FEP WORKING PAPERS [ihvent
FEP WORKING PAPERS B

N. 348, Dec. 2009

DYNAMIC CONSUMPTION AND
PORTFOLIO CHOICE WITH
AMBIGUITY ABOUT
STOCHASTIC VOLATILITY

GONCGALO FARIA!
JoAo CORREIA-DA-SILVA?
CLAUDIA RIBEIRO?

1 FACULDADE DE ECONOMIA, UNIVERSIDADE DO PORTO
2CEF.UP, FAcuLDADE DE ECONOMIA, UNIVERSIDADE DO PORTO

[ PORTO

FEP FACULDADE DE ECONOMIA
UNIVERSIDADE DO PORTO




Dynamic Consumption and Portfolio Choice with Ambiguity
about Stochastic Volatility*

Goncgalo Faria

Faculdade de Economia, Universidade do Porto.

Joao Correia-da-Silva
CEF.UP and Faculdade de Economia, Universidade do Porto.

Claudia Ribeiro
CEF.UP and Faculdade de Economia, Universidade do Porto.

November 25, 2009

Abstract

We introduce ambiguity about the variance of the risky asset’s return in the model of Chacko
and Viceira (2005) for dynamic consumption and portfolio choice with stochastic variance. We
find that, with investors being able to update their portfolio continuously (as a function of the
instantaneous variance), ambiguity has no impact. To shed some light on the case in which con-
tinuous portfolio updating is not possible, we also evaluate the effect of ambiguity when investors
must use their expectation of future variance for their portfolio decision. In the latter scenario,
demand for the risky asset can be decomposed into three components: myopic and intertemporal
hedging demands (as in Chacko and Viceira (2005)) and ambiguity demand. Using long-run US
data, Chacko and Viceira (2005) found that intertemporal hedging demand is empirically small,
suggesting a low impact of stochastic variance on portfolio choice. Using the same calibration, we
find that ambiguity demand may be very high, much more than intertemporal hedging demand.
Therefore, stochastic variance can be very relevant for portfolio choice, not because of the variance

risk, but because of investors’ ambiguity about variance.
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1 Introduction

We study optimal dynamic consumption and portfolio choice, in the presence of stochastic variance, of
an investor that is averse both to risk and ambiguity. In our setting, the variance of the risky asset’s
return is simultaneously the source of the risk and the ambiguity that are perceived by the investor.

There is a large literature on portfolio choice (see Campbell and Viceira (2002) for a survey), but
only a few works study the optimal dynamic portfolio choice with stochastic variance of the risky asset’s
return. Two exceptions are Chacko and Viceira (2005) and Liu (2007). In those two papers, potential
adverse changes in the investment opportunity set are associated with the stochastic variance of the
risky asset’s return, which therefore represents a source of risk to investors. From Merton (1973), this
implies that the investor’s optimal intertemporal hedging demand is driven by the stochastic variance.
However, both in Chacko and Viceira (2005) and in Liu (2007), there is only risk, and no ambiguity.

Ambiguity is uncertainty that cannot be represented by a single probability distribution. Risk, on
the contrary, is uncertainty that is susceptible of being described by a probability distribution. This
conceptual distinction, first explored by Knight (1921), has relevant implications for the behavior of
economic agents, and therefore for economic theory in general. Ellsberg (1961) disclosed experimental
evidence supporting the Knightian distinction between risk and ambiguity. This evidence became
known as the Ellsberg paradox, and motivated a large body of empirical studies, surveyed in Camerer
and Weber (1992).

Notwithstanding this, the mainstream theory of choice under uncertainty in economics in the
last 60 years ignored ambiguity, being based on the expected utility theories of von Neumann and
Morgenstern (1944) and Savage (1954).2 But, gradually, ambiguity is being incorporated in decision
theory. Two major approaches are being used: (i) the multiple priors (MP) approach, associated
with the ambiguity aversion concept, whereby the single probability measure of the standard expected
utility model is replaced by a set of probabilities or priors; (ii) the robust control (RC) approach, more
associated to the model mispecification concept.?

In studies of portfolio choice with ambiguity, Gollier (2006) and Garlappi et al. (2007) concluded
that, by introducing ambiguity aversion in a static MP approach, the optimal demand for the risky asset
decreases versus the standard mean-variance and Bayesian models.* The same conclusion was reached
by Chen et al. (2009) in a dynamic MP setting, and by Maenhout (2004) in a dynamic RC model.
Uppal and Wang (2003) studied the implications of ambiguity aversion in portfolio diversification. In
all these works, the source of ambiguity is the expected risky asset’s return or the model of the risky

asset’s return.’

Tn Merton (1973), following Samuelson (1969) and Merton (1969, 1971), it is showed that when investors time-
horizon exceeds one period, their optimal demand for the risky asset differs from that of “myopic” investors in one extra
component: intertemporal hedging demand. This extra component is used to hedge investors against adverse changes
in future investment opportunities.

2TIn the Expected Utility Theory of von Neumann and Morgenstern (1944), the probabilities of the possible states
of nature are known, while in the Subjective Expected Utility Theory of Savage (1954), although probabilities are not
necessarily known, the choice behavior of an agent coincides with maximization of expected utility according to some
subjective probability beliefs.

3See Hansen and Sargent (2001a), Hansen et al. (2002) and Epstein and Schneider (2003) for a discussion about the
relationship between these two types of models.

4However, Gollier (2006) also demonstrates that, in his setting, this result requires some restrictions on the set of
priors and on the investor’s attitude towards risk.

5 Another active branch of literature working with ambiguity is the asset pricing literature. Under the MP approach,
examples of papers focused on equilibrium asset pricing are Epstein and Wang (1994, 1995), Chen and Epstein (2002),



We extend the model of Chacko and Viceira (2005) for optimal dynamic portfolio choice with
stochastic variance, by introducing ambiguity about the expected value of the variance of the risky
asset’s return. Motivation for this is provided by Chacko and Viceira (2005) themselves:

“An important caveat of our empirical analysis is that we have counterfactually assumed that in-
vestors observe volatility (or precision), and that they take as true parameters our empirical estimates
of the joint process for returns and volatility. In practice, however, investors do not observe volatility,
and they do not know the parameters of the process for volatility, or even the process itself.”

It has been advocated in the literature (e.g. Cao et al. (2005), Garlappi et al. (2007) and Ui (2009))
that it is reasonable to assume that investors estimate the variance of the risky asset’s return without
ambiguity, and that it is preferable to assume ambiguity about expected returns. Reasons invoked for
this are analytical tractability, empirical evidence on the predictability of the variance of stock returns
(e.g. Bollerslev et al. (1992)), higher difficulty in estimating the expected returns versus expected
variance (Merton (1980)) and higher costs associated with errors in estimating expected returns versus
expected variance (Chopra and Ziemba (1993)).

Nevertheless, we introduce ambiguity about the variance of the risky asset’s return because: (1)
there is no “a priori” reason to assume that investors are not ambiguous about variance, particularly
considering that they do not observe it; (2) we are able to find analytical solutions; and (3) the expec-
tation of variance under statistical-econometric methods isn’t the sole relevant indicator of variance in
the financial world.®

We consider ambiguity only about the variance of the risky asset’s return to keep a parsimonious
model and to isolate its effects on the optimal dynamic consumption and portfolio choices. The reason
to choose the expected value of variance as the source of ambiguity (besides analytical tractability) is
that it seems more intuitive to assume that investors think more about that parameter of the variance
process than about other parameters (like the variance of variance or the reversion parameter in the
case of a mean-reverting variance process).

We introduce ambiguity through the MP approach, adopting the Maxmin Expected Utility frame-
work of Gilboa and Schmeidler (1989), which enables us to introduce ambiguity aversion without
changing significantly the setting of Chacko and Viceira (2005). The choice behavior is as if the in-
vestor has a set of possible values of the expected value of variance, and considers the worst possible

of these values when evaluating each portfolio and consumption policy.”

Epstein and Miao (2003) and Ju and Miao (2008), which deal with the well-known “equity premium” and “home-bias”
puzzles. Dow and Werlang (1992), Cao et al. (2005) and Ui (2009) deal with the issue of limited market participation.
Still under the MP approach, Miao and Wang (2007) analyze the option exercise problem when there is a distinction
between risk and ambiguity. Under the RC approach, equilibrium asset pricing was studied, for e.g., by Hansen and
Sargent (2001b), Anderson et al. (2003) and Liu et al. (2005).

60ption implied variance frequently differs both in level and dynamics from the statistical measure (e.g. Drechsler
and Yaron (2008) and Todorov (2009)), and embeds relevant information about investors perception about the future
distribution of the risky asset’s return. Which part of this spread between statistical and option-implied expectations of
variance is due to investor’s ambiguity about variance is still an interesting open question in the literature.

