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Abstract

This work concerns the problem of rank estimation in semidefinite matrices, having either
indefinite or semidefinite matrix estimator satisfying a typical asymptotic normality condition.
Several rank tests are examined, based on either available rank tests or basic new results. A number
of related issues are discussed such as the choice of matrix estimators and rank tests based on finer
assumptions than those of asymptotic normality of matrix estimators. Several examples where
rank estimation in semidefinite matrices is of interest are studied and serve as guide throughout
the work.
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1 Introduction

Testing for and estimation of the rank rk{M} of an unknown, real-valued matrix M is an important
and well-studied problem in Econometrics and Statistics. A number of rank tests have been proposed
including the LDU (Lower-Diagonal-Upper triangular decomposition) test of Gill and Lewbel (1992)
and Cragg and Donald (1996), the Minimum Chi-Squared (MINCHI2) test of Cragg and Donald
(1997), the SVD (Singular Value Decomposition) tests in Ratsimalahelo (2002, 2003) and Kleibergen
and Paap (2006), and the characteristic root test of Robin and Smith (2000). The problem of rank
estimation is reviewed in Camba-Méndez and Kapetanios (2005b, 2008) where several applications (for
example, IV modeling, demand systems, cointegration) are also discussed.

A starting assumption in all tests above is having an asymptotically normal estimator M̂ of M in
the sense that

√
N(vec(M̂)− vec(M))

d→ N (0,W ), (1.1)
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where N is the sample size or any other relevant parameter such that N → ∞, →d denotes convergence
in distribution and vec is a standard matrix operation. The actual testing is for H0 : rk{M} ≤ r (or
H0 : rk{M} = r) against H1 : rk{M} ≥ r, and rk{M} itself is estimated by a number of available
methods, for example, sequential testing. The limiting covariance matrix W in (1.1) is often assumed
to be nonsingular, though some departures from this assumption are also present in, for example,
Robin and Smith (2000), Camba-Méndez and Kapetanios (2005b, 2008).

In this work, we are interested in testing for the rank of a p× p matrix M when the matrix M is
(for example, positive) semidefinite. Since M is symmetric, we shall focus on symmetric estimators

M̂ . In this case, it is convenient to write (1.1) as

√
N(vech(M̂)− vech(M))

d→ N (0,W0), (1.2)

where vech is a standard matrix operation on symmetric matrices. Two different cases need to be
distinguished regarding (1.2), namely those of:

Case 1 : indefinite matrix estimators M̂,

Case 2 : (semi)definite matrix estimators M̂. (1.3)

In Case 1, one may still often assume that (1.2) holds with nonsingular matrix W0. This is the case
considered in Donald, Fortuna and Pipiras (2007). In Case 2, under rank deficiency for M , the matrix
W0 in (1.2) is necessarily singular (see Proposition 2.1 in Donald et al. (2007)). We focus in this paper
on Case 2. Though it seems separate from Case 1, the two cases are, in fact, related, for example, in
flexibility of choosing indefinite or semidefinite matrix estimator (Sections 8).

In addition to general interest in the problem, we were also motivated by the following. We
were interested in understanding several cases of rank estimation in semidefinite matrices previously
considered in the literature (Section 4), and several tests already proposed for the problem (Section
5).

Before proceeding further, it is important to make the following simple observation regarding (1.1)
or (1.2) in Case 2. It sheds light on where semidefiniteness comes into play in (1.1) or (1.2). Consider,

for example, the case p = 1, that is, dim{M} = 1. Semidefiniteness of M̂ now means that M̂ ≥ 0, and
rank deficiency of M translates into rk{M} = 0 or M = 0. Under rk{M} = 0, (1.1) or (1.2) becomes√
NM̂ →d N (0, σ2) and the only way this can happen is when

√
NM̂

d→ 0 (1.4)

(→d can be replaced by →p). Thus, M̂ is estimated “too efficiently”, borrowing the term used in
Lütkepohl and Burda (1997).

The structure of the paper is the following. Some basic general notation is introduced in Section
2. Several examples where rank in semidefinite matrices might be of interest, are given in Sections 3
and 4. These examples will be used for guidance throughout the paper. When matrix W or W0 is
singular in (1.1) or (1.2), respectively, one may and has adapted rank tests previously available in the
literature for the case of nonsingular W or W0. For example, inverses involving W or W0 in available
rank tests could be tried to be replaced by generalized inverses. This and other situations are discussed
in Section 5. Under the assumption (1.1) or (1.2), asymptotics of eigenvalues of M̂ are established in
Section 6. This leads to consistent though not satisfactory rank tests from a practical perspective. In
Section 7, finer rank tests are discussed for specific examples and involve finer asymptotics than those
in (1.1) or (1.2). For example, in 1-dimension discussed around (1.4), one may ask whether a rate
faster than

√
N leads to nondegenerate limit. Alternatively, one may attempt to start with indefinite

matrix estimator of M in the first place. This is discussed in Section 8.
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2 Some notation and other preliminaries

Here is some basic general notation that will be used throughout the paper. As in Section 1, M is
an unknown, p × p, semidefinite matrix with real-valued entries. Suppose without loss of generality
that M is positive semidefinite. Its estimator M̂ = M̂(N), where N → ∞ is the sample size or other

parameter, is symmetric. We shall focus on the case where M̂ is positive semidefinite. M̂ satisfies
either (1.1) or (1.2), that is,

√
N(vec(M̂)− vec(M))

d→ N (0,W ), (2.1)

√
N(vech(M̂)− vech(M))

d→ N (0,W0). (2.2)

The relation between W and W0 is W = DpW0D
′
p where Dp is the p2 × p(p+1)/2 duplication matrix

(see, e.g., Magnus and Neudecker (1999), pp. 48–53). We shall also write (2.1) or (2.2) as

√
N(M̂ −M)

d→ Y, (2.3)

where Y is a normal (Gaussian) matrix. Above and throughout, →d and →p stand for convergence in
distribution and probability, respectively. The rank of a matrix A is denoted by rk{A}.

