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Henriques-Coelho, Tiago, Jorge Correia-Pinto, Roberto Ron-
con-Albuquerque, Jr., Maria J. Baptista, André P. Lourenco,
Silvia Marta Oliveira, Ana Brandao-Nogueira, Anténia Teles,
José M. Fortunato, and Adelino F. Leite-Moreira. Endogenous
production of ghrelin and beneficial effects of its exogenous admin-
istration in monocrotaline-induced pulmonary hypertension. Am J
Physiol Heart Circ Physiol 287: H2885-H2890, 2004; doi:10.1152/
ajpheart.01122.2003.—We investigated the endogenous production of
ghrelin as well as cardiac and pulmonary vascular effects of its
administration in a rat model of monocrotaline (MCT)-induced pul-
monary hypertension (PH). Adult Wistar rats randomly received a
subcutaneous injection of MCT (60 mg/kg) or an equal volume of
vehicle. One week later, animals were randomly assigned to receive a
subcutaneous injection of ghrelin (100 pg/kg bid for 2 wk) or saline.
Four groups were analyzed: normal rats treated with ghrelin (n = 7),
normal rats injected with saline (n = 7), MCT rats treated with ghrelin
(n = 9), and MCT rats injected with saline (n = 9). At 22-25 days,
right (RV) and left ventricular (LV) pressures were measured, heart
and lungs were weighted, and samples were collected for histological
and molecular analysis. Endogenous production of ghrelin was almost
abolished in normal rats treated with ghrelin. In MCT-treated animals,
pulmonary expression of ghrelin was preserved, and RV myocardial
expression was increased more than 20 times. In these animals,
exogenous administration of ghrelin attenuated PH, RV hypertrophy,
wall thickening of peripheral pulmonary arteries, and RV diastolic
disturbances and ameliorated LV dysfunction, without affecting its
endogenous production. In conclusion, decreased tissular expression
of ghrelin in healthy animals but not in PH animals suggests a
negative feedback in the former that is lost in the latter. A selective
increase of ghrelin mRNA levels in the RV of animals with PH might
indicate distinct regulation of its cardiac expression. Finally, ghrelin
administration attenuated MCT-induced PH, pulmonary vascular re-
modeling, and RV hypertrophy, indicating that it may modulate PH.

myocardial hypertrophy; ventricular hemodymamics; pulmonary vas-
culature

PULMONARY HYPERTENSION (PH) is a progressive disease associ-
ated with right ventricular (RV) hypertrophy that commonly
progresses to heart failure. Endothelin (ET)-1 and several other
neurohumoral agents play a central role in the complex patho-
physiology of PH (11, 28) and are used as therapeutic targets
for this entity. For instance, several authors observed that ET-1
antagonism decreases PH, restores endothelial metabolic func-
tion, inhibits RV hypertrophy, and improves survival both in
experimental (5, 19, 26) and clinical (27) settings.

Ghrelin (Ghr) is an endogenous ligand for the growth hor-
mone (GH) secretagogue receptor (GHSR), originally isolated

from the rat stomach (17). Acting on hypothalamopituitary
GHSR type la, Ghr induces a potent release of GH. Various
experimental studies have shown that the GH/insulin growth
factor (IGF)-1 axis improves cardiac function both in normal
and failing hearts (6, 8, 38), although human trials revealed
contradictory results about the value of GH in heart failure
therapy (9, 12, 31).

However, Ghr is much more than an endogenous GH secre-
tagogue and has important direct cardiovascular effects. Ghr
administration reduces cardiac afterload and increases cardiac
output without increasing heart rate in both normal subjects
and patients with dilated cardiomyopathy (20, 21). In addition,
Ghr has potent vasodilator properties that are endothelium and
GH independent (23, 37). The Ghr-GHSR signaling pathway
is, therefore, presumably involved in the regulation of vascular
tone (21, 37). There is increasing evidence supporting the
hypothesis that cardiovascular effects of Ghr are mediated by
multiple receptors, some of them still to be identified (2, 3).

The present study investigated the production of Ghr in the
stomach, lung, and RV of normal rats and rats with monocro-
taline (MCT)-induced pulmonary hypertension as well as the
effects of its chronic administration in both groups. Our hy-
pothesis was that Ghr production could be altered in PH and
that its administration might have beneficial effects by improv-
ing cardiac and/or pulmonary vascular structure and function.