"The MP approach includes three major settings for agent’s attitude towards ambiguity: (i) Non-additive Expected
Utility (Schmeidler (1989)) that makes use of Choquet Integration (CEU) to work with non-additive priors; (ii) Maxmin
Expected Utility (MEU) (Gilboa and Schmeidler (1989)) that works with a set of additive priors in such a way that
an ambiguity averse agent considers the worst prior associated with each decision; and more recently, (iii) the Smooth
Ambiguity Aversion Theory (KMM) (Klibanoff et al. (2005)), that distinguishes ambiguity from ambiguity aversion and
allows for smooth indifference curves, avoiding the infinite ambiguity aversion implied in the MEU approach. Further
extensions of those works have been made recently in order to adapt them to dynamic problems, either through non-
recursive settings (e.g. Gilboa and Schmeidler (1993) and Klibanoff and Hanany (2007)) and recursive settings within
CEU framework (e.g. Nishimura and Ozaki (2003) and Eichberger et al. (2005)), MEU framework (e.g. Chen and



We find that, in our setting, the variance of the risky asset’s return is always bad to the investor,
in the sense that it decreases his utility. However, we conclude that ambiguity about variance has no
impact whatsoever.

A crucial assumption of the model is that the investor is able to continuously update his portfolio
as a function of the observed instantaneous variance, which means that the variance of the portfolio’s
return is always known by the investor. Without such continuous portfolio adjustment (which is not
observed in reality, due to transaction costs), the variance of the portfolio’s return becomes uncertain,
even if investors can observe the instantaneous variance. To shed some light on this scenario, we also
consider an alternative case in which investors use their expectation about the future variance in their
portfolio decision. We find that, in this case, the investor’s ambiguity aversion about variance reduces
the demand for the risky asset.

In this latter scenario, the demand for the risky asset can be decomposed into three components:
myopic and intertemporal hedging demands (as in Chacko and Viceira (2005)) and ambiguity demand,
which is the novelty. Using the same calibration of Chacko and Viceira (2005) with long-run US data,
we find that ambiguity demand has a relevant empirical dimension, much more than intertemporal
hedging demand. We therefore conclude that, when investors use their expectation about future
variance (and not the instantaneous variance) in their portfolio decision, the “ambiguity dimension” of
the uncertainty about the stochastic variance is relevant, more than its “risk dimension”.

In our view, this paper brings three major contributions: (1) it is the first to introduce ambiguity
aversion within a dynamic optimal portfolio choice setting with an explicit process for the stochastic
variance; (2) it is the first to introduce ambiguity aversion specifically about the variance of the risky
asset return; (3) it suggests that, in some scenarios, ambiguity about the variance of the risky asset’s
return is important for portfolio choice.

The paper is organized as follows. In section 2, we state the problem to be solved. In section 3, we
present the analytical solution to the problem and the key results. In section 4, we show simulation

outputs. In section 5, we conclude the paper with some remarks.

2 The Dynamic Consumption and Portfolio Choice Problem

In section 2.1, we describe the investment opportunity set, which is the same as in the work of Chacko
and Viceira (2005). In section 2.2, we disclose the preferences of the investor, extending the framework
of Chacko and Viceira (2005) by introducing ambiguity about the expected value of the precision
(which is the reciprocal of variance) of the risky asset’s return. In section 2.3, we present the dynamic

optimization problem to be solved by the investor.

Epstein (2002), Epstein and Schneider (2003), Hayashi (2005) and Maccheroni et al. (2006a,b)) and KMM framework
(Klibanoff et al. (2009)). Additionally, Miao (2001), Wang (2003) and Epstein and Schneider (2007, 2008) extend the
recursive multiple-priors approach in order to incorporate learning.



2.1 Investment Opportunity Set

It is assumed that all wealth is allocated between a riskless asset with price B; and a risky asset with
price S;. The instantaneous return of the riskless asset is described by:

dBy

— =rdt, 1

5 1)
where 7 stands for the risk free interest rate.

The instantaneous return of the risky asset is given by:

/1
LSt =pdt+,/—dWg, (2)
St Yt

where p is the expected return of the risky asset, Wg is a standard Brownian motion and y; is the

instantaneous precision of the risky asset’s return process (the instantaneous variance is v; = y%)
From (2), the expected excess return of the risky asset versus the riskless asset, p — r, is constant over
time.

The precision, y;, follows a mean-reverting, square-root process given by:

dy; = k(0 — y¢) dt + o\/yedW,, , (3)

where the expected value of the precision is E [y;] = 6, the reversion parameter is x > 0, and, thus,
Varly:] = ‘;i,f (Cox et al. (1985), pp. 392). W, is a standard Brownian motion. To guarantee standard
integrability conditions, it is assumed that 2k > o2(Cox et al. (1985), pp. 393).

Applying It6’s Lemma to (3), a mean-reverting, square-root process for proportional changes in

variance is obtained (Appendix 6.1) :

d’Ut
Ut

= Ky (8 — vy) dt — oy/vedW,,, (4)

K 6y
Taking expectations of the second-order Taylor expansion of v; around 6, the approximate uncon-

where 0, = (9— "—:)71 and Kk, = K (9— ﬁ) = .

ditional mean of instantaneous variance is (Appendix 6.2):

21 Var(y)
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As the expected return of the risky asset, u, is assumed to be constant, (5) is also the expected
unconditional variance of the risky asset’s return.®
It is assumed that shocks to precision (W,) are correlated with shocks to the return on the risky

asset (Wg), with dW,dWg = pdt and p > 0. From (4), this implies that the instantaneous correlation

8Chacko and Viceira (2005) perform a Monte Carlo simulation that validates this statement and the accuracy of the
approximation (5). They conclude that this approximation understates the true variance by 0.27%.



between proportional changes in variance and the risky asset’s return is given by:

Corry <dvt dSt) = —Corr; <dyt, C?) = —pdt . (6)

— —
Vt St t

This investment, opportunity setting incorporates three of the main stylized facts about the variance
of the return of risky assets: the mean reversion property, the “leverage effect” property (given by the
negative correlation between returns and its variance), and the clustering property (as proportional

changes in variance are higher when variance is high).

2.2 Investor’s Preferences

The investor faces ambiguity about the expected value of precision,  (equivalently, from (5), about the
expected value of the unconditional variance of the risky asset return, F [v;]). Regarding the values of
the remaining parameters of the investment opportunity set, it is assumed that there is no uncertainty.

Following Gilboa and Schmeidler (1989), we assume that the f-ambiguity averse investor has a set
of priors, the interval [Q, 5], with 0 < @ < 6 < 0, and makes his choice considering the minimal
expected utility over all priors in the set. The higher the difference between § and 6, the higher the
level of ambiguity. No learning process about 6 is considered. It would enrich the analysis at expense
of increased complexity.®

The preferences of investors are described by the stochastic differential utility (SDU) function intro-
duced by Duffie and Epstein (1992b) and applied to asset pricing theory by Duffie and Epstein (1992a).
This is a continuous-time form of recursive utility, analogous to the discrete-time parametrization of
Epstein and Zin (1989, 1991), that exhibits intertemporal consistency, admits Bellman’s characteri-
zation of optimality, and separates risk aversion from elasticity of intertemporal substitution by not
constraining to be reciprocals of one another (as in standard additive intertemporal utility function).

The utility process that defines the SDU function is represented by:

J=E, /f(C’S,JS)ds , (7)
t

where Cs represents current consumption and Js is the continuation utility for C' at time ¢ = s, with
infinite time horizon. The function f (Cs, Js) is the normalized aggregator that generates .J, which,
as in Chacko and Viceira (2005), defines a SDU function that represents the preferences introduced
by Kreps and Porteus (1978). An explicit closed-form expression for that SDU utility function is
not available. Following Duffie and Epstein (1992a), the normalized aggregator f (C,J) is given by

(Appendix 6.3):
-}
(1-7)7 <C> 1. ©
(1= )=

where v > 0 is the coefficient of relative risk aversion, ¥ > 0 is the elasticity of intertemporal substi-

f(Cv'])zl_l
P

tution and 8 > 0 is the rate of time preference. With ~ = i, (8) becomes the standard power utility

9See comments in Garlappi et al. (2007), pp.73, for some reasons to ignore the effect of learning under an ambiguity
context.



representation.
When ¢ — 1, the normalized aggregator f (C,J) takes the form:

7€) =p -7 {iog(€) -

log[(1— ) J]} . 9)

Two remarks on the preferences of the representative investor. The first regards the different
dynamic nature of the two types of uncertainty - ambiguity and risk - in our setting. We intro-
duce ambiguity through the approach of Gilboa and Schmeidler (1989), assuming that the ambiguity
problem has a “once-for-all” solution. Conversely, the attitude towards risk is settled through a recur-
sive dynamic setting given by (7), where the dynamic consistency is guaranteed (Duffie and Epstein
(1992a)). This approach is justified by two main reasons: (i) it is a parsimonious way of extending the
framework of Chacko and Viceira (2005) to incorporate f-ambiguity;'° (ii) although simple, it permits
the study of the relevance of the dichotomy ambiguity-risk when assessing the impact of stochastic
precision on the portfolio choice - we obtain an analytical solution that disentangles the ambiguity
and risk components of investor’s portfolio choice (section 3), enabling an elucidating empirical testing
(section 4).

