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Abstract

We introduce ambiguity about the variance of the risky asset's return in the model of Chacko

and Viceira (2005) for dynamic consumption and portfolio choice with stochastic variance. We

�nd that, with investors being able to update their portfolio continuously (as a function of the

instantaneous variance), ambiguity has no impact. To shed some light on the case in which con-

tinuous portfolio updating is not possible, we also evaluate the e�ect of ambiguity when investors

must use their expectation of future variance for their portfolio decision. In the latter scenario,

demand for the risky asset can be decomposed into three components: myopic and intertemporal

hedging demands (as in Chacko and Viceira (2005)) and ambiguity demand. Using long-run US

data, Chacko and Viceira (2005) found that intertemporal hedging demand is empirically small,

suggesting a low impact of stochastic variance on portfolio choice. Using the same calibration, we

�nd that ambiguity demand may be very high, much more than intertemporal hedging demand.

Therefore, stochastic variance can be very relevant for portfolio choice, not because of the variance

risk, but because of investors' ambiguity about variance.
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1 Introduction

We study optimal dynamic consumption and portfolio choice, in the presence of stochastic variance, of

an investor that is averse both to risk and ambiguity. In our setting, the variance of the risky asset's

return is simultaneously the source of the risk and the ambiguity that are perceived by the investor.

There is a large literature on portfolio choice (see Campbell and Viceira (2002) for a survey), but

only a few works study the optimal dynamic portfolio choice with stochastic variance of the risky asset's

return. Two exceptions are Chacko and Viceira (2005) and Liu (2007). In those two papers, potential

adverse changes in the investment opportunity set are associated with the stochastic variance of the

risky asset's return, which therefore represents a source of risk to investors. From Merton (1973), this

implies that the investor's optimal intertemporal hedging demand is driven by the stochastic variance.1

However, both in Chacko and Viceira (2005) and in Liu (2007), there is only risk, and no ambiguity.

Ambiguity is uncertainty that cannot be represented by a single probability distribution. Risk, on

the contrary, is uncertainty that is susceptible of being described by a probability distribution. This

conceptual distinction, �rst explored by Knight (1921), has relevant implications for the behavior of

economic agents, and therefore for economic theory in general. Ellsberg (1961) disclosed experimental

evidence supporting the Knightian distinction between risk and ambiguity. This evidence became

known as the Ellsberg paradox, and motivated a large body of empirical studies, surveyed in Camerer

and Weber (1992).

Notwithstanding this, the mainstream theory of choice under uncertainty in economics in the

last 60 years ignored ambiguity, being based on the expected utility theories of von Neumann and

Morgenstern (1944) and Savage (1954).2 But, gradually, ambiguity is being incorporated in decision

theory. Two major approaches are being used: (i) the multiple priors (MP) approach, associated

with the ambiguity aversion concept, whereby the single probability measure of the standard expected

utility model is replaced by a set of probabilities or priors; (ii) the robust control (RC) approach, more

associated to the model mispeci�cation concept.3

In studies of portfolio choice with ambiguity, Gollier (2006) and Garlappi et al. (2007) concluded

that, by introducing ambiguity aversion in a static MP approach, the optimal demand for the risky asset

decreases versus the standard mean-variance and Bayesian models.4 The same conclusion was reached

by Chen et al. (2009) in a dynamic MP setting, and by Maenhout (2004) in a dynamic RC model.

Uppal and Wang (2003) studied the implications of ambiguity aversion in portfolio diversi�cation. In

all these works, the source of ambiguity is the expected risky asset's return or the model of the risky

asset's return.5

1In Merton (1973), following Samuelson (1969) and Merton (1969, 1971), it is showed that when investors time-
horizon exceeds one period, their optimal demand for the risky asset di�ers from that of �myopic� investors in one extra
component: intertemporal hedging demand. This extra component is used to hedge investors against adverse changes
in future investment opportunities.

2In the Expected Utility Theory of von Neumann and Morgenstern (1944), the probabilities of the possible states
of nature are known, while in the Subjective Expected Utility Theory of Savage (1954), although probabilities are not
necessarily known, the choice behavior of an agent coincides with maximization of expected utility according to some
subjective probability beliefs.

3See Hansen and Sargent (2001a), Hansen et al. (2002) and Epstein and Schneider (2003) for a discussion about the
relationship between these two types of models.

4However, Gollier (2006) also demonstrates that, in his setting, this result requires some restrictions on the set of
priors and on the investor's attitude towards risk.

5Another active branch of literature working with ambiguity is the asset pricing literature. Under the MP approach,
examples of papers focused on equilibrium asset pricing are Epstein and Wang (1994, 1995), Chen and Epstein (2002),
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We extend the model of Chacko and Viceira (2005) for optimal dynamic portfolio choice with

stochastic variance, by introducing ambiguity about the expected value of the variance of the risky

asset's return. Motivation for this is provided by Chacko and Viceira (2005) themselves:

�An important caveat of our empirical analysis is that we have counterfactually assumed that in-

vestors observe volatility (or precision), and that they take as true parameters our empirical estimates

of the joint process for returns and volatility. In practice, however, investors do not observe volatility,

and they do not know the parameters of the process for volatility, or even the process itself.�

It has been advocated in the literature (e.g. Cao et al. (2005), Garlappi et al. (2007) and Ui (2009))

that it is reasonable to assume that investors estimate the variance of the risky asset's return without

ambiguity, and that it is preferable to assume ambiguity about expected returns. Reasons invoked for

this are analytical tractability, empirical evidence on the predictability of the variance of stock returns

(e.g. Bollerslev et al. (1992)), higher di�culty in estimating the expected returns versus expected

variance (Merton (1980)) and higher costs associated with errors in estimating expected returns versus

expected variance (Chopra and Ziemba (1993)).

Nevertheless, we introduce ambiguity about the variance of the risky asset's return because: (1)

there is no �a priori� reason to assume that investors are not ambiguous about variance, particularly

considering that they do not observe it; (2) we are able to �nd analytical solutions; and (3) the expec-

tation of variance under statistical-econometric methods isn't the sole relevant indicator of variance in

the �nancial world.6

We consider ambiguity only about the variance of the risky asset's return to keep a parsimonious

model and to isolate its e�ects on the optimal dynamic consumption and portfolio choices. The reason

to choose the expected value of variance as the source of ambiguity (besides analytical tractability) is

that it seems more intuitive to assume that investors think more about that parameter of the variance

process than about other parameters (like the variance of variance or the reversion parameter in the

case of a mean-reverting variance process).

We introduce ambiguity through the MP approach, adopting the Maxmin Expected Utility frame-

work of Gilboa and Schmeidler (1989), which enables us to introduce ambiguity aversion without

changing signi�cantly the setting of Chacko and Viceira (2005). The choice behavior is as if the in-

vestor has a set of possible values of the expected value of variance, and considers the worst possible

of these values when evaluating each portfolio and consumption policy.7

Epstein and Miao (2003) and Ju and Miao (2008), which deal with the well-known �equity premium� and �home-bias�
puzzles. Dow and Werlang (1992), Cao et al. (2005) and Ui (2009) deal with the issue of limited market participation.
Still under the MP approach, Miao and Wang (2007) analyze the option exercise problem when there is a distinction
between risk and ambiguity. Under the RC approach, equilibrium asset pricing was studied, for e.g., by Hansen and
Sargent (2001b), Anderson et al. (2003) and Liu et al. (2005).

6Option implied variance frequently di�ers both in level and dynamics from the statistical measure (e.g. Drechsler
and Yaron (2008) and Todorov (2009)), and embeds relevant information about investors perception about the future
distribution of the risky asset's return. Which part of this spread between statistical and option-implied expectations of
variance is due to investor's ambiguity about variance is still an interesting open question in the literature.

7The MP approach includes three major settings for agent's attitude towards ambiguity: (i) Non-additive Expected
Utility (Schmeidler (1989)) that makes use of Choquet Integration (CEU) to work with non-additive priors; (ii) Maxmin
Expected Utility (MEU) (Gilboa and Schmeidler (1989)) that works with a set of additive priors in such a way that
an ambiguity averse agent considers the worst prior associated with each decision; and more recently, (iii) the Smooth
Ambiguity Aversion Theory (KMM) (Klibano� et al. (2005)), that distinguishes ambiguity from ambiguity aversion and
allows for smooth indi�erence curves, avoiding the in�nite ambiguity aversion implied in the MEU approach. Further
extensions of those works have been made recently in order to adapt them to dynamic problems, either through non-
recursive settings (e.g. Gilboa and Schmeidler (1993) and Klibano� and Hanany (2007)) and recursive settings within
CEU framework (e.g. Nishimura and Ozaki (2003) and Eichberger et al. (2005)), MEU framework (e.g. Chen and
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We �nd that, in our setting, the variance of the risky asset's return is always bad to the investor,

in the sense that it decreases his utility. However, we conclude that ambiguity about variance has no

impact whatsoever.

A crucial assumption of the model is that the investor is able to continuously update his portfolio

as a function of the observed instantaneous variance, which means that the variance of the portfolio's

return is always known by the investor. Without such continuous portfolio adjustment (which is not

observed in reality, due to transaction costs), the variance of the portfolio's return becomes uncertain,

even if investors can observe the instantaneous variance. To shed some light on this scenario, we also

consider an alternative case in which investors use their expectation about the future variance in their

portfolio decision. We �nd that, in this case, the investor's ambiguity aversion about variance reduces

the demand for the risky asset.

