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Abstract. We determine the properties of the core-periphery model with 3 regions and
compare our results with those of the standard 2-region model. The conditions for the
stability of dispersion and concentration are established. Like in the 2-region model, dis-
persion and concentration can be simultaneously stable. We show that the 2-region (resp.
3-region) model favours the dispersion (resp. concentration) of economic activity. We also
exclude the partial agglomeration equilibrium as a possible stable outcome. Furthermore,
we provide some results for the n-region model. We show that the stability of concen-
tration of the 2-region model implies that of any model with an even number of regions.
Numerical results also suggest that the larger the number of regions, the less stable the

dispersion configuration.
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1 Introduction

The New Economic Geography literature has emerged from the long-existing need to
explain the spatial concentration of economic activity. The literature in the field provides
a general equilibrium framework addressing the emergence of economic agglomerations as
the result of a trade-off between increasing returns at the firm level and transportation

costs related to the shipment of goods.

In this paper, we consider a standard New Economic Geography model involving n regions
distributed along a circle. This model corresponds to the racetrack economy as studied
by Fujita et al. (1999) and can be viewed as the extension of the core-periphery model
of Krugman (1991) to the case of a spatial economy with n regions. Like in Krugman’s
original work, there are two sectors in the economy. While the agricultural sector employs
farmers and produces a single homogeneous good under constant returns to scale, the
manufacturing sector employs workers and produces differentiated goods which —unlike

the agricultural good— are costly to transport across regions.

In the case of a spatial economy with 2 regions, the existence and uniqueness of short-
run equilibrium have been established by Mossay (2006). Also, the number and stability
of long-run equilibria have been determined by Robert-Nicoud (2005). If transportation
costs are low, all the industrial activity locates in one region (concentration equilibrium).
On the other hand, if transportation costs are high, the industrial activity gets dispersed

equally across regions (dispersion equilibrium).

As stressed by Fujita et al. (1999), a theoretical analysis of economic geography must get
beyond the 2-location framework. Interesting results in that direction have been obtained
by Picard and Tabuchi (forthcoming) in the context of an agglomeration model with
quadratic preferences. However, except for the work of Puga (1999), who considered a
finite number of equidistant regions, no analytical result regarding the Krugman core-
periphery model involving 3 regions or more has been derived so far. The aim of this

paper is to contribute to fill this gap.

First we study the 3-region model. We establish the conditions for the stability of the



dispersion and concentration equilibria. As expected and already suggested by the stan-
dard core-periphery model, high (resp. low) transport costs favour the stability of the
dispersion (resp. concentration) configuration. We prove the existence of a region in the
parameter space where the dispersion and concentration configurations are simultaneously
stable. This result generalizes the overlap interval already determined in the case of the

standard core-periphery model by Robert-Nicoud (2005).

A detailed numerical analysis suggests that the partial concentration configuration —where
the economic activity is equally concentrated in 2 of the 3 regions— is always unstable,
regardless of the parameter values. Therefore, the model with 3 regions is intrinsically
different from that with 2 regions: the dispersion configuration of the standard core-
periphery model cannot be sustained as a stable equilibrium when a third location is
available. By comparing the results of the 2- and 3-region models, we show that the
2-region (resp. 3-region) model favours the dispersion (resp. concentration) of economic

activity.

Second, we obtain further results regarding the n-region model. We provide a simple
sufficient condition for the stability of the concentration equilibrium, and show that the
stability of concentration of the 2-region model implies that of any model with an even
number of regions. Numerical results also suggest that the larger the number of regions,

the less stable the dispersion configuration.

In Section 2 we describe the n-region core-periphery model and provide some general
results regarding the steady states and the dynamics of the model. We derive the stability
analysis of the various spatial configurations emerging in the 3-region model in Section 3.
In Section 4 we compare our results with those of the standard core-periphery model. The

equilibria emerging in the n-region model are studied in Section 5. Section 6 concludes.