To incorporate the example of spectral density matrices, we will also consider separately the case
of Hermitian semidefinite matrices M with complex-valued entries. In this case, (2.1) is replaced by

√
N(vec(M̂)− vec(M))

d→ N c(0,W c), (2.4)

where N c indicates complex normal. By definition, (2.4) is equivalent to

√
N

(
vec(<M̂)− vec(<M)

vec(=M̂)− vec(=M)

)
d→ N

(
0,

1

2

(
<W c=W c

=W c<W c

))
, (2.5)

where < and = stand for the real and imaginary parts, respectively. The notation A∗ will stand for
Hermitian transpose of a matrix A with complex-valued entries. For later reference, we make the
distinction between the real and complex cases explicitly as

Case R : entries of M are real-valued,

Case C : entries of M are complex-valued. (2.6)

Finally, for later use, let Q = (Q1 Q2) be an orthogonal (unitary) matrix such that

Q∗MQ =

(
Q∗

1

Q∗
2

)
M(Q1 Q2)

= diag{υ1, υ2, . . . , υp}, (2.7)

where

0 = υ1 = · · · = υp−r < υp−r+1 ≤ · · · ≤ υp (2.8)

are the ordered eigenvalues of M , and rk{M} = r. The submatrix Q1 in (2.7) is p× (p− r).
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3 Several uninteresting but instructive examples

Here are several examples showing that not every case of rank estimation in semidefinite matrices is
of interest. The examples are instructive for cases of interest considered in the next section.

Example 3.1 (Rank of covariance matrix of error terms in linear regression.) Consider a linear
regression model

yi = βxi + εi, i = 1, . . . , n, (3.1)

where yi is p × 1, β is an unknown p × q matrix, xi are q × 1, i.i.d. variables and εi are zero mean,
i.i.d. error terms, independent of xi, with

Eεiε
′
i = Σ. (3.2)

One problem to consider might appear the estimation of rank rk{Σ}, having a positive definite
matrix estimator

Σ̂ =
1

n

n∑

k=1

(yk − β̂xk)(yk − β̂xk)
′, (3.3)

where β̂ is, for example, the least squares estimator of β. This problem, however, is obviously not
that meaningful. If Σ has lower than full rank, then there is an orthogonal matrix Q such that

EQεi(Qεi)
′ = diag{0, . . . , 0, αp−r+1, . . . , αp}, (3.4)

where αk > 0 and r = rk{Σ}. But this means that, for some Q and β,

(Q(yi − βxi))k = 0 a.s., k = 1, . . . , p− r, (3.5)

where (z)k indicates the k-th component of a vector z. The exact linear relationship between y and x
in (3.5) could, in principle, be first checked with data and if found, eliminated by reducing p. Thus,
one can suppose without loss of generality that Σ is of full rank.

Remark 3.1 A similar but simpler situation is to consider yi = εi, i = 1, . . . , n, with Eεiε
′
i = Σ and

Σ̂ = n−1
∑n

k=1 yky
′
k. Supposing rk{Σ} < p is not meaningful for the same reasons as in Example 3.1.

It should also be noted that similar discussion can be found, for example, in connection to principal
components (where it is not meaningful to consider principal components with zero variance). See,
for example, p. 27 in Jolliffe (2002).

Example 3.2 (Some cases of reduced-rank spectral density matrices.) Though Example 3.1 is ele-
mentary, its variations appear in the literature. For example, Camba-Méndez and Kapetanios (2005a),
p. 38, consider an example where it might be of interest to say that

r = sup
w

rk{Σ(w)} < p, (3.6)

where

Σ(w) =
1

2π

∞∑

k=−∞
Exkx

′
0e

−iwk, w ∈ (−π, π], (3.7)
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is the spectral density matrix of a stationary, say zero mean, p-multivariate time series {xk}k∈Z.
Under mild assumptions (e.g.

∑
k |Exkx

′
0| < ∞), the spectral density matrix is Hermitian, positive

semidefinite and with complex-valued entries in general (see, for example, Brillinger (1975), Hannan
(1970)). If (3.6) holds, then, for all w and some unitary matrix Q,

QΣ(w)Q∗ = diag{0, . . . , 0, αp−r+1, . . . , αp}, (3.8)

where αk ≥ 0. Then

∞∑

k=−∞
E(Qx0)(Qxk)

∗e−iwk = diag{0, . . . , 0, αp−r+1, . . . , αp}, (3.9)

which yields, in particular, that

∞∑

k=−∞
E(Qx0)l(Qxk)

∗
l e

−iwk = 0, l = 1, . . . , p− r, (3.10)

(as in Example 3.1, (z)k indicates the k-th component of z) or that

(Qxk)l = 0 a.s., all k ∈ Z, l = 1, . . . , p− r. (3.11)

This type of exact linear relationship can, in principle, be seen from the data and eliminated without
loss of generality.

Remark 3.2 In fairness to Camba-Méndez and Kapetanios (2005a), p. 38, these authors also discuss
their example in light of time series factor model. This model cannot be dealt with the arguments of
Example 3.2 above.

4 A number of interesting cases

In this section, we gather a number of examples where rank estimation in semidefinite matrices is of
interest.

Example 4.1 (Linear regression with heteroscedastic error terms.) Consider again a linear regression
model

yi = βxi + εi, i = 1, . . . , n, (4.1)

where yi is p × 1, β is p × q and unknown, (xi, εi) are i.i.d. vectors with xi being q × 1 and εi being
p× 1. But suppose now that

E(εiε
′
i|xi) = Σ(xi)p(xi)

−1, (4.2)

where Σ(x) is a p× p, conditional covariance matrix depending on x and p(x) > 0 is a density of xi.
The matrix Σ(x) is positive semidefinite, and could be estimated through

Σ̂(x) =
1

n

n∑

k=1

(yk − β̂xk)(yk − β̂xk)
′Kh(x− xk), (4.3)
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where β̂ is the least squares estimator of β and Kh(x) = (1/h)K(x/hq) is a scaled kernel function,
where h > 0 is a bandwidth. It is necessary to assume that Σ(x), p(x) are sufficiently smooth at x.
(See, for example, Pagan and Ullah (1999)).

The following basic result shows that, under suitable assumptions, the estimator Σ̂(x) is asymp-
totically normal for Σ(x). It is proved in Appendix A. Here are some basic assumptions. We suppose
that K is the kernel of order r in the sense that

∫
K(x)dx = 1,

∫
xjK(x)dx = 0, j = 1, . . . , r − 1,∫

xrK(x)dx < ∞, K is symmetric, and with bounded support. Suppose (xi, εi) are i.i.d. vectors
supported on H := Hx × Hε := (ax, bx) × (aε, bε) (possibly a = ∞, b = −∞) and having density
p(x, ε) > 0 on H. Let Cm(Hx) denote the functions on Hx whose m-th derivative is continuous on
Hx, and ‖K‖22 =

∫
K(x)2dx.