In this latter scenario, the demand for the risky asset can be decomposed into three components:

myopic and intertemporal hedging demands (as in Chacko and Viceira (2005)) and ambiguity demand,

which is the novelty. Using the same calibration of Chacko and Viceira (2005) with long-run US data,

we �nd that ambiguity demand has a relevant empirical dimension, much more than intertemporal

hedging demand. We therefore conclude that, when investors use their expectation about future

variance (and not the instantaneous variance) in their portfolio decision, the �ambiguity dimension� of

the uncertainty about the stochastic variance is relevant, more than its �risk dimension�.

In our view, this paper brings three major contributions: (1) it is the �rst to introduce ambiguity

aversion within a dynamic optimal portfolio choice setting with an explicit process for the stochastic

variance; (2) it is the �rst to introduce ambiguity aversion speci�cally about the variance of the risky

asset return; (3) it suggests that, in some scenarios, ambiguity about the variance of the risky asset's

return is important for portfolio choice.

The paper is organized as follows. In section 2, we state the problem to be solved. In section 3, we

present the analytical solution to the problem and the key results. In section 4, we show simulation

outputs. In section 5, we conclude the paper with some remarks.

2 The Dynamic Consumption and Portfolio Choice Problem

In section 2.1, we describe the investment opportunity set, which is the same as in the work of Chacko

and Viceira (2005). In section 2.2, we disclose the preferences of the investor, extending the framework

of Chacko and Viceira (2005) by introducing ambiguity about the expected value of the precision

(which is the reciprocal of variance) of the risky asset's return. In section 2.3, we present the dynamic

optimization problem to be solved by the investor.

Epstein (2002), Epstein and Schneider (2003), Hayashi (2005) and Maccheroni et al. (2006a,b)) and KMM framework
(Klibano� et al. (2009)). Additionally, Miao (2001), Wang (2003) and Epstein and Schneider (2007, 2008) extend the
recursive multiple-priors approach in order to incorporate learning.
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2.1 Investment Opportunity Set

It is assumed that all wealth is allocated between a riskless asset with price Bt and a risky asset with

price St. The instantaneous return of the riskless asset is described by:

dBt
Bt

= rdt , (1)

where r stands for the risk free interest rate.

The instantaneous return of the risky asset is given by:

dSt
St

= µdt+
√

1
yt
dWS , (2)

where µ is the expected return of the risky asset, WS is a standard Brownian motion and yt is the

instantaneous precision of the risky asset's return process (the instantaneous variance is vt = 1
yt
).

From (2), the expected excess return of the risky asset versus the riskless asset, µ− r, is constant over
time.

The precision, yt, follows a mean-reverting, square-root process given by:

dyt = κ (θ − yt) dt+ σ
√
ytdWy , (3)

where the expected value of the precision is E [yt] = θ, the reversion parameter is κ > 0, and, thus,
V ar [yt] = σ2θ

2κ (Cox et al. (1985), pp. 392). Wy is a standard Brownian motion. To guarantee standard

integrability conditions, it is assumed that 2κθ > σ2(Cox et al. (1985), pp. 393).

Applying Itô's Lemma to (3), a mean-reverting, square-root process for proportional changes in

variance is obtained (Appendix 6.1) :

dvt
vt

= κv (θv − vt) dt− σ
√
vtdWy , (4)

where θv =
(
θ − σ2

κ

)−1

and κv = κ
(
θ − σ2

κ

)
= κ

θv
.

Taking expectations of the second-order Taylor expansion of vt around θ, the approximate uncon-

ditional mean of instantaneous variance is (Appendix 6.2):

E [vt] ≈
1
θ

+
1
2
σ2

θ2κ
=

1
θ

+
V ar(yt)
θ3

. (5)

As the expected return of the risky asset, µ, is assumed to be constant, (5) is also the expected

unconditional variance of the risky asset's return.8

It is assumed that shocks to precision (Wy) are correlated with shocks to the return on the risky

asset (WS), with dWydWS = ρdt and ρ > 0. From (4), this implies that the instantaneous correlation

8Chacko and Viceira (2005) perform a Monte Carlo simulation that validates this statement and the accuracy of the
approximation (5). They conclude that this approximation understates the true variance by 0.27%.
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between proportional changes in variance and the risky asset's return is given by:

Corrt

(
dvt
vt
,
dSt
St

)
= −Corrt

(
dyt,

dSt
St

)
= −ρdt . (6)

This investment opportunity setting incorporates three of the main stylized facts about the variance

of the return of risky assets: the mean reversion property, the �leverage e�ect� property (given by the

negative correlation between returns and its variance), and the clustering property (as proportional

changes in variance are higher when variance is high).

2.2 Investor's Preferences

The investor faces ambiguity about the expected value of precision, θ (equivalently, from (5), about the

expected value of the unconditional variance of the risky asset return, E [vt]). Regarding the values of
the remaining parameters of the investment opportunity set, it is assumed that there is no uncertainty.

Following Gilboa and Schmeidler (1989), we assume that the θ-ambiguity averse investor has a set

of priors, the interval
[
θ , θ

]
, with 0 < θ ≤ θ ≤ θ, and makes his choice considering the minimal

expected utility over all priors in the set. The higher the di�erence between θ and θ, the higher the

level of ambiguity. No learning process about θ is considered. It would enrich the analysis at expense

of increased complexity.9

The preferences of investors are described by the stochastic di�erential utility (SDU) function intro-

duced by Du�e and Epstein (1992b) and applied to asset pricing theory by Du�e and Epstein (1992a).

This is a continuous-time form of recursive utility, analogous to the discrete-time parametrization of

Epstein and Zin (1989, 1991), that exhibits intertemporal consistency, admits Bellman's characteri-

zation of optimality, and separates risk aversion from elasticity of intertemporal substitution by not

constraining to be reciprocals of one another (as in standard additive intertemporal utility function).

The utility process that de�nes the SDU function is represented by:

J = Et

 ∞̂
t

f (Cs, Js) ds

 , (7)

where Cs represents current consumption and Js is the continuation utility for C at time t = s, with

in�nite time horizon. The function f (Cs, Js) is the normalized aggregator that generates J , which,

as in Chacko and Viceira (2005), de�nes a SDU function that represents the preferences introduced

by Kreps and Porteus (1978). An explicit closed-form expression for that SDU utility function is

not available. Following Du�e and Epstein (1992a), the normalized aggregator f (C, J) is given by

(Appendix 6.3):

f (C, J) =
β

1− 1
ψ

(1− γ) J

( C

((1− γ) J)
1

1−γ

)1− 1
ψ

− 1

 , (8)

where γ > 0 is the coe�cient of relative risk aversion, ψ > 0 is the elasticity of intertemporal substi-

tution and β > 0 is the rate of time preference. With γ = 1
ψ , (8) becomes the standard power utility

9See comments in Garlappi et al. (2007), pp.73, for some reasons to ignore the e�ect of learning under an ambiguity
context.
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representation.

When ψ → 1, the normalized aggregator f (C, J) takes the form:

f(C, J) = β (1− γ) J
{
log (C)− 1

1− γ
log [(1− γ) J ]

}
. (9)

Two remarks on the preferences of the representative investor. The �rst regards the di�erent

dynamic nature of the two types of uncertainty - ambiguity and risk - in our setting. We intro-

duce ambiguity through the approach of Gilboa and Schmeidler (1989), assuming that the ambiguity

problem has a �once-for-all� solution. Conversely, the attitude towards risk is settled through a recur-

sive dynamic setting given by (7), where the dynamic consistency is guaranteed (Du�e and Epstein

(1992a)). This approach is justi�ed by two main reasons: (i) it is a parsimonious way of extending the

framework of Chacko and Viceira (2005) to incorporate θ-ambiguity;10 (ii) although simple, it permits

the study of the relevance of the dichotomy ambiguity-risk when assessing the impact of stochastic

precision on the portfolio choice - we obtain an analytical solution that disentangles the ambiguity

and risk components of investor's portfolio choice (section 3), enabling an elucidating empirical testing

(section 4).

The second remark regards the preference for the timing of the resolution of risk. With the Kreps

and Porteus (1978) preference structure, agents can have preference for early or late resolution of risk

(as well as indi�erence), while the standard additive intertemporal utility function implies that agents

are indi�erent to the temporal resolution of risk. In the framework of Epstein and Zin (1989), the

preference for temporal resolution of risk depends on the relationship between ψ and γ: if γ > 1
ψ (<,=)

investors have preference for early (late, indi�erent) resolution of risk. Our speci�cation (7) from

Du�e and Epstein (1992a), being the continuous-time limit of that of Epstein and Zin (1989), inherits

this property. However, on the contrary of other streams of literature with Epstein and Zin (1989)

preferences, for e.g. the �long-run risk� literature ( from seminal work of Bansal and Yaron (2004)),

we do not restrict investor to have preference for early resolution of risk. Two main reasons support

this decision: (i) as our model evolves in a long-run setting, it should not be excluded the possibility of

the �cost� (of opportunity) becoming higher than the �bene�t� of planning advantages brought by the

early resolution of risk (e.g. Arai (1997)) and (ii) there is evidence that agents may have preference

for late resolution of risk (e.g. Epstein and Zin (1991)).