2 The model

2.1 Economic environment

We consider a spatial economy with a finite number of regions, i € {1,2,....n}. The
distance between any pair of regions is denoted by d(i, j). Regions as evenly distributed
along a circle meaning that successive firms are equidistant, see the racetrack economy
in Krugman (1993) and Fujita et al. (1999). There are two sectors in the economy:
the manufacturing sector, which exhibits increasing returns to scale, and the agricultural
sector, which has constant returns. Agents at location ¢ and time ¢ enjoy a Cobb-Douglas

utility from the two types of goods:
Uit) = Cly(i, YO (0, 1), 1)

where C'4 is the consumption of the agricultural good and C'; is the consumption of the

manufactured aggregate, defined by

o

n
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=
where v(j,t) is the density of manufactured varieties available at location j, c,(j,4,t) is
the consumption of variety z produced at j, and o > 1 is the elasticity of substitution
among manufactured varieties. From utility maximization, y is the share of manufactured

goods in expenditure.

There are two types of agents: workers and farmers. We normalize the total population
of workers to 1, and denote the number of workers in each region i by \;(t) € [0, 1], with

S°r  Ai(t) = 1. The number of farmers at any location ¢ is constant and denoted by A.

Farming is an activity that takes place under constant returns to scale. The agricultural
output is:

QA(i,t) = A. (3)

Manufacturing variety z involves a fixed cost and a constant marginal cost. The number



of workers employed in location 7 at time ¢ to produce Qs (7,t) units of variety z is:
L.(i,t) = a+ BQu (i, 1). (4)

Transport costs only affect manufactured goods and take Samuelson’s iceberg form. More
precisely, when the amount Z of some variety is shipped from locations j to ¢, then the

amount X of that variety which is effectively available at location ¢ is given by:
X = Ze 40D, (5)

where 7 is the transport cost per unit of distance.

There is a continuum of manufacturing firms. Each of them produces a single variety,
and faces a demand curve with a constant elasticity . This will be confirmed below,
see relation (14). The optimal pricing behaviour of any firm at location ¢ and time ¢ is

therefore to set the price p,(i,t) of variety z at a fixed markup over marginal cost:

. g .
pz(% t) = mﬁw(za t)7 (6)
where W (i, t) is the worker wage rate prevailing in region ¢ at time ¢.

Firms are free to enter into the manufacturing sector, so that their profits are driven to

zero. Consequently, their output is given by:

Qum:(it) = 2 (0 —1). (7)

fe] B

Since all varieties are produced at the same scale, the density v(i,t) of manufactured
goods produced at each location is proportional to the density A;(t) of workers at that

location: -
M(t) = / UL 8)dz = aou(i,b). (8)
0

Total income Y at location ¢ and time ¢ is given by:
Y(i,t) = Ap™ + M)W (i, 1), (9)
where p? is the price of the agricultural good.
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Workers are not interested in nominal wages but rather in utility levels. To consume at
location 7 one unit of variety z produced at location j, e” %) units must be shipped. The

delivery price is, therefore, p,(j,t)e™ 7).

The price index of the manufactured aggregate for consumers at location i, denoted by
O(i,t), is obtained by computing the minimum cost of purchasing one unit of the manu-
factured aggregate Cs(i,1):

1

o—1

n i) N
0.0 = |3 [ putif o e e g (10
=1

By using the pricing rule (6) and relation (8), ©(7,¢) may be rewritten as:

1
o—1

5 ~(o-1) —(o—1)rd(i)
o— o—1)7d(s, 11
L §jA (1)

0(i,t) =

The consumption of variety z € [0,v(j, )] produced at j may be expressed for workers

and farmers located at 7 as:

(jyiyt) = uW (i, t)p.(j,t) e DTEDQ(j ¢)7

(4, i,t) = pupp.(j,t) e O ITEDQ (G )7 (12)

The total demand for variety z produced at j is then obtained by summing up the demand
for that variety of all the consumers in the spatial economy:

n

Q1) = D (), t) + Ac (G, )]