METHODS

Experimental Design

Animal experiments were performed according to the Portuguese
law for animal welfare and conform to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals (NIH Pub.
No. 85-23, Revised 1996). Adult male Wistar rats (Charles River
Laboratories; Barcelona, Spain) weighing 180200 g were housed in
groups of 5 rats/cage in a controlled environment under a 12:12-h
light-dark cycle at a room temperature of 22°C, with a free supply of
food and water. Rats randomly received a subcutaneous injection of
MCT (60 mg/kg body wt, Sigma; Barcelona, Spain) or an equal
volume of vehicle (1 ml/kg body wt). One week later, animals were
randomly assigned to receive a subcutaneous injection of Ghr (100
png/kg bid for 2 wk) or saline. The first five residues of Ghr with the
large hydrophobic group on the Ser® side chain are sufficient to
maintain the activity of endogenous Ghr (4). An active fragment of
Ghr was obtained from Peptides (PGH-3628-PI, human, rat, 1-5),
with a functional assay activation at 10 nM, relative to Ghr of 96 *=
7%. This protocol resulted in four groups: normal rats treated with
Ghr (sham-Ghr, n = 7), normal rats injected with saline (sham, n =
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7), MCT-treated rats treated with Ghr (MCT-Ghr, n = 9), and
MCT-treated rats injected with saline (MCT, n = 9).

Survival Studies

Analysis of survival rates was performed with another protocol,
where two doses of MCT (50 or 60 mg/kg sc) and two doses of Ghr
(100 or 200 pg/kg bid sc) were used. Ghr or saline was injected after
day 7 after MCT or vehicle injection. This resulted in nine different
groups: /) sham (n = 10; no MCT, no Ghr); 2) sham-Ghro (n = 10;
no MCT, 100 pg/kg Ghr); 3) sham-Ghrago (n = 10; no MCT, 200
ng/kg Ghr); 4) MCTso (n = 20; 50 mg/kg MCT, no Ghr); 5)
MCTso-Ghryoo (n = 20; 50 mg/kg MCT, 100 wg/kg Ghr); 6) MCTso-
Ghrgo (n = 20; 50 mg/kg MCT, 200 pg/kg Ghr); 7) MCTeo (n = 20;
60 mg/kg MCT, no Ghr); 8) MCTeo-Ghrioo (2 = 20; 60 mg/kg MCT,
100 pg/kg Ghr); and 9) MCTeo-Ghrago (n = 20; 60 mg/kg MCT, 200
ng/kg Ghr).

Hemodynamic Studies

The animals were anesthetized with pentobarbital (6 mg/100 g ip),
placed over a heating pad, and tracheostomized for mechanical ven-
tilation with room air (model 683 Harvard Small Animal Ventilator).
Anesthesia was maintained with an additional bolus of pentobarbital
(2 mg/100 g) as needed. Under binocular surgical microscopy (Wild
M651.MS-D, Leica; Herbrugg, Switzerland), the right jugular vein
was cannulated for fluid administration (prewarmed 0.9% NaCl solu-
tion) to compensate for perioperative fluid losses. The heart was
exposed through a median sternotomy, and the pericardium was
widely opened. RV and left ventricular (LV) pressures were measured
with a 2-Fr high-fidelity micromanometer (SPR-324, Millar Instru-
ments) inserted into the RV and LV cavities, respectively. After
complete instrumentation, the animal preparation was allowed to
stabilize for 15 min. Hemodynamic recordings were made with
respiration suspended at end expiration. Parameters were converted
on-line to digital data with a sampling frequency of 1,000 Hz. RV and
LV pressures were measured at end diastole and peak systole. Peak
rates of RV and LV pressure rise (dP/dfmax) and pressure fall (dP/
dtmin) were measured as well. The relaxation rate was estimated with
the time constant T by fitting the isovolumetric pressure fall to a
monoexponential function.

Morphometric Analysis

Once collection of hemodynamic data was completed, cardiac
arrest was induced by the injection of 7.5% KCI through the central
venous catheter. The heart, lungs, and right gastrocnemius muscle
were excised and weighed. The right tibia was also excised and
measured using a millimetric ruler. Under binocular magnification
(X3.5), the RV free wall was dissected from the LV and weighed
separately. Heart, lung, RV, and LV + septal (LV + S) weights were
normalized to body weight, whereas gastrocnemius weight was nor-
malized to tibial length. RV weight was, in addition, normalized to
that of LV + S.