10A more elaborate way of doing it would be to work with a recursive multiple priors utility speci�cation. The setting
of Chen and Epstein (2002) would be a good candidate, as it extends the SDU function of Du�e and Epstein (1992b) by
replacing the single prior by a set of priors. In this case, θ would be a new state variable, alongside Xt and yt, following
its own stochastic process. The state of nature would be described by (θt, Xt, yt), and there would be ambiguity about
θt. This means that the set of priors under which the intertemporal optimization problem would be solved would be
exclusively de�ned by a density generator associated to the θt process. This setting is richer than ours as it considers
intertemporality in both sources of uncertainty (ambiguity and risk), but: (i) analytically, it implies a more complex
stochastic optimal control problem to be solved, as there is a third stochastic di�erential equation (associated with the
dynamics of θt) to be included in the deduction of the Bellman Equation and respective value function; and (ii) for
the particular case of the SDU function speci�cation for Kreps and Porteus (1978) preferences, it is not ensured that
an utility function exists, as the correspondent aggregator ((8) or (9)) violates the Lipschitz condition (see Chen and
Epstein (2002) section 3 for further details). Notwithstanding this added complexity, we see it as an interesting topic
for future work.
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2.3 Dynamic Optimization Problem

The dynamic optimization problem of the investor is to maximize the θ-minimized expected utility

(7), subject to the precision process (3) and to the intertemporal budget constraint (11).

max
π,C

 min
θ̂∈[ θ , θ ]

Et0

 ∞̂
t0

f (Cs, Js) ds

 (10)

s.t.

dXt = [πt (µ− r)Xt + rXt − Ct] dt+ πt

√
1
yt
XtdWS , (11)

dyt = κ
(
θ̂ − yt

)
dt+ σ

√
ytdWy ,

where Ct, Xt and πt represent instantaneous consumption, wealth and fraction of wealth invested in

the risky asset, respectively. Is is assumed that total wealth at the initial moment (t0 = 0) is positive,
i.e., Xt0 > 0.

Following Kamien and Schwartz (1991) (ch. 22), the Bellman Equation of this problem is:

0 = max
π,C

min
θ̂∈[ θ , θ ]

{
f (Cs, Js) + JX (πt (µ− r)Xt + rXt − Ct) + Jyκ

(
θ̂ − yt

)
+

+
1
2
JXXπ

2
t

1
yt
X2
t +

1
2
Jyyσ

2yt + JXyπtρσXt

}
, (12)

where f (Cs, Js) is the normalized aggregator given in (8) and (9) for general values of ψ and for ψ → 1,
respectively, and JX , Jy, JXX , Jyy and JXy are partial derivatives.

The order of minimization and maximization in (12) can be changed by applying the Saddle Point

Theorem (Fan (1953), Sion (1958)), which is possible as: (i) the domain of θ̂ is compact; (ii) the argu-

ment is concave on π and on C (the expressions for J will be disclosed in the next two subsections);11

and (iii) the argument is convex on θ̂.12 We obtain:

0 = min
θ̂∈[ θ , θ ]

max
π,C

{
f (Cs, Js) + JX (πt (µ− r)Xt + rXt − Ct) + Jyκ

(
θ̂ − yt

)
+

+
1
2
JXXπ

2
t

1
yt
X2
t +

1
2
Jyyσ

2yt + JXyπtρσXt

}
, (13)

which is the Bellman Equation of the problem in which the order of the maximization and the minimiza-

tion is exchanged. Therefore, the dynamic consumption-portfolio problem with stochastic precision

11There are two parcels that are linear on π and one that is quadratic but is associated with a minus sign (from
JXX < 0), therefore the argument is concave on π. Concavity on C also holds, as there is one parcel that is linear and,
for the expressions for J given in the next two subsections, f (Cs, Js) ((8) or (9)) is concave on C.

12Note that J is not a function of θ̂, as it already considers the speci�c value that solves the minimization problem.

This implies that the only relevant parcel of the argument of (12) to study convexity on θ̂ is Jyκ
(
θ̂ − yt

)
. The latter is

linear, and therefore convex, on θ̂.
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faced by the investor that is both θ-ambiguity and risk averse can be written as:

min
θ̂∈[ θ , θ ]

maxπ,C

Et0

 ∞̂
t0

f (Cs, Js) ds


s.t. (14)

dXt = [πt (µ− r)Xt + rXt − Ct] dt+ πt

√
1
yt
XtdWS ,

dyt = κ
(
θ̂ − yt

)
dt+ σ

√
ytdWy .

3 Optimal Dynamic Consumption and Portfolio Choices

We solve problem (14) in two steps. First, for each value of θ̂, we �nd the value function, Jt0(θ̂), of
the maximization problem, as in Chacko and Viceira (2005). Then, we minimize this value function

with respect to θ̂ to obtain the value of θ̂ that is used by the ambiguity averse investor:

θ∗ = argmin
θ̂∈[ θ , θ ]

Jt0(θ̂).

The maximization problem, for each possible value of θ̂, is a stochastic continuous-time optimal

control problem with two state variables, wealth (Xt) and precision of the risky asset's return (yt),

and two control variables, consumption (Ct) and fraction of wealth invested in the risky asset (πt).
This implies that the value function, Jt0(θ̂), that solves the problem is a function of Xt and yt. The

corresponding Bellman equation is:

0 = max
π,C

{
f (Cs, Js) + JX (πt (µ− r)Xt + rXt − Ct) + Jyκ

(
θ̂ − yt

)
+

+
1
2
JXXπ

2
t

1
yt
X2
t +

1
2
Jyyσ

2yt + JXyπtρσXt

}
. (15)

Chacko and Viceira (2005) found an exact solution of this maximization problem for ψ = 1, and an

approximate solution for the general case of ψ 6= 1. We study θ-ambiguity aversion in both scenarios.

3.1 Exact solution (ψ = 1)

When the investor has unit elasticity of intertemporal substitution of consumption (ψ = 1), the value
function that solves (15), for any value of θ̂, is given by (Chacko and Viceira (2005), Proposition 1):

J
(
θ̂, Xt, yt

)
= exp

{
Ayt +B(θ̂)

} X1−γ
t

1− γ
, (16)

9



where A and B(θ̂) are given by

A =

γ (1− γ)

[(
β+κ
1−γ −

ρσ(µ−r)
γ

)
±
√(

ρσ(µ−r)
γ − β+κ

1−γ

)2

− σ2(µ−r)2[γ(1−ρ2)+ρ2]
γ2(1−γ)

]
σ2 [γ (1− ρ2) + ρ2]

, (17)

B(θ̂) =
(1− γ) (βlogβ + r − β)

β
+
κθ̂

β
A . (18)

The sign of the square-root in A is �+� for γ > 1 and �-� for γ 6 1 (see Appendix 6.4).

This implies the following optimal consumption (Ct) and portfolio rules (πt):

Ct = βXt , (19)

πt =
1
γ

(µ− r) yt +
σρ

γ
Ayt . (20)

When ψ = 1, optimal consumption is a constant fraction of wealth to be consumed throughout

time (19). This means that the income and substitution e�ects on consumption that result from a

change in the investment opportunity set are always exactly canceled out.

The optimal portfolio rule (20) has two components: (i) mean-variance portfolio demand, 1
γ (µ− r) yt

(myopic demand13); and (ii) intertemporal hedging demand, σργ Ayt (Merton (1973)). As highlighted

by Chacko and Viceira (2005), the latter is zero (and therefore the portfolio myopic demand is opti-

mal) when: the investor has unit coe�cient relative risk aversion (γ = 1); investment opportunities

are constant (σ = 0) or, being time-varying, it is not possible to use the risky asset to hedge against

those changes (ρ = 0). As both components of portfolio demand are linear functions of yt, their ratio

does not depend on yt. From E [yt] = θ and (20), the mean optimal allocation in the risky asset is:

πθ =
1
γ

(µ− r) θ +
σρ

γ
Aθ. (21)

An ambiguity averse investor considers, from his set of priors, θ∗ = argmin
θ̂∈[ θ , θ ]

Jt0(θ̂), where:

Jt0(θ̂) = exp
{
Ayt0 +B(θ̂)

} X1−γ
t0

1− γ
, (22)

with yt0 and Xt0 representing the instantaneous precision and the total wealth at the present moment

(t = t0). From (22), the solution of the ambiguity problem will depend on the investor's risk prefer-

ences and on the characteristics of the investment opportunity set.

Proposition 1. When ψ = 1 and γ > ω , where ω = σ2(µ−r)2+2ρσ(µ−r)(β+κ)

(β+κ)2+σ2(µ−r)2+2ρσ(µ−r)(β+κ)
< 1, the

solution of the ambiguity problem is:14

13The intuition for this designation is that when intertemporal hedging demand in (20) becomes zero, investors with
a multiperiod problem decide as if they were facing a sequence of identical one-period problem (Merton (1973)).

14For γ < ω, A in (17) is a complex number. From (16) this implies a complex value function J . As J is the optimized
intertemporal utility, and utility functions are de�ned in the real space, the domain of the problem is restricted to values
of parameters such that γ > ω.

10



θ∗ = θ .

Proof. Appendix 6.5.

From Proposition 1, we conclude that the domain of the solution to the θ-ambiguity problem

depends on the combination of the level of investor's risk aversion15 and on the characterization of the

investment opportunity set dynamics (represented by ω). Under that domain (γ > ω), it results that
precision is always good, implying that θ∗ = θ.

Two further comments related to Proposition 1. Firstly, although in our setting precision ends up

to be always good, the hypothesis of precision being bad should also be considered, as we did. This

follows from the conclusion of Rothschild and Stiglitz (1970, 1971) that some risk averse investors may

be better o� with an increase in the variance (decrease of precision) of returns.16 If under the domain

of analysis (γ > ω), there were scenarios where precision is bad, then the solution of the ambiguity

problem would be θ∗ = θ.