=1

= ZM W (i, t) + Ap*lp-(j, 1) e~ @V, )7 (13)
By using the total income expression (9), we get:

Qi 1) ZNY i, 0)p=(j, 1) e IO (i, )7, (14)



The market-clearing price for variety z produced at j is obtained by equating the demand

Q7. (14) and the supply Qa. (7) of that variety:

Q=

. u . . © No—1_—(o—1)7d(3,5)
= |— Y J . 1
p-(J,t) [a(a D ; (1,1)0(i,t)° e (15)
Because of the pricing rule (6), we get:

W(jt) = Uﬁ;l la(fé 1)r

> Y (i,0)e(, t)”le("l)Td(i’j)] . (16)
=1

The manufacturing wage W (j,t) is the wage prevailing at location j and time ¢ such that

firms at j break even.

The indirect utility U;(¢) of a worker in location i is then obtained through expression
(1):

= (W (i, 1)/0G, ) [(1 = wW (i, ) /p] "
= W= ) TIIO6 ) W), a7

The adjustment dynamics postulates that workers migrate to regions where utility is

higher:
dXi(t)
dt

where k denotes the adjustment speed and U denotes the average utility:

= k(Ui(t) = U0) (1),

U(t) = Z Xi(OUi(t).

2.2 Reduced system of equations

In the short-run, each region i is described by the variables Y;(t), 6;(t), W;(t), and U;(¢)
which denote respectively the income level, the manufacturing price index, the nominal

wage, and the indirect utility level.



We denote the transportation cost from locations ¢ to j by T;,; = e™7) . Economic
normalization leads to the following reduced system of equations describing the short-run
equilibrium, see Fujita et al. (1999) or Mossay (2005). For simplicity of notation, we omit

the time variable:
Y1 = —H +p A Wy

Yy = —E+M)\2W2

Ynzl_T“—l—,u)\an

[ 00 = PuW Y 4 da(WaT) =0 o Ay (W, T3) = 0] 77
02 = (Wi T12)~ D 4 oWy O o, (W, Ty )~ D] 5
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( L
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al=

o—1 o—1
Wy = Y1<T21> L Y205 44 Y, (%) ]

o—1
W= M (25) v (s

Q=

o—1
) e Yneg*]

(U, = 07w,
Uy = 05" W,
| U, = 6,7 W,.

The adjustment dynamics can then be rewritten as

/ _

)\1 — (Ul - U))\l

)\2 = (UQ - U))\Q (18)
L A= (Un = 0)As

where U = \U; + X\oUs + ... + AU,



2.3 Equilibria and invariants

A simple symmetry argument establishes the existence of equilibria.

Lemma 2.1. The configurations of dispersion, (%, %, s %), and concentration, (1,0, ...,0)

and its permutations, are equilibria.

Proof. This is obtained by direct substitution in the system of differential equations de-

scribing the dynamics (18). O

We have the following invariant.

Lemma 2.2. The boundary of the simplex is invariant for the dynamics.
Proof. See Appendix A. O

Since the boundary of the simplex corresponds to a distribution that leaves one of the
regions empty, this result asserts that if a region is initially deserted, then it will remain

so over time unless there is some exogenous migration to that region.

3 The 3-region core-periphery model

In this Section, the spatial economy consists of 3 identical regions which are equally spaced
along a circle. The distance between any two regions is equal to d and the corresponding

transportation cost is 7" = e,

The existing literature has provided numerical simulations of this core-periphery model.
They suggest that only 2 spatial equilibria can emerge: the dispersion configuration, where
the economic activity gets equally distributed across the 3 regions; and the concentration
configuration, where the economic activity agglomerates in a single region, see e.g. Fujita
et al. (1999). Our purpose is to support these numerical results, by providing further

analytical results. We make clear the conditions under which dispersion and concentration
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occur. In particular we show that these two equilibrium configurations can coexist in
equilibrium and determine the region in the parameter space for which this actually
happens. We also provide a numerical argument which clearly suggests that the partial

concentration of the economic activity in 2 of the 3 regions can never be stable.