Proposition 4.1 Consider the model (4.1)-(4.2) and suppose the assumptions above. Suppose also
that Σ(x) ∈ Cr(Hr), p(x), E(εkε

′
k ⊗ εkε

′
k|xk = x), E(|εk|4+2δ|xk = x) ∈ C0(Hx) with δ > 0 and Exix

′
i

is invertible. Then, as n → ∞, nhq → ∞, nhq+2r → 0, h → 0, for x ∈ Hx,

√
Nhq(vec(Σ̂(x))− vec(Σ(x)))

d→ N (0,W (x)), (4.4)

where

W (x) = ‖K‖22p(x)E(εkε
′
k ⊗ εkε

′
k|xk = x). (4.5)

Under the assumptions of Proposition 4.1, when Σ(x) = 0 and in the case p = 1, the limiting
covariance matrix is necessarily W (x) = 0. This follows directly from the fact that Σ̂(x) ≥ 0 or also
since Σ(x) = 0 implies εk = 0 given xh = x. In the general case p ≥ 1 and when rk{Σ(x)} = r < p,
there is orthogonal Q such that (Qεk)l = 0 given xk = x, where (z)l indicates the lth component of a
vector z, l = 1, . . . , p− r. The matrix W (x) has the same rank as

(Q⊗Q)W (x)(Q′ ⊗Q′) = ‖K‖22p(x)E(Qεk(Qεk)
′ ⊗Qεk(Qεk)

′|xk = x).

This yields

rk{W (x)} ≤ r2 = rk{Σ(x)}2, (4.6)

by using the facts that Qεk(Qεk)
′ given xk = x, has p − r zero rows and hence rank ≤ r, and that

rk{A⊗B} = rk{A}rk{B}.

Example 4.2 (Spectral density matrices.) With the notation of Example 3.2 one may be interested
in testing for

rk{Σ(w)} (4.7)

for fixed w. This is the problem considered in Camba-Méndez and Kapetanios (2005a). An important
potential application of this is to cointegration. Recall that rk{Σ(w)} at w = 0 is p minus the
cointegration rank of the p-multivariate series {yk}k∈Z, where Σ(w) is defined from xk = yk − yk−1

(see for example, Hayashi (2000), Maddala and Kim (1998)).
The spectral density matrix Σ(w) could be estimated through a smoothed periodogram

Σ̂(w) =
1

2m+ 1

m∑

k=−m

Σ̄

(
w +

2πk

n

)
(4.8)
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where n is the sample size in {x1, . . . , xn}, m = m(n), and as usual,

Σ̄(w) =
1

2π

n−1∑

k=−(n−1)

Γ̂ke
−ikw, Γ̂k =

1

n

n−|k|∑

t=1

xtx
′
t+k. (4.9)

Here is the basic asymptotic normality result of the type (2.4), shown in Theorem 11 of Hannan
(1970), p. 289. Suppose {xk}k∈Z is a stationary, zero mean time series such that

xk =
∞∑

j=−∞
Ajεk−j , k ∈ Z, (4.10)

where εj are i.i.d. vectors with Eεj = 0, E|εj |4 < ∞,
∑∞

j=−∞ |Aj | < ∞, and

lim
n→∞

sup
w

m1/2|Σ(w)− EΣ̂(w)| = 0. (4.11)

Proposition 4.2 With the above notation and assumptions, as n,m → ∞, m/n → 0,

(2m)1/2(vec(Σ̂(w))− vec(Σ(w)))
d→ N c(0,W c(w)), (4.12)

where the asymptotic covariance between Σ̂(w)ij and Σ̂(w)uv is given by

W c(w) =

{
2Σ(w)iuΣ(w)vj , if w 6= 0,±π,
2(Σ(w)iuΣ(w)vj +Σ(w)ivΣ(w)uj), if w = 0,±π.

(4.13)

For example, when p = 2, (4.13) becomes

W c(w) = 2




Σ(w)11Σ(w)11 Σ(w)11Σ(w)21 Σ(w)12Σ(w)11 Σ(w)12Σ(w)21
Σ(w)21Σ(w)11 Σ(w)21Σ(w)21 Σ(w)22Σ(w)11 Σ(w)22Σ(w)21
Σ(w)11Σ(w)12 Σ(w)11Σ(w)22 Σ(w)12Σ(w)12 Σ(w)12Σ(w)22
Σ(w)21Σ(w)12 Σ(w)21Σ(w)22 Σ(w)22Σ(w)12 Σ(w)22Σ(w)22


 =: 2W c

0 (w),
(4.14)

when w = 0,±π, and

W c(w) = 2(W c
0 (w) + Σ(w)⊗ Σ(w)), (4.15)

when w 6= 0,±π. It can be seen from these relations that rk{W c(w)} depends on Σ(w).

Example 4.3 (Multiple index mean regression model.) Donkers and Schafgans (2003, 2005) consider
the multiple index mean regression model

g(x) := E(y|x) = H(x′β1, . . . , x′βp), (4.16)

where dependent variable y ∈ R (the more general case of y ∈ Rs could also be considered) and
explanatory variables x ∈ Rl. The function H is unknown but sufficiently smooth, and β1, . . . , βp are
unknown parameters. Let n be the sample size in {y1, . . . , yn, x1, . . . , xn}.

Of interest to our context is the matrix

M = E

(
w(x)

∂g(x)

∂x

∂g(x)′

∂x

)
, (4.17)
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where w(x) is a suitable trimming function. It can be estimated through

M̂S =
1

n

n∑

i=1

w(xi)

(
Ĝ′(xi)

f̂(xi)
− Ĝ(xi)f̂

′(xi)

f̂(xi)2

)(
Ĝ′(xi)

f̂(xi)
− Ĝ(xi)f̂

′(xi)

f̂(xi)2

)′

, (4.18)

where, with a kernel function K, and for k = 0, 1,

f̂ (k)(xi) =
1

(n− 1)hl+k

n∑

j=1,j 6=i

K(k)

(
xi − xj

h

)
, (4.19)

Ĝ(k)(xi) =
1

(n− 1)hl+k

n∑

j=1,j 6=i

K(k)

(
xi − xj

h

)
yj (4.20)

(one obviously sets here f̂ (0) = f̂ and f̂ (1) = f̂ ′). Note that M̂S is positive semidefinite, and so is M .
Donkers and Schafgans (2003, 2005) suggest to estimate p in (4.16) as the rank rk{M}. (In practice,

larger p is fixed, and the true p is estimated as rk{M}.) Using the results of Samarov (1993), these
authors show the asymptotic normality result (2.2).