Secondly, regarding investor's preferences for the temporal resolution of risk, the domain of analysis

γ > ω includes scenarios where the investor has preference for late resolution of risk (ω 6 γ < 1), for
early resolution of risk (γ > 1) and is indi�erent to that timing (γ = 1). Only scenarios where the

investor has a strong preference for late resolution of risk (γ < ω) are excluded.

Using Proposition 1, problem (14) becomes:

max
π,C

Et0

 ∞̂
t0

f (Cs, Js) ds


|θ̂=θ

, with γ > ω, ψ = 1,

subject to the same restrictions as before, but with θ̂ = θ. The solution is given by equations (16)-(20),

for a speci�c value of θ̂ = θ and a consistent set of remaining parameters values (such that γ > ω).

It is immediate from (19) and (20) that both the optimal consumption and portfolio rules are not

a�ected by ambiguity about θ, as neither depend on θ. If the θ-ambiguity averse investor follows the

instantaneous optimal portfolio policy (20), his mean optimal allocation to the risky asset is given by

(21), the same as that of an investor who faces no ambiguity.

However, if the θ-ambiguity averse investor could not instantaneously adjust his portfolio following

the observation of the instantaneous precision (as in (20)), then his expectation of the future precision

15Most empirical studies on γ conclude its value is higher than one. However there are also some few studies that
obtain a γ estimate lower than one. See, for example, Table 7 in Bliss and Panigirtzoglou (2004) for a quick review of
estimated values of γ in the literature.

16In the �nance literature, particularly on portfolio choice, the mean-variance (MV) approach, under which risk averse
agents make their choices considering only the �rst two moments of the return distribution, has been extensively used.
This despite the fact that the expected utility theory (EU) approach is more consistent. AS a consequence, the risk-
return trade-o� is frequently and erroneously treated as the mean-variance trade-o�. Although variance is probably the
best scalar measure of risk, relevant probability distributions aren't exclusively characterized by their �rst two moments.
At least their third and fourth moments - skewness and kurtosis - may be also very informative and relevant. Rothschild
and Stiglitz (1970) demonstrate this by introducing a richer de�nition of risk, based on the concept of a �mean-preserving
spread�. For the portfolio problem, Rothschild and Stiglitz (1971) show that an increase in the riskiness of the risky asset
does not necessarily reduce its demand by risk-averse investors. For the MV and EU approaches to give the same results,
it is necessary to assume the quadratic utility speci�cation, which is both theoretically and empirically implausible, or to
restrict the choice space in a way that the mean and variance contain all the relevant information (e.g. all distributions
are Normal).
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would become relevant for the choice of portfolio. Note that due to the existence of transaction costs

and other market frictions, investors in the real world do not adjust their portfolios continuously. In

this case, θ-ambiguity aversion becomes relevant as, from Proposition 1, the expectation of the future

precision di�ers between the ambiguity averse and the ambiguity neutral investor (θ and θ, respec-

tively). For an ambiguity neutral investor, the mean allocation to the risky asset continues to be given

by (21). Proposition 2 elaborates on the portfolio choice of a θ-ambiguity averse investor.

Proposition 2. When ψ = 1, γ > ω, and the θ-ambiguity averse investor considers the expected

precision of the risky asset return instead of the instantaneous precision, the demand for the risky asset

is:

πθ =
1
γ

(µ− r) θ +
σρ

γ
Aθ , (23)

which can be decomposed into three components:

myopic demand =
1
γ

(µ− r) θ (24)

intertemporal hedging demand =
σρ

γ
Aθ (25)

ambiguity demand =
[

1
γ

(µ− r) +
σρ

γ
A

]
(θ − θ) . (26)

In this �expectation-driven� scenario, the mean demand for the risky asset is therefore decomposed

into three components: myopic and intertemporal hedging demands (as in Chacko and Viceira (2005))

and ambiguity demand. The sum of (24) and (25) gives the mean optimal risky asset demand under

no ambiguity (21) and under ambiguity when investor instantaneously changes his asset allocation. By

adding the ambiguity demand (26), one obtains the mean risky asset demand under ambiguity (23)

when the investor cannot instantaneously adjust his portfolio.

The main conclusions about the impact on πθ, in this �expectation-driven� scenario, of the existence

of θ-ambiguity are stated in Proposition 3.

Proposition 3. When γ > ω and ψ = 1, (i) the mean allocation to the risky asset is lower when

investors are θ-ambiguity averse (ambiguity demand is always negative); (ii) a higher (lower) level

of ambiguity (measured by θ − θ) implies a smaller (greater) allocation to the risky asset; (iii) the

intertemporal hedging demand for the risky asset is negative if γ > 1 and positive if ω 6 γ < 1.
Proof: Appendix 6.6.

The result that ambiguity aversion reduces the demand for the risky asset is the standard result

within the still recent literature on portfolio choice under ambiguity. We extend this result to a setting

where precision, and not the expected return, is the source of ambiguity.

However, note that from (26), if there were scenarios with precision being bad, implying θ∗ = θ,

12



then ambiguity aversion would increase investor's demand for the ambiguous risky asset.17

The conclusion that an investor with γ > 1 has a negative intertemporal hedging demand, and the

opposite when ω 6 γ < 1, is consistent with the �ndings of Chacko and Viceira (2005) and applies to

all scenarios and not only to the �expectation-driven� one. When risk aversion is low (ω 6 γ < 1), the
investor is ready to support a worse performance when precision is low for extra performance when

precision is high (recall that ρ > 0). An investor with high risk-aversion (γ > 1) is not willing to accept
this trade-o�.

3.2 Approximate solution (ψ 6= 1)

The general case in which the investor's elasticity of intertemporal substitution of consumption (ψ) may

di�er from unity is relevant because most empirical studies suggest that ψ 6= 1, either higher (Hansen
and Singleton (1982), Attanasio and Weber (1989) and Guvenen (2001)) or lower (Hall (1988), Epstein

and Zin (1991), Campbell (1999) and Vissing-Jorgensen (2002)). However, the Bellman equation (15)

has no exact solution when ψ 6= 1. Chacko and Viceira (2005) found an approximate analytical solution

for ψ 6= 1 that converges to the exact solution determined above when ψ → 1. This approximate

solution may be interpreted as describing the behavior of an investor with bounded rationality.

The accuracy of the approximate solution is insu�cient for γ < 1 and also for higher levels of γ

when coupled with low values of ψ (Chacko and Viceira (2005), table 6). Therefore, we extend the

analysis of the previous section to the general case of ψ 6= 1, but only for γ > 1.
The Bellman equation continues to be given by (15), for any θ̂ value, but now the normalized

aggregator is given by (8). The value function that solves (15) in this scenario is given by (Chacko

and Viceira (2005)):

J
(
θ̂,Xt, yt

)
= exp

{
−
(

1− γ
1− ψ

)(
A1yt +B1(θ̂)

)} X1−γ
t

1− γ
, (27)

where A1 and B1(θ̂) are given by:

A1 =

ρσ(µ−r)(1−γ)
γ − (h1 + κ) +

√(
(h1 + κ)− ρσ(µ−r)(1−γ)

γ

)2

− σ2(µ−r)2(1−γ)[γ(1−ρ2)+ρ2]
γ2

σ2

γ

(
1−γ
1−ψ

)
[γ (1− ρ2) + ρ2]

, (28)

B1(θ̂) = ψlogβ +
h0 − ψβ − r (1− ψ)

h1
+
κθ̂

h1
A1 , (29)

which implies the following optimal consumption (Ct) and portfolio rules (πt):

Ct = βψXtexp
{
−A1yt −B1(θ̂)

}
, (30)

πt =
1
γ

(µ− r) yt +
σρ

γ

(γ − 1)
(1− ψ)

A1yt . (31)

17This is a result reached by Gollier (2006) within a setting with ambiguity aversion over expected excess return, with
constant precision and under the speci�cation of Klibano� et al. (2005), for certain choices of multiple priors for the
risky asset's return.
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Two notes on expressions (28) and (29). Firstly, in (28), only the positive sign on the square

root guarantees that this approximate solution converges to the exact solution when ψ → 1. Sec-

ondly, h1 represents the unconditional mean of the consumption-wealth ratio around which the linear

approximation of the Bellman Equation (15) is made in order to obtain this approximate solution.18

Regarding the investor's optimal policies, the main di�erence between the set of equations (19)-(20)

and (30)-(31) concerns the consumption policy. From (30), the optimal consumption-wealth ratio is not

�xed (β when ψ = 1). It is a decreasing function of precision when ψ > 1 and an increasing function of

precision when ψ < 1 (Appendix 6.8). This re�ects the relative importance of the intertemporal income

and substitution e�ects of precision on consumption: when ψ > 1, the intertemporal substitution e�ect

dominates the income e�ect, and the contrary happens when ψ < 1. Regarding (31), its structure is the
same as in (20): it has a myopic component and an intertemporal hedging component that, for γ > 1,
is always negative (Appendix 6.8). Chacko and Viceira (2005) show that for empirically plausible

characterizations of the process for precision, expressions (20) and (31) are very close.