Table 1. Effects of Ghr on somatic and cardiac growth

GHRELIN IN PULMONARY HYPERTENSION

RV and right lung samples were immersion fixed in 10% buffered
formalin and embedded in paraffin. Sections 7 pm thick were cut and
stained with hematoxylin and eosin.

RV free wall specimens were obtained from each heart at midway
between the apex and base. Studied samples were photographed with
a digital camera, and the muscle fiber area was measured, in each
section, using a digital image analyzer (Olympus DP Software version
3.0). These measurements were made directly at X400 magnification
only in muscle fibers whose cross section included a nuclear profile
(7). Five sections per sample were photographed, and the area of 10
muscle fibers was measured. The area of the 50 analyzed muscle
fibers/sample was then averaged.

Pulmonary specimens of each animal were collected from the
lower segments of the upper right lobe. External diameter and medial
wall thickness in muscular arteries (12 arteries/lung) were analyzed at
X400 magnification. Orthogonal intercepts were used to generate 8
random measurements of external diameter of the vessels (distance
between the external lamina) and 16 random measurements of medial
thickness of the vessels (distance between the internal and external
lamina). For each artery, medial hypertrophy was expressed as fol-
lows: %wall thickness = [(medial thickness X 2)/(external diame-
ter)] X 100.

mRNA Quantification by Real-Time RT-PCR

Samples were collected from the RV free wall, lung parenquima,
and gastric fundus. Total mRNA was extracted through the guani-
dinium-thiocyanate selective silica-gel membrane-binding method
(Qiagen 74124) according to the manufacturer’s instructions. Concen-
tration and purity were assayed by spectrophotometry (Eppendorf
6131000.012).

Two-step real-time RT-PCR was used to perform relative quanti-
fication of mRNA. For each studied mRNA molecule, standard curves
were generated from the correlation between the amount of starting
total mRNA and the PCR threshold cycle (second derivative maxi-
mum method) of graded dilutions from a randomly selected tissue
sample (IGF-1: r = 0.994; GAPDH: r = 0.993; Ghr: r = 0.990). For
relative quantification of specific mRNA levels, 50 ng of total mRNA
from each sample underwent two-step real-time RT-PCR. A melt
curve analysis of each real-time PCR and 2% agarose gels (0.5 mg/ml
ethidium bromide) was run to exclude primer-dimer formation and
assess the purity of the amplification product. Experiments were run
in triplicate with a PCR intra-assay variability of 18.4% and a
RT-PCR interassay variability of 21.6%. The GAPDH mRNA
level was similar in all groups and was used as an internal control
gene. Results of mRNA quantification are expressed in an arbitrary
unit (AU) set as the average value of the sham group (sham =
1 AU).

RT (10 min at 22°C, 50 min at 50°C, and 10 min at 95°C) was
performed in a standard thermocycler (Whatman Biometra 050-901)
with a total volume of 20 ml: 40 U/reaction of reverse transcriptase
(Invitrogen 18064-014), 20 U/reaction of RNase inhibitor (Promega

Sham Sham-Ghr MCT MCT-Ghr
Body weight, g 269+6 273%3 251+9 263*7
Heart weight/body weight, g/kg 3.03+0.06 2.70+0.07 4.10£0.12* 345+0.12%7%
RV weight/body weight, g/kg 0.38+0.02 0.42+0.03 1.18+0.07* 0.74£0.08*F%§
LV + S weight/body weight, g/kg 1.76+0.05 1.83+0.05 2.01+0.05 1.90%+0.06
RV/LV + S, g/g 0.21+0.01 0.23+0.01 0.58+0.03* 0.39£0.03*F%§
Lung weight/body weight, g/kg 4.60+0.15 3.85+0.14 9.69+0.76* 7.02+0.55%1%
Gastrocnemius muscle weight/tibial length, mg/mm 36.1+1.8 43.2+0.8% 342+1.1 36.6+0.97§

Data are means = SE. RV, right ventricle; LV + S, left ventricle plus septum; Ghr, ghrelin; MCT, monocrotaline. *P < 0.05 vs. sham; {P < 0.05 vs.