The second remark regards the preference for the timing of the resolution of risk. With the Kreps
and Porteus (1978) preference structure, agents can have preference for early or late resolution of risk
(as well as indifference), while the standard additive intertemporal utility function implies that agents
are indifferent to the temporal resolution of risk. In the framework of Epstein and Zin (1989), the
preference for temporal resolution of risk depends on the relationship between v and ~: if v > i (<,=)
investors have preference for early (late, indifferent) resolution of risk. Our specification (7) from
Duffie and Epstein (1992a), being the continuous-time limit of that of Epstein and Zin (1989), inherits
this property. However, on the contrary of other streams of literature with Epstein and Zin (1989)
preferences, for e.g. the “long-run risk” literature ( from seminal work of Bansal and Yaron (2004)),
we do not restrict investor to have preference for early resolution of risk. Two main reasons support
this decision: (i) as our model evolves in a long-run setting, it should not be excluded the possibility of
the “cost” (of opportunity) becoming higher than the “benefit” of planning advantages brought by the
early resolution of risk (e.g. Arai (1997)) and (ii) there is evidence that agents may have preference

for late resolution of risk (e.g. Epstein and Zin (1991)).

10A more elaborate way of doing it would be to work with a recursive multiple priors utility specification. The setting
of Chen and Epstein (2002) would be a good candidate, as it extends the SDU function of Duffie and Epstein (1992b) by
replacing the single prior by a set of priors. In this case, 8§ would be a new state variable, alongside X; and y;, following
its own stochastic process. The state of nature would be described by (6¢, X¢, y¢), and there would be ambiguity about
0¢. This means that the set of priors under which the intertemporal optimization problem would be solved would be
exclusively defined by a density generator associated to the 6; process. This setting is richer than ours as it considers
intertemporality in both sources of uncertainty (ambiguity and risk), but: (i) analytically, it implies a more complex
stochastic optimal control problem to be solved, as there is a third stochastic differential equation (associated with the
dynamics of 6¢) to be included in the deduction of the Bellman Equation and respective value function; and (ii) for
the particular case of the SDU function specification for Kreps and Porteus (1978) preferences, it is not ensured that
an utility function exists, as the correspondent aggregator ((8) or (9)) violates the Lipschitz condition (see Chen and
Epstein (2002) section 3 for further details). Notwithstanding this added complexity, we see it as an interesting topic
for future work.



2.3 Dynamic Optimization Problem

The dynamic optimization problem of the investor is to maximize the 6-minimized expected utility

(7), subject to the precision process (3) and to the intertemporal budget constraint (11).

max § min Ey, /f(CS,JS) ds (10)
™ C 6e[o,9]
to
s.t.
1
dXt:[Wt(U_T)Xt+TXt_Ot]dt+Wt\/;XtdWSa (11)
t

dy, = & (é - yt) dt + o\ /gidW, |

where C;, X; and m; represent instantaneous consumption, wealth and fraction of wealth invested in
the risky asset, respectively. Is is assumed that total wealth at the initial moment (¢, = 0) is positive,
ie., Xy, > 0.

Following Kamien and Schwartz (1991) (ch. 22), the Bellman Equation of this problem is:

0 = maxr min {f(CS,JS)+JX(7Tt(u—r)Xt+rXt—C’t)—i—Jyn(é—yt)+

™C del0,0]

1 1 1
+§JXXWEJX3 + inyJQyt + nyﬂtant} , (12)
t

where f (Cs, J,) is the normalized aggregator given in (8) and (9) for general values of ¢ and for ¢p — 1,
respectively, and Jx, Jy, Jxx, Jyy and Jx, are partial derivatives.

The order of minimization and maximization in (12) can be changed by applying the Saddle Point
Theorem (Fan (1953), Sion (1958)), which is possible as: (i) the domain of 0 is compact; (ii) the argu-
ment is concave on 7 and on C (the expressions for J will be disclosed in the next two subsections);*!
and (iii) the argument is convex on .12 We obtain:

0 = min maa:{f(C’s,Js)+JX(7rt(,u—7")Xt—i—rXt—C't)—FJyﬁ:(é—yt)+

befe,9] ™C

1 1 1
+§JXX7rt2y—Xf + §Jyy02yt + nympaxt} , (13)
t

which is the Bellman Equation of the problem in which the order of the maximization and the minimiza-

tion is exchanged. Therefore, the dynamic consumption-portfolio problem with stochastic precision

HThere are two parcels that are linear on 7 and one that is quadratic but is associated with a minus sign (from
Jx x < 0), therefore the argument is concave on 7. Concavity on C also holds, as there is one parcel that is linear and,
for the expressions for J given in the next two subsections, f (Cs, Js) ((8) or (9)) is concave on C.

12Note that J is not a function of é, as it already considers the specific value that solves the minimization problem.

This implies that the only relevant parcel of the argument of (12) to study convexity on 6 is Jyk (é - yt>. The latter is

linear, and therefore convex, on 6.



faced by the investor that is both #-ambiguity and risk averse can be written as:

o0
min < max Fy, /f(C’s,Js)ds
belo,0] ™, C ;

0

s.t. (14)
1
dXi = [m (p—1) Xe + Xy — Cy] dt + \/;XtdWs ,
t

dys = K (9 - yt) dt 4 o\/y.dW, .

3 Optimal Dynamic Consumption and Portfolio Choices

We solve problem (14) in two steps. First, for each value of 0, we find the value function, Jto(é), of
the maximization problem, as in Chacko and Viceira (2005). Then, we minimize this value function

with respect to 6 to obtain the value of § that is used by the ambiguity averse investor:

0* = argmin Jy, (6).

belo.0]

The maximization problem, for each possible value of é, is a stochastic continuous-time optimal
control problem with two state variables, wealth (X;) and precision of the risky asset’s return (y;),
and two control variables, consumption (Cy) and fraction of wealth invested in the risky asset (7).

This implies that the value function, J,(#), that solves the problem is a function of X; and y;. The
corresponding Bellman equation is:

0 = max{f(Cs,Js)JrJX (me (p—7r) Xy +7rXe — Cp) + Jyk (éfyt> +
,C
1 ol o 1 2
+§JX)(7Tt y—Xt + inyo ye + Ixympo Xy o (15)
t

Chacko and Viceira (2005) found an exact solution of this maximization problem for ¢» = 1, and an

approximate solution for the general case of ¥ # 1. We study f-ambiguity aversion in both scenarios.

3.1 Exact solution (¢ =1)

When the investor has unit elasticity of intertemporal substitution of consumption (¢ = 1), the value
function that solves (15), for any value of 6, is given by (Chacko and Viceira (2005), Proposition 1):

1—y
t

J (é,Xt,yt) =exp {Ayt +B(é)} i(_ o

(16)



where A and B(f) are given by

2
_ B4k _ PU(# r) +5\" _ o2(p=r)?[y(1-p*)+p?]
Y(1—=7) [(l_y i\/ —'y) Bl =)
A= , 17
o? [y (1= p?) + 07 ()
A 1-— l — 6
By (L= BlogB 47 —8) w0, 1)
B ﬁ
The sign of the square-root in A is “+” for v > 1 and “” for v < 1 (see Appendix 6.4).
This implies the following optimal consumption (C}) and portfolio rules (m):
= ﬂXt ) (19)
1 op
m=—(u—r)y+ — Ay (20)
Y Y

When ¢ = 1, optimal consumption is a constant fraction of wealth to be consumed throughout
time (19). This means that the income and substitution effects on consumption that result from a
change in the investment opportunity set are always exactly canceled out.

The optimal portfolio rule (20) has two components: (i) mean-variance portfolio demand, S=r)y
(myopic demand'?); and (ii) intertemporal hedging demand, 2 Ay, (Merton (1973)). As h1ghlighted
by Chacko and Viceira (2005), the latter is zero (and therefore the portfolio myopic demand is opti-
mal) when: the investor has unit coefficient relative risk aversion (v = 1); investment opportunities
are constant (o = 0) or, being time-varying, it is not possible to use the risky asset to hedge against
those changes (p = 0). As both components of portfolio demand are linear functions of y;, their ratio
does not depend on y;. From E [y;] = 6 and (20), the mean optimal allocation in the risky asset is:

1 op
g =—(u—r)0+ —A6. 21
0 7(# ) ~ (21)

An ambiguity averse investor considers, from his set of priors, 6* = argmin Jy, (), where:
belo.0]

R X7
Tu0) = eap { Ay, + BO)} T (22)
with y, and X, representing the instantaneous precision and the total wealth at the present moment
(t = tp). From (22), the solution of the ambiguity problem will depend on the investor’s risk prefer-

ences and on the characteristics of the investment opportunity set.

o?(u=r)*+2po (u—r)(B+x)
Bt (i 2p0u—n)(31m) < b the

Proposition 1. When ¢ = 1 and v > w , where w =

solution of the ambiguity problem is:'4

13The intuition for this designation is that when intertemporal hedging demand in (20) becomes zero, investors with
a multiperiod problem decide as if they were facing a sequence of identical one-period problem (Merton (1973)).

MFor v < w, Ain (17) is a complex number. From (16) this implies a complex value function J. As J is the optimized
intertemporal utility, and utility functions are defined in the real space, the domain of the problem is restricted to values
of parameters such that v > w.

10
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Proof. Appendiz 6.5.

From Proposition 1, we conclude that the domain of the solution to the #-ambiguity problem
depends on the combination of the level of investor’s risk aversion'® and on the characterization of the
investment opportunity set dynamics (represented by w). Under that domain (v > w), it results that
precision is always good, implying that 6* = 6.