From E [yt] = θ and (31), the mean optimal allocation in the risky asset is

πθ =
1
γ

(µ− r) θ +
σρ

γ

(γ − 1)
(1− ψ)

A1θ. (32)

An ambiguity averse investor considers, from his set of priors, θ∗ = argmin
θ̂∈[ θ , θ ]

Jt0(θ̂). The expression

of Jt0(θ̂) is now given by (27) at t = t0:

Jto(θ̂) = exp

{
−
(

1− γ
1− ψ

)(
A1yt0 +B1(θ̂)

)} X1−γ
t0

1− γ
, (33)

with yt0 and Xt0 representing the instantaneous precision of the risky asset's return and the wealth

at the present moment (t = t0). Proposition 4 states the conclusions on the ambiguity problem solution

within this approximate formulation:

Proposition 4. When ψ 6= 1 and γ > 1, the solution of the ambiguity problem is:

θ∗ = θ.

Proof. Appendix 6.7.

Considering Proposition 4, the problem (14) to be solved becomes:

max
π,C

Et0

 ∞̂
t0

f (Cs, Js) ds


|θ̂=θ

, with γ > 1, ψ 6= 1,

subject to the same restrictions as above, but with θ̂ = θ. The solution of this problem is given by

18h1 = exp
{
c− x

}
, with ct − xt = log

(
Ct
Xt

)
, is therefore an endogenous variable. h0 is established as h0 =

h1 (1− log (h1)).
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expressions (27)-(31), with θ̂ = θ.

In this case, the optimal consumption rule is a�ected by θ-ambiguity as expression (30) depends

explicitly on θ̂: for each level of instantaneous precision yt, the consumption-wealth ratio is higher

(lower) when investors are θ-ambiguity averse if ψ > 1 (ψ < 1) (Appendix 6.8).

Regarding the optimal portfolio rule, it happens the same thing as in the exact solution. If the

θ-ambiguity averse investor follows the optimal portfolio policy (31), his mean optimal allocation to

the risky asset is given by (32), the same of an ambiguity neutral investor.

However, by analogy to the exposed for the exact solution, θ-ambiguity becomes relevant if the

θ-ambiguity averse investor does not adjust continuously his portfolio for a given level of instantaneous

precision (as in (31)). In this �expectation-driven� scenario, the investor's expectation of the risky asset

return's precision becomes a key driver of the portfolio decision. In this scenario, while the demand of

an investor who faces no ambiguity continues to be given by (32), the choice of a θ-ambiguity averse

investor is described by Proposition 5.

Proposition 5. When ψ 6= 1, γ > 1 , the mean consumption-wealth ratio and the mean allocation

to the risky asset are given, respectively, by(
C

X

)
θ

= cθ = βψexp {−A1θ −B1(θ)} , (34)

πθ =
1
γ

(µ− r) θ +
σρ

γ

(γ − 1)
(1− ψ)

A1θ . (35)

The demand for the risky asset (35) can be decomposed into three components:

myopic demand =
1
γ

(µ− r) θ (36)

intertemporal hedging demand =
σρ

γ

(γ − 1)
(1− ψ)

A1θ (37)

ambiguity demand =
[

1
γ

(µ− r) +
σρ

γ

(γ − 1)
(1− ψ)

A1

]
(θ − θ) . (38)

As in the exact solution, the risky asset demand in the �expectation-driven� scenario, is decomposed

into three components: myopic and intertemporal hedging demands (as in Chacko and Viceira (2005))

and ambiguity demand. The sum of (36) and (37) gives the mean optimal risky asset demand under no

ambiguity (32) and under ambiguity with instantaneously portfolio updates. By adding the ambiguity

demand (38), one obtains the mean risky asset demand with ambiguity, when the investor cannot

continuously update his portfolio allocation, under the approximate solution (35).

The main conclusions about the impact, in this �expectation-driven� scenario, on the consumption-

wealth ratio and on πθ of the existence of θ-ambiguity are stated in Proposition 6.

Proposition 6. When γ > 1 and ψ 6= 1: (i) the mean allocation to the risky asset is lower when

investors are θ-ambiguity averse (ambiguity demand is always negative); (ii) a higher (lower) level of
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ambiguity, measured by (θ − θ), implies a smaller (greater) mean allocation to the risky asset; (iii) the

intertemporal hedging demand is negative; (iv) the mean consumption-wealth ratio is higher (lower)

when investors are θ-ambiguity averse if ψ > 1 (ψ < 1).
Proof. Appendix 6.8.

4 Simulation

Chacko and Viceira (2005) found that, calibrating their model to long-run US data, the optimal in-

tertemporal hedging demand has a small empirical dimension. This suggests that the �risk dimension�

of stochastic variance is empirically not very relevant to the dynamic optimal portfolio decision. How-

ever, in their concluding remarks, they acknowledge that an important caveat of their analysis is that

they have counterfactually assumed that investors observe variance and take as true the empirical

estimates of the parameters of the variance process.

Following this lead, we have extended their model to account for ambiguity about one of the

parameters of the variance process: the expected value of precision (inverse of variance). As a result,

under a scenario where the ambiguity averse investor decides about his portfolio allocation considering

his expectation of precision (and not the instantaneous precision), a third component of the demand

for the risky asset appears. In addition to the �myopic demand� and the �intertemporal hedging

demand�, we obtain an �ambiguity demand� component. We denominated the referred scenario as

�expectation-driven�, and it is the one under which we run these simulations.

Using the calibration of Chacko and Viceira (2005), we �nd that the ambiguity demand component

of the allocation in the risky asset has a relevant empirical dimension, much higher than that of the

intertemporal hedging demand. Stochastic variance may therefore have a signi�cantly higher impact

on the portfolio choice than what is suggested by the results of Chacko and Viceira (2005).

The reference parameter values used in the simulation are those estimated in Chacko and Viceira

(2005) based on monthly excess stock returns on the CRSP value-weighted portfolio over the T-Bill

rate from January 1926 through December 2000:

µ− r = 0.0811,

κ = 0.3374,

θ = 27.9345, (39)

σ = 0.6503,

ρ = 0.5241,

r = 0.015,

β = 0.06.

It is important to note that (5) is equivalent to (Appendix 6.9):

θ ≈
2κ+

√
4κ2 + 8κσ2E [vt]
4κE [vt]

. (40)
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Expression (40) sets the relation between θ and the expected variance of the risky asset's return, for

a given pair of values for κ and σ. This relation is important for simulation purposes, because θ is set

for speci�ed variance values19, subject to the restriction that 2κθ > σ2 (section 2.1). Note that, for a

given pair of values for κ and σ, and from (5):

θ ∈
[
θ , θ

]
=⇒ E [vt] ∈

[
E [vt]θ=θ , E [vt]θ=θ

]
. (41)

4.1 Simulation Results

Implications for the mean allocation in the risky asset from the introduction of θ-ambiguity are exem-

pli�ed in Table 1, being consistent with conclusions in Proposition 3 and 6. The �rst column presents

the results for the scenario without θ-ambiguity, in which the expected annual standard deviation of

the risky asset's return is approximately equal to 19.1%. The other three columns represent scenar-

ios with θ-ambiguity, in which the upper bound of the expected annual standard deviation value is

increased to 20%, 25% and 30%.20 From (40) we obtain the related θ values. The implied ambiguity

level in each scenario, 1− θ/θ (in percentage), is also reported.21

Simulations are run for di�erent levels of risk aversion (γ = 0.75, 1, 2, 4, 20, 40) both using the

exact solution (ψ = 1) and the approximate solution ( ψ = 1/0.75 and ψ = 1/1.5 ).22 In panel A

we show the mean allocation to the risky asset (percentage). In panels B and C, the intertemporal

hedging demand and the ambiguity demand are shown as a percentage of the myopic demand.

19From (40), it is equivalent to consider a value for θ or E [vt]. However, we believe it is more natural for investors to
think in terms of E [vt] than θ. For the set of parameters in (39), the implied expected standard deviation of returns is
19.1314%.

20From (41), those three values, 20%, 25% and 30%, are

√(
E [vt]θ=θ

)
values, i.e, they correspond (in each scenario)

to the upper bound of intervals for E [vt] �built� by the θ-ambiguity averse investor.
21Implementation using Dynare version 3.065 and MatLab version 7.0.0.19920 R14.
22Recall discussion in section 3.2 about the scenarios under which the approximate solution is accurate.
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Table 1: Mean allocation to risky asset, intertemporal hedging demand and ambiguity demand.

Note 1 - Panel A: E [πt (yt)] = πθ × 100. Panel B: for ψ = 1, (ratio of (25) over (24))×100; for ψ 6= 1, (ratio of (37) over

(36))×100. Panel C: for ψ = 1, (ratio of (26) over (24))×100; for ψ 6= 1, (ratio of (38) over (36))×100.

Note 2 - Implied ambiguity level (%): (1− θ/θ)× 100.

Note 3 - R.R.A.=γ.

Let us give an example based on panel A of Table 1. Consider a risk-averse investor, with γ = 2
and ψ = 1, that is θ-ambiguity neutral. His mean optimal allocation to the risky asset corresponds

to 111.4% of his wealth. If the investor becomes ambiguous about θ, under the �expectation-driven�

scenario disclosed in previous sections, with the implied upper bound of the interval for annual expected

standard deviation (from (41)) being equal to 25%, his mean allocation to the risky asset declines to

66,20% of his wealth.