3.1 Equilibria and their stability
Lemma 3.1. The configurations (%, %, %), (%, %,0) and (0,0, 1) are equilibria.

Proof. Dispersion and concentration are equilibria by Lemma 2.1. The remaining result
is obtained by direct substitution in the system of differential equations describing the

dynamics (18). O

Note that the dispersion equilibrium is fully symmetric. The remaining two equilibria
have partial symmetry: they are invariant by a reflection that swaps the first two regions
(coordinates). Studying the stability of the above equilibria, provides the stability of
(%, 0, %) and (0, %, %) from that of (%, %, 0), and of (1,0,0) and (0, 1,0) from that of (0,0, 1).
The stability of the three types of equilibria depends on the sign of the eigenvalues of the

Jacobian matrix of the dynamical system (18). We evaluate them at each of the above

equilibria.

Proposition 3.2. Each of the following equilibrium is stable if its corresponding eigen-

values are negative as follows:

e (3,3,3) is stable when

1427 \71Te _ T

_< 3 ) o—1

T°(1 — w)[(1 —p)o — 1] =T (=14 0 + p?o — 2u + 4uo)
T2 (1 — p) + T2(1+ 2p + 30) + T (60 — 2 — p)
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e (3,3,0) is stable when

2 o—1

T2+ 4p—Tuo — 20 —3op®) + T°(1 — p)[2(c — 1) — 3uo]

<1+T1—”>?L1 To T

: 0
T22—4u—o(l— )] —T%(1 — )2+ 0) — 2T B0 — 2+ plo —1)] =
and
B i
(14T I T%(1— p) + T (1 — p) + 272 + p) \ © 0.
2 T(T+1T°) ’

e (0,0,1) is stable when

1

(14T (1 —p)+(1+ Qu)T1”> "o

14 TH
w7 :

3.2 Stable equilibria

First we provide conditions under which dispersion and concentration are stable. Our
results are obtained by studying the properties of the eigenvalues derived in Proposition
3.2. Asit is usually assumed in the existing literature, we suppose that the “no-black-hole”

condition, u < (¢ — 1)/0, holds, see Fujita et al. (1999).

Proposition 3.3. The dispersion configuration (%, %, %) is stable if and only if:

. (o114 p2o+2u20 — 1)\ 7T
T>%‘( T —po 1] )

Proof. See Appendix B.

a

This result means that the dispersion configuration is stable for high values of the trans-
portation cost, as anticipated. Note that the “no-black-hole” condition guarantees that
the critical value, 77, is positive. If the “no-black-hole” condition were to fail, then dis-
persion would be unstable regardless of the value of transportation cost 7. This latter

scenario is not regarded as an interesting situation, see Fujita et al. (1999).
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Proposition 3.4. The concentration configuration (0,0,1) is stable if

1
o—1
T <T" = (HQ") .
L—=p
Proof. See Appendix B.

O

This Proposition means that the concentration configuration is stable for low values of
the transportation cost, as anticipated. It is important to stress that the above result
provides a sufficient stability condition only, meaning that concentration is stable for a

wider range of parameter values than that given here.

We now address the possible coexistence of the above equilibria.

Proposition 3.5. The concentration and dispersion equilibria can be simultaneously sta-

ble. This actually occurs for an open subset in the parameter space (T, 0, 1).

Proof. See Appendix B.

a

This result proves the co-existence of the concentration and dispersion configurations.
The region in the parameter space for which this co-existence of equilibria actually occurs

is depicted in Figure 1.
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Figure 1: Critical stability surfaces where the dispersion (top sur-
face) and concentration (bottom surface) equilibria change sta-
bility. Between the 2 surfaces, concentration and dispersion are

simultaneously stable.

The following results about the stability of the partial concentration configuration (%, %, 0)
show that the model with three regions is intrinsically different from that with two regions:
the dispersion configuration (1/2,1/2) cannot be sustained as a stable equilibrium when

a third location is available.

