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Abstract

We obtain a structurally stable family of smooth ordinary differential equations exhibiting hete-
roclinic tangencies for a dense subset of parameters. We use this to find vector fields C2-close to an
element of the family exhibiting a tangency, for which the set of solutions with historic behaviour
contains an open set. This provides an affirmative answer to Taken’s Last Problem (F. Takens (2008)
Nonlinearity, 21(3) T33–T36). A limited solution with historic behaviour is one for which the time
averages do not converge as time goes to infinity. Takens’ problem asks for dynamical systems where
historic behaviour occurs persistently for initial conditions in a set with positive Lebesgue measure.

The family appears in the unfolding of a degenerate differential equation whose flow has an
asymptotically stable heteroclinic cycle involving two-dimensional connections of non-trivial periodic
solutions. We show that the degenerate problem also has historic behaviour, since for an open set
of initial conditions starting near the cycle, the time averages approach the boundary of a polygon
whose vertices depend on the centres of gravity of the periodic solutions and their Floquet multipliers.

We illustrate our results with an explicit example where historic behaviour arises C2-close of a
SO(2)-equivariant vector field.

1 Introduction

Chaotic dynamics makes it difficult to give a geometric description of an attractor in many situations,
when probabilistic and ergodic analysis becomes relevant. In a long record of a chaotic signal generated
by a deterministic time evolution, for suitable initial conditions the expected time average exists — see
[30, 31]. However, there are cases where the time averages do not converge no matter how long we
wait. This historic behaviour is associated with intermittent dynamics, which happens typically near
heteroclinic networks.

The aim of this article is to explore the persistence of this behaviour for a deterministic class of systems
involving robust heteroclinic cycles, leading to an answer to Taken’s Last Problem [35]. More precisely,
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we study non-hyperbolic heteroclinic attractors such that the time averages of all solutions within their
basin of attraction do not converge, and for which this holds persistently.

This is done by first studying a one-parameter family of vector fields having periodic solutions con-
nected in a robust cycle. We show that under generic conditions there are parameter values for which
the invariant manifolds of a pair of periodic solutions have a heteroclinic tangency. This implies the
Newhouse property of existence of infinitely many sinks. Results by Kiriki and Soma [18] may then be
used to provide an affirmative answer to the problem proposed by Takens in [35].

1.1 Takens’ last problem

Let M be a compact three-dimensional manifold without boundary and consider a vector field f :M →
TM defining a differential equation

ẋ = f(x), x(0) = x0 ∈M (1.1)

and denote by φ(t, x0), with t ∈ R, the associated flow with initial condition x0 ∈ M . The following
terminology has been introduced by Ruelle [30] (see also Sigmund [31]).

Definition 1 We say that the solution φ(t, x0), x0 ∈ M , of (1.1) has historic behaviour if there is a
continuous function H :M → R such that the time average

1

T

∫ T

0

H(φ(t, x0))dt (1.2)

fails to converge.

A solution φ(t, x0), x0 ∈ M with historic behaviour retains informations about its past. This happens,
in particular, if there are at least two different sequences of times, say (Ti)i∈N and (Sj)j∈N, such that
the following limits exist and are different:

lim
i→+∞

1

Ti

∫ Ti

0

H(φ(t, x0))dt 6= lim
j→+∞

1

Sj

∫ Sj

0

H(φ(t, x0))dt.

The consideration of the limit behaviour of time averages with respect to a given measure has been
studied since Sinai [32], Ruelle [29] and Bowen [4]. Usually, historic behaviour is seen as an anomaly.
Whether there is a justification for this belief is the content of Takens’ Last Problem [18, 34, 35]: are there
persistent classes of smooth dynamical systems such that the set of initial conditions which give rise to
orbits with historic behaviour has positive Lebesgue measure? In ergodic terms, this problem is equivalent
to finding a persistent class of systems admitting no physical measures [11, 30], since roughly speaking,
these measures are those that give probabilistic information on the observable asymptotic behaviour of
trajectories.