Panel B reports the estimates of the intertemporal hedging demand, measured as a ratio of myopic

demand. The overall results with θ-ambiguity are similar to the ones in the scenario without ambiguity

(the same for ψ = 1 and very close in the other cases). The main results are: (i) this ratio does not

vary with the precision of the return; (ii) intertemporal hedging demand is positive when γ < 1 and

negative when γ > 1; (iii) intertemporal hedging demand is small - even for a very high risk averse

investor (γ = 40).
Panel C presents the estimated ratios of ambiguity demand versus myopic demand. It shows that

ambiguity demand is always negative, with an importance that increases with the level of ambiguity

and decreases with the level of risk aversion, showing much less sensitivity to γ.

Results for the exact and the approximate solution are very close, denoting low sensitivity to the

elasticity of intertemporal substitution (ψ).

In panel A, it is shown that, the demand for the risky asset is decreasing with the risk aversion, γ,

and with the level of ambiguity, θ − θ. This is graphically highlighted in Figure 1.
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Figure 1: Mean allocation to risky asset as a function of risk aversion and ambiguity level

Note - Simulation run with ψ = 1.

It is clear that, under our setting and using calibration (39), the allocation to risky asset reacts

strongly to changes in θ. Figure 2 further highlights this for a larger set of θ values within a reasonable

range of expected annual standard deviation of returns (from 19,1% to 35%).

Figure 2: Mean allocation to risky asset as a function of θ.

Note - Simulation run with ψ = 1.

The ambiguity e�ect on the demand of the risky asset is empirically expressive: even for a low

level of ambiguity (second column in Table 1), where expected annual standard deviation is slightly

adjusted from 19,1% (assumed to be the true value from calibration (39)) to 20%, the ambiguity e�ect

corresponds to 8% of the investors myopic demand.23 This is further illustrated in Figure 3 for a wider

range of values of expected annual standard deviation of returns and of γ. Figure 3 also highlights the

fact of ambiguity demand being empirically much more relevant than intertemporal hedging demand

23In each θ-ambiguity scenario in Table 1, the percentage values in Panel C are very close to the respective implied
ambiguity level. This is due to the small empirical dimension of the intertemporal hedging demand (Panel B).

19



(note the di�erence of scale in the vertical axis).

Figure 3: Ambiguity demand and intertemporal hedging demand versus myopic demand

Note - Simulations run with ψ = 1.

In Figure 4 we study the sensitivity of ambiguity demand to variations of two other parameters

of the precision process (3): the reversion parameter (κ), which determines the persistence of shocks

to precision, and the instantaneous correlation between shocks to precision and to risky asset return (ρ).

Figure 4: E�ect on ambiguity demand of changes in κ and ρ, with γ = 2, 4 and 20.

Note 1 - Simulations run with ψ = 1.

Note 2 - Half-life of a shock (years) to precision: log(2)/κ.

Note 3 - Ambiguity demand (%) measured as a ratio of myopic demand.
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Until a certain level of half-life of the persistence of a shock to precision (around 7 years), the more

persistent is the shock in precision, the lower is the absolute value of the ambiguity demand. Above

that level, this e�ect disappears. The intuition for this can be that the higher is the persistence of

shocks in precision, the larger is the period of time that it stays away from its expected value (θ), and,

therefore, the less relevant is this parameter and the ambiguity about it.

The higher is the instantaneous correlation between shocks to precision and to risky asset returns,

the lower is the absolute value of the ambiguity demand. This means that the easier it is to hedge

variations in precision, the less relevant is the ambiguity over its expected value. However, Figure 4

also shows that both e�ects have a small empirical dimension.

Table 2 shows the impacts on the mean consumption-wealth ratio (Panel A) and on the long term

expected return on wealth (Panel B) from the introduction of θ-ambiguity. Panel A shows that: (i) in

the case of exact solution (ψ = 1), the consumption-wealth ratio is constant and equal to β as in (19);

(ii) in the case of approximate solution (ψ 6= 1), when ψ > 1 (ψ < 1) the consumption-wealth ratio

is higher (lower) when there is θ-ambiguity, in consistency with Proposition 6, and the same happens

with the level of risk aversion. Figure 5 illustrate well this conclusion. Moreover, both Table 2 and

Figure 5 show that changes in the consumption-wealth ratio from changes in the level of ambiguity

and risk aversion are of small empirical dimension24.

Table 2: Consumption-wealth ratio and long-term expected return on wealth.

Note 1 - Panel A: Ct/Xt = exp {E [ct − xt]× 100} ; Panel B: (πθ (µ− r) + r)× 100

Note 2 - Implied ambiguity level (%): [1− θ/θ]× 100 .

Note 3 - R.R.A.=γ.

In Panel B, it is possible to see that the long-term expected return on wealth, measured by

(πθ (µ− r) + r), of an investor that is both risk averse and θ-ambiguity averse is a decreasing function

24An exception is for the scenario γ = 0.75. However, we recall that for γ < 1 the accuracy of approximate solution is
lower.
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of both risk aversion and the level of ambiguity, which was expectable considering results from Panel

A of Table 1. This is further illustrated in Figure 6.

Figure 5: Consumption-wealth ratio as a function of θ (for di�erent values of γ and ψ).

Figure 6: Long-term expected return on wealth as a function of θ and γ.

5 Concluding Remarks

We presented an extension of the model of Chacko and Viceira (2005) for optimal dynamic consumption

and portfolio choice with stochastic variance, by introducing ambiguity about the expected precision

(inverse of variance) of the risky asset's return (parameter θ). In our setting, precision of the risky

asset return is therefore simultaneously the source of risk and ambiguity perceived by the risk averse

and θ-ambiguity averse investor.

Long-horizon investors with recursive preferences (Du�e and Epstein (1992a) with the speci�cation

of Kreps and Porteus (1978)) have two assets to invest in, a risk-free asset and a risky asset. The

precision of the risky asset return is stochastic and the investor is ambiguous about its expected value,

with ambiguity aversion in the spirit of the Maxmin Expected Utility model of Gilboa and Schmeidler
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(1989). Not knowing the true value of precision, investors consider the worst possible value in a given

interval.

A preliminary conclusion is that precision is always good, in the sense that it increases the utility

attainable by the investor. This implies that the solution of the ambiguity problem is given by the

lower bound (θ) of the assumed interval for possible θ values.

The main conclusions concern the impact on optimal dynamic policies from ambiguity about the

expected value of precision. Regarding the optimal consumption policy, when the intertemporal elas-

ticity of consumption (ψ) is di�erent from one, the optimal consumption-wealth decision is always

a�ected by the θ-ambiguity: consumption is higher when investors are ambiguity averse compared to

when they are ambiguity neutral if ψ > 1 and the contrary when ψ < 1. When ψ = 1, the mean

optimal consumption-wealth ratio does not depend on the level of precision, as found by Chacko and

Viceira (2005).

Regarding the optimal demand for the risky asset, we conclude that ambiguity about θ has no

impact. This result should be viewed having in mind that the model assumes that investors can

adjust their portfolios continuously, as a function of the instantaneously observed precision. In the

real world, investors cannot update their portfolios continuously, for reasons that are not easy to model

(such as transaction costs or human limitations). Incorporating such market frictions in the model is

an interesting task for future research.

To provide an additional perspective in the context of the present model, we also studied an

�expectation-driven� scenario in which case investors use their expectations of future precision instead

of the instantaneous precision. In this scenario, the mean allocation to the risky asset decreases with

ambiguity, i.e., ambiguity demand is negative.

The last conclusion of this paper respects to the empirical relevance of ambiguity demand, as de-

termined in this latter scenario. Chacko and Viceira (2005) concluded that the variance of the risky

asset's return generates a small intertemporal hedging demand, suggesting low relevance of the stochas-

tic variance (precision) in the dynamic portfolio decision. Using the same calibration, we conclude that

the ambiguity demand component of the risky asset demand is relevant and has a much higher em-

pirical dimension than that of intertemporal hedging demand. This indicates that stochastic variance

(precision) may have a much higher impact on investors portfolio decision than found in Chacko and

Viceira (2005). Recovering Knight (1921) conceptual dichotomy of ambiguity versus risk, we conclude

that under those circumstances the �ambiguity dimension� of variance seems to be much more relevant

than its �risk dimension� for dynamical optimal portfolio decisions.
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6 Appendix

6.1 Deduction of equation (4)

We start by stating Itô's lemma (see, for e.g., Hull (2006) chapter 12, pp.273). Let Xt be a variable

that follows the Itô process:

dXt = ξ (Xt, t) dt+ ν (Xt, t) dBMt , (42)

where BMt is a standard Brownian motion and ξ and ν are functions of Xt and t. Let g (t, Xt) be a
continuous di�erentiable function as regards its two arguments. Then,

Y = {Yt = g (t, Xt)} ,

is a stochastic process that veri�es:

dYt =
∂g

∂t
(t, Xt) dt+

∂g

∂X
(t, Xt) dXt +

1
2
∂2g

∂X2
(t, Xt) (dXt)

2
.

Applying the rule dt2 = dt dBMt = 0 and (dBMt)2 = dt, then:

dYt =
(
∂g

∂t
(t, Xt) +

∂g

∂X
(t, Xt) ξ +

1
2
∂2g

∂X2
(t, Xt) ν2

)
dt+

∂g

∂X
(t, Xt) νdBMt , (43)

i.e., the variable Yt also follows an Itô Process.

In our setting, considering vt = g (yt) = 1
yt
, then gy = − 1

y2
t
and gyy = 2

y3
t
, where gy and gyy are

the �rst and second derivatives of g (·) in order to yt. Moreover, making the parallel with (42), in our

setting we have:

ξ = κ (θ − yt) ,

ν = σ
√
yt.