Proposition 4.3 (Donkers and Schafgans (2003, 2005), Samarov (1993)) Under the assumptions
stated in Donkers and Schafgans (2003, 2005),

√
n(vech(M̂S)− vech(M))

d→ N (0,W0), (4.21)

where

W0 = Var(vec(R(xi, yi))) (4.22)

with

R(x, y) = w(x)

(
∂g(x)

∂x

∂g(x)

∂x

′
− (y − g(x))

(
∂f(x)
∂x

∂g(x)
∂x

′

f(x)
+

∂g(x)
∂x

∂f(x)
∂x

′

f(x)
+ 2

∂2g(x)

∂x∂x′

))
.

(4.23)

As in Example 4.1, one can easily show that rk{W0} in (4.22) is constrained by rk{M}.
Example 4.4 (Number of factors in nonparametric relationship.) Donald (1997) considers a non-
parametric model

yi = F (xi) + εi, i = 1, . . . , n, (4.24)

where dependent variables yi ∈ Rp, explanatory variables xi ∈ Rq, and error terms εi have zero mean
and nonsingular covariance matrix Σ = Eεiε

′
i. The function F is unknown but supposed sufficiently

smooth. A “local” version of (4.24) and related problems are considered in Fortuna (2008).
Of interest to our context is a semidefinite matrix

M = Ef(xi)F (xi)F (xi)
′, (4.25)

where f(x) is the density of xi. Its rank r = rk{M} is the number of factors in nonparametric
relationship (4.24) in the sense that F (x) = AH(x) for some p× r matrix A and r× 1 function H(x).

To test for rk{M}, Donald (1997) estimates the matrix M through indefinite matrix estimator

M̂I =
1

n(n− 1)

∑

i6=j

yiy
′
jKh(xi − xj), (4.26)

where K is a kernel function, Kh(x) = K(x/h)/hq and h > 0 is a bandwidth. It has the following
assymptotics.
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Proposition 4.4 (Donald (1997), Donald et al. (2007)) Under the assumptions of Donald (1997),

nhq/2(vec(M̂)−vec(M)) is asymptotically normal. Of interest to rank testing, one has M̂I = M̂1+M̂2

where (i) u′Mu = 0 for a vector u implies u′M̂1u = 0, (ii) M̂1 −M = Op((nh
q/2)−1), and

nhq/2vech(M̂2)
d→ N (0,W ), (4.27)

where

W = V −1D+
p (ΣΣ⊗ ΣΣ)D+

p
′

(4.28)

with V = (2‖K‖22Ef(xi))
−1/2, density f(x) of xi and the Moore-Penrose inverse D+

p of the duplication
matrix Dp.

Alternatively, the matrix M can be sought to be estimated through semidefinite matrix estimator

M̂S =
1

n

n∑

i=1

f̂(xi)
−1Ĝ(xi)Ĝ(xi)

′, (4.29)

where similarly to Example 4.1, for example,

Ĝ(xi) =
1

(n− 1)hq

∑

j 6=i

yjK

(
xi − xj

h

)
. (4.30)

As in Example 4.1, using the results of Samarov (1993), one can establish the following result. The
assumptions and a short proof are moved to Appendix A.

Proposition 4.5 (Samarov (1993)) Under the assumptions stated in Appendix A,

√
n(vec(M̂S)− vec(M))

d→ N (0,W ), (4.31)

where

W = Var (f(xi)(F (xi)⊗ Ip + Ip ⊗ F (xi))yi) . (4.32)

Note that, under model (4.24), the limiting covariance matrix W in (4.32) is given by

W = Var(f(xi)(F (xi)⊗ Ip + Ip ⊗ F (xi))F (xi)) + Var(f(xi)(F (xi)⊗ Ip + Ip ⊗ F (xi))εi).

The two estimators M̂I in (4.26) and M̂S in (4.29) are related, with an obvious informal way to go

from M̂I to M̂S . It is therefore quite surprising that the normalizations used in Propositions 4.4 and
4.5 are different (one is nhq/2 and the other is n1/2). However, to see clearly that two normalizations

are needed, the reader is encouraged to compute the asymptotic variances of M̂I and M̂S when p = 1
and F (x) ≡ 0.

5 On extensions of available rank tests

Recall from Proposition 2.1 in Donald et al. (2007) and as seen from examples considered in Section
4, under rank deficiency for M , the limiting covariance matrix W0 in (2.2) or W in (2.1) is singular.
Several extensions of available rank tests were proposed for the case of singular limiting covariance
matrices. We examine here a number of such proposals in our context. The focus is on case R in
(2.6). But the case C is also considered to the end by reexamining a test recently suggested by
Camba-Méndez and Kapetanios.
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5.1 Tests involving generalized inverses

Available rank tests for nonsingular limiting covariance matrices W in (2.1) typically involve inverses
of these matrices. When they are singular, rank tests can be extended naturally by using generalized
inverses. For example, here is one such typical extension for the LDU rank test of Gill and Lewbel
(1992), and Cragg and Donald (1996).

The LDU test is based on Gaussian elimination with complete pivoting. Ignoring the issue of ties
for simplicity, one may suppose without loss of generality that the matrices are permuted beforehand
and hence that permutations are not necessary in the Gaussian elimination procedure. If the matrix
M is partitioned as

M =

(
M11 M12

M21 M22

)
, (5.1)

where M11 is r × r, then r steps of Gaussian elimination procedure lead to the Schur complement

Λr = M22 −M21M
−1
11 M12 (5.2)

(because of M−1
11 , this is meaningful only for r ≤ rk{M}). Let also

Φ = (−M21M
−1
11 Ip−r), Γ = Φ⊗ Φ, (5.3)

and introduce analogous notation M̂11, M̂12, M̂21, M̂22, Φ̂ and Γ̂. Let A+ denote the Moore-Penrose
inverse of a matrix A, and χ2

m stand for the χ2-distribution with m degrees of freedom.

Proposition 5.1 (Camba-Méndez and Kapetanios (2001, 2008)) Suppose that (2.1) holds, the rank

of W is known and there is Ŵ →p W such that rk{Ŵ} = rk{W}. Then, under rk{M} = r,

ξ̂ldu(r) = Nvec(Λ̂r)
′(Γ̂Ŵ Γ̂′)+vec(Λ̂r)

d→ χ2
m, (5.4)

where m = min{(p− r)2, rk{W}}.

Remark 5.1 The basic reason for assuming rk{Ŵ} = rk{W} is that Ŵ →p W does not imply in
general that their generalized inverses converge. See references above, as well as Lütkepohl and Burda
(1997), Andrews (1987).

A similar result could be obtained, for example, using vech instead of vec operation in (5.4) (in
addition, using the so-called symmetric pivoting) or for other rank tests such as the MINCHI2 test
of Cragg and Donald (1996). However, those tests are not useful in our context because rk{W}
is unknown. This can be seen from the examples considered in Section 4. Furthermore, as those
examples and the next general result show, the rank of W is constrained by the rank of M itself,
which is unknown. See Appendix A for a proof.