2(c—1)

Proposition 3.6. For j > =5—, partial concentration is never stable.

Proof. See Appendix B.

O

Even though the expressions of the eigenvalues of the partial concentration provided
in Proposition 3.2 prevent us from providing further analytical results, we present in
Figure 2 a numerical representation of the surfaces in the parameter space for which
these eigenvalues are zero. By a numerical inspection of how these eigenvalues change
of sign, these eigenvalues are never simultaneously negative. This numerical argument
suggests that the partial concentration equilibrium is never stable. This result supports

the simulation results obtained by Fujita et al. (1999, Chapter 6).
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Figure 2: Surfaces representing the eigenvalues determining the
stability of partial concentration (1/2,1/2,0). Numerical inspec-
tion shows that they are never simultanesously negative (i.e. be-
tween the 2 surfaces, both eigenvalues are positive; anywhere else,

one eigenvalue is positive while the other one is negative).

4 Comparison between the equilibria of the 2- and

3-region models

In this section, we compare the set of parameters for which concentration and dispersion

are simultaneously stable for the two models.

Lemma 4.1. The stability region of the dispersion equilibrium of the 2-region model con-

tains that of the 3-region model meaning that the 2-region model favours dispersion.
Proof. See Appendix C. a

In other words, dispersion in an economy with three regions implies dispersion in an
economy with only two regions (for the same parameter values). This is illustrated in

Figure 3.
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Figure 3: Critical stability surfaces where dispersion changes sta-
bility for the 2- and 3- region models. Below the surface, dis-
persion is stable. The top surface corresponds to the 2-region

model.

Lemma 4.2. The stability region of the concentration equilibrium of the 3-region model

contains that of the 2-region model meaning that the 3-region model favours concentration.
Proof. See Appendix C. a

In other words, concentration in an economy with two regions implies concentration in

an economy with three regions. We illustrate this result in Figure 4.

Figure 4: Critical stability surfaces where concentration changes
stability for the 2- and 3-region models. Above the surface, con-
centration is stable. The top surface corresponds to the 2-region

model.
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So far, when increasing the number of regions (from 2 to 3), we have been increasing the
size of the circumference. However, it is also interesting to consider an alternative scenario
where the perimeter of the circumference is kept fixed. To keep the transportation cost of
a full lap around the circle constant, say 7, we should set the transportation cost 7" of the
2-region economy to /7, and that of the 3-region economy to /7. In this alternative
scenario, both Lemmas 4.1 and 4.2 still hold. This is because now the transportation
cost of the 3-region economy has been reduced with respect to the initial scenario. As
a consequence, the stability region of the dispersion equilibrium of the 3-region model
shrinks, while that of concentration expands, meaning that dispersion may no longer be

stable but concentration will surely remain stable.

5 On the n-region Model

The purpose of this section is to get an idea of how the stability of the dispersion and
concentration equilibria behaves for different values of n. In order to ease the comparison,
we consider n regions evenly distributed along a circumference with fixed perimeter as in
the racetrack economy studied by Fujita et al. (1999). The transportation cost along a
full lap around the circle is 7 = T", where T remains the transportation cost between
two adjacent regions, and the transportation cost between regions ¢ and j > ¢ is T;; =

T¢, where d = min{j —i,n — j +i}.

First we provide results about the dispersion equilibrium of the 4-region model. By
determining the analytical expression of the corresponding eigenvalues, we have compared
numerically the stability region of the 4-region model with that of the 3-region model. This
was done by representing the corresponding critical stability surfaces in the parameter
space. It turns out that dispersion in the 4-region model is less stable than in the 3-
region model. Because Lemma 4.1 holds (as discussed at the end of section 4), we have
2 >4 3 =4 4, where the relation n; >4 no means that dispersion in the n;-region model is

more stable than in the no-region model, see the illustration in Figure 5.

17



Figure 5: Critical stability surfaces where dispersion changes stability
for the 4-, 3-, and 2-region models. Below the surface, dispersion is
stable. The top surface corresponds to the 2-region model, the bottom

one to the 4-region model.