Using these inputs and applying (43) to (3), we �nd that the stochastic process vt is given by:

dvt
vt

=
(
κ+ vtσ

2 − vtκθ
)
dt− σ

√
vtdWy . (44)

De�ning θv =
(
θ − σ2

κ

)−1

and κv = κ
θv

(which imply that κ+ vtσ
2− vtκθ = κv (θv − vt)), we �nd (4).

6.2 Deduction of equation (5)

Applying the second-order Taylor expansion of vt = 1
yt

around θ:

vt ≈
1
θ
− 1
θ2

(yt − θ) +
1
2
· 2
θ3

(yt − θ)2 . (45)

Taking expectations:

E [vt] ≈
1
θ
− 1
θ2

(E [yt]− θ) +
1
θ3
E
[
(yt − θ)2

]
. (46)
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From Cox et al. (1985) it is known that E [yt] = θ and E
[
(yt − θ)2

]
= V ar [yt] = σ2θ

2κ . Substituting

those results in (46), we obtain (5).

6.3 Stochastic Di�usion Utility (SDU) Function

Du�e and Epstein (1992a) de�ne the stochastic di�erential utility (SDU) function U : D → R by two

primitive functions, f̄ : C×R→ R and Ā : R→ R. The function Ā (·) is called variance multiplier, as

it applies a penalty (or reward) as a multiple of the utility �volatility�. For deterministic consumption

process, Ā (·) is therefore irrelevant (without uncertainty, only f̄ (·) matters).

Du�e and Epstein (1992a) state that if, for each consumption process C, there exists a well-de�ned

utility process J̄ , then the SDU function U is de�ned by U (C) = J̄0, the initial value of that utility

process. The pair
(
f̄ , Ā

)
generating J̄ is called an aggregator.

Two aggregators
(
f̄ , Ā

)
and (f,A) are said to be ordinally equivalent if they generate ordinally

equivalent utility functions, i.e. represent the same preference ordering of consumption processes.

Du�e and Epstein (1992a) present a method through which for any aggregator
(
f̄ , Ā

)
an ordinally

equivalent aggregator (f,A), with variance multiplier A (·) equal to zero, is obtained. (f,A) is called
the normalized aggregator of

(
f̄ , Ā

)
and generates the utility process J given by:

JTt = Et

 T̂

t

(fs, Js) ds

 . (47)

Note how (47) is close to (7). The di�erence between the expressions is the in�nite time horizon

in the later which Du�e and Epstein (1992a) also considers by de�ning Jt = lim
T→∞

JTt .

The method to obtain (f,A) from
(
f̄ , Ā

)
, consists in a change of variables ϕ that satis�es the

di�erential equation ϕ′′ (x) = Ā (x)ϕ′ (x), which implies:

ϕ (J) = δ2 + δ1

Ĵ

J0

exp

 uˆ

J0

Ā (x) dx

 du, (48)

where J0 is arbitrary, δ2 and δ1 are constants, with δ1 > 0, de�ned so that ϕ (0) = 0. Using ϕ, the
relationship between the two ordinally equivalent aggregators

(
f̄ , Ā

)
and (f,A) is given by:

f̄ (c, z) =
f (c, ϕ (z))
ϕ′ (z)

, (c, z) ∈ C × R, (49)

Ā (x) = ϕ′ (x)A [ϕ (x)] +
ϕ′′ (x)
ϕ′ (x)

.

In this paper, following Chacko and Viceira (2005), the utility process J generated by the normalized

aggregator f (Cs, Js) is set to de�ne a SDU function ordinally equivalent to Kreps and Porteus (1978)

utility. The aggregator
(
f̄ , Ā

)
for this particular utility function is de�ned (Du�e and Epstein (1992a))

as:

f̄ (c, J) =
β

ξ

cξ − Jρ

Jξ−1
, Ā (J) =

α− 1
J

, (50)
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with C = R+, 0 6= ξ ≤ 1, 0 ≤ β, 0 6= α ≤ 1, and ν > 0.

Deduction of expression (8)

Replacing (50), Ā (x) = α−1
x , in (48):

ϕ (J) = δ2 + δ1

Ĵ

J0

exp

 uˆ

J0

α− 1
x

dx

 du
= δ2 +

δ1
J0

Ĵ

J0

uα−1du

= δ2 + δ1

(
Jα

α

)
. (51)

To haveϕ (0) = 0, we set δ2 = 0. Assuming δ1 = 1, possible as Du�e and Epstein (1992a) only require

δ1 > 0, expression (51) yields ϕ (J) = Jα

α and:

ϕ′ (J) = Jα−1. (52)

Using (50) and (52) in (49), gives:

β

ξ

Cξ − Jξ

J (ξ−α)
= f (C,ϕ (J)) . (53)

From ϕ (J) = Jα

α we get (αϕ (J))
1
α = J .

Introducing this result in (53):

β

ξ

Cξ − (αJ)
ξ
α

(αJ)
ξ−α
α

= f (C, J)

β

ξ
αJ

( C

(αJ)
1
α

)ξ
− 1

 = f (C, J) . (54)

Expression (8) follows simply by changing notation: ξ = 1− 1
ψ and α = 1− γ.

6.4 Sign of the square-root in (17)

Regarding (17), an issue to be addressed is the sign of the square root. With ψ = 1, as γ → 1, the
utility representation (9) converges to the log-utility representation. The exact solution of (20) in the

special case of log-utility (γ = ψ = 1) is well-known (Merton (1969, 1971, 1973)):

πt = (µ− r) yt ,
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i.e., the intertemporal hedging demand component disappears (if ψ = γ = 1, then A = B = 0). It is
therefore necessary to guarantee that with ψ = 1, lim

γ→1
A = 025 as the limit of (20) as γ → 1 is given

by:

lim
γ→1

πt = (µ− r) yt +
(
lim
γ→1

A

)
ρσyt .

From (17), lim
γ→1

A is:

lim
γ→1

A =
(β+κ)± lim

γ→1
(1−γ)γ

√
( ρσ(µ−r)

γ − β+κ
1−γ )2

−σ
2(µ−r)2[γ(1−ρ2)+ρ2]

γ2(1−γ)

σ2 . (55)

If γ → 1+, i.e., γ > 1, then (1− γ) < 0 and the discriminant of the square root in (55) is always > 0.
By assumption, β + κ > 0, which implies that, in order to have lim

γ→1+
A = 0, the ” + ” sign must be

considered.

The same rational implies that when γ < 1, the ”−” sign of the square root guarantees lim
γ→1−

A = 0

(it can be easily shown that the discriminant of the square root in (55) is positive as γ approaches 1

from below).

When γ = 1, only the �-� sign of the square root gives A = 0, as:

A |γ=1=
(β + κ)± (β + κ)

σ2
.

6.5 Proof of Proposition 1

The domain of analysis is set so that A in (17) is a real number, i.e., its discriminant is non-negative.

Consequently the condition to be satis�ed is(
ρσ (µ− r)

γ
− β + κ

1− γ

)2

>
σ2 (µ− r)2

[
γ
(
1− ρ2

)
+ ρ2

]
γ2 (1− γ)

. (56)

For γ > 1 it is straightforward to conclude that
(
ρσ(µ−r)

γ − β+κ
1−γ

)2

>
σ2(µ−r)2[γ(1−ρ2)+ρ2]

γ2(1−γ) , and

therefore (56) is always true.

For γ < 1, (56) is true as long as:

γ

1− γ
>

σ2 (µ− r)2

(β + κ)
+

2ρσ (µ− r)
(β + κ)

⇔ γ >
σ2 (µ− r)2 + 2ρσ (µ− r) (β + κ)

(β + κ)2 + σ2 (µ− r)2 + 2ρσ (µ− r) (β + κ)

⇔ γ > ω,

by making ω = σ2(µ−r)2+2ρσ(µ−r)(β+κ)

(β+κ)2+σ2(µ−r)2+2ρσ(µ−r)(β+κ)
. Note that ω < 1 as (β + κ)2 > 0.

25From (18) lim
γ→1

A = 0 =⇒ lim
γ→1

B = 0.
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The domain of analysis is therefore γ > ω.

From (22) and (17)-(18): dJto
dθ =

κexp{Ayt0+B}X1−γ
to

β
A

1−γ . This implies that:

Sign

(
dJto
dθ

)
= Sign

A

1− γ
, (57)

as
κexp{Ayt0+B}X1−γ

to

β > 0. Further development of (57) gives:

Sign

(
dJto
dθ

)
= Sign

β + κ

1− γ
− ρσ (µ− r)

γ
±

√(
ρσ (µ− r)

γ
− β + κ

1− γ

)2

− σ2 (µ− r)2 [γ (1− ρ2) + ρ2]
γ2 (1− γ)

 ,

(58)

since γ
σ2[γ(1−ρ2)+ρ2] > 0 as, by assumption, γ > 0 and 0 < ρ < 1.

Recovering conclusions regarding the sign of the square root in Appendix 6.4, (58) becomes:

For γ > 1 :

Sign

(
dJto
dθ

)
= Sign

β + κ

1− γ
− ρσ (µ− r)

γ
+

√(
ρσ (µ− r)

γ
− β + κ

1− γ

)2

− σ2 (µ− r)2 [γ (1− ρ2) + ρ2]
γ2 (1− γ)

 .