The class may become persistent if one considers differential equations in manifolds with boundary
as in population dynamics [11, 13]. The same happens for equivariant or reversible differential equations
[10]. The question remained open for systems without such properties until, recently, Kiriki and Soma
[18] proved that any Newhouse open set in the Cr-topology, r ≥ 2, of two-dimensional diffeomorphisms
is contained in the closure of the set of diffeomorphisms which have non-trivial wandering domains whose
forward orbits have historic behaviour. As far as we know, the original problem, stated for flows, has
remained open until now.

1.2 Non-generic historic behaviour

In this section, we present some non-generic examples that, however, occur generically in families of
discrete dynamical systems depending on a small number of parameters. The first example has been
given in Hofbauer and Keller [12], where it has been shown that the logistic family contains elements for
which almost all orbits have historic behaviour. This example has codimension one in the space of C3

endomorphisms of the interval; the C3 regularity is due to the use of the Schwarzian derivative operator.
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The second example is due to Bowen, who described a codimension two system of differential equations
on the plane whose flow has a heteroclinic cycle consisting of a pair of saddle-equilibria connected by
two trajectories. As referred by Takens [34, 35], apparently Bowen never published this result. We
give an explicit example in 7.2 below. The eigenvalues of the derivative of the vector field at the two
saddles are such that the cycle attracts solutions that start inside it. In this case, each solution in the
domain has historic behaviour. In ergodic terms, it is an example without SRB measures. Breaking
the cycle by a small perturbation, the equation loses this property. This type of dynamics may become
persistent for dynamical systems in manifolds with boundary or in the presence of symmetry. We use
Bowen’s example here as a first step in the construction of a generic example. Other examples of high
codimension with heteroclinic attractors where Lebesgue almost all trajectories fail to converge have been
given by Gaunersdorfer [8] and Sigmund [31].

Ergodicity implies the convergence of time averages along almost all trajectories for all continuous
observables [17]. For non-ergodic systems, time averages may not exist for almost all trajectories. In
Karabacak and Ashwin [17, Th 4.2], the authors characterise conditions on the observables that imply
convergent time averages for almost all trajectories. This convergence is determined by the behaviour of
the observable on the statistical attractors (subsets where trajectories spend almost all time). Details in
[17, §4].

1.3 General examples

The paradigmatic example with persistent historic behaviour has been suggested by Colli and Vargas in
[6], in which the authors presented a simple non-hyperbolic model with a wandering domain characterised
by the existence of a two-dimensional diffeomorphism with a Smale horseshoe whose stable and unstable
manifolds have persistent tangencies under arbitrarily small C2 perturbations. The authors of [6] suggest
that this would entail the existence of non-wandering domains with historic behaviour, in a robust way.
This example has been carefully described in [18, §2.1].

For diffeomorphisms, an answer has been given by Kiriki and Soma [18], where the authors used ideas
suggested in [6] to find a nontrivial non-wandering domain (the interior of a specific rectangle) where the
diffeomorphism is contracting. In a robust way, they obtain an open set of initial conditions for which the
time averages do not converge. Basically, the authors linked two subjects: homoclinic tangencies studied
by Newhouse, Palis and Takens and non-empty non-wandering domains exhibiting historic behaviour.
An overview of the proof has been given in §2 of [18]. We refer those that are unfamiliar with Newhouse
regions to the book [24].

1.4 The results

The goal of this article is twofold. First, we extend the results by Takens [34] and by Gaunersdorfer [8]
to heteroclinic cycles involving periodic solutions with real Floquet multipliers. The first main result is
Theorem 8, with precise hypotheses given in Section 3:

1st result: Consider an ordinary differential equation in R3 having an attracting heteroclinic cycle in-
volving periodic solutions with two-dimensional heteroclinic connections. Any neighbourhood of
this cycle contains an open set of initial conditions, for which the time averages of the correspond-
ing solutions accumulate on the boundary of a polygon, and thus, fail to converge. The open set is
contained in the basin of attraction of the cycle and the observable is the projection on a component.