Two further comments related to Proposition 1. Firstly, although in our setting precision ends up
to be always good, the hypothesis of precision being bad should also be considered, as we did. This
follows from the conclusion of Rothschild and Stiglitz (1970, 1971) that some risk averse investors may
be better off with an increase in the variance (decrease of precision) of returns.'® If under the domain
of analysis (v > w), there were scenarios where precision is bad, then the solution of the ambiguity
problem would be 6* = 6.

Secondly, regarding investor’s preferences for the temporal resolution of risk, the domain of analysis
~ > w includes scenarios where the investor has preference for late resolution of risk (w < v < 1), for
early resolution of risk (y > 1) and is indifferent to that timing (v =1). Only scenarios where the
investor has a strong preference for late resolution of risk (7 < w) are excluded.

Using Proposition 1, problem (14) becomes:

maz Ey, /f(Cs,Js)ds , withy > w, ¥ =1,
7,C
to

|6=6

subject to the same restrictions as before, but with § = 6. The solution is given by equations (16)-(20),
for a specific value of 0 = 6 and a consistent set of remaining parameters values (such that v > w).

It is immediate from (19) and (20) that both the optimal consumption and portfolio rules are not
affected by ambiguity about 6, as neither depend on 6. If the f-ambiguity averse investor follows the
instantaneous optimal portfolio policy (20), his mean optimal allocation to the risky asset is given by
(21), the same as that of an investor who faces no ambiguity.

However, if the #-ambiguity averse investor could not instantaneously adjust his portfolio following

the observation of the instantaneous precision (as in (20)), then his expectation of the future precision

15Most empirical studies on v conclude its value is higher than one. However there are also some few studies that
obtain a v estimate lower than one. See, for example, Table 7 in Bliss and Panigirtzoglou (2004) for a quick review of
estimated values of v in the literature.

16Tn the finance literature, particularly on portfolio choice, the mean-variance (MV) approach, under which risk averse
agents make their choices considering only the first two moments of the return distribution, has been extensively used.
This despite the fact that the expected utility theory (EU) approach is more consistent. AS a consequence, the risk-
return trade-off is frequently and erroneously treated as the mean-variance trade-off. Although variance is probably the
best scalar measure of risk, relevant probability distributions aren’t exclusively characterized by their first two moments.
At least their third and fourth moments - skewness and kurtosis - may be also very informative and relevant. Rothschild
and Stiglitz (1970) demonstrate this by introducing a richer definition of risk, based on the concept of a “mean-preserving
spread”. For the portfolio problem, Rothschild and Stiglitz (1971) show that an increase in the riskiness of the risky asset
does not necessarily reduce its demand by risk-averse investors. For the MV and EU approaches to give the same results,
it is necessary to assume the quadratic utility specification, which is both theoretically and empirically implausible, or to
restrict the choice space in a way that the mean and variance contain all the relevant information (e.g. all distributions
are Normal).
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would become relevant for the choice of portfolio. Note that due to the existence of transaction costs
and other market frictions, investors in the real world do not adjust their portfolios continuously. In
this case, #-ambiguity aversion becomes relevant as, from Proposition 1, the expectation of the future
precision differs between the ambiguity averse and the ambiguity neutral investor (0 and 6, respec-
tively). For an ambiguity neutral investor, the mean allocation to the risky asset continues to be given

by (21). Proposition 2 elaborates on the portfolio choice of a §-ambiguity averse investor.

Proposition 2. When ¢ =1, v > w, and the 0-ambiguity averse investor considers the expected
precision of the risky asset return instead of the instantaneous precision, the demand for the risky asset

187

1
mp=—(u—r)0+ 249, (23)
Ty gl

which can be decomposed into three components:

1
myopicdemand = S (w—r)0 (24)
intertemporal hedging demand = %AG (25)
L 1 op
ambiguity demand = |—(p—r)+—Al(0—0). (26)
Y v

In this “expectation-driven” scenario, the mean demand for the risky asset is therefore decomposed
into three components: myopic and intertemporal hedging demands (as in Chacko and Viceira (2005))
and ambiguity demand. The sum of (24) and (25) gives the mean optimal risky asset demand under
no ambiguity (21) and under ambiguity when investor instantaneously changes his asset allocation. By
adding the ambiguity demand (26), one obtains the mean risky asset demand under ambiguity (23)
when the investor cannot instantaneously adjust his portfolio.

The main conclusions about the impact on 7y, in this “expectation-driven” scenario, of the existence

of f-ambiguity are stated in Proposition 3.

Proposition 8. When v > w and 1 =1, (i) the mean allocation to the risky asset is lower when
investors are 0-ambiguity averse (ambiguity demand is always negative); (ii) a higher (lower) level
of ambiguity (measured by 0 — 8) implies a smaller (greater) allocation to the risky asset; (iii) the
intertemporal hedging demand for the risky asset is negative if v > 1 and positive if w < v < 1.

Proof: Appendiz 6.6.

The result that ambiguity aversion reduces the demand for the risky asset is the standard result
within the still recent literature on portfolio choice under ambiguity. We extend this result to a setting
where precision, and not the expected return, is the source of ambiguity.

However, note that from (26), if there were scenarios with precision being bad, implying 0* = 0,

12



then ambiguity aversion would increase investor’s demand for the ambiguous risky asset.!”

The conclusion that an investor with v > 1 has a negative intertemporal hedging demand, and the
opposite when w < v < 1, is consistent with the findings of Chacko and Viceira (2005) and applies to
all scenarios and not only to the “expectation-driven” one. When risk aversion is low (w < v < 1), the
investor is ready to support a worse performance when precision is low for extra performance when
precision is high (recall that p > 0). An investor with high risk-aversion (y > 1) is not willing to accept
this trade-off.

3.2 Approximate solution (¢ # 1)

The general case in which the investor’s elasticity of intertemporal substitution of consumption (¢) may
differ from unity is relevant because most empirical studies suggest that i # 1, either higher (Hansen
and Singleton (1982), Attanasio and Weber (1989) and Guvenen (2001)) or lower (Hall (1988), Epstein
and Zin (1991), Campbell (1999) and Vissing-Jorgensen (2002)). However, the Bellman equation (15)
has no exact solution when 1) # 1. Chacko and Viceira (2005) found an approximate analytical solution
for ¢» # 1 that converges to the exact solution determined above when 1 — 1. This approximate
solution may be interpreted as describing the behavior of an investor with bounded rationality.

The accuracy of the approximate solution is insufficient for v < 1 and also for higher levels of ~
when coupled with low values of ¢ (Chacko and Viceira (2005), table 6). Therefore, we extend the
analysis of the previous section to the general case of 1 # 1, but only for v > 1.

The Bellman equation continues to be given by (15), for any 6 value, but now the normalized
aggregator is given by (8). The value function that solves (15) in this scenario is given by (Chacko
and Viceira (2005)):

T(0.X00) = exp {— (i:;) (Awge+ B1(9)>} ‘ffi; , (27)

where A; and By (f) are given by:

po(p=r)(1—y) (h1 + k) + \/<(h1 T R) - po(u—r)(l—w)>2 -~ 02(M—T)Q(l—vg[v(l—pz)ﬂz]
5 5 B
A = ;o (28)

2 (1) =)+

ho — B —r(1—v) w0
I + h—lAl, (29)

which implies the following optimal consumption (C}) and portfolio rules (m):

By(f) = ylogp +

C, = ¥ X,exp {—Alyt — By (é)} , (30)
Ll g 22
Wt—,y(/i )y + S (171/})141%- (31)

17This is a result reached by Gollier (2006) within a setting with ambiguity aversion over expected excess return, with
constant precision and under the specification of Klibanoff et al. (2005), for certain choices of multiple priors for the
risky asset’s return.
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Two notes on expressions (28) and (29). Firstly, in (28), only the positive sign on the square
root guarantees that this approximate solution converges to the exact solution when ¢ — 1. Sec-
ondly, h; represents the unconditional mean of the consumption-wealth ratio around which the linear
approximation of the Bellman Equation (15) is made in order to obtain this approximate solution.'®

Regarding the investor’s optimal policies, the main difference between the set of equations (19)-(20)
and (30)-(31) concerns the consumption policy. From (30), the optimal consumption-wealth ratio is not
fixed (8 when 1) = 1). It is a decreasing function of precision when 1 > 1 and an increasing function of
precision when 1 < 1 (Appendix 6.8). This reflects the relative importance of the intertemporal income
and substitution effects of precision on consumption: when 1 > 1, the intertemporal substitution effect
dominates the income effect, and the contrary happens when ¢ < 1. Regarding (31), its structure is the
same as in (20): it has a myopic component and an intertemporal hedging component that, for v > 1,
is always negative (Appendix 6.8). Chacko and Viceira (2005) show that for empirically plausible
characterizations of the process for precision, expressions (20) and (31) are very close.

From E [y;] = 6 and (31), the mean optimal allocation in the risky asset is

op (y—1)

1
e

A (32)

An ambiguity averse investor considers, from his set of priors, 8* = argmin Jy, (é) The expression

belo,0]
of Jy, (0) is now given by (27) at ¢ = t:
. . XL
Ji, (0) = exp {— (1—1/)) (A1yt0 + 31(9))} 1—~° (33)

with y;, and X, representing the instantaneous precision of the risky asset’s return and the wealth
at the present moment (¢ = to). Proposition 4 states the conclusions on the ambiguity problem solution

within this approximate formulation:

Proposition 4. When ) # 1 and v > 1, the solution of the ambiguity problem is:

0" =9.