Although β+κ
1−γ −

ρσ(µ−r)
γ < 0, when γ > 1 it results:

√(
ρσ (µ− r)

γ
− β + κ

1− γ

)2

− σ2 (µ− r)2 [γ (1− ρ2) + ρ2]
γ2 (1− γ)

>

∣∣∣∣β + κ

1− γ
− ρσ (µ− r)

γ

∣∣∣∣ ,
implying that Sign

(
dJto
dθ

)
= ” + ” |γ>1.

For ω 6 γ < 1:

Sign

(
dJto
dθ

)
= Sign

β + κ

1− γ
− ρσ (µ− r)

γ
−

√(
ρσ (µ− r)

γ
− β + κ

1− γ

)2

− σ2 (µ− r)2 [γ (1− ρ2) + ρ2]
γ2 (1− γ)

 .

For γ < 1, one gets β+κ
1−γ −

ρσ(µ−r)
γ > 0 if γ > ρσ(µ−r)

(β+κ)+ρσ(µ−r) .

As ρσ(µ−r)
(β+κ)+ρσ(µ−r) < ω it results that β+κ

1−γ −
ρσ(µ−r)

γ > 0 |ω6γ<1. This implies:

β + κ

1− γ
− ρσ (µ− r)

γ
>

√(
ρσ (µ− r)

γ
− β + κ

1− γ

)2

− σ2 (µ− r)2 [γ (1− ρ2) + ρ2]
γ2 (1− γ)

when ω 6 γ < 1, and consequently Sign
(
dJto
dθ

)
= ” + ” |ω6γ<1.
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Thus overall:26

Sign

(
dJto
dθ

)
= ” + ” , with γ > ω.

Following the spirit of the Maxmin Expected Utility model of Gilboa and Schmeidler (1989), as an

increase in the expected precision of the risky asset return increases utility, then the lowest possible

value for the expected precision is considered, i.e., θ∗ = θ.

6.6 Proof of Proposition 3

Proof of (i): θ < θ ⇒ πθ < πθ.

The di�erence between the mean allocation to the risky asset when ambiguity is considered
(
πθ
)

versus when there is no ambiguity (πθ), is given by (26):

πθ − πθ =
(

1
γ

(µ− r) +
σρ

γ
A

)
(θ − θ) .

We need only to show that 1
γ (µ− r) + σρ

γ A > 0 in the domain under analysis (γ > ω):
For γ > 1, it is algebraically easy to show that 1

γ (µ− r) + σρ
γ A > 0, by substituting the expression for

A (17) and considering the positive sign of its square root in line with conclusions in Appendix 6.4.

For γ = 1, it results that 1
γ (µ− r) + σρ

γ A = (µ− r) > 0, by substituting the expression for A

(17) and considering the negative sign of its square root in line with conclusions in Appendix 6.4.

For ω 6 γ < 1, from (57) and conclusions in Appendix 6.5, it is immediate to conclude that
1
γ (µ− r) + σρ

γ A > 0, as A > 0.

Since 1
γ (µ− r) + σρ

γ A > 0 and θ < θ (when θ = θ there is no ambiguity), it is immediate to conclude

that
(
πθ − πθ

)
< 0 and that ambiguity demand (26) is always negative.

Proof of (ii): πθ is decreasing with(θ − θ).

The relation between the mean allocation to the risky asset when there exists ambiguity (πθ) and

changes in the level of ambiguity, measured by (θ − θ), is:

dπθ
d (θ − θ)

= −
(

1
γ

(µ− r) +
σρ

γ
A

)
.

As 1
γ (µ− r) + σρ

γ A > 0 (see previous proof of (i)), it results that an increased level of ambiguity

implies a reduction of the mean allocation to the risky asset.

Proof of (iii): Sign of the intertemporal hedging demand.

26By applying l'Hôpital rule to the calculation of lim
γ→1

(
dJto
dθ

)
one obtains lim

γ→1

(
dJto
dθ

)
=

σ2(µ−r)2
2(β+κ)

, which is > 0.
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From (25), and since σ, ρ, γ, θ > 0:
Sign(HD) = Sign(A).

From (57) and conclusions in Appendix 6.5:

γ > ω :


γ > 1 : Sign

(
dJto
dθ

)
= ” + ”⇒ Sign (A) = ”− ”

ω 6 γ < 1 : Sign
(
dJto
dθ

)
= ” + ”⇒ Sign (A) = ” + ”

When γ = 1, intertemporal hedging demand is null because A = 0 |γ=1 (see Appendix 6.4).

6.7 Proof of Proposition 4

From (28)-(29) and (33):

dJt0
dθ

= − 1
1− ψ

A1κ

h1
exp

{
−
(

1− γ
1− ψ

)
(A1yt0 +B1)

}
X1−γ
t0 .

As exp
{
−
(

1−γ
1−ψ

)
(A1yt0 +B1)

}
> 0 and X1−γ

t0 , κ, h1 > 0:

Sign

(
dJt0
dθ

)
= Sign

(
− 1

1− ψ
A1

)
. (59)

Expression (28) for A1 is further simpli�ed to:

A1 =
(1− ψ)

[
b+
√
b2 + u

]
(1− γ) e

, with (60)

b = ρσ (µ− r) (1− γ)− γ (h1 + κ)

u = −σ2 (µ− r)2 (1− γ)
[
γ
(
1− ρ2

)
+ ρ2

]
e = σ2

[
γ
(
1− ρ2

)
+ ρ2

]
, always > 0 as 0 < ρ < 1, γ > 0.

Substituting (60) into (59), for γ > 1 one obtains:

Sign

(
dJt0
dθ

)
= Sign

(
b+

√
b2 + u

)
.

As
√
b2 + u > b, because b < 0 and u > 0 when γ > 1, then

Sign

(
dJt0
dθ

)
= ” + ”,

which, following the same rational as in Appendix 6.5, implies θ∗ = θ.
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6.8 Proof of Proposition 6

Proof of (i): θ < θ ⇒ πθ < πθ.

The di�erence between the mean allocation to the risky asset under ambiguity aversion
(
πθ
)
versus

under ambiguity neutrality (πθ), is given by (38):

πθ − πθ =
[

1
γ

(µ− r) +
σρ

γ

(γ − 1)
(1− ψ)

A1

]
(θ − θ) . (61)

Substituting expression for A1 (28) into 1
γ (µ− r) + σρ

γ
(γ−1)
(1−ψ)A1, after some algebra the latter

expression is simpli�ed to:

(µ− r)σ2γ + σρ

[
γ (h1 + κ)−

√
[(h1 + κ) γ − ρσ (µ− r) (1− γ)]2 − σ2 (µ− r)2 (1− γ) [γ (1− ρ2) + ρ2]

]
γσ2 [γ (1− ρ2) + ρ2]

,

which is always positive as both the numerator and denominator are positive.

Going back to (61), and considering that 1
γ (µ− r) + σρ

γ
(γ−1)
(1−ψ)A1 > 0 and θ < θ, it is immediate to

conclude that πθ − πθ < 0, and that ambiguity demand is always negative.

Proof of (ii): πθ is decreasing with(θ − θ).

The relation between the mean allocation to the risky asset under ambiguity aversion and changes in

the level of ambiguity, measured by (θ − θ), is given by:

dπθ
d (θ − θ)

= −
[

1
γ

(µ− r) +
σρ

γ

(γ − 1)
(1− ψ)

A1

]

As 1
γ (µ− r) + σρ

γ
(γ−1)
(1−ψ)A1 > 0 (see previous proof of (i)), it results that increased level of ambiguity

implies a reduction of the mean allocation to the risky asset.

Proof of (iii): Sign of intertemporal hedging demand (HD).

From (37) and considering that σ, ρ, θ > 0 and γ > 1, it results that the sign of intertemporal hedging

demand (HD) is:

Sign(HD) = Sign

(
A1

1− ψ

)
.

From (59) and conclusions on Appendix 6.7 it is known that A1
1−ψ < 0.

Proof of (iv): cθ is higher (lower) under θ-ambiguity aversion if ψ > 1 (< 1).
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Under the �expectation-driven� scenario, from (34) and (28)-(29):

dcθ
dθ

= −A1

(
1 +

κ

h1

)
βψexp {− (A1θ +B1 (θ))}

(62)

⇒ Sign

(
dcθ
dθ

)
= Sign (−A1) ,

as
(

1 + κ
h1

)
βψexp {− (A1θ +B1 (θ))} > 0. From (60), for γ > 1:

Sign (−A1) = (1− ψ)Sign

(
b+
√
b2 + u

(γ − 1) e

)

Sign (−A1) = Sign (1− ψ) ,

as b+
√
b2+u

(γ−1)e > 0 (see Appendix 6.7), and therefore:

ψ < 1 :
dcθ
dθ

> 0 ,

ψ > 1 :
dcθ
dθ

< 0 .

Consequently, when ψ < 1, θ-ambiguity aversion decreases the optimal consumption wealth ratio

(θ < θ). The contrary happens when ψ > 1. The same conclusion is obtained when studying dct
dyt

,

with ct given by (30), as Sign
(
dct
dyt

)
= Sign (−A1).

6.9 Expression (40)

From (5):

E [vt] 2θ2κ− 2θκ− σ2 ≈ 0

which is a quadratic equation for θ with roots:

θ ≈
2κ±

√
4κ2 + 8κσ2E [vt]
4κE [vt]

.

As θ > 0, 2κ <
√

4κ2 + 8κσ2E [vt] and 4κE [vt] > 0, only the positive sign of the square root is relevant.
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