This tends to suggest that the larger the number of regions in the model, the less stable

the dispersion outcome.
Second the following result provides a characterization of the concentration equilibrium.

Proposition 5.1. In an economy with an even number of regions, if the condition (1 +
p)/2 TU=o=hmo)/2 4 (1 — ) /2 TO=1=r9)/2 < 1 holds, then the concentration equilibrium
(1,0,...,0) is stable.

Proof. See Appendix D. O
Note that when n = 2, this sufficient condition turns out to be also necessary. This leads
to the following Corollary.

Corollary 5.2. If the concentration equilibrium is stable in the 2-region model, it will

remain stable in an economy with any even number of regions.

We illustrate this result by determining the critical stability surfaces of the concentration
equilibrium for n = 2,4,6, and 8, see the illustration in Figure 6. This confirms that
2 >.4 >.6 >, 8 where the relation n; >, ny, means that concentration in the n;-region

model is more stable than in the ny-model.
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Figure 6: Critical stability surfaces of concentration. Above the
surface, concentration is stable. From the top to the bottom,

surfaces correspond respectively to n = 2,4, 6, 8.

6 Concluding Remarks

We have provided results concerning the core-periphery model with more than two regions.
Most results regarding the 3-region model are analytical. We have compared the stable
outcomes of the 2- and 3-region models and have established that the 2-region model
favours dispersion while the 3-region model favours concentration. The model with three
regions is intrinsically different from that with two regions: the dispersion configuration
in the standard core-periphery model cannot be sustained as a stable equilibrium when
a third location is available. Furthermore, we have derived some results for the core-
periphery model with more than 3 regions. The stability of concentration of the 2-region
model implies that of any model with an even number of regions. Numerical results also

suggest that the larger the number of regions, the less stable the dispersion configuration.

All the results which have been obtained complement those previously obtained by sim-

ulation in the existing literature.
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Appendix A

Proof of Lemma 2.2: The (n — 1)-dimensional simplex is such that
and its boundary satisfies

A =0

M4 N+ N+ N = L
Suppose \; = 0. Then

}\1 - (Ul - U))\l

/.\z'—l = (Ui—l - U))\z‘—l
)'\H—l = (Ui+1 - U))\i—i—l

A = (U =0y

and therefore, the boundary is invariant.

Appendix B

Proof of Proposition 3.3: Consider the expression of the eigenvalue given in Proposi-
tion 3.2. Observe that the eigenvalue is negative if and only if the numerator of the large

fraction is positive:
T°1— [l —po—=1-=T(-14 0+ p?c — 2u+4pc) >0

ST (1 -p)[(1—po -1 > -1+0+p’c —2u+4uo

o—1+p?o+2u(20—1)

o—1
ST > e
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where we used (p — 1)[1 + (1 — 1)o] > 0, given that the “no-black-hole” condition holds.

It remains to show that T); > 1, otherwise dispersion would always be stable since 7" > 1.

We have

1
« _ [ o—1+p?o+2u(20—1) -1
1i= ( (=D +(—1)o) ) > 1

So—1+p2c+2u20 —1) > (p—1)(1+ (u—1)0)
So—14+p?c+2u20 —1)> (p—1)(1+ (u—1)o)
< u(6oc—3) >0

which holds given that o > 1 and u € (0,1).

Proof of Proposition 3.4: From the expression in Proposition 3.2, concentration is

stable if and only if

(14T (1 = ) + (1+ 2u)T7]7 < 3Yon, (19)

Given that T > 1, we have T* > 1 and 3Y/°T* > 3'/7. Therefore, a sufficient condition
for stability is that

1

[(L+T (1 —p)+ (1+20)T 7] < 347
S1-pWT ' +Q—p)+ Q42077 < 3
e 1-—pT* D+ Q- +142u < 37771
S 1 =T -2+ uW)T° P +14+2u < 0.

