaving the remaining region empty. Without
loss of generality, we consider the point (h1, h2, h3) =

(
0, 1

2 ,
1
2

)
.

Proposition 5. Partial dispersion is unstable if:14





ξ ≡ ω1
(
0, 1

2

)
− ω2

(
0, 1

2

)
> 0

β ≡ ∂ω2

∂h2

(
0, 1

2

)
> 0.

Proof. See Appendix B.

From Proposition 5, we establish the conditions for stability of partial dispersion.

13 We have limµ→0 SP (φ) = σ(1−2φ+φ2) > 0 and limσ→∞ SP (φ) = limσ→∞ σ(1−2φ+φ2) > 0 = +∞.
14 For necessary conditions, replace “>” with “≥”.
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Proposition 6. Partial dispersion is unstable if:15





ξ > 0 ≡ σ + µ(−1 + φ)(1 + 2φ) + σφ
[
1 + 4φ− 3

(
2 φ

1+φ

) µ
1−σ (1 + φ)

]
> 0

β > 0 ≡ 3µ2(−1 + φ) + 2(−1 + σ)σ(−1 + φ) + µ(−2− 4φ+ σ(5 + 7φ)) > 0.
(23)

Consider the condition equivalent to β < 0. If we let φp be the single zero of the function
β (φ)16, then partial dispersion will be unstable if φp < φ < 1, where:

φp = (2σ − 2− 3µ)(σ − µ)
3µ2 + 2σ(σ − 1) + µ(7σ − 4) .

The previous Proposition gives us a sufficient condition for the instability of partial disper-
sion. Further inspection also shows that if 1+µ < σ ≤ 1+ 3

2µ, we have β(φ) > 0, rendering
partial dispersion unstable. However, we suspect that this configuration is unstable for
all parameter values. Numerical inspection of both conditions in (23) suggests that these
are never simultaneously met. We can argue that partial stability will certainly never be
a stable outcome if ξ (φp) > 0. However, because of the non-linearity in φ, this may be
impossible to prove analytically. Instead, we summarize several numerical results by means
of a graphical representation of the regions in (23) in parameter space (Figure 1).

0.0

0.5

1.0

Φ

0.0

0.5

1.0

Μ

2
4

6

8

10

Σ

Fig. 1: Depiction of the surfaces ξ < 0 and β < 0 in parameter space. They seem to never overlap each
other, indicating that the eigenvalues are never simultaneously negative.

15 For necessary conditions, replace “>” with “≥”.
16 The function β(φ) is linear in φ.

13



4.4 Bifurcations in the 3-region FE model

One important feature of symmetric 2-region CP models is the existence of a subcritical
pitchfork bifurcation.17 This kind of bifurcation is also present in the 3-region FE model.

There is an open subset in parameter space (φ, σ, µ) in which both concentration and
total dispersion are stable outcomes. For example, consider the point in parameter space
(φ, σ, µ) =

(
3
5 , 5,

2
5

)
.18 At this point, we have SP

(
3
5 , 5,

2
5

)
< 0 and BP

(
3
5 , 5,

2
5

)
< 0. There-

fore, for (φ, σ, µ) =
(

3
5 , 5,

2
5

)
, both concentration and total dispersion are stable equilibria.

Since SP and BP are continuous functions of (φ, σ, µ), we know the signs persist in a open
neighbourhood of

(
3
5 , 5,

2
5

)
.

Numerical inspection of the conditions of agglomeration and total dispersion in (21) and
(22) suggests that, for every pair (µ, σ), there always exists a φ ∈ (0, 1) for which both total
dispersion and agglomeration are stable equilibria. If this is true, then it must hold that
φs < φb, because agglomeration is only stable for φ > φs, while the region for stability of
total dispersion implies φ < φb. If it does hold, then we have hysteresis in location, because
transport costs have to rise above the corresponding break point in order for total dispersion
to be unstable, even if agglomeration is already stable (see Forslid and Ottaviano, 2003).
If both equilibria are to be simultaneously stable, we must have SP (φb) < 0, ∀µ, σ. Again,
this seems to be the case, however, nonlinearity of SP (φ) makes it impossible to fully assess
this. Figure 2 suggests that it is always possible to find a value of φ, for any pair of µ and
σ, such that both agglomeration and total dispersion are stable.