Proof. Appendix 6.7.

Considering Proposition 4, the problem (14) to be solved becomes:

max B, /f(CS,JS)ds s withy > 1,9 # 1,
7, C
fo lo=0

subject to the same restrictions as above, but with § = §. The solution of this problem is given by

8h; = exp{c—x}, with ¢, — ¢ = log (%), is therefore an endogenous variable. hg is established as ho =
h1 (1 —log (h1)).
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expressions (27)-(31), with 6 = 6.

In this case, the optimal consumption rule is affected by f-ambiguity as expression (30) depends
explicitly on g: for each level of instantaneous precision yt, the consumption-wealth ratio is higher
(lower) when investors are #-ambiguity averse if 1 > 1 (¢ < 1) (Appendix 6.8).

Regarding the optimal portfolio rule, it happens the same thing as in the exact solution. If the
f-ambiguity averse investor follows the optimal portfolio policy (31), his mean optimal allocation to
the risky asset is given by (32), the same of an ambiguity neutral investor.

However, by analogy to the exposed for the exact solution, §-ambiguity becomes relevant if the
f-ambiguity averse investor does not adjust continuously his portfolio for a given level of instantaneous
precision (as in (31)). In this “expectation-driven” scenario, the investor’s expectation of the risky asset
return’s precision becomes a key driver of the portfolio decision. In this scenario, while the demand of
an investor who faces no ambiguity continues to be given by (32), the choice of a §-ambiguity averse

investor is described by Proposition 5.

Proposition 5. When ¢ # 1, v > 1, the mean consumption-wealth ratio and the mean allocation

to the risky asset are given, respectively, by

(5) =co= e - m). 3
_ Ll ygrort—1)
ra= e+ 20" )

The demand for the risky asset (35) can be decomposed into three components:

1
myopicdemand = —(u—1)0 (36)
Y
intertemporal hedging demand = op (Y =1) 1 (37)
7 (1=19)
o 1 op(y—1)
ambiguity demand = |—(p—7r)+ — Al (6-10). 38
guity 7(u ) ,Y(liw)l(, ) (38)

As in the exact solution, the risky asset demand in the “expectation-driven” scenario, is decomposed
into three components: myopic and intertemporal hedging demands (as in Chacko and Viceira (2005))
and ambiguity demand. The sum of (36) and (37) gives the mean optimal risky asset demand under no
ambiguity (32) and under ambiguity with instantaneously portfolio updates. By adding the ambiguity
demand (38), one obtains the mean risky asset demand with ambiguity, when the investor cannot
continuously update his portfolio allocation, under the approximate solution (35).

The main conclusions about the impact, in this “expectation-driven” scenario, on the consumption-

wealth ratio and on 7y of the existence of §-ambiguity are stated in Proposition 6.

Proposition 6. When v > 1 and ¢ # 1: (i) the mean allocation to the risky asset is lower when

investors are 0-ambiguity averse (ambiguity demand is always negative); (ii) a higher (lower) level of
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ambiguity, measured by (0 — 0), implies a smaller (greater) mean allocation to the risky asset; (iii) the
intertemporal hedging demand is negative; (iv) the mean consumption-wealth ratio is higher (lower)
when investors are 0-ambiguity averse if 1» > 1 (¢ < 1).

Proof. Appendix 6.8.

4 Simulation

Chacko and Viceira (2005) found that, calibrating their model to long-run US data, the optimal in-
tertemporal hedging demand has a small empirical dimension. This suggests that the “risk dimension”
of stochastic variance is empirically not very relevant to the dynamic optimal portfolio decision. How-
ever, in their concluding remarks, they acknowledge that an important caveat of their analysis is that
they have counterfactually assumed that investors observe variance and take as true the empirical
estimates of the parameters of the variance process.

Following this lead, we have extended their model to account for ambiguity about one of the
parameters of the variance process: the expected value of precision (inverse of variance). As a result,
under a scenario where the ambiguity averse investor decides about his portfolio allocation considering
his expectation of precision (and not the instantaneous precision), a third component of the demand
for the risky asset appears. In addition to the “myopic demand” and the “intertemporal hedging
demand”, we obtain an “ambiguity demand” component. We denominated the referred scenario as
“expectation-driven”, and it is the one under which we run these simulations.

Using the calibration of Chacko and Viceira (2005), we find that the ambiguity demand component
of the allocation in the risky asset has a relevant empirical dimension, much higher than that of the
intertemporal hedging demand. Stochastic variance may therefore have a significantly higher impact
on the portfolio choice than what is suggested by the results of Chacko and Viceira (2005).

The reference parameter values used in the simulation are those estimated in Chacko and Viceira
(2005) based on monthly excess stock returns on the CRSP value-weighted portfolio over the T-Bill
rate from January 1926 through December 2000:

uw—r = 0.0811,
Kk = 0.3374,
= 27.9345, (39)
o = 0.6503,
p = 0.5241,
r = 0.015,
8 = 0.06.

It is important to note that (5) is equivalent to (Appendix 6.9):

0~ 2k + \/4Kk? + 8ko2E [vy]
~ 4K E [v¢]
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Expression (40) sets the relation between 6 and the expected variance of the risky asset’s return, for
a given pair of values for k¥ and o. This relation is important for simulation purposes, because 6 is set
for specified variance values'?, subject to the restriction that 2xf > o2 (section 2.1). Note that, for a

given pair of values for k and o, and from (5):

0el0,0] = Elv] e |Evl,;, E[vt]azg} . (41)

4.1 Simulation Results

Implications for the mean allocation in the risky asset from the introduction of #-ambiguity are exem-
plified in Table 1, being consistent with conclusions in Proposition 3 and 6. The first column presents
the results for the scenario without #-ambiguity, in which the expected annual standard deviation of
the risky asset’s return is approximately equal to 19.1%. The other three columns represent scenar-
ios with #-ambiguity, in which the upper bound of the expected annual standard deviation value is
increased to 20%, 25% and 30%.2° From (40) we obtain the related @ values. The implied ambiguity
level in each scenario, 1 — 6/6 (in percentage), is also reported.?!

Simulations are run for different levels of risk aversion (y = 0.75, 1, 2, 4, 20, 40) both using the
exact solution (¢) = 1) and the approximate solution ( ¢ = 1/0.75 and ¢ = 1/1.5 ).?? In panel A
we show the mean allocation to the risky asset (percentage). In panels B and C, the intertemporal

hedging demand and the ambiguity demand are shown as a percentage of the myopic demand.

9From (40), it is equivalent to consider a value for  or E [v:]. However, we believe it is more natural for investors to
think in terms of E [v¢] than 6. For the set of parameters in (39), the implied expected standard deviation of returns is
19.1314%.

20From (41), those three values, 20%, 25% and 30%, are \/(E [”t]e):e) values, i.e, they correspond (in each scenario)

to the upper bound of intervals for E [v¢] “built” by the §-ambiguity averse investor.
21Implementation using Dynare version 3.065 and MatLab version 7.0.0.19920 R14.
22Recall discussion in section 3.2 about the scenarios under which the approximate solution is accurate.
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Table 1: Mean allocation to risky asset, intertemporal hedging demand and ambiguity demand.

Expected Annual Standard Deviation of Risky Asset Returns
19,1314% 20% 25% 30%
implied & 0 =27.935 8=25612 08 =16.604 8=11.706
implied ambiguity level 0% 8% MN% 58%
L] 1/0.75 1 11.5 1/0.75 1 11.5 1/0.75 1 11.6 1/0.75 1 11.5
A - Mean allocation to risky asset (%)

R.R.A.
0.75 30593 30566  30542| 280,45 280,24 280,05 181,73 181,68  18162] 12809 128,09 128,08
1.00 206,55 226,55 22655 207,71 207,71  207,71| 13466 13466 134,66 94,94 94,94 94,94
2.00 111,38 111,37 111,37 102,12 102,11 102,11 66,22 66,20 66,18 46,69 46,67 46,65
4.00 55,26 55,24 55,21 50,67 50,64 50,62 32,85 32,83 32,81 23,16 2315 23,13
20.00 10,99 10,98 10,97 10,08 10,07 10,05 6,53 6,52 6,52 460 4,60 4,59
40.00 5,49 5,48 5,48 5,03 5,03 5,02 3,26 3,26 3,26 2,30 2,30 2,30

B - Ratio of hedging demand over myopic demand (%)

R.R.A.
0.75 1,28 1,19 1,11 1,27 1,19 1,12 1,22 1,19 1,16 1,20 1,19 1,18
1.00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2.00 -1,68 -1,68 -1,68 -1,67 -1,68 -1,68 -1,65 -1,68 -1,70 -1,64 -1,68 -1,71
4.00 2,43 2,47 -2,52 2,43 2,47 -2,52 2,41 2,47 -2,54 2,40 2,47 2,55
20.00 -3,00 3,09 -3,19 2,99 3,09 -3,19 2,99 3,09 -3,20 2,99 -3,09 3,20
40.00 -3,06 317 -3,28 3,06 317 -328 3,06 317 3,28 3,06 317 3,28

C - Ratio of Ambiguity d d over myopi (%)

R.R.A.
0.75 0,00 0,00 0,00 8,42 8,41 -8,41 4106 -4104 41,03 5879 5879  -58,78
1.00 0,00 0,00 0,00 8,32 8,32 -832| -4056  -4056  -4056| -5810  -5810  -58,10
2.00 0,00 0,00 0,00 -8,18 -8,18 -8,18 -39,89 -39,88 -39,87 -57,14 -57,12 -57,10
4.00 0,00 0,00 0,00 8,11 8,11 -8,11 -3958  -39,56  -39,53| -5670  -56,66  -56,62
20.00 0,00 0,00 0,00 8,07 8,06 805 -3935  -39,31 3927 -5636 56,30  -56,24
40.00 0,00 0,00 0,00 8,06 8,05 -804 -3932 3928  -3923| 5632 -5626  -56,19

Note 1 - Panel A: E [my (y¢)] = mo x 100. Panel B: for ¢ = 1, (ratio of (25) over (24))x100; for ¢ # 1, (ratio of (37) over
(36))x100. Panel C: for ¢ = 1, (ratio of (26) over (24))x100; for 1) # 1, (ratio of (38) over (36))x100.
Note 2 - Implied ambiguity level (%): (1 —0/6) x 100.
Note 3 - R.R.A.=~.