sham-Ghr; £P < 0.05 vs. MCT, §significant interaction.
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Table 2. Effects of Ghr on hemodynamic parameters
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Sham Sham-Ghr MCT MCT-Ghr
RV
RVPax, mmHg 24.6+1.8 20.4*1.0 49.1£1.6* 36.4+1.8%7%§
RVEDP, mmHg 1.3+0.3 1.60.2 3.0+0.3* 1.720.2*%%§
dP/dtmax, mmHg/s 1,227+80 1,139+185 1,602+91%* 1,692+ 113*7
dP/dtmin, mmHg/s —865+126 —721*+49 —1,087+52 — 1,627+ 141*%F%§
T, Ms 7*1 111 28+2% 17£2%%§
LV
LVPmax, mmHg 99.4+49 109.7x2.1 67.4+3.5% 85.04.2%%
LVEDP, mmHg 2.1+0.6 2.60.6 2.3*+0.3 1.8%0.3
dP/dtmax, mmHg/s 5,624+631 7,297*351* 3,442+325% 5,510£6047%
dP/dtmin, mmHg/s —4,277+495 —4,203+280 —2,340*+214%* —4,019+442%§
T, Ms 18%1 14*+1 22+1 16£2%

Data are means *= SE. RVPp.« and LVPnax, RV and LV peak systolic pressures, respectively; RVEDP and LVEDP, RV and LV end-diastolic pressures,
respectively; dP/dfmax and dP/dtmin, peak rates of ventricular pressure rise and fall, respectively; T, time constant. *P < 0.05 vs. sham; 7P < 0.05 vs. sham-Ghr;

£P < 0.05 vs. MCT; §significant interaction.

N2515), 30 ng/ml random primers (Invitrogen 48190-011), 0.5 mM
nucleotide mix (MBI Fermentas R0192), 1.9 mM MgCl,, and 10 mM
DTT. Ten percent of the cDNA yield was used as a template for
real-time PCR (Corbett-Research Rotor-Gene 2000) using SYBR
green (Qiagen 204143) according to the manufacturer’s instructions.
Specific PCR primer pairs for the studied genes were as follows:
GAPDH, forward 5'-CCG CCT GCT TCA CCA CCT TCT-3" and
reverse 5'-TGG CCT TCC GTG TTC CTAS CCC-3’; Ghr, forward
5'-AGG CCA TGG TGT CTT CA-3' and reverse 5'-TTT CTC TGC
TGG GCT TTC T-3'; and IGF-1, forward 5'-AGT CTT GGG CAT
GTC AGT GTG-3' and reverse 5'-CAG ACG GGC ATT GTG
GAT-3'".

Statistical Analysis

Statistical analysis was performed using SPSS 12.0 software.

Group data are presented as means = SE and were compared
using two-way ANOVA. When the normality test failed, the
two-way ANOVA was preceded by a logarithmic transform to
obtain a normal distribution. When treatments were significantly
different, the Student-Newman-Keuls test was selected to perform
pairwise multiple comparisons. Because the study was dominated
by early deaths, survival rates were compared not only by the
log-rank test but also by the Breslow-Gehan test. Statistical sig-
nificance was set at P < 0.05.

RESULTS
Somatic and Cardiac Growth

Data related to somatic and cardiac growth are summarized
in Table 1. Compared with the sham groups, heart and lung
weights were significantly increased in the MCT group. Heart
weight augmentation was mainly due to RV growth. Treatment
with Ghr attenuated the effects of MCT on cardiac and lung
weights, whereas in sham animals it only increased the gas-
trocnemius weight-to-tibial length ratio. Interaction analysis
revealed that effects of Ghr on RV and gastrocnemius weights
were significantly different in sham and MCT rats.

RV and LV Hemodynamics

Hemodynamic data are summarized in Table 2. Peak sys-
tolic RV pressure (RVPnmax), which was used to estimate PH,
was significantly increased in the MCT group. Treatment with
Ghr markedly attenuated this effect. MCT treatment also sig-
nificantly increased RV dP/dfyax, T, and end-diastolic filling
pressures. Ghr attenuated MCT effects on RV dP/dt,x, T, and
filling pressures, but not on dP/dz,.x. No effects of Ghr on RV
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Fig. 1. Mean right ventricular cardiomyocyte cross-sectional area (left) and mean vessel wall thickness of smaller (25-50 wm;
middle) and larger (50—100 wm; right) peripheral pulmonary arteries in sham- and monocrotaline (MCT)-treated animals treated
with saline (open bars) or ghrelin (Ghr; solid bars). *P < 0.05 vs. sham; PP < 0.05 vs. sham-Ghr; YP < 0.05 vs. MCT; *interaction.
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Fig. 2. Right ventricular (left), pulmonary (middle), and gastric (right) mRNA Ghr levels expressed in arbitrary units normalized
for GAPDH in sham- and MCT-treated animals treated with saline (open bars) or Ghr (solid bars). *P < 0.05 vs. sham; PP < 0.05

vs. sham-Ghr; YP < 0.05 vs. MCT; *interaction.