By replacing X = T°~1, we have

1-wWX* =24+ X +1+2u < 0
S X <X <Xy,

where X_ and X, are the roots of the polynomial in X, given by:

24+ px3p
X, =202
T 2(l-p)

22



Since X_ = 1, a sufficient condition for the stability of concentration is that

o1 - 1—|—2/,L‘
I —p

Proof of Proposition 3.5: It turns out that we never have T; < T). This is because

the condition for stability of concentration is only sufficient and therefore, too strong.

We prove the statement by showing that for some values of T' for which dispersion is

stable, the eigenvalue of the Jacobian matrix at concentration is negative.

By replacing T by 7T in the last condition of Proposition 3.2, where > 1 is a real
number ensuring that we are considering values of 1" for which dispersion is stable, we

have

([+ 0T (=) + L+ 20T} < 3V (T

(T 1+ T;) " A= p) + 1420 < 3Tt

Both sides of the above inequality are continuous functions of parameters o, ¢ and 7. So,
if the inequality holds for a particular value of (o, i, n), it will also hold in an open set

containing that particular value.

Choose o = 2. The no-black-hole condition then requires that p < 1/2. Choose p = 1/3

and n = 2. It is trivial to check that the inequality holds for these parameter values.

Proof of Proposition 3.6: The first eigenvalue in Proposition 3.2 is negative if and

only if the numerator of the large fraction is positive:
T2+ 4p—Tpo — 20 — 3op?) + T7(1 — p)[2(6 — 1) — 3uo] >0
& Tuo +20 +3op? —2 —4p < T Y1 — pu)(20 — 2 — 3uo)

For p > %07—1 (or equivalently 20 —2—3uo < 0), this is impossible, because the expression

on the left-hand side is positive while the expression on the right-hand side is negative.
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Appendix C

Proof of Lemma 4.1: Denote the critical value of the 3-region model obtained in
Proposition 3.3 by T;. We now turn to the 2-region model. Calculating the eigenvalue

of the Jacobian matrix at (1/2,1/2), we find that dispersion is stable if and only if

- (2ﬁ(1 + TH)ﬁy” (T° —T).
To(p—1)(A+ (p—1)0) =T+ p)(=1+ 0+ po)

’<U_1)(_T20<N_1)+T2(1+M)+T1+‘7(4o‘—2) < 0.

—h
Simplifying the above expression and taking into account that the expression — (Qﬁ (1+7T "_1)&)
(T° —T) has a constant negative sign, we conclude that dispersion is stable if and only if

T7 Y p— 1A+ (p—1)o) — (1 +p)(0 — 1+ po)

> 0.
(1—pw)T?(c—-1)+2T°"' 20— 1)+ 1+ pu

It is easy to see that the denominator is positive and therefore, the stability of dispersion

takes place when

o<<ztlwilxr+w;1w»—m+uxa—1+nw¢>
o—1 1+lu 0-_1—’_/“'L0- - * Yo—1
T D F (= Doy~ )

We conclude the proof by showing that T);; > T7,. Because the denominators are equal,

we have

Ty > Ty &
oc—1+p2o+2u20—1) > (1+p)(oc—1+puo) <

2u0 —p > 0,

which is always the case.

Proof of Lemma 4.2: In the 2-region model, concentration is stable if and only if

TU%L#O+TGG+#»UU
5 < 0.

Fo(T) = —1+ 7" (
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We have seen in Proposition 3.2 that concentration in the 3-region model is stable if and

only if

A+T7 (1 —p) + (1 + 2,u)T1°')1/"
3 < 0.

We conclude the proof by showing that f3(71") < fo(T"). Given the above expressions, we

f(T)=—-1+T" <

have to check that

T ((1 + T -+ (1+ 2u>T”>”“ < T (T““ — W+ T+ M>)W &
3 2
(14+T7"H(1 — p)+ (1 +2u)TH° _ TN 1 —p)+ T (14 p) o
3 2

72D _21° 111 > 0
(T°'—1)* > 0,

which is always the case.