However, the region between the surfaces is very thin, and becomes thinner for a high σ
and/or low µ, thus making it harder to visualize simultaneity of concentration and total
dispersion. It also appears that the distance between φs and φb is bigger for parameter
values near the no black-hole condition.

Instead of building a three-dimensional bifurcation diagram, we adopt a similar approach
to Fujita et al. (1999, chap. 6), where the dynamics of an extension of the CP model to
three regions are portrayed inside the 2-simplex.

For the simulations that are presented, we have set σ = 5 and µ = 0.4. Figure 3 depicts
the migration dynamics for three different values of φ. On the picture to the left we have

17 This is also known as tomahawk bifurcation, though the latter designation might be more suitable to
name the corresponding bifurcation diagram, rather than the bifurcation itself.

18 This point was chosen by numerical inspection.
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Concentration and total dispersion - viewpoint II
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Fig. 2: We have the surfaces SP = 0 and BP = 0 in the parameter space (resp. top and bottom surfaces).
Concentration and total dispersion are both stable in between both surfaces, where we have SP <
0 ∩BP < 0.

high transport costs (φ = 0.5) and we can see that total dispersion is the only stable
equilibrium, as the vector field exhibits convergence to the middle point of the simplex.
The picture in the middle corresponds to a moderate level of transport costs (φ = 0.6),
whereby both concentration and total dispersion are stable equilibria. One can see that
the decrease in the transport costs gave rise to three new unstable equilibria between total
dispersion and the concentration configurations. These were not observed in our analysis
as the expressions are too complicated. Finally, when transport costs are low enough
(φ = 0.9), total dispersion is no longer stable and the only possible outcome is that of full
agglomeration of skilled workers in one of the three regions. This latter case is shown in
the picture to the right, where the convergence to either vertices of the simplex is obvious.

Fig. 3: The dynamics of the FE 3-region model. The pictures from the left to the right depict the change
in the stability of equilibria as transport costs fall.

Throughout the three cases described in Figure 3, partial dispersion is unsurprisingly
unstable. All these results corroborate those in Fujita et al. (1999, chap. 6).
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The parametrization used to portray the dynamics is a strategic choice to facilitate the
explanation of bifurcations in the 3-region FE model. However, given the numerical ev-
idence presented, it seems plausible that the dynamics implicit in the model will always
undergo a “subcritical pitchfork” bifurcation. This excludes, of course, the limit cases of σ
tending to infinity and µ, which rule out this possibility.

5 Comparison between the 3-region with the 2-region FE model

A reason to build a 3-region model in the first place is to be able to compare it with the
2-region model in order to draw conclusions on the implications of having more than two
regions in Core-Periphery theory. In Castro et al. (2012), it is proven that, in an extension
of Krugman’s CP model to three regions, more regions favour concentration as an outcome.
Here, we obtain the following analogous result.

Proposition 7. The parameter region for which concentration is stable in the 3-region FE
model contains that of the 2-region FE model.

Proof. See Appendix C.

In other words, the 3-region model favours concentration over the 2-region model. Figure
4 illustrates the previous proposition.

0.0
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Φ
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Σ

Fig. 4: The red surface illustrates the region in parameter space where SP2 < 0, while the blue surface
corresponds to SP3 < 0. Clearly, the blue surface contains the red one, hence concentration in the
3-region model is less restrictive than in the 2-region model.

The following result provides an explanation for why this happens.
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Proposition 8. Comparing agglomeration in the 3-region model with agglomeration in the
2-region model, we find that: (i) the ratio between price indices in the core and in the
periphery are the same; (ii) nominal wages in the core are the same; (iii) nominal wages
in the periphery are lower in the 3-region model than in the 2-region model.

Proof. See Appendix C.

In the 3-region model, an entrepreneur who migrates to the periphery will find the same
cost-of-living as in the 2-region model, but an internal market composed by only one third
of the unskilled workers (instead of one half). All the other entrepreneurs and the other
two thirds of the unskilled workers (instead of the other half) would constitute the external
market. Given the existence of transportation costs to the other regions, this enterpreneur
will face a lower global demand than in the 2-region model, and, therefore, will have a lower
nominal wage than in the 2-region model. This originates the fact that agglomeration is
more likely in the 3-region model.