hemodynamics of sham animals were detected. Effects of Ghr
on RV hemodynamics were, therefore, significantly differ-
ent in sham and MCT animals, as confirmed by interaction
analysis.

With regard to the LV, the MCT group presented, compared
with the sham group, lower systolic pressures and smaller
dP/dty.x and dP/dfn;,. Treatment with Ghr blunted all these
effects. LV filling pressures and T were not significantly altered
by MCT, but the latter significantly decreased in the animals
treated with Ghr. In sham animals, the only significant effect of
Ghr was an increase of dP/dfyax.

Morphometric Analysis

RV chronic pressure overload secondary to PH in the MCT
group resulted in RV hypertrophy, which was attenuated by
Ghr, as expressed by RV/LV + S and RV myocyte cross-
sectional area (Table 1 and Fig. 1).

Pulmonary vessels showed a significant hypertrophy of the
media in the MCT group, which was significantly reduced by
Ghr, as illustrated in Fig. 1. This was true both for larger and
smaller peripheral arteries.

In sham animals, no significant effects of Ghr on those
parameters were detected. Interaction analysis confirmed that
effects of Ghr on such parameters were significantly different
in sham and MCT animals.

Real-time RT-PCR Analysis

Expression of Ghr. The expression of Ghr is shown in Fig.
2. We detected expression of Ghr mRNA in the RV, lung, and
gastric fundus of sham animals, but this expression was almost
abolished by Ghr treatment. MCT treatment increased the
expression of Ghr more than 20-fold in the RV but did not
significantly alter it in the lung and gastric fundus. In contrast
to sham animals, Ghr administration did not significantly alter
expression of its mRNA in MCT-treated rats, although inter-
action analysis revealed significant differences in the lung.

AJP-Heart Circ Physiol « VOL 287

Expression of IGF-1. The expression of IGF-1 is shown in
Fig. 3. Ghr treatment significantly increased IGF-1 mRNA
levels in the lung but not in the RV of sham animals. MCT
treatment increased IGF-1 mRNA levels both in the RV and
lung. In PH, Ghr administration normalized RV, but not
pulmonary, IGF-1 mRNA expression. Interaction analysis con-
firmed that Ghr distinctly affects IGF-1 mRNA expression in
sham and MCT animals in both the RV and lung.

Survival Analysis

At the end of the third week, there was a trend for Ghr to
dose dependently increase the survival of MCT-injected rats:
MCTSO 70%, MCTso-Ghrloo 80%, MCT50-G1’11‘200 90%,
MCT60 45%, MCTﬁo—GhI‘]oo 55%, and MCTﬁo—Ghrzo() 60%.
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Fig. 3. Right ventricular (left) and pulmonary (right) mRNA IGF-1 levels
expressed in arbitrary units normalized for GAPDH in sham- and MCT-treated
animals treated with saline (open bars) or Ghr (solid bars). *P < 0.05 vs. sham;
Bp < 0.05 vs. sham-Ghr; YP < 0.05 vs. MCT; *interaction.
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This tendency disappeared, however, at the end of study (day
35), with no significant differences in survival, which averaged
9 + 2% in all MCT-treated animals. All sham animals were
alive at the end of day 35.

DISCUSSION

In the present study, we documented endogenous production
of Ghr in the RV, lung, and gastric fundus, which is consistent
with previous reports showing production of Ghr in these
organs (14, 17, 25). Such production was inhibited by exoge-
nous administration of Ghr in healthy animals, suggesting that
systemic levels of Ghr might regulate its local production. No
deleterious effects were detected as a result of this suppression:
these animals had no mortality and cardiac function was
normal.