Let us give an example based on panel A of Table 1. Consider a risk-averse investor, with v = 2
and ¢ = 1, that is #-ambiguity neutral. His mean optimal allocation to the risky asset corresponds
to 111.4% of his wealth. If the investor becomes ambiguous about 6, under the “expectation-driven”
scenario disclosed in previous sections, with the implied upper bound of the interval for annual expected
standard deviation (from (41)) being equal to 25%, his mean allocation to the risky asset declines to
66,20% of his wealth.

Panel B reports the estimates of the intertemporal hedging demand, measured as a ratio of myopic
demand. The overall results with #-ambiguity are similar to the ones in the scenario without ambiguity
(the same for ¢ = 1 and very close in the other cases). The main results are: (i) this ratio does not
vary with the precision of the return; (ii) intertemporal hedging demand is positive when v < 1 and
negative when v > 1; (iii) intertemporal hedging demand is small - even for a very high risk averse
investor (v = 40).

Panel C presents the estimated ratios of ambiguity demand versus myopic demand. It shows that
ambiguity demand is always negative, with an importance that increases with the level of ambiguity
and decreases with the level of risk aversion, showing much less sensitivity to ~.

Results for the exact and the approximate solution are very close, denoting low sensitivity to the
elasticity of intertemporal substitution (¢).

In panel A, it is shown that, the demand for the risky asset is decreasing with the risk aversion, ~,
and with the level of ambiguity, # — §. This is graphically highlighted in Figure 1.
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Figure 1: Mean allocation to risky asset as a function of risk aversion and ambiguity level

g

)
g
I

300

250

200

location to Risky Asset (%)

Note - Simulation run with ¢ = 1.

It is clear that, under our setting and using calibration (39), the allocation to risky asset reacts
strongly to changes in §. Figure 2 further highlights this for a larger set of 8 values within a reasonable

range of expected annual standard deviation of returns (from 19,1% to 35%).

Figure 2: Mean allocation to risky asset as a function of 6.
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Note - Simulation run with ¢ = 1.

The ambiguity effect on the demand of the risky asset is empirically expressive: even for a low
level of ambiguity (second column in Table 1), where expected annual standard deviation is slightly
adjusted from 19,1% (assumed to be the true value from calibration (39)) to 20%, the ambiguity effect
corresponds to 8% of the investors myopic demand.?® This is further illustrated in Figure 3 for a wider
range of values of expected annual standard deviation of returns and of . Figure 3 also highlights the

fact of ambiguity demand being empirically much more relevant than intertemporal hedging demand

23Tn each #-ambiguity scenario in Table 1, the percentage values in Panel C are very close to the respective implied
ambiguity level. This is due to the small empirical dimension of the intertemporal hedging demand (Panel B).
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(note the difference of scale in the vertical axis).

Figure 3: Ambiguity demand and intertemporal hedging demand versus myopic demand
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In Figure 4 we study the sensitivity of ambiguity demand to variations of two other parameters
of the precision process (3): the reversion parameter (x), which determines the persistence of shocks
to precision, and the instantaneous correlation between shocks to precision and to risky asset return (p).

Figure 4: Effect on ambiguity demand of changes in x and p, with v = 2, 4 and 20.
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Note 1 - Simulations run with ¢ = 1.
Note 2 - Half-life of a shock (years) to precision: log(2)/k.

Note 3 - Ambiguity demand (%) measured as a ratio of myopic demand.
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Until a certain level of half-life of the persistence of a shock to precision (around 7 years), the more
persistent is the shock in precision, the lower is the absolute value of the ambiguity demand. Above
that level, this effect disappears. The intuition for this can be that the higher is the persistence of
shocks in precision, the larger is the period of time that it stays away from its expected value (), and,
therefore, the less relevant is this parameter and the ambiguity about it.

The higher is the instantaneous correlation between shocks to precision and to risky asset returns,
the lower is the absolute value of the ambiguity demand. This means that the easier it is to hedge
variations in precision, the less relevant is the ambiguity over its expected value. However, Figure 4
also shows that both effects have a small empirical dimension.

Table 2 shows the impacts on the mean consumption-wealth ratio (Panel A) and on the long term
expected return on wealth (Panel B) from the introduction of #-ambiguity. Panel A shows that: (i) in
the case of exact solution (¢ = 1), the consumption-wealth ratio is constant and equal to 3 as in (19);
(ii) in the case of approximate solution (i) # 1), when ¢ > 1 (¢ < 1) the consumption-wealth ratio
is higher (lower) when there is #-ambiguity, in consistency with Proposition 6, and the same happens
with the level of risk aversion. Figure 5 illustrate well this conclusion. Moreover, both Table 2 and
Figure 5 show that changes in the consumption-wealth ratio from changes in the level of ambiguity

and risk aversion are of small empirical dimension?*.

Table 2: Consumption-wealth ratio and long-term expected return on wealth.

Expected Annual Standard Deviation of Risky Asset Returns
19,1314% 20% 25% 30%
impdied 8 8 =27935 8=258612 B=-16.604 8=11.706
irmplied ambiguity leve! ES B 40 8% 3%
p| 1075 1 1/1.5 1/0.75 1 1M1.5 1/0.75 1 11.5 1/0.75 1 1M1.5
A - Consumption-wealth ratio (%)
3,30 6,00 3,88 3,85 6,00 8,33 5,01 6,00 6,95 575 6,00 8,25
444 5,00 7.58 4 869 5,00 7.3 5,68 5,00 5,32 85,22 6,00 5,78
5,02 5,00 5,98 5,15 5,00 585 5,52 5,00 5,38 65,58 6,00 5,12
677 5,00 9,23 6,53 5,00 5,16 7,07 5,00 4493 7,20 6,00 4,80
7,36 5,00 4 64 7,37 5,00 4 63 741 5,00 458 744 6,00 4,56
TA43 6,00 4,57 T43 6,00 4,57 748 6,00 4,54 74T 6,00 453
B - Long-term expected retumn on wealth (%)

26,31 26,29 28,27 24,25 2423 241 16,24 16,23 16,22 11,89 11,88 11,89
19,67 19,87 19,87 18,35 18,35 18,35 12,42 12,42 12,42 9,20 9,20 9,20
10,53 10,53 10,53 9,75 9,758 975 6,57 5,57 6,57 5,29 5,29 5,28
598 5,98 5,98 5,81 5,81 5,81 4,18 4,18 4,18 338 3,38 3,38
2,33 2,38 2,33 232 2,32 232 2,03 2,03 2,03 187 1,87 1,87
1,85 1,94 1.94 1,81 1.81 1,91 1,78 1,78 1,76 189 1,88 1,89

Note 1 - Panel A: Ct/x; = exp {E [ct — x¢] X 100} ; Panel B: (79 (n — r) + 7) x 100

Note 2 - Implied ambiguity level (%): [1 —8/6] x 100 .
Note 3 - R.R.A.=~.

In Panel B, it is possible to see that the long-term expected return on wealth, measured by

(mg (u—r) + 1), of an investor that is both risk averse and #-ambiguity averse is a decreasing function

24 An exception is for the scenario v = 0.75. However, we recall that for v < 1 the accuracy of approximate solution is
lower.
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of both risk aversion and the level of ambiguity, which was expectable considering results from Panel
A of Table 1. This is further illustrated in Figure 6.

Figure 5: Consumption-wealth ratio as a function of @ (for different values of v and ).
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Figure 6: Long-term expected return on wealth as a function of § and ~.
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5 Concluding Remarks

We presented an extension of the model of Chacko and Viceira (2005) for optimal dynamic consumption
and portfolio choice with stochastic variance, by introducing ambiguity about the expected precision
(inverse of variance) of the risky asset’s return (parameter §). In our setting, precision of the risky
asset return is therefore simultaneously the source of risk and ambiguity perceived by the risk averse
and f-ambiguity averse investor.