This situation has high codimension because each heteroclinic connection raises the codimension by one,
but this class of systems is persistent in equivariant differential equations. The presence of symmetry
creates flow-invariant fixed-point subspaces in which heteroclinic connections lie — see for example the
example constructed in [28, §8]. Another example is constructed in Section 7.4 below. The second main
result, Theorem 11, concerns tangencies:

2nd result: Consider a generic one-parameter family of structurally stable differential equations in the
unfolding of an equation for which the 1st result holds. Then there is a sequence of parameter values
for which there is a heteroclinic tangency of the invariant manifolds of two periodic solutions.

We use this result to obtain Theorem 12:
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3rd result: Consider a generic one-parameter family of structurally stable differential equations in the
unfolding of an equation for which the 1st result holds. Therefore, for parameter values in an open
interval, there are vector fields arbitrarily C2-close to an element of the family, for which there is
an open set of initial conditions exhibiting historic behaviour.

In other words, we obtain a class, dense in a C2-open set of differential equations and elements of this
class exhibit historic behaviour for an open set of initial conditions, which may be interpreted as the
condition required in Takens’ Last Problem. The idea behind the proof goes back to the works of [15, 16],
combined with the recent progress on the field made by [18]. The proof consists of the followingsteps:

1. use the 3rd result to establish the existence of intervals in the parameters corresponding to Newhouse
domains;

2. in a given cross section, construct a diffeomorphim (C2-close to the first return map) having historic
behaviour for an open set of initial conditions;

3. transfer the historic behaviour from the perturbed diffeomorphism of 2. to a flow C2-close to the
original one.

Furthermore, in the spirit of the example by Bowen described in [34], we obtain:

4th result: We construct explicitly a class of systems for which historic behaviour arises C2-close to the
unfolding of a fully symmetric vector field, we may find an open set of initial conditions with historic
behaviour. In contrast to the findings of Bowen and Kleptsyn [19], our example is robust due the
hyperbolicity of the periodic solutions and the transversality of the local heteroclinic connections.

The results in this article are stated for vector fields in R3, but they hold for vector fields in a
three-dimensional Riemannian manifold and, with some adaptation, in higher dimensions.

1.5 An ergodic point of view

Concerning the first result, the outstanding fact in the degenerate case is that the time averages diverge
precisely in the same way: they approach a k-polygon. This is in contrast with ergodic and hyperbolic
strange attractors admitting a physical measure, where almost all initial conditions lead to converging
time averages, in spite of the fact that the observed dynamics may undergo huge variations.

If a flow φ(t, .) admits an invariant probability measure µ that is absolutely continuous with respect
to the Lebesgue measure and ergodic, then µ is a physical measure for φ(t, .), as a simple consequence
of the Birkhoff Ergodic Theorem. In other words if H : M → R is a µ-integrable function, then for
µ-almost all points in M the time average:

lim
T→+∞

1

T

∫ T

0

H ◦ φ(t, x0)dt

exists and equals the space average
∫
Hdµ. In the conservative context, historic behaviour has zero

Lebesgue measure.
Physical measures need not be unique or even exist in general. When they exist, it is desirable that

the set of points whose asymptotic time averages are described by physical measures be of full Lebesgue
measure. It is unknown in how much generality do the basins of physical measures cover a subset of
M of full Lesbegue measure. There are examples of systems admitting no physical measure but the
only known cases are not robust, ie, there are systems arbitrarily close (in the C2 Whitney topology)
that admit physical measures. In the present article, we exhibit a persistent class of smooth dynamical
systems that does not have global physical measures. In the unfolding of an equation for which the
first result holds, there are no physical measures whose basins intersect the basin of attraction of an
attracting heteroclinic cycle. Our example confirms that physical measures need not exist for all vector
fields. Existence results are usually difficult and are known only for certain classes of systems.
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1.6 Example without historic behaviour

Generalised Lotka-Volterra systems has been analysed by Duarte et al in [7]. Results about the con-
vergence of time averages are known in two cases: either if there exists a unique interior equilibrium
point, or in the conservative setting (see [7]), when there is a heteroclinic cycle. In the latter case, if
the solution remains limited and does not converge to the cycle, then its time averages converge to an
equilibrium point. The requirement is that the heteroclinic cycle is stable but not attracting, and the
limit dynamics has been extended to polymatrix replicators in [25]. This is in contrast to our findings in
the degenerate case, emphasising the importance of the hypothesis that the cycle is attracting in order
to obtain convergence to a polygon.

