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Abstract— In this paper is studied an approach based on risk 

assessment to solve the scheduling of a power production system 

with variable power sources. The spinning reserves resulting 

from the unit commitment are analyzed too. In this methodology 

there are no infeasible solutions, only more or less costly solutions 

associated to the operation risks, such as, load or renewable 

production curtailment. The uncertainty of forecasted 

production and load demand are defined by probability 

distribution functions. The methodology is tested in a real case 

study, an island with high penetration of renewable power 

production. Finally, forecasted and measured reserves are 

compared, once the reserves are strongly linked with the 

forecasting quality. The results of a real case study are presented 

and discussed. They show the difficulty to achieve complete 

robust solutions. 

Index Terms—Generation curtailment, probabilistic forecasting, 

risk assessment, uncertainty. 

I. INTRODUCTION 

The scheduling of production power systems is always a 
challenging task. If a significant part of production is based on 
renewable energy sources (RES), with high variability, the 
challenges increase even more. Insular power systems without 
connections to continental networks are a particular demanding 
case. Efficient and precise forecasting models can help to 
decrease the uncertainty associated with renewable power 
plants. On the other hand, a careful choice of the spinning 
reserves, can avoid stability problems in the network which 
could lead to generation curtailment, load shed or even 
blackouts.  

There are several approaches to define the amount of 
reserves. In a deterministic point of view, the reserve can be 
defined as a given percentage of forecasted load, a percentage 
of renewable production forecasts, equal to the amount of the 
most loaded unit, (generally for the primary reserve) or a mix 
of some of the previous rules. In the case of probabilistic 
approach, it is calculated from the probability of not having 
enough generation to meet the load (due to load and production 
forecasting errors), or using approaches based on standard 

deviation of load forecasting errors, among others [1],[2]. The 
reserves can be divided in upward and downward reserves each 
one with different roles. The first intends to answer to a loss of 
power production due to generation outages or forecasting 
errors (when the forecasted power production is higher than the 
real one or if the load forecasted is lower than the real one). The 
second is generally related to forecasting errors when the power 
production is higher than the predicted or the load is lower than 
the forecasted. 

An approach widely used, to the scheduling with 
uncertainty, is the stochastic programming [3], chance-
constrained  [4] or robust optimization [5] with the uncertainty 
defined by different scenarios [7]. The drawback of the 
scenario-based is the high number of realizations to captures the 
probabilistic behavior of the uncertainty. The excessive time 
needed to solve all the scenarios is the major disadvantage, once 
the unit commitment (UC) and the economic dispatch (ED) are 
solved for each scheduling scenario.  

Contrary to scenarios-based, in this work is proposed the 
estimation of risk using directly the probability density function 
of the random variables. With this approach, there are no 
infeasible solutions. Based on the trade-off between economic 
and reliability of the system, all solutions are accepted provided 
that the risk and consequent cost are acceptable.  

The case study is based on the Portuguese Island of São 
Miguel (Azores). The final goal of this work is to show the 
applicability of the methodology, as well as to conclude about 
the capacity of the reserves to deal with the forecasting errors. 
In this work it is not considered a predefined value for the 
reserves; it will be defined dynamically from reliability and 
operational risk minimization. 

II. RISK ASSESSMENT APPROACH 

In Fig. 1 an example of the proposed risk assessment is 
depicted. The probability density function fL-RES represent the 
forecasted net load (LN) obtained by subtraction of the 
forecasted load by the forecasted renewable production  
(L-RES) [5],[8]-[10], and is defined by a Beta distribution 



bounded by the limits of net load, minL-RES and maxL-RES. In 
other words (L-RES) represents the amount of power that must 
be produced by the thermal units. GENSET_# represents a 
generic thermal generation mix, whose limits are defined by 
minGENSET and maxGENSET. Six different theoretical thermal 
generation mixes (GENSETs) are analyzed. 

 

Figure 1.  Example of risk assessment. 