Long-horizon investors with recursive preferences (Duffie and Epstein (1992a) with the specification
of Kreps and Porteus (1978)) have two assets to invest in, a risk-free asset and a risky asset. The
precision of the risky asset return is stochastic and the investor is ambiguous about its expected value,
with ambiguity aversion in the spirit of the Maxmin Expected Utility model of Gilboa and Schmeidler
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(1989). Not knowing the true value of precision, investors consider the worst possible value in a given
interval.

A preliminary conclusion is that precision is always good, in the sense that it increases the utility
attainable by the investor. This implies that the solution of the ambiguity problem is given by the
lower bound (6) of the assumed interval for possible 6 values.

The main conclusions concern the impact on optimal dynamic policies from ambiguity about the
expected value of precision. Regarding the optimal consumption policy, when the intertemporal elas-
ticity of consumption (1) is different from one, the optimal consumption-wealth decision is always
affected by the f-ambiguity: consumption is higher when investors are ambiguity averse compared to
when they are ambiguity neutral if ¢ > 1 and the contrary when ¢ < 1. When ¥ = 1, the mean
optimal consumption-wealth ratio does not depend on the level of precision, as found by Chacko and
Viceira (2005).

Regarding the optimal demand for the risky asset, we conclude that ambiguity about 6 has no
impact. This result should be viewed having in mind that the model assumes that investors can
adjust their portfolios continuously, as a function of the instantaneously observed precision. In the
real world, investors cannot update their portfolios continuously, for reasons that are not easy to model
(such as transaction costs or human limitations). Incorporating such market frictions in the model is
an interesting task for future research.

To provide an additional perspective in the context of the present model, we also studied an
“expectation-driven” scenario in which case investors use their expectations of future precision instead
of the instantaneous precision. In this scenario, the mean allocation to the risky asset decreases with
ambiguity, i.e., ambiguity demand is negative.

The last conclusion of this paper respects to the empirical relevance of ambiguity demand, as de-
termined in this latter scenario. Chacko and Viceira (2005) concluded that the variance of the risky
asset’s return generates a small intertemporal hedging demand, suggesting low relevance of the stochas-
tic variance (precision) in the dynamic portfolio decision. Using the same calibration, we conclude that
the ambiguity demand component of the risky asset demand is relevant and has a much higher em-
pirical dimension than that of intertemporal hedging demand. This indicates that stochastic variance
(precision) may have a much higher impact on investors portfolio decision than found in Chacko and
Viceira (2005). Recovering Knight (1921) conceptual dichotomy of ambiguity versus risk, we conclude
that under those circumstances the “ambiguity dimension” of variance seems to be much more relevant

than its “risk dimension” for dynamical optimal portfolio decisions.
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6 Appendix

6.1 Deduction of equation (4)

We start by stating It6’s lemma (see, for e.g., Hull (2006) chapter 12, pp.273). Let X; be a variable
that follows the Ito process:
dXt :g(Xt,t) dt+V(Xt,t) dBMt, (42)

where BM; is a standard Brownian motion and ¢ and v are functions of X; and ¢. Let g (¢, X;) be a
continuous differentiable function as regards its two arguments. Then,

Y:{Yt:g(tv Xt)}a

is a stochastic process that verifies:

_ Oy dg 1 9% 2
dY, = pn (t, Xy)dt + X (t, X¢)dXe + 29x2 (t, Xo) (dXy)”.

Applying the rule dt? = dt dBM; = 0 and (dBM;)? = dt, then:

dg dg 1 % 2 dg
ayy = = (t, X — (t, X ——=(t, X dt + = (t, X¢) vdBM, 4
b= (e X0+ % (6 XD o 0 X0 e S XgwdBM, (4
i.e., the variable Y; also follows an It6 Process.

In our setting, considering v; = g (y;) = i, then g, = ,y% and gy, = %, where g, and gy, are
the first and second derivatives of ¢ () in order to y;. Moreover, making the parallel with (42), in our

setting we have:

§=r(0—y),
v =0/Yt.
Using these inputs and applying (43) to (3), we find that the stochastic process v, is given by:
% = (k4 vi0? —vkb) dt — o\/v;dW,, . (44)

-1
Defining 6, = (9 - %2) and K, = 9—’1 (which imply that & +v;02 — vk = Ky (0, — v4)), we find (4).

6.2 Deduction of equation (5)

Applying the second-order Taylor expansion of vy = i around 6:

11 1 2 )
vtzg—gj(yt—a)‘*‘i'@*g(yt—@) : (45)
Taking expectations:
11 0 1 0)2
Elv) 5= 25 (Elul = 0) + 55 B | — 0)°] (46)
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From Cox et al. (1985) it is known that E[y;] = 0 and F {(yt - 9)2] =Var[y] = "2—19. Substituting
those results in (46), we obtain (5).

6.3 Stochastic Diffusion Utility (SDU) Function

Duffie and Epstein (1992a) define the stochastic differential utility (SDU) function U : D — R by two
primitive functions, f : C xR — R and A : R — R. The function A (-) is called variance multiplier, as
it applies a penalty (or reward) as a multiple of the utility “volatility”. For deterministic consumption
process, A (+) is therefore irrelevant (without uncertainty, only f (-) matters).

Duffie and Epstein (1992a) state that if, for each consumption process C, there exists a well-defined
utility process J, then the SDU function U is defined by U (C) = Jp, the initial value of that utility
process. The pair (f, fl) generating J is called an aggregator.

Two aggregators ( 1, A) and (f, A) are said to be ordinally equivalent if they generate ordinally
equivalent utility functions, i.e. represent the same preference ordering of consumption processes.
Duffie and Epstein (1992a) present a method through which for any aggregator ( f, A) an ordinally
equivalent aggregator (f, A), with variance multiplier A () equal to zero, is obtained. (f, A) is called

the normalized aggregator of (f, A) and generates the utility process J given by:

T

Jl =B / (fs,Js)ds| . (47)

t

Note how (47) is close to (7). The difference between the expressions is the infinite time horizon
in the later which Duffie and Epstein (1992a) also considers by defining J; = jél_)rgzoJf

The method to obtain (f, A) from (f, A), consists in a change of variables ¢ that satisfies the
differential equation ¢” (z) = A () ¢’ (v), which implies:

J u
o(J)=68+6 /exp //_1 (z)dz| du, (48)
Jo o

where Jy is arbitrary, d2 and §; are constants, with d; > 0, defined so that ¢ (0) = 0. Using ¢, the
relationship between the two ordinally equivalent aggregators ( f, fl) and (f, A) is given by:

Fle,z) = W, (c,z) € C xR, (49)
n o s T o (l‘)
A@ = ¢@Al@l+ 5

In this paper, following Chacko and Viceira (2005), the utility process J generated by the normalized
aggregator f (Cs, Js) is set to define a SDU function ordinally equivalent to Kreps and Porteus (1978)
utility. The aggregator ( f, fl) for this particular utility function is defined (Duffie and Epstein (1992a))
as:

_ E_J _ _
Flen =250 Aw="72 (50)

J
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withC=Ry,0££<1,0<3,04£a<1,and v > 0.
Deduction of expression (8)

Replacing (50), A (z) = %=1, in (48):

u

J
-1
e(J) = 52+(51/ea:p /am dz | du
Jo

0

J
1)
= 52+J—(1)/ua71du
Jo

= S+ 6 (‘f) . (51)

To havey (0) = 0, we set d2 = 0. Assuming 6; = 1, possible as Duffie and Epstein (1992a) only require

01 > 0, expression (51) yields ¢ (J) = J—: and:

o (J)=J>* (52)
Using (50) and (52) in (49), gives:
c¢ — J¢
gm = f(Cie(J)). (53)
From ¢ (.J) = L= we get (ap (J))™ = J.
Introducing this result in (53):
cé — &
?M‘O‘” Sy
C 3
aJ)a

Expression (8) follows simply by changing notation: £ =1 — i and a =1—1.

6.4 Sign of the square-root in (17)

Regarding (17), an issue to be addressed is the sign of the square root. With ¢» = 1, as v — 1, the
utility representation (9) converges to the log-utility representation. The exact solution of (20) in the
special case of log-utility (y =1 = 1) is well-known (Merton (1969, 1971, 1973)):

= (—=")Ys,
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i.e., the intertemporal hedging demand component disappears (if ) = =1, then A = B =0). It is
therefore necessary to guarantee that with ¢ = 1, limA = 0?5 as the limit of (20) as v — 1 is given

by:

~—1
limme = (p—71)ye + (limA) POY; .
y—1 y—1

From (17), limA is:

~—1

. po(u—r) Bir\2 o2(u— T)2[7(1 p2)+r2]
(ﬁ+n)i£2ﬂ(1ﬂ)7\/(f*ﬁ) V21

> : (55)

limA =

y—1

o

If vy — 17, ie, v > 1, then (1 —v) < 0 and the discriminant of the square root in (55) is always > 0.

b2

By assumption, 8 + £ > 0, which implies that, in order to have lim A = 0, the ” + 7 sign must be

~y—1t
considered.

b2

The same rational implies that when v < 1, the ” —” sign of the square root guarantees lim A =0

y—17
(it can be easily shown that the discriminant of the square root in (55) is positive as v approaches 1

from below).
When v =1, only the “” sign of the square root gives A = 0, as:

B+r)E(B+r)

o2

A ly=1= (

6.5 Proof of Proposition 1

The domain of analysis is set so that A in (17) is a real number, i.e., its discriminant is non-negative.