Proposition 5.2 Suppose that M̂ is a semidefinite matrix estimator for M , and that (2.1) holds with
covariance matrix W . Then, with r = rk{M},

rk{W} ≤ r(2p− r). (5.5)

Even though rk{W} is unknown, several authors (Lütkepohl and Burda (1997), Camba-Méndez
and Kapetanios (2005b)) suggest getting its rough estimate (for example, using asymptotic results for

eigenvalues of Ŵ ) and then substituting a reduced rank estimate Ŵ into (5.4). However, with this
procedure, the problem of testing for rk{M} is essentially replaced by that of estimation of another
rank, namely, rk{W}. Furthermore, using the same argument, rk{M} itself could roughly be estimated
directly.
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5.2 Tests of Robin and Smith

Another related and interesting work in the area that allows for singular covariance matrix W in (2.1),
is Robin and Smith (2000). A simplified version of their characteristic root test adapted to our context
is the following. In (2.1), suppose, in addition, that

0 < rk{W} = s ≤ p2. (5.6)

Let C = (c1, . . . , cp) consist of eigenvectors of MM ′ = MM = M2 such that CC ′ = Ip. Partition the
matrix C as C = (Cr Cp−r) where r = rk{M} and Cp−r is p× (p− r). Assume also that

t = rk{(C ′
p−r ⊗ C ′

p−r)W (Cp−r ⊗ Cp−r)} > 0. (5.7)

One can easily see that t ≤ min{s, (p− r)2}.
Let now λ̂1 ≤ · · · ≤ λ̂p be the ordered eigenvalues of M̂2, and consider the test statistic

ξ̂cr(r) = N

p−r∑

j=1

λ̂j . (5.8)

Under rk{M} = r, the test statistic ξ̂cr(r) has a limiting distribution described by

ξcr(r) =

t∑

j=1

λr
jZ

2
j =

(p−r)2∑

j=1

λr
jZ

2
j , (5.9)

where {Zj} are independent N (0, 1) random variables, and λr
1 ≥ λr

2 ≥ · · · ≥ λr
t > 0 = λr

t+1 = · · · =
λr
(p−r)2 are the eigenvalues of (C ′

p−r ⊗ C ′
p−r)W (Cp−r ⊗ Cp−r). In practice, the limiting distribution is

approximated by

(p−r)2∑

j=1

λ̂r
jZ

2
j , (5.10)

where λ̂r
j are the ordered eigenvalues of (Ĉ ′

p−r ⊗ Ĉ ′
p−r)Ŵ (Ĉp−r ⊗ Ĉp−r).

The above test of Robin and Smith (2000) cannot be applied to our context under their assump-
tions (5.6) and (5.7). To see why this is expected, consider Example 4.4 and the matrix estima-

tors M̂S in (4.29). The matrix C above also consists of eigenvectors of M , and we can suppose
that C ′MC = diag{0, . . . , 0, υp−r+1, . . . , υp} where 0 < υp−r+1 ≤ · · · ≤ υp and r = rk{M}. Since
C ′MC = Ef(xi)C

′F (xi)F (xi)
′C in that example, it follows that C ′

p−rF (x)F (x)′Cp−r = 0 and hence

C ′
p−rF (x) = 0. (5.11)

In view of (4.32), (5.11) implies that

(C ′
p−r ⊗ C ′

p−r)W (Cp−r ⊗ Cp−r) = 0. (5.12)

Hence, the assumption (5.7) of Robin and Smith (2000) stated above is not satisfied. On the other
hand, as shown in the next section, this result should not be surprising at all (see remark in that
section).
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5.3 Tests of Camba-Méndez and Kapetanios

Finally, another related test was recently suggested by Camba-Méndez and Kapetanios (2001, 2005b,
2008). Proposed as a test for the rank of Hermitian positive semidefinite matrix, it works as follows.
Consider the more general Case C of (2.6). As for the LDU test, the matrix M is partitioned as (5.1)
and it is supposed for simplicity that M11 has full rank (which can be supposed after permutations
involved in Gaussian elimination procedure). The focus is again on the Schur complement Λr given in
(5.2). Then, rk{M} = r is equivalent to Λr = 0 which can be shown to be equivalent to diag{Λr} = 0
(where diag{A} denotes the diagonal elements of a vector A). Since the alternative to diag{Λr} = 0
is that at least one of the diagonal elements of Λr is strictly positive, Camba-Méndez and Kapetanios
suggest using the multivariate one-sided tests of Kudo (1963), Kudo and Choi (1975). More precisely,
Camba-Méndez and Kapetanios (2008), for example, suggest to consider the test statistic

ξ̂kudo(r) = Ndiag{Λ̂r}′Ψ−1diag{Λ̂r}, (5.13)

where Ψ (supposed to be known for simplicity) appears in the asymptotic normality result for Λ̂r,
namely,

√
Ndiag{Λ̂r} d→ N (0,Ψ). (5.14)

These authors say that application of the result of Kudo yields the asymptotic distribution ξ̂kudo(r)
of (5.13) given by

P (ξ̂kudo(r) > x) =

p−r∑

q=0

wqP (χ2
q ≥ x), (5.15)

where wq are suitable weights.
Applications of the results of Kudo, however, is not justified in the above context. The Schur

complement is also positive semidefinite (see, for example, Zhang (2005)), and hence the elements of
diag{Λ̂r} are real, nonnegative. But then (5.14) is possible only with Ψ ≡ 0 and relation (5.13) and
its limit in (5.15) are not meaningful.

Remark 5.2 Though application of the results of Kudo are not meaningful in the context above,
they can be used in Case 1 of (1.3) considered by Donald et al. (2007).

6 Asymptotics of eigenvalues, and consistent rank tests

Though available rank tests discussed in Section 5 do not appear helpful, consistent rank tests can,
in fact, be easily established under assumption (2.1). Let 0 ≤ υ̂1 ≤ υ̂2 ≤ · · · ≤ υ̂p be the ordered

eigenvalues of the matrix estimator M̂ . The following basic result concerns asymptotics of these
eigenvalues.

Theorem 6.1 Under assumption (2.1), and with rk{M} = r,

√
Nυ̂j

p→ 0, j = 1, . . . , p− r, (6.1)
√
Nυ̂j

p→ +∞, j = p− r + 1, . . . , p. (6.2)
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The theorem is proved in Appendix A. Letting

ξ̂eig(k) =
√
Nβ

p−k∑

j=1

υ̂βj , (6.3)

with some fixed β > 0, we have the following immediate corollary of the the result above.