1.7 Framework of the article

Preliminary definitions are the subject of Section 2 and the main hypotheses are stated in Section 3.
We introduce the notation for the rest of the article in Section 4 after a linearisation of the vector field
around each periodic solution, whose details are given in Appendix A. We use precise control of the
times of flight between cross-sections in Section 5, to show that for an open set of initial conditions
in a neighbourhood of asymptotically stable heteroclinic cycles involving non-trivial periodic solutions,
the time averages fail to converge. Instead, the time averages accumulate on the boundary of a polygon,
whose vertices may be computed from local information on the periodic solutions in the cycle. The proofs
of some technical lemmas containing the computations about the control of the flight time between nodes
appear in Appendix B, to make for easier reading.

In Section 6, we obtain a persistent class of smooth dynamical systems such that an open set of initial
conditions corresponds to trajectories with historic behaviour. Symmetry-breaking techniques are used
to obtain a heteroclinic cycle associated to two periodic solutions and we find heteroclinic tangencies and
Newhouse phenomena near which the result of [6, 18] may be applied. This is followed in Section 7 by
an explicit example where historic behaviour arise in the unfolding of an SO(2)-equivariant vector field.

2 Preliminaries

To make the paper self-contained and readable, we recall some definitions.

2.1 Heteroclinic attractors

Several definitions of heteroclinic cycles and networks have been given in the literature. In this paper
we consider non-trivial periodic solutions of (1.1) that are hyperbolic and that have one Floquet multi-
plier with absolute value greater than 1 and one Floquet multiplier with absolute value less than 1. A
connected component of W s(P)\P , for a periodic solution P , will be called a branch of W s(P), with a
similar definition for a branch of Wu(P). Given two periodic solutions Pa and Pb of (1.1), a heteroclinic
connection from Pa to Pb is a trajectory contained in Wu(Pa)∩W s(Pb), that will be denoted [Pa → Pb].

Let S ={Pa : a ∈ {1, . . . , k}} be a finite ordered set of periodic solutions of saddle type of (1.1). The
notation for Pa is cyclic, we indicate this by taking the index a (mod k), ie a ∈ Zk = Z/kZ. Suppose

∀a ∈ Zk Wu(Pa) ∩W s(Pa+1) 6= ∅.

A heteroclinic cycle Γ associated to S is the union of the saddles in S with a heteroclinic connection
[Pa → Pa+1] for each a ∈ Zk. We refer to the saddles defining the heteroclinic cycle as nodes. A
heteroclinic network is a connected set that is the union of heteroclinic cycles. When a branch ofWu(Pa)
coincides with a branch of W s(Pa+1), we also refer to it as a two-dimensional connection [Pa → Pa+1].
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2.2 Basin of attraction

For a solution of (1.1) passing through x ∈M , the set of its accumulation points as t goes to +∞ is the
ω-limit set of x and will be denoted by ω(x). More formally,

ω(x) =
+∞⋂

T=0

(
⋃

t>T

φ(t, x)

)
.

It is well known that ω(x) is closed and flow-invariant, and if M is compact, then ω(x) is non-empty for
every x ∈M . If Γ ⊂M is a flow-invariant subset for (1.1), the basin of attraction of Γ is given by

B(Γ) = {x ∈M\Γ : all accumulation points of φ(t, x) as t→ +∞ lie in Γ}.

Note that, with this definition, the set Γ is not contained in B(Γ).

3 The setting

3.1 The hypotheses

Our object of study is the dynamics around a heteroclinic cycle associated to k periodic solutions, k ∈ N,
k > 1, for which we give a rigorous description here. Specifically, we study a one-parameter family of
C2-vector fields fλ in R3 whose flow has the following properties (see Figure 1):

(P1) For λ ∈ R, there are k hyperbolic periodic solutions Pa of ẋ = fλ(x), a ∈ Zk, of minimal period
ξa > 0. The Floquet multipliers of Pa are real and given by eea > 1 and e−ca < 1 where ca > ea > 0.