In the case of GENSET_1 it is verified that the minGENSET is 

lower than the minL-RES, which means that the probability of the 

GENSENT_1 work below the minimum generation capacity, is 

zero. On the other hand, the maxGENSET is higher than maxL-RES 

meaning that the mix has enough available power to feed the 

entire net load. The GENSET_2 shows a mix that do not have 

the capacity to feed all the range of net load. Exists some 

probability of load shed due to the lack of thermal power 

capacity and some probability of thermal units working below 

the minimum. In the case of GENSET_3, there is a probability 

of the net load to be higher than available production and, 

consequently, a certain probability of load shed to avoid 

blackouts. GENSET_4 shows the opposite case, the mix has 

enough power capacity to feed the maximum value of net load 

but, at same time, some probability of the thermal units work 

below the minimum. One option to decrease the probability of 

working below the minimum is the RES curtailment increasing 

minL-RES in order to become higher than minGENSET or, at least, 

approximate the two values. The case of GENSET_5 the 

probability of load shed is one, meaning that GENSET does not 

have capacity to feed any net load. Finally, in the case of 

GENSET_6, the net load is so reduced, that the GENSET has a 

very high probability to work below the minimum, even with 

RES curtailment. Ideally, to each value of net load, the most 

convenient solution should be approximated by GENSET_1. 

However, it must be noticed that the set of possible thermal 

mixes are discrete and, consequently, cannot be possible to 

cover the entire net load necessities without load or wind 

curtailment.  

Due to the uncertainty in load and renewable production 
forecast, generally, it is hard to find a completely 
robust/economic scheduling solution. In this sense, and for 
security, the scheduling is generally done in a conservative way, 
with low risk, but sometimes far away from an optimal 
operation. The system operator of the network under study, do 

not use a fixed level of reserves. Instead, the reserves vary 
according to renewable production, time of day and even the 
experience of the system operators themselves. 

III. DESCRIPTION OF THE METHODOLOGY 

The proposed methodology is separated in 2 steps. The first 
one is the definition of the equivalent optimal generation unit. 

A. Equivalent optimal generation unit  

This procedure intends to create a database with all 

GENSET combinations and consists on a pre-processing 

procedure which is done only once (offline), being updated only 

if there is a change in the number or rated power of thermal 

units. In fig. 2 the procedure to create the database with 

equivalent optimal generation unit for each GENSET is shown. 

 

Figure 2.  Procedure to obtain the equivalent optimal generation unit 
(GENSET) 

The proceeding starts with the definition of the 

mathematical expression for the fuel consumption of each 

thermal unit. The cost functions were defined as convex, 

continuous and second order. With the set of thermal units is 

created a dataset with all possible combinations of thermal 

units, defining each combination as GENSET with the 

respective maximum (maxGENSET) and minimum (minGENSET) 

limits of generation. To each GENSET is solved an ED for 

different values of load in order to define an equivalent 

generator. The problem’s restrictions were minimum and 

maximum production limits of each unit and the total 

production has to be equal to the load. Transmission losses were 

not taken into account. Calculation speed is the added value of 

this method. For each net load value is possible to calculate the 

power production that each unit must generate and, at the same 

time, the fuel consumption cost. Due to this, it is not necessary 

to run any ED during the on-line scheduling which will reduce 

the computation time. This procedure can appear to be 

exhaustive and time consuming, however is done only once and 

off-line. At the same time it is very dynamic. If there is an 

unavailable unit it’s enough to cut all GENSETs with that unit 

from the database. 
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B. Unit commitment based on risk assessment 

In fig. 3, a diagram of the complete process for UC is shown. 
The complete formulation of this methodology can be found in 
[11]. 

 

Figure 3.  Unit commitment based on risk assessment 

1) Probabilistic forecasts 
For each hour ahead, the load and RES production forecasts 

are received and aggregated as net load, which are the input of 
the algorithm. This process is deeply described in [8]. Very 
often, in this specific case study, during the off-peak periods 
with low load and high RES, the thermal units are forced to 
work below the technical minimum. To increase artificially the 
necessity of thermal production, the system operators choose to 
cut the wind production which demands a special care with the 
RES forecasting [12]. The measured data of RES production 
and load demand were provided by the system operator. The 
RES and load forecasts were provided by Smartwatt, Solutions 
for Energy Systems (http://singular.smartwatt.net).  

2) Evaluation of each GENSET 

 
Following the example of Fig. 1, once the pdf of the net load 

for each hour ahead is known, a risk assessment for each 
GENSET is done calculating the risk (probability) of load shed, 
production below the minimum and the risk of normal 
operation. When there is a probability of production below the 
minimum, it is necessary to calculate the quantity of wind 
production that should be curtailed. In this case, there are two 
situations: the available wind production is lower than the 
curtailment need and the thermal units still work below the 
minimum, or the available wind production is higher than the 
curtailment necessity, being necessary to curtail only a 
percentage. 