Corollary 6.1 Under assumption (2.1),

under rk{M} ≤ k, ξ̂eig(k)
p→ 0, (6.4)

under rk{M} > k, ξ̂eig(k)
p→ +∞. (6.5)

Corollary 6.1 shows that the rank test based on (6.3) is consistent. This rank test, however, is not
satisfactory from a practical perspective. Even with a fixed (arbitrary) critical value, the conclusion

of the test would depend on a multiplication of M̂ by a constant.

Remark 6.1 Since υ̂2k are the eigenvalues of M̂2, Corollary 6.1 shows that the characteristic root test
based on (5.8) of Robin and Smith (2000) (see Section 5 above) is also consistent. The same corollary
also shows that λr

j = 0 for all j in (5.9) or hence that t = 0 in (5.7).

7 Finer rank tests

Though Theorem 6.1 and its Corollary 6.1 provide a consistent test under (2.1), the test is not
satisfactory from a practical perspective. For example, it is natural to expect that a faster rate than√
N in (6.1) may yield a finer result (with nondegenerate limit in (6.1)). We examine this and related

questions in this section.
The following general assumptions are relevant. LetQ = (Q1 Q2) be as in (2.7) so thatQ′

2MQ2 = 0.

Under assumption (2.1),
√
NQ′

2M̂Q2 →p 0. Therefore, in some cases, it may be natural to expect
that

aNQ′
2M̂Q2

d→ A, (7.1)

where aN → ∞ and aN grows faster than
√
N (that is, aN/

√
N → ∞).

Theorem 7.1 Under assumption (2.1) and (7.1), with notation of Section 6 and when rk{M} = r,

aN υ̂j
p→ αj , j = 1, . . . , p− r, (7.2)

aN υ̂j
p→ +∞, j = p− r + 1, . . . , p, (7.3)

where α1 ≤ α2 ≤ · · · ≤ αp−r are the ordered eigenvalues of A. Moreover,

under rk{M} ≤ k, ξ̂eig(k)
p→

p−k∑

j=1

αβ
j , (7.4)

under rk{M} > k, ξ̂eig(k)
p→ +∞, (7.5)

where ξ̂eig(k) is defined by (6.3) but using normalization aβN instead of Nβ/2.
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The proof of Theorem 7.1 is analogous to that of Theorem 6.1 and is omitted. Theorem 7.1 gives
consistent rank tests which could be implemented in practice. Supposing there is a consistent estimator
Â →p A, a critical value for a test of H0 : rk{M} = k could be defined as

(1 + c)

p−k∑

j=1

α̂β
j (7.6)

for some (arbitrary) c > 0, where α̂j are the ordered eigenvalues of Â. Note that the corresponding

test is invariant to a multiplication of M̂ by a constant.

Example 7.1 (Linear regression with heteroscedastic error terms.) The next result shows that, under
additional assumptions, the estimator Σ̂(x) in (4.3) satisfies the assumption (7.1). The result is proved
in Appendix A.

Proposition 7.1 With the above notation and that of Example 4.1, suppose that Σ(x) ∈ C2(Hx),
p(x), E(|εk|4)|xk = x) ∈ C0(Hx) and Exix

′
i is invertible. Then, as n → ∞, nh5q → ∞, h → 0, for

x ∈ Hx,

h−2qQ′
2Σ̂(x)Q2

p→ 1

6
Q′

2Σ(x)
′′Q2. (7.7)

Example 7.2 (Number of factors in nonparametric relationship.) Consider a semidefinite matrix

estimator M̂S given in (4.29). With this estimator and the above notation, observe that

Q′
2M̂SQ2 = Q′

2

1

n

n∑

i=1

f̂(xi)
−1ε̂(xi)ε̂(xi)

′Q2, (7.8)

where

ε̂(xi) =
1

n− 1

∑

j 6=i

εjKh(xi − xj). (7.9)

Then, one expects that EQ′
2M̂SQ2 is asymptotically

Q′
2Ef(xi)

−1ε̂(xi)ε̂(xi)
′Q2 = Q′

2

1

(n− 1)2
Ef(xi)

−1
∑

j 6=i

εjε
′
jKh(xi − xj)

2Q2

=
‖K‖22

(n− 1)hq
Q′

2ΣQ2Ef(xi)
−1K2,h(xi − xj) ∼

‖K‖22
nhq

Q′
2ΣQ2, (7.10)

where K2(x) = K(x)2/‖K‖22, and hence that

nhqQ′
2M̂SQ2

p→ ‖K‖22Q′
2ΣQ2. (7.11)

Remark 7.1 Example 4.3 could be dealt with as Example 7.2 above. Dealing with the matrix esti-
mator of Example 4.2 is more challenging and left for a future work.
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Examples 7.1 and 7.2 above suggest that A is a constant matrix, and that (7.1) corresponds to
Law of Large Numbers asymptotics. It is natural to go beyond (7.1) by postulating the asymptotics
of Central Limit Theorem as

bN (aNQ′
2M̂Q2 −A)

d→ B, (7.12)

where bN → ∞ and B is a random matrix.
There are several potential difficulties with (7.12). First, the assumption (7.12) is related to the

asymptotic behavior of

bN (aN υ̂j − αj), j = 1, . . . , p− r (7.13)

(see, for example, Eaton and Taylor (1991)). Note, however, that αk is unknown here and the rate of
convergence of α̂k to αk is not immediate. Second, another difficulty with (7.12) is the following. For
example, in Example 7.1 above, one expects (and this is not too difficult to show) that, in the case
p = 1 for simplicity,

bN (h−2qΣ̂(x)− 1

6
Σ(x)′′) d→ N (0, σ2), (7.14)

for suitable bN → ∞. The limiting variance σ2, however, is strictly positive only when Σ(x)′′ 6= 0. The
latter is now an assumption on the rank of Σ(x)′′. Testing for its rank, in fact, will lead to another
problem of matrix rank estimation, and this can continue an arbitrary number of times.

8 Use of indefinite matrix estimators

The previous section concerns finer rank tests under assumption (2.1) or (2.2) where matrix estimator

M̂ is semidefinite. Another obvious possibility is to search for an indefinite matrix estimator which
may allow to assume (2.2) with nonsingular W0 and hence to use the well-developed framework of
Donald et al. (2007).

The choice of indefinite estimator M̂ depends on the problem at hand, and may not be immediately
obvious. For example, in Example 4.4, we already specified two matrix estimators: indefinite M̂I in
(4.26) and semidefinite M̂S in (4.29). The rank tests for M̂I can be carried out in the framework of
Donald et al. (2007).