(P2) For each a ∈ Zk, the manifolds W s
loc(Pa) and Wu

loc(Pa) are smooth surfaces homeomorphic to a
cylinder – see Figure 2.

(P3) For each a ∈ Zk, and for λ = 0, one branch of Wu(Pa) coincides with a branch of W s(Pa+1),
forming a heteroclinic network, that we call Γ0, and whose basin of attraction contains an open set.

(P4) [Transversality] For λ 6= 0 and for each a ∈ Zk, a branch of the two-dimensional manifold Wu(Pa)
intersects transverselly a branch of W s(Pa+1) at two trajectories, forming a heteroclinic network
Γλ, consisting of two heteroclinic cycles.

For λ 6= 0, any one of the two trajectories of (P4) inWu(Pa)∩W s(Pa+1) will be denoted by [Pa → Pa+1].
A more technical assumption (P5) will be made in Section 4.1 below, after we have established some
notation. For a ∈ Zk, define the following constants:

δa =
ca
ea

> 1, µa+1 =
ca
ea+1

and δ =
k∏

a=1

δa > 1 (3.3)

Also denote by xa ∈ R4 the centre of gravity of Pa, given by

xa =
1

ξa

∫ ξa

0

Pa(t)dt ∈ R3.

Without loss of generality we assume that the minimal period ξa = 1, for all a ∈ Zk. It will be
explicitly used in system (4.4) below.

3.2 The dynamics

The dynamics of this kind of heteroclinic structures involving periodic solutions has been studied before
in [1, 3, 22, 28], in different contexts.

Since f0 satisfies (P1)–(P3) then, adapting the Krupa and Melbourne criterion [20, 21], any solution
starting sufficiently close to Γ0 will approach it in positive time; in other words Γ0 is asymptotically
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λ=0 λ=0W  (P  )1
u W  (P  )2

s=

W  (P  )2
u W  (P  )1
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W  (P  )1
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sU

W  (P  )2
u W  (P  )1

sU

P1 P P1 P22

Figure 1: Configuration of Γλ for λ = 0 (left) and λ > 0 (right). The representation is done for k = 2.

stable. As a trajectory approaches Γ0, it visits one periodic solution, then moves off to visit the other
periodic solutions in the network. After a while it returns to visit the initial periodic solution, and the
second visit lasts longer than the first. The oscillatory regime of such a solution seems to switch into
different nodes, at geometrically increasing times.

For λ 6= 0, by (P4), the invariant manifolds of the nodes meet transversally, and the network is
no longer asymptotically stable due to the presence of suspended horseshoes in its neighbourhood. As
proved in [28], there is an infinite number of heteroclinic and homoclinic connections between any two
periodic solutions and the dynamics near the heteroclinic network is very complex. The route to chaos
corresponds to an interaction of robust switching with chaotic cycling. The emergence of chaotic cycling
does not depend on the magnitude of the multipliers of the periodic solutions. It depends only on the
geometry of the flow near the cycle.

In Table 1, we summarise some information about the type of heteroclinic structure of Γλ and the
type of dynamics nearby.

λ Structure of VΓλ
Dynamics near Γλ References

zero torus of genus k Attractor [22, 28]
non-zero torus of genus > k Chaos (Switching and Cycling) [1, 3, 28]

Table 1: Heteroclinic structure of Γλ, for λ = 0 and λ 6= 0.

4 Local and global dynamics near the network

Given a heteroclinic network of periodic solutions Γλ with nodes Pa, a ∈ Zk, let VΓλ
be a compact

neighbourhood of Γλ and let Va be pairwise disjoint compact neighbourhoods of the nodes Pa, such that
each boundary ∂Va is a finite union of smooth manifolds with boundary, that are transverse to the vector
field everywhere, except at their boundary. Each Va is called an isolating block for Pa and, topologically,
it consists of a hollow cylinder. Topologically, VΓ0 may be seen as a solid torus with genus k (see Table 1).