Besides comparing the stability conditions of full agglomeration outcomes in the 2 and
3-region models, we are also able to compare the stability conditions of total dispersion
outcomes.

Proposition 9. The parameter region for which total dispersion is stable in the 2-region
model contains that of the 3-region model.

Proof. See Appendix C.

We conclude that the 3-region model indeed favours agglomeration over dispersion when
compared to the 2-region model by Forslid and Ottaviano (2003). Of course, total disper-
sion is always a stable outcome in both models when we are either approaching an economy
absent of industry or consumers give almost no value to variety in good X. This fits well
with intuition.

6 Conclusion

Building on the 2-region FE model by Forslid and Ottaviano (2003), we have obtained
both analytical and numerical results from a FE model with three regions. These results
corroborate those already obtained in previous works on 3-region Core-Periphery models.
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We have shown that the 3-region FE model favours concentration in comparison with the
2-region one. Furthermore, we have proved analytically that both concentration and full
dispersion can be simultaneously stable and provided numerical evidence in that, for every
pair (µ, σ), there exists φ ∈ (0, 1) where this is possible, though this outcome is very
unlikely. This means that, like the 2-region model, the 3-region FE model exhibits a core-
periphery pattern based on a “subcritical pitchfork” bifurcation. We have also concluded
numerically that the dispersion of skilled workers among two regions is not sustainable in
a model with three regions, where it corresponds to an outcome of partial dispersion.

All of these results are tantamount to those in the CP model with three regions in Cas-
tro et al. (2012), the difference being that, additionally, we were able to obtain explicit
solutions for skilled wages and obtain relations between the relevant endogenous variables
and the spatial distribution of skilled workers. Additionally, we proved that, when the
manufacturing sector becomes irrelevant or it approaches perfect competition, migration
decisions of skilled workers are the same in both the 2-region and the 3-region FE models.
This, as was previously shown, occurs because there is convergence to zero of the criti-
cal values of the transport costs, where the stability of agglomeration and full dispersion
changes. However, if this happens, concentration can never be a stable outcome, insofar
as transport costs cannot fall below zero, while full dispersion, on the contrary, will always
be a stable equilibrium.

Although the FE model is able to give us closed form solutions, the assumptions it makes
still do not allow enough simplification to fully assess analytically the dynamic properties
when its analysis is applied to three regions. Nonlinearity in transport costs concerning
its stability conditions still makes it impossible to analytically exclude the possibility that
skilled workers might equally disperse across two regions when there are three regions
available to migrate. Whereas the 2-region FE model is useful to address issues beyond
the explanation capability of the original CP model by Krugman (1991b), doubts remain
about whether it is suitable to tackle the more complex case of n regions, though such an
analysis would certainly be of interest.
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Appendix A

Proof of Proposition 1

After (12) and (13), we have the following linear system of equations:




w1

(
1− µ

σ

H1
R1

)
− w2

(
µ

σ

φH2
R2

)
− w3

(
µ

σ

φH3
R3

)
= µ

σ
L
3

(
1
R1

+ φ

R2
+ φ

R3

)

w1

(
−µ
σ

φH1
R1

)
+ w2

(
1− µ

σ

H2
R2

)
− w3

(
µ

σ

φH3
R3

)
= µ

σ
L
3

(
φ

R1
+ 1
R2

+ φ

R3

)

w1

(
−µ
σ

φH1
R1

)
− w2

(
µ

σ

φH2
R2

)
+ w3

(
1− µ

σ

φH3
R3

)
= µ

σ
L
3

(
φ

R1
+ φ

R2
+ 1
R3

)
.