In the next example, we show that an indefinite estimator can be introduced naturally in Example
4.3 as well. Our discussion will not be completely rigorous.

Example 8.1 (Multiple index mean regression model.) Suppose for simplicity that the model (4.16)
in Example 4.3 is given by

yi = g(xi) + εi, i = 1, . . . , n, (8.1)

where εi are independent of xi, Eεi = 0, Eε2i = σ2 > 0, and g(x) is given by (4.16). A natural
indefinite estimator of the matrix M in (4.16) (with suitable weight w(x)) is

M̂I =
1

n(n− 1)

∑

i6=j

f̂(xi)
−1f̂(xj)

−1yiyj
1

hl+2
K(2)

(
xi − xj

h

)
. (8.2)

The basic idea behind (8.2) is that, asymptotically, EM̂I behaves as (with i 6= j)

Ef(xi)
−1f(xj)

−1yiyj
1

hl+2
K(2)

(
xi − xj

h

)
= Ef(xi)

−1f(xj)
−1g(xi)g(xj)

1

hl+2
K(2)

(
xi − xj

h

)
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= Ef(xi)
−1f(xj)

−1∂g(xi)

∂x

∂g(xj)

∂x

′ 1
hl
K

(
xi − xj

h

)
→ Ef(xi)

−1∂g(xi)

∂x

∂g(xi)

∂x

′
= M.

(8.3)

As in Example 4.4, write M̂I = M̂1 + M̂2, where

M̂2 =
1

n(n− 1)

∑

i6=j

f(xi)
−1f(xj)

−1εiεj
1

hl+2
K(2)

(
xi − xj

h

)
. (8.4)

A simple analysis of second moments suggests that (with i 6= j)

Evech(M̂2)vech(M̂2)
′

=
2σ4

n(n− 1)
Ef(xi)

−2f(xj)
−2 1

h2l+4
vech

(
K(2)

(
xi − xj

h

))
vech

(
K(2)

(
xi − xj

h

))′

∼ 2σ4

n2hl+4
Ef(xi)

−2f(xj)
−2 1

hl
diag

(
vech

(
K(2)

(
xi − xj

h

))2
)

∼ 2σ4

n2hl+4
Ef(xi)

−3diag
(
vech

(
‖K(2)(u)‖22

))
=:

1

n2hl+4
V, (8.5)

where, for a vector x = (x1, . . . , xm), x2 = (x21, . . . , x
2
m) and ‖K(2)(u)‖22 is the matrix consisting of

entries
∫
|∂2K(u)/∂ui∂uj |2du. In particular, one expects that

nh
l
2
+2vech(M̂2)

d→ N (0, V ), (8.6)

where V is nonsingular, and hence that the framework of Donald et al. (2007) can be used for M̂I .
Yet another possibility is to postulate a related model

yi = f(xi)
−1g(xi) + εi, i = 1, . . . , n, (8.7)

where g(x) is given by (4.16). An indefinite matrix estimator of M in this case is

M̂I =
1

n(n− 1)

∑

i 6=j

yiyj
1

hl+2
K(2)

(
xi − xj

h

)
, (8.8)

which is much simpler to deal with.

Remark 8.1 Whether indefinite matrix estimators can be introduced naturally in Examples 4.1 and
4.2 is still an open question.

A Technical proofs

Proof of Proposition 4.1: Observe that

Σ̂(x)− Σ(x) = Σ̂1(x) + Σ̂2(x) + Σ̂3(x) + Σ̂3(x)
′ + Σ̂4(x),
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where

Σ̂1(x) =
1

n

n∑

k=1

(εkε
′
kKh(x− xk)−Eεkε

′
kKh(x− xk)),

Σ̂2(x) = Eεkε
′
kKh(x− xk)− Σ(x),

Σ̂3(x) =
1

n

n∑

k=1

εkx
′
kKh(x− xk)

(
1

n

n∑

k=1

xkx
′
k

)−1
1

n

n∑

k=1

xkε
′
k,

Σ̂4(x) =
1

n

n∑

k=1

εkx
′
k

(
1

n

n∑

k=1

xkx
′
k

)−1(
1

n

n∑

k=1

xkx
′
kKh(x− xk)

)(
1

n

n∑

k=1

xkx
′
k

)−1
1

n

n∑

k=1

xkε
′
k.

By using assumptions of the proposition, note that Σ̂3(x) = Op(1/n), Σ̂4(x) = Op(1/n). Using the

properties of kernel function and Σ(x), we also have Σ̂2(x) = O(hr). It is then enough to show that,
with W (x) in (4.5), √

Nhqvec(Σ̂1(x))
d→ N (0,W (x)),

or, equivalently, that
√
Nhqa′vec(Σ̂1(x)) →d N (0, a′W (x)a) for any a ∈ Rp2 .

Note that

a′vec(Σ̂1(x)) =
1

n

n∑

k=1

(a′(εk ⊗ εk)Kh(x− xk)− Ea′(εk ⊗ εk)Kh(x− xk))

and
nhqE(a′vec(Σ̂1(x)))

2 = hqE(a′(εk ⊗ εk)Kh(x− xk)− Ea′(εk ⊗ εk)Kh(x− xk))
2

= ‖K‖22E(a′(εk ⊗ εk))
2K2,h(x− xk)− hq(Ea′(εk ⊗ εk)Kh(x− xk))

2 → a′W (x)a,

where K2,h(x) = K(x/h)2/hq‖K‖22. We may suppose without loss of generality that a′W (x)a > 0
(in case of a′W (x)a = 0, the result is trivial). By Feller-Lindeberg Central Limit Theorem and its
Lyapunov condition, it is enough to show that

(nhq)
2+δ
2

n1+δ
E|a′(εk ⊗ εk)Kh(x− xk)|2+δ → 0.

Note that this is equivalent to

1

(nhq)δ/2
E|a′(εk ⊗ εk)|2+δK2+δ,h(x− xk) → 0,

where K2+δ,h(x) = K(x/h)2+δ/hq‖K‖2+δ
2+δ, and the above condition is satisfied by the assumptions of

the proposition. 2

The following are basic assumptions for Proposition 4.5. Let G(x) = F (x)f(x), where f(x) is the
density of xi. Suppose f(x) is bounded away from zero on a convex, open, bounded set U of Rq. Let
also Hν+1(U) consist of functions which have partial derivatives up to order ν satisfying the global
Lipschitz condition in the sense of Samarov (1993), p. 839. Suppose ν is an integer such that ν ≥ q+4.