After the calculation of all risks for each hour ahead is 
mandatory to calculate the power associated to each risk. In (1) 

1

,L RES hF 

  is the inverse of cumulative density function (cdf) of net 

load for each hour ahead h, prob(WC) is the risk of wind 

curtailment and ˆ
wP  is the forecasted wind generation. 
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Equation (2) calculates the thermal production below the 
minimum after total wind curtailment, where  

1

,L H GEO h
F 

   is the 

inverse of net load cdf with all wind production curtailed; 
prob(min|WC) is the probability of production below the 
minimum. 
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The load shed (LS) and thermal production within the limits 
(NO) are calculated by (3) and (4) respectively. 
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In order to conclude the evaluation of each GENSET, the 
costs related with each risk assessment are calculated. The risk 
cost of wind curtailment is calculated by (5) whereas the risk 
cost of load shed is done by (6), 

    
,WC h WCh h

C prob WC P WC C     (5) 

    
,LS h LSh h

C prob LS P LS C   .  (6) 

The parameters CWC and CLS are the wind curtailment and 
load shed cost, respectively, and are constants independently 
of the amount curtailed. After the total wind curtailment, if 
there is still a violation of the minimum limits of the GENSET, 
the risk cost is calculated by (7), where the cost CMIN_GEN is also 
considered constant. 
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The cost of normal operation are calculated by (8), where 
F[.] is the equivalent optimal generation unit consumption 
function and CFUEL is the fuel cost. 
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For each hour h the total risk cost for a given GENSET 
based on risk assessment is given by (9). 

 , , ,min ,GENSET WC h LS h NO hWC h
C C C C C      (9) 

The result of (9) is not a real costs, it is a risk costs 
calculated only to define the scheduling. The real costs should 
be calculated with the measured values. 

3) Contingency analysis and dynamic programming 
After, an (N-1) contingency analysis is done by (10)

considering the outage of a single thermal unit whose failure 
cannot be repaired within this period. The process is done 
independently for each hour ahead (single period).  
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If only one thermal unit is online, there is a risk of blackout 
whose cost is evaluated by (11) where CBO is the blackout cost. 
The contingency probability is defined by U, ns and nB are the 
number of units type GS and GB, respectively. 

    ( 1), , ,
1

GENSET N h GENSET h N LS h BO
C U C U E L C C


       

 (11) 

The start-up costs are integrated through a forward 
dynamic programming. To reduce the computation time the 
solutions of each period h are rearranged in ascending order. 
Only the solutions with costs that are inside of a threshold are 
tested. Thus, only solutions near the best solutions are tested at 
each state. 

IV. CASE STUDY 

The case study is based on the generation system of São 
Miguel Island, composed by the production sources depicted 
in table I. The unique thermal power plant is equipped with 4 
units with 7,2 MW of rated power plus 4 with 16,5 MW. Thus 
256 combinations of GENSETs are reduced to 24 GENSETs 
which lead to a more tractable problem. In table II the 
production limits of thermal units and the parameters of fuel 
consumption functions are shown. 

TABLE I 
RATED POWER FOR EACH POWER SOURCE 

Source (#units) total power 

Fuel 
4  28 MW  
4 64 MW 

Wind 9  9,4 MW 
Small hydro 7 5 MW 
Geothermal 5  29,6 MW 

 

TABLE II 
PARAMETERS OF THE THERMAL UNITS 

Units Parameters Values 

GS 

Pmin 3 848 kW 
Pmax 7 200 kW 

a  2,723e-6 g/kW2 
b 0,112 g/kW 
c 120,96 g 

GB 

Pmin 8 410 kW 
Pmax 16 500 kW 

a 1,19e-6 g/kW2 
b 0,105 g/kW 
c 311,85 g 

 