Consequently the condition to be satisfied is

po(pu—r) B+r\° o2 (—7)* [y (1 = p?) + p?]
( v _1—7) g 7 (1—7) ' (56)

o (u—7)[v(1-p" )+
2 (1-7)

2
For v > 1 it is straightforward to conclude that (W - M)

T— , and

therefore (56) is always true.
For v < 1, (56) is true as long as:

v Pu=r) 20 (u—r)
1—vy (B8 + k) (B + k)
2
PO e W T Vs T
(B+r)*+ 02 (p=7)"+2p0 (u—7) (B+k)
=0 2w,
by making w = o (u=r)"+2po(p=r)(B+r)___ Note that w < 1 as (B+ k) > 0.

(B+r)2+02(p—r)2+2p0 (p—7)(B+r)

25From (18) limA =0 = limB = 0.

y—1 N1
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The domain of analysis is therefore v > w.

1—v
From (22) and (17)-(18): %o — “””{Ay‘g’g}Xto 2. This implies that:
dJ, A
Sign ( d;”) = Sign T (57)

1—v
s mzp{Ay"‘J;B}Xt" > 0. Further development of (57) gives:

o (0 _ gign d B PO (=) po(p—r) B+r\" o2(n—1)’[y(1-p*)+p%
Szgn(d9>_sg 1—7y B! jE\/( v 1—7) 72 (1—7)
(58)

since 7> 0 as, by assumption, v > 0 and 0 < p < 1.

[ S
o?[y(1—p?)+p?

Recovering conclusions regarding the sign of the square root in Appendix 6.4, (58) becomes:

For v > 1:

dJe,\ _ . JB+E po(p—r) po(p—r) B+r\ 02— 1-p>)+p
( )_Szgn 1—y v +\/( v 17) 72(1-7)

Although f_i',; - w < 0, when v > 1 it results:

)

\/(pa(u—r) _5+f€)2_Uz(u—r)Q[v(l—pQ)erZ] _|B+r _pou=r)
gl 11—~ 7 (1=7) 1—v gl

implying that Sign (djgo) =747 |51

Forw<vy<1:

o (dD,\ o ) B+s po(u=r)  [(po(u=71) B+r\’ o*(u—r)(1-p?)+p%
Slgn( )_Szgn 1—v gl \/( gl 17) 72 (1 =)

B+ o (p—r) ; o(p—r)
For’y<1,0negetsf:—%>01f'y>(ﬁ+i)+“m.

As % < w it results that %*’;” - W > 0 |w<y<1- This implies:

Btk po(p—r) >\/(pa(u—r) _5+K>2—UQ(M—T)2[W(1—/>2)+P2]
11—~ ~ ~y 11—~ 7 (1—7)

when w < 7 < 1, and consequently Sign (d;l]‘;") =" 47 |ugy<t-
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Thus overall:?6

, dJy ,
o — ” ” > .
Szgn( 70 ) +7, withy 2 w

Following the spirit of the Maxmin Expected Utility model of Gilboa and Schmeidler (1989), as an
increase in the expected precision of the risky asset return increases utility, then the lowest possible
value for the expected precision is considered, i.e., 6* = 6.

6.6 Proof of Proposition 3

Proof of (i): § < 0 = mp < mp.

The difference between the mean allocation to the risky asset when ambiguity is considered (7@)

versus when there is no ambiguity (), is given by (26):

mo-m = (TG-n+Za)@-0).

We need only to show that % (u—r)+ 22A>0in the domain under analysis (y > w):
For v > 1, it is algebraically easy to show that % (L—r)+ %A > 0, by substituting the expression for

A (17) and considering the positive sign of its square root in line with conclusions in Appendix 6.4.

For v = 1, it results that %(u —7r) + %A = (u—r) > 0, by substituting the expression for A

(17) and considering the negative sign of its square root in line with conclusions in Appendix 6.4.

For w < v < 1, from (57) and conclusions in Appendix 6.5, it is immediate to conclude that

S(u—71)+LA>0 a5 A>0.

Since % (w—r)+ %A > 0 and 6 < 0 (when 8 = 6 there is no ambiguity), it is immediate to conclude

that (mg — m9) < 0 and that ambiguity demand (26) is always negative.
Proof of (it): mp is decreasing with(0 — 0).

The relation between the mean allocation to the risky asset when there exists ambiguity (mg) and
changes in the level of ambiguity, measured by (6 — 0), is:

As %(u —r) + %pA > 0 (see previous proof of (i)), it results that an increased level of ambiguity

implies a reduction of the mean allocation to the risky asset.

Proof of (iii): Sign of the intertemporal hedging demand.

« 2 2
26By applying 1’Hopital rule to the calculation of lim (d:i];" ) one obtains lim (di;" ) = g2((g+,:; , which is > 0.

~y—1 y—1
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From (25), and since o, p,v,60 > 0:
Sign(HD) = Sign(A).

From (57) and conclusions in Appendix 6.5:

v>1: Sign(d;l];O):”+”:>Sign(A):”—”

w<y<1: Sign(d‘d];O) ="4"= Sign(A)="+"

When v = 1, intertemporal hedging demand is null because A =0 |,=1 (see Appendix 6.4).

6.7 Proof of Proposition 4

From (28)-(29) and (33):

d‘]to o 1 AIH 1—’7 1—~
B - 1-9 Iy eiﬂp{ <1¢ (Aryr, + B1) ¢ Xy

As exp{— (ﬁ) (Arye, + Bl)} > 0 and thofv, K, h1 > 0:

dJ,
Sign < d50> = Sign <1i¢A1> . (59)

Expression (28) for A; is further simplified to:

(1—9) [b+ vVb? +u]

A = ith
1 0-)e , wi (60)
b =po(p—r)(1=7)—7(h+rk)
u == (p=r)(1=7) [y (1-p°) + 5]
e 202[7(1—p2)+p2}, always >0as0<p<1l, v>0.

Substituting (60) into (59), for v > 1 one obtains:

Sign (Cljto) = Sign <b+ AZES u) )

de

As Vb2 +u > b, because b < 0 and u > 0 when v > 1, then

- d‘]to _» 77
Szgn( 70 ) = 747,

which, following the same rational as in Appendix 6.5, implies 6* = 6.
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6.8 Proof of Proposition 6

Proof of (i): § <6 = 1y < my.

The difference between the mean allocation to the risky asset under ambiguity aversion (WQ) versus

under ambiguity neutrality (my), is given by (38):

I B RN/ J Gt ) _
m-m = |Z-n+ 20 0n]@-0. (o1

Substituting expression for A; (28) into % (w—r)+ ‘77” ((IY:;))AM after some algebra the latter

expression is simplified to:

(u—r)027+op[v(h1+f<)—\/[(hl+H)’y—p0(u—r)(1—v)]2—UQ(M—T)Q(l—7)[7(1—92)+p2]

o2 [y (1 = p?) + p?]

)

which is always positive as both the numerator and denominator are positive.

Going back to (61), and considering that % (L—r)+ %%Al > 0 and 4 < 6, it is immediate to

conclude that my — mp < 0, and that ambiguity demand is always negative.

Proof of (it): my is decreasing with(6 — 6).

The relation between the mean allocation to the risky asset under ambiguity aversion and changes in
the level of ambiguity, measured by (6 — 8), is given by:

dﬂ-@ — l(u—r)—i—a—p(v_l)

d0—10) ot v (1—19)

1

As % (w—r)+ % ((IY:/i))Al > 0 (see previous proof of (i)), it results that increased level of ambiguity

implies a reduction of the mean allocation to the risky asset.

Proof of (iit): Sign of intertemporal hedging demand (HD).

From (37) and considering that o, p,0 > 0 and v > 1, it results that the sign of intertemporal hedging
demand (HD) is:

, o Ay
Sign(HD) = Sign (lw)

A

-y <0.

From (59) and conclusions on Appendix 6.7 it is known that

Proof of (iv): cy is higher (lower) under §-ambiguity aversion if ¢ > 1 (< 1).
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Under the “expectation-driven” scenario, from (34) and (28)-(29):

dc
TQQ — A, (1 + }Z) BYexp{— (A10 + By (0))}

‘ deg\ .
= Sign (d9> = Sign(—A1),

as (1 + ﬁ) BYexp{—(A10 + By (0))} > 0. From (60), for v > 1:

b+ Vb2 +u
gn(—Ay) = (1—)Sign [ V2 *u
Sign (—Ap) (1 —1) Sign ( CERE )
Sign(~A) = Sign(1-1),
as b@f’f; % > ( (see Appendix 6.7), and therefore:
ng
1 _
)< >0
d69
1 — .
> o <0

Consequently, when 1 < 1, #-ambiguity aversion decreases the optimal consumption wealth ratio
(8 < 0). The contrary happens when 1 > 1. The same conclusion is obtained when studying g—;,

with ¢; given by (30), as Sign (g—;i) = Sign (—A1).

6.9 Expression (40)

From (5):
E 0] 20%k — 20k — 0® =~ 0

which is a quadratic equation for § with roots:

0 ~ 2k £ \/4Kk? + 8ko2E [vy]
- 4k E [’Ut] '

As6 > 0,2k < \/4k2 + 8k02E [v;] and 4k E [v;] > 0, only the positive sign of the square root is relevant.
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