Interestingly, such an ability of systemic Ghr to regulate its
local production was apparently lost in PH. Furthermore, in
PH, expression of Ghr was markedly increased in the RV but
not in the lung and gastric fundus, which might indicate a
distinct regulation of its cardiac expression. Given the well-
known vasodilating properties of Ghr (21, 37), one might
wonder if its increased production in PH is not a compensatory
response of the RV to increased afterload, to produce a vaso-
dilator substance that could reach the hypertensive lung and
locally modify the excess production of vasoconstrictors.

Most actions of Ghr have been explained by stimulation of
specific receptors (GHSR-1a), which are responsible not only
for its direct effects (e.g., vasodilatation) but also for the
indirect effects secondary to GH release (16, 17, 24). In the
present study, we demonstrated that Ghr administration de-
creased pulmonary hypertension and attenuated RV hypertro-
phy. Rather disappointing, however, were the modest effects of
Ghr on animal survival. In fact, given the impressive effects of
Ghr on myocardial and pulmonary vascular remodeling, im-
proved survival was marginal compared with other vasodilat-
ing drugs (5, 22, 26, 29), which often have less important
pulmonary and cardiac effects.

Potential explanations for the beneficial effects of Ghr in-
clude actions both at pulmonary and cardiac levels.

At the pulmonary level, Ghr seems to have a determinant
role in fetal lung development (35), whereas the adult human
lung is a major source of Ghr mRNA gene expression (13).
Additionally, GH segretagogue-binding sites have been dem-
onstrated in the adult lung parenchyma and pulmonary artery
wall (16, 24). Taking together these evidences with our results,
it seems reasonable to propose that Ghr may modulate PH. The
mechanisms for such role include pulmonary vasodilatation
and vascular remodeling. Shimizu et al. (30) demonstrated that
Ghr improves endothelial dysfunction and increases endothe-
lial nitric oxide synthase expression through a GH-independent
mechanism. Because MCT induces endothelial dysfunction,
the beneficial effects of Ghr in the lung, as observed in our
study, could be due to improvement of pulmonary endothelial
function. On the other hand, the Ghr-GHSR signaling pathway
can revert ET-1-induced vasoconstriction by mechanisms that
act by GH/IGF-1 and endothelium-independent pathways (21,
37). It should be emphasized that ET-1 is increased in PH and
seems to be largely involved in MCT-induced PH (10). With
regard to pulmonary vascular remodeling, the present study
showed that the medial area in peripheral pulmonary arteries

AJP-Heart Circ Physiol « VOL 287
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was significantly reduced by Ghr, indicating that attenuation of
PH is, at least partially, mediated by this mechanism. This
mechanism could also contribute to the effects of Ghr at the
pulmonary level.

At the cardiac level, Ghr improved RV and LV hemody-
namic, morphological, and molecular parameters. Such im-
provement might be due either to decreased RV overload or to
myocardial actions of Ghr. Decreased RV overload will pri-
marily favor recovery of RV function and structure. With
regard to the LV, previous studies also showed that chronic
administration of Ghr was able to improve LV dysfunction and
to attenuate the development of LV remodeling and cardiac
cachexia in rats with heart failure (23).

With regard to the potential role of the GH/IGFI axis,
cardiac production of IGF-1 is increased in RV volume over-
load and seems to be related with systolic wall stress (15).
Additionally, activation of the GH/IGF-1 axis increased myo-
cardial contractility, decreased peripheral vascular resistance
(1, 6, 8, 32, 38), promoted physiological myocardial hypertro-
phy (34), and upregulated sarco(endo)plasmic reticulum Ca’"-
ATPase 2a (33) in heart failure. In the present study, RV IGF-1
mRNA levels were increased in the MCT group, which might
suggest a local increase, dependent of RV overload. Interest-
ingly, treatment with Ghr decreased PH and RV local IGF-1
mRNA levels, which further reinforces a potential load-depen-
dent regulation of cardiac IGF-1 expression. In the lung, IGF-1
levels were increased by Ghr in sham animals and were
similarly elevated in PH. However, in PH, IGF-1 levels were
not significantly altered by Ghr, indicating that one cannot
explain the observed effects of exogenous Ghr at the pulmo-
nary level by changes in IGF-1 expression.

Limitations of This Study

Although PH induced by MCT has no equivalent in humans,
there are some similarities between this model and some forms
of human PH. MCT treatment results in endothelial dysfunc-
tion, medial thickness increasing, peripheral artery loss, pul-
monary vasculature resistance elevation, and RV hypertrophy
that mirror human PH (18, 36).
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