The values of (5) up to (11)  are shown in table III [13]. 
TABLE III 

PARAMETERS FOR THE CASE STUDY 

Parameters Values 

Cost Load shed €/MWh  (CLS) 1800 
Cost Wind curtailment €/MWh  (CWC) 84 
Cost Minimum violation €/MWh  (CMIN_GEN) 157,5 
Cost Fuel $/g  (CFUEL) 0,0007 
Probability Contingency %  (U) 1,5 
Cost Blackout €  (CBO) 10 000 
Cost Start-up GS € 455 
Cost Start-up GB € 910 
Threshold € 1000 

 
In Fig. 4 the forecasted net load, with 90% of confidence is 

depicted, as well the GENSET limits of the committed units. 
The unit commitment is done to a 24 hours horizon and 
repeated for a 7 days period, between 0h00 of February 25th up 
to 23h00 of March 3rd, 2014. The simulation of 168 hours took 
3,35 seconds on a laptop with an Intel Core i3 and 2,3 GHz 
processor. 

 

Figure 4.  Net load forecasting and resulted scheduling 

In a first analysis, during the peak periods, the GENSET 
limits present a good coverage of the point forecast as well as 
the uncertainty, with exception of Mach 1st (after 18:00). In this 
case, there is some risk of load shed, but the cost of a different 
GENSET is higher than the cost associated to the load shed. In 
the off-peak periods the situation is different once in several 
periods the limits of the chosen GENSET are within the limits 
of the net load uncertainty. This means that there is a risk of 
load shed and at same time wind curtailment or even production 
below the minimum. However, analyzing the costs, the chosen 
GENSET showed to be the cheapest one. There are cases where 
the point forecast is lower than the minimum of the GENSET, 
once it is more profitable to curtail the wind generation or 
produce below the minimum than choose another combination 
of thermal units. In fig. 5 the forecasted and measured values of 
net load are depicted.  

 

Figure 5.  Forecasted vs measured net load 
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During several off-peak periods, the RES forecasted values 
were underestimated. The forecasting in these periods is 
demanding once the wind curtailment is not an explanatory 
variable for wind power forecasting. Even with accurate models 
remarking errors can be introduced. In figure 6 the forecasted 
and measured downward reserves are depicted.  

 

Figure 6.  Downward reserves 

As consequence of underestimated RES production, there 
were negative downward reserves during several off-peak 
periods, leading to the necessity of wind curtailment or even 
units of GENSETs working below the minimum. In figure 7 the 
upward reserves are shown. 

 

Figure 7.  Upward reserves 

In spite of the measured, reserves follow the forecasted 
ones. Occasionally there were some periods with negative 
reserves which reveal potential periods of load shedding. In 
tables IV and V the forecasted and measured reserve values are 
depicted.  

TABLE IV 
FORECASTED AND MEASURED RESERVES 

Reserve Forecasted Measured 
Upward 8,75 MW 9,80 MW  

Downward 4,71 MW 3,66 MW 

 
Due to the RES underestimation was expectable the 

increasing of average measured upward reserve and a 
decreasing of measured downward reserve. 

TABLE V 
FORECASTED AND MEASURED RESERVES 

 Load 
shedding 

Wind 
curtailment 

Below 
minimum 

Forecasted 
0 h 9 h 0 h 

0 MWh 8,89 MWh 0 MWh 

Measured 
3 h 32 h  1 h 

3,59 MWh 70,51 MWh 0,9 MWh 

According with table V, without any action of the system 
operator, 3 hours and 3,66 MW of load shedding can occur. 
Nevertheless, it should be noticed that all the assessment was 

done based on hourly average values whereby the dynamic 
within the hour was not considered. A deep analysis showed 
that this problem can be outperformed by the power plant 
operators, delaying some maneuvers or using the boost of the 
thermal units, since it was considered that the units start at the 
beginning of the hours and the starting time is neglected.  

V. CONCLUSIONS 

As conclusion, the proposed approach allows the implicitly 
determination of the reserves, because they are already 
incorporated in the uncertainty. If the system operator find 
some noticeable deviation, between the forecasted values and 
measured ones, it is very fast to run again the algorithm or 
reconfigure the available thermal solutions. The proposed 
algorithm can be a good alternative to those based on scenarios, 
broadly presented in literature. The computation time is 
reduced because it is not necessary to run an UC and ED to each 
scenario, once the processing time is a very important issue 
mainly when often refreshes are needed. Other important 
conclusion is that the success of the proposed method is deeply 
connected with the quality of the forecasts. 
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