4.1 Suspension and local coordinates

For a ∈ Zk, let Σa be a cross section transverse to the flow at pa ∈ Pa. Since Pa is hyperbolic, there is
a neighbourhood V ∗

a of pa in Σa where the first return map to Σa, denoted by πa, is C
1 conjugate to its

linear part. Moreover, for each r ≥ 2 there is an open and dense subset of R2 such that, if the eigenvalues
(ca, ea) lie in this set, then the conjugacy is of class Cr — see [33] and Appendix A. The eigenvalues of
dπa are eea and e−ca . Suspending the linear map gives rise, in cylindrical coordinates (ρ, θ, z) around Pa,
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to the system of differential equations:





ρ̇ = −ca(ρ− 1)

θ̇ = 1
ż = eaz

(4.4)

which is C2-conjugate, after reparametrising the time variable, to the original flow near Pa. In these
coordinates, the periodic solution Pa is the circle defined by ρ = 1 and z = 0, its local stable manifold,
W s

loc(Pa), is the plane defined by z = 0 and Wu
loc(Pa) is the surface defined by ρ = 1 as in Figure 2.

We will work with a hollow three-dimensional cylindrical neighbourhood Va(ε) of Pa contained in the
suspension of V ∗

a given by:

Va(ε) = {(ρ, θ, z) : 1− ε ≤ ρ ≤ 1 + ε, −ε ≤ z ≤ ε and θ ∈ R (mod 2π)} .

When there is no ambiguity, we write Va instead of Va(ε). Its boundary is a disjoint union

∂Va = In(Pa) ∪Out(Pa) ∪ Ω(Pa)

such that :

• In(Pa) is the union of the walls, defined by ρ = 1±ε, of the cylinder, locally separated byWu(Pa).
Trajectories starting at In(Pa) go inside the cylinder Va in small positive time.

• Out(Pa) is the union of two anuli, the top and the bottom of the cylinder, defined by z = ±ε,
locally separated by W s(Pa). Trajectories starting at Out(Pa) go inside the cylinder Va in small
negative time.

• The vector field is transverse to ∂Va at all points except possibly at the four circles: Ω(Pa) =
In(Pa) ∩Out(Pa).

The two cylinder walls, In(Pa) are parametrised by the covering maps:

(θ, z) 7→ (1± ε, θ, z) = (ρ, θ, z),

where θ ∈ R (mod 2π), |z| < ε. In these coordinates, In(Pa) ∩W s(Pa) is the union of the two circles
z = 0. The two anuli Out(Pa) are parametrised by the coverings:

(ϕ, r) 7→ (r, ϕ,±ε) = (ρ, θ, z),

for 1− ε < r < 1 + ε and ϕ ∈ R (mod 2π) and where Out(Pa) ∩Wu(Pa) is the union of the two circles
r = 1. In these coordinates Ω(Pa) = In(Pa)∩Out(Pa) is the union of the four circles defined by ρ = 1±ε
and z = ±ε.

The portion of the unstable manifold of Pa that goes from Pa to In(Pa+1) without intersecting Va+1

will be denoted Wu
loc(Pa). Similarly, W s

loc(Pa) will denote the portion of the stable manifold of Pa that
is outside Va−1 and goes directly from Out(Pa−1) to Pa. With this notation, we formulate the following
technical condition:

(P5) For a ∈ Zk, and λ 6= 0 close to zero, the manifolds Wu
loc(Pa) intersect the cylinders In(Pa+1) on a

closed curve. Similarly, W s
loc(Pa) intersects the annulus Out(Pa−1) on a closed curve.

The previous hypothesis complements (P4) and corresponds to the expected unfolding from the co-
incidence of the manifolds W s(Pa+1) and W

u(Pa) at f0, see Chilingworth [5]. Note that (P4) and (P5)
are satisfied in an open subset of the set of unfoldings fλ of f0 satisfying (P1)–(P3).

In order to distinguish the local coordinates near the periodic solutions, we sometimes add the index
a with a ∈ Zk.
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Figure 2: Local coordinates on the boundary of the neighbourhood Va of a periodic solution Pa where a ∈ Zk.
Double bars mean that the sides are identified.