Appendix D

Proof of Proposition 5.1: We start by characterizing the concentration equilibrium

in region 1 (A = 1).

From the reduced system of equations in Section 2.2, it is straightforward to show that

W1 =1 and, then, to obtain the remaining variables.

The incomes of the different regions are:

( 1y
i=="+u
1—

Yo =8
y, = =
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The manufacturing price indexes are:

(

6, =W,V T =1
0y = [(I/VlTl,z)_(U_l)rﬁ =T

1
L ‘9n - {(WlTl,n)i(ail)] (e-1) = Tl,n‘

The utility of workers in each region is given by:

(U, =1
U2:T1_72“W2

The nominal wages in each region are:
(
Wy =1

1 o1 o—1 Ti3 o1 Tin o1
Wy =1 (E) + YTy, + Y3 (m) +..+Y, <T2n>

1/o

o—1 o—1
W, = lyl (#) +Ys (%) T YnTﬁnl]

\

Is it possible that workers prefer to migrate from region 1 to another region? To address

that issue, consider region d 4 1, which is d steps away from region 1. Without loss of

generality, let 1 < d < n/2. Wages are given by

1 o—1 T o—1
Wo, = Y ( ) + Y, (i) ot Yo IO+ 4 Y, (
Tar11 Tay12 ’

1—(7d ]_ - H o‘_—ld 1 — IU/ T17j ol
= NI — ST —= Y ()
" T je{nary N

o—1
Tl,n )
Td+1,n

In the above expression, each region’s specific term depends only on the difference between
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the distances to region 1 and to region d + 1. By a careful evaluation', we have

T\ L TGnm \TT PR G\
> (7)) -X(Fn) + X ‘
Toiqs T (d+1-35)/n T(G—d—1)/n

j¢{Ldp1y N LI =2

j=d+2
d+n/2 n i o—1
T T(n+1=5)/n
(B ()
Jj=n/2+2 Jj=d+14+n/2
d n/2+1 d+n/2 n
o—1 . o—1 o—1 - l—0o
_ ZTT(QJ—d—2)+ Z T Z T (n=2j+d+2) Z Td
=2 j=d+2 j=n/2+2 j=d+1+n/2
n/2+1
-y S 0 pe
j=d+2 j=d+14n/2
o—1(o; n — 2d o—1 n — 2d l1-o
— 9 TT(2jfdf2) TTd TTd
> Py T

Therefore, we get

—c 1— o— 1— _2 g— —a
W, = YlTln d+_“771d_|_< ) (n — 2d) <T d 7 d) n

n 2n

d
2(1_/,[/) o—1 o
Sl s T (2j—d=2

=2

d
— uTH (1_/0(7;—2‘“‘2) ( ohd | e ”d) 2(1_/027”7*1(2]‘— -
n

With more manipulation,

Wg+1 = MTkTod+ [1;M _ (1_M)(d_1)] (TUTfld_’_TlfTod> +

n

d
2(1 — ,UJ) o=l _J_
i Sl s T —~ (2j—d—2)

_ glk= ad{Hu (1—u)(d—1)]+To7_lld[1;u_(1—u)(d—1)}+

2 n n
21— p)
- T (2j-d-2)
+=— ;

Tgnore the summation terms whenever the subscript is higher than the superscript.
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Since 7% + 7 ~* is an increasing function of x, we can get rid of the summation and get
1+ —o 1— o
W, < T“Tle + T“TT”.

The welfare in region d 4 1 is such that:

=

1 copoy 1 — fl,_om1opo g\ ©

This means that workers won’t surely move to region d + 1 if:

1 —‘|2— lU,Tlfffnf,UfO'd + 1 ; lU,To'flnf,u,o'd S 1

By differentiation with respect to d, we obtain that if the above condition is satisfied for
d = n/2, then it is satisfied for any d, and concentration is stable. Hence, a sufficient

condition for the stability of concentration is:

]_ —|2— /1/717027&0 + ]_ ; /,L7_07127££U S 1
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