This may be written in matrix form as AW = B, where A stands for the coefficients matrix,
W the vector of nominal wages wi, while B is the column vector of independent terms in
the right-hand side of the system of equations above. Applying Cramer’s Rule, the solution
to this system is of the following form:

wi = Dwi
D

,

where the denominator D stands for the determinant of matrix A and Dwi is the deter-
minant of the matrix obtained by replacing the i-th column of A by the column vector B.
Using this method, we only need to solve for a specific nominal wage, e.g., w1, and easily
deduce the remaining solutions applying an argument of symmetry. Finding an expression
for D first, we have:

D = 1− µ

σ

3∑

j=1

Hj

Rj
+ µ2

σ2
(
1− φ2)

(
H1H2
R1R2

+ H1H3
R1R3

+ H2H3
R2R3

)
− µ3

σ3
(
2φ3 − 3φ2 + 1

) 3∏

j=1

Hj

Rj
,

which is invariant under any distribution of skilled workers across the regions, since it is a
common denominator for every solution of the nominal wage wi.
The numerator Dw1, becomes:

Dw1 = µ

σ

L

3








3∑

j=1

φ1j
Rj


+ µ

σ

[
φ (φ− 1) H2 +H3

R2R3
+ φ2 − 1

R1

(
H2
R2

+ H3
R3

)]
+

+µ2

σ2
(
2φ3 − 3φ2 + 1

) H2H3
R1R2R3

}
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The expression for the nominal wage in region 1 is:

w1 =

µ

σ

L

3

{∑3
j=1

φ1j
Rj

+ µ

σ

[
φ (φ− 1) H2 +H3

R2R3
+ φ2 − 1

R1

(
H2
R2

+ H3
R3

)]
+ µ2

σ2

(
2φ3 − 3φ2 + 1

) H2H3
R1R2R3

}

1− µ

σ

∑3
j=1

Hj

Rj
+ µ2

σ2 (1− φ2)
(
H1H2
R1R2

+ H1H3
R1R3

+ H2H3
R2R3

)
− µ3

σ3 (2φ3 − 3φ2 + 1)
∏3
j=1

Hj

Rj

.

Under a given distribution of H, w1(H1, H2, H3) = w1(H1, H3, H2), which is a consequence
of the existing symmetry in region 2 and region 3, since there is nothing to distinguish
between the two regions. This means that the nominal wage in region i is invariant in the
distribution of skilled workers in the other two regions. Symmetry among the regions also
asserts that w1 (H1, H2, H3) = w2 (H2, H1, H3) = w3 (H3, H1, H2). Finally, the denominator
is invariant in the three regions. Thus, we can easily formulate the following general
expression for the nominal wages:

wi =

µ

σ

L

3


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φij
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Appendix B

As a prerequisite to Proposition 2, establishing the stability of total dispersion, we have
the following Lemma.

Lemma 10. At
(

1
3 ,

1
3 ,

1
3

)
we have ∂ωi

∂hj
= 0, ∀i, j 6= i.

Proof. Assume, by way of contradiction, that ∂ω1
∂h2

(
1
3 ,

1
3

)
> 0. It must follow that, for a

small ε > 0, ω1
(

1
3 ,

1
3 + ε, 1

3 − ε
)
> ω1

(
1
3 ,

1
3 ,

1
3

)
> ω1

(
1
3 ,

1
3 − ε, 1

3 + ε
)
.

However, the real wage in one region is invariant by the permutation of the share of skilled
workers in the other two regions. Therefore, ω1

(
1
3 ,

1
3 + ε, 1

3 − ε
)

= ω1
(

1
3 ,

1
3 − ε, 1

3 + ε
)
.

But saying that ω1
(

1
3 ,

1
3 − ε, 1

3 + ε
)
> ω1

(
1
3 ,

1
3 ,

1
3

)
is a contradiction. Hence, ∂ω1

∂h2

(
1
3 ,

1
3

)
=

0.

Symmetry establishes an analogous result for ∂ω2
∂h1

.
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This is enough to establish that the Jacobian at total dispersion is a diagonal matrix.
The values in the diagonal are equal because of the symmetry of the model.

The following result simplifies the calculation of the diagonal elements of the Jacobian.

Lemma 11. The weighted real wage average ω̄ attains a critical value when skilled workers
are equally dispersed across regions.

Proof. By lemma 12, we can conclude that both ∂ω̄
∂h1

(
1
3 ,

1
3

)
and ∂ω̄

∂h2

(
1
3 ,

1
3

)
are zero, since

h1 = 1−h2
2 and also h2 = 1−h1

2 . Because both partial derivatives are equal to zero, it means
that the real wage average is at a critical value at total dispersion.