(C1) Partial derivatives of f and G up to the order ν + 1 are bounded and f,G ∈ Hν+2(U).

(C2) n1/2hν+1 → 0, n1/2hq+4 → ∞, as n → ∞.
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(C3) Suppose kernel function K(x) is a bounded continuous function with support in the unit cube
{‖x‖ ≤ 1} and such that K(x) = K(−x),

∫
K(x)dx = 1, and

∫
K(x)xldx = 0, for l = 1, . . . , ν,

where xl = xl11 . . . x
lq
q for x = (x1, . . . , xq) ∈ Rq and l1 + · · ·+ lq = l with nonnegative integers li.

(C4) W in (4.32) is well-defined.

Proof of Proposition 4.5: We briefly outline the proof of Theorem 1 in Samarov (1993), p. 845.
Note that

T̂n := vec(M̂a) =
1

n

n∑

i=1

f̂(xi)
−1(Ĝ(xi)⊗ Ĝ(xi)).

It is shown first using Taylor expansion that T̂n − V1 − V2 = op(n
−1/2) where

V1 =
1

n

n∑

i=1

f̄(xi)
−1(Ḡ(xi)⊗ Ḡ(xi)),

V2 = − 1

n

n∑

i=1

f̄(xi)
−2(Ḡ(xi)⊗ Ḡ(xi))(f̂(xi)− f̄(xi))

+
1

n

n∑

i=1

f̄(xi)
−1((Ḡ(xi)⊗ Ip) + (Ip ⊗ Ḡ(xi)))(Ĝ(xi)− Ḡ(xi))

and f̄(x) = EKh(x− xi), Ḡ(x) = E(yiKh(x− xi)). Furthermore, V1 − V3 = op(n
−1/2) and V2 − V4 =

op(n
−1/2), where

V3 =
1

n

n∑

i=1

f(xi)
−1(G(xi)⊗G(xi)),

V4 = − 1

n

n∑

i=1

f(xi)
−2(G(xi)⊗G(xi))(f̂(xi)− f̄(xi))

+
1

n

n∑

i=1

f(xi)
−1((G(xi)⊗ Ip) + (Ip ⊗G(xi)))(Ĝ(xi)− Ḡ(xi)).

The next step is to approximate the U -statistic V4 through its projection V5 defined by

V5 =
1

n

n∑

j=1

(t1(xj , yj)− t2(xj)),

where

t1(x, y) = Ef(xi)
−1((G(xi)⊗ Ip) + (Ip ⊗G(xi)))(yKh(x− xi)− Ḡ(xi)),

t2(x) = Ef(xi)
−2((G(xi)⊗G(xi)))(Kh(x− xi)− f̄(xi)).

Furthermore, one can show that V5 − Ṽ5 = op(n
−1/2) where

Ṽ5 =
1

n

n∑

j=1

(t̃1(xj , yj)− t̃2(xj))
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and

t̃1(x, y) = (G(x)⊗ Ip + Ip ⊗G(x))y − E(G(xj)⊗ Ip + Ip ⊗G(xj))yj ,

t̃2(x) = f(x)−1(G(x)⊗G(x))− Ef(xi)
−1(G(xi)⊗G(xi)).

Gathering all these observations, one concludes that

vec(Ma)− vec(M) =
1

n

n∑

i=1

t̃1(xi, yi) + op(n
−1/2).

The asymptotic normality result now follows. 2

Proof of Proposition 5.2: Let Q be an orthogonal matrix as in (2.7) and D = diag{υ1, . . . , υp}.
Then, √

N(vec(Q′M̂Q)− vec(D))
d→ N (0, W̃ ),

where W̃ = (Q ⊗ Q)W (Q′ ⊗ Q′) has the same rank as W . If Q = (Q1 Q2) as in (2.7), then√
Nvec(Q′

2M̂Q2) is also asymptotically normal. By Lemma A.1 below, the only way this can happen

is when
√
Nvec(Q′

2M̂Q2) →d 0. Since Q′
2M̂Q2 is of dimension (p − r)2, this means that (p − r)2

elements of
√
Nvec(Q′M̂Q) are asymptotically 0. Hence, rk{W̃} ≤ p2 − (p− r)2 = r(2p− r). 2

The following elementary lemma was used in the proof above.

Lemma A.1 If XN is semidefinite matrix such that
√
Nvec(XN ) →d N (0, Z), then Z ≡ 0.

Proof: The assumption can be written as
√
NXN →d X , where X is a normal (Gaussian) matrix.

Since XN is, say, positive definite, it follows that a′Xa ≥ 0 a.s. for any vector a. The result now
follows from another elementary lemma next. 2

Lemma A.2 Let X be a symmetric, normal (Gaussian) matrix. If all eigenvalues of X are nonneg-
ative, then X = 0.

Proof: If X is symmetric and its eigenvalues are nonnegative, then it is nonnegative definite. In
particular,

m∑

i,j=1

aixijaj ≥ 0 (A.1)

for all ai, where X = (xij)i,j=1,... ,m. Taking ai = 1, aj = 0, j 6= i, leads to xii ≥ 0 and ai = 1, aj = 1,
ak = 0, k 6= i, j, leads to xij + xji = 2xij ≥ 0. Since xij are all normal, this can happen only when
xij ≡ 0, or X = 0m×m. 2

Proof of Theorem 6.1: Arguing as in the proofs of Theorems 4.3 and 4.5 in Donald et al. (2007)
(see also Eaton and Tyler (1991)),

√
Nυ̂k, k = 1, . . . , p− r, are asymptotically the ordered eigenvalues

of Q′
2

√
N(M̂ − M)Q2 or Q′

2YQ2, where Q = (Q1 Q2) is the matrix in the proof of Proposition 5.2
above and Y appears in (2.3). Since

√
Nυ̂k ≥ 0, by using Lemma A.1, this can happen only when

Q′
2YQ2 = 0. This leads to (6.1). The relation (6.2) follows from υ̂k →p υk > 0, k = p− r+1, . . . , p. 2
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Proof of Proposition 7.1: We only consider the case p = 1. Then, we may suppose that Q2 = 1
and Σ(x) = 0. As in the proof of Proposition 4.1, h−2Σ̂(x) = h−2Σ̂1(x) + h−2Σ̂2(x) + Op(n

−1h−2).
Note that

E(h−2Σ̂1(x)) ≤
1

nh4
Eε4kKh(x− xk)

2 = Op

(
1

nh5

)

and

h−2Σ̂2(x) = h−2Eε2kKh(x− xk) →
Σ(x)′′

6
. 2
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