The following result concerns partial dispersion and is an auxiliary result for total dis-
persion.

Lemma 12. Configurations of the form hj = 1−hi
2 , with 0 ≤ hi ≤ 1, satisfy ∂ω̄

∂hj
= 0.

Proof. We are looking at configurations of the form (b, a, a) where a = (1 − b)/2 and
b ∈ [0, 1]. Note that if b = 1/3 we have full dispersion. Assume, without loss of generality,
that i = 2. Suppose ∂ω̄

∂h2
(b, a, a) 6= 0. Assume it is positive. Then

ω̄(b, a+ ε, a− ε) > ω̄(b, a, a).

But, ω̄ is invariant by the permutation that interchanges identically populated regions and
therefore

ω̄(b, a− ε, a+ ε) > ω̄(b, a, a)

indicating that ∂ω̄

∂h2
< 0, which contradicts the assumption and finishes the proof.

Proof of Proposition 5

First, since h1 = 0, by similar arguments as those in the proof of Lemma 3, we have the
following necessary condition:

ω1 < ω2.

Second, we need to ensure not only that h1 will remain zero but also that both h2 and h3

will remain at 1
2 . If any of the skilled workers migrates, e.g. to region 2, we need them to
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want to return to region 3 (symmetry implies the same in the opposite direction). This is
achieved when an increase in h2 leads to a decrease in the difference between the real wage
ω2 and the real wage average ω̄:

∂∆ω2
∂h2

= ∂ω2
∂h2

(
0, 1

2

)
− ∂ω̄

∂h2

(
0, 1

2

)
< 0.

However, since we have h2 = 1−h1
2 at

(
0, 1

2

)
, proposition 12 asserts that ∂ω̄

∂h2

(
0, 1

2

)
= 0. �

Appendix C

Proof of Proposition 7

In the 2-region model by Forslid and Ottaviano (2003), concentration is a stable outcome
if:

1− µ

σ
+
(

1 + µ

σ

)
φ2 − 2φ

µ
1−σ+1 ≤ 0. (24)

The difference between the left-hand sides (LHS) in (24) and (22) is given by:

µ

σ
φ(1− φ) + φ

(
φ

µ
1−σ − 1

)
, (25)

which is always positive. Thus, if concentration is stable in the FE model with two regions,
then it is also stable in the model with three regions. �

Proof of Proposition 8

In our 3-region model, when h1 = 1:

P µ
1
P µ

2
= φ

µ
σ−1 ,

w1 = µL

(σ − µ)H ,

w2 = w3 = µL

σH

[(
µ

σ − µ + 1
3

)
φ+ 1

3 + 1
3φ

]
.
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While, in the 2-region model of Forslid and Ottaviano (2003), when h1 = 1:

P µ
1
P µ

2
= φ

µ
σ−1 ,

w1 = µL

(σ − µ)H ,

w2 = w3 = µL

σH

[(
µ

σ − µ + 1
2

)
φ+ 1

2φ

]
.

We conclude the proof by observing that 1
2φ

2 + 1
2φ >

1
3φ

2 + 1
3φ+ 1

3 . �

Proof of Proposition 9

In the article by Forslid and Ottaviano (2003), the authors determined the break-point
value φb,2 for the model with two regions which is presented as follows:

φb,2 = φw
σ − 1− µ
σ − 1 + µ

,

where
φw ∈ (0, 1) = σ − µ

σ + µ

is a threshold value of φ above (below) which the region with more skilled workers offers a
higher (lower) skilled worker wage wi. Subtracting the 3-region break-point in (20) to this
one yields:

DBP = φb,2 − φb = µ(µ− σ)(1 + µ− σ)(−1 + 2σ)
(−1 + µ+ σ)(µ+ σ) (µ2 + (−1 + σ)σ + µ(−2 + 4σ)) .

The denominator is clearly positive and, provided that the “no-black-hole” condition
holds, the numerator is also positive. Hence, DBP > 0, ∀µ, σ. This means that the crit-
ical value φb is lower in the 3-region model compared to the 2-region model. Therefore,
dispersion is a more likely outcome in the model with two regions. �
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