4.2 Local map near the periodic solutions

For each a ∈ Zk, we may solve (4.4) explicitly, then we compute the flight time from In(Pa) to Out(Pa)
by solving the equation z(t) = ε for the trajectory whose initial condition is (θa, za) ∈ In(Pa)\W s(Pa),
with za > 0. We find that this trajectory arrives at Out(Pa) at a time τa : In(Pa)\W s(Pa) → R+

0 given
by:

τa(θa, za) =
1

ea
ln

(
ε

za

)
. (4.5)

Replacing this time in the other coordinates of the solution, yields:

Φa(θa, za) =

(
θa −

1

ea
ln
(za
ε

)
, 1± ε

(za
ε

)δa)
= (ϕa, ra) where δa =

ca
ea

> 1. (4.6)

The signs ± depend on the component of In(Pa) we started at, + for trajectories starting with ra > 1
and − for ra < 1. We will discuss the case ra > 1, za > 0, the behaviour on the other components is
analogous.

4.3 Flight times for λ = 0

Here we introduce some terminology that will be used in Section 5; see Figure 3. For X ∈ B(Γ0), let
T1(X) be the smallest t ≥ 0 such that φ(t,X) ∈ In(P1). For j ∈ N, j > 1, we define Tj(X) inductively
as the smallest t > Tj−1(X) such that φ(t,X) ∈ In(P〈j〉), where

〈j〉 = j −
[
j

k

]
k

is the remainder in the integer division by k and [x] is the greatest integer less than or equal to x. Recall
that the index a in Pa lies in Za, so that P0 and Pk represent the same periodic solution.

In order to simplify the computations, we may assume that the transition from Out(Pa) to In(Pa+1)
is instantaneous. This is reasonable because, as t→ ∞, the time of flight inside each Va tends to infinity,
whereas the time of flight from Out(Pa) to In(Pa+1) remains limited. In the proof of Proposition 1
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Figure 3: For X ∈ B(Γ0), the solution φ(t,X) remains in Va for a time interval of length τa(X), then spends
τa+1(X) units of time near Pa+1, and , after n full turns, stays again in Va for τa+nk(X) units of time, and so on.
The representation is done for k = 3.

below, we will see that this assumption does not affect the validity of our results. With this assumption,
the time of flight τa+nk(X) inside Va at the n-th pass of the trajectory through Va will be

τa+nk(X) = Ta+1+nk(X)− Ta+nk(X),

thus extending the notation τa introduced in 4.2 above to X ∈ B(Γ0) and any index a+ nk ∈ N.

For each a ∈ Zk, and for λ = 0, we define the transition map Ψ0
a : Out(Pa) → In(Pa+1)

Ψ0
a(ϕa, ra) = (ϕa, ra − 1) = (θa+1, za+1). (4.7)

The transition maps for λ 6= 0 will being discussed in Section 6.1.

5 The k-polygon at the organising centre

Let f0 be a vector field in R3 satisfying (P1)–(P3). All the results of this section assume λ = 0. Suppose,
from now on, that φ(t,X) is a solution ẋ = f0(x) with initial condition X = φ(0, X) in B(Γ0), the basin
of attraction of Γ0.

5.1 The statistical limit set of f0

The statistical limit set Λstat(f0) associated to the basin of attraction of Γ0 is the smallest closed subset
where Lebesgue almost all trajectories spend almost all time. More formally, following Ilyashenko [14]
and Karabacak and Ashwin [17], we define:

Definition 2 For an open set U ⊂ R3 and a solution φ(t, x) of (1.1) with x ∈ R3:

1. the frequency of the solution being in U is the ratio:

ρf (x, U, T ) =
Leb{t ∈ [0, T ] : φ(t, x) ∈ U}

T
.

where Leb denotes the Lebesgue measure in R.
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2. the statistical limit set, denoted by Λstat(f), is the smallest closed subset of R3 for which any open
neighbourhood of U of Λstat satisfies the equality:

lim
t→+∞

ρf (x, U, t) = 1, for almost all x ∈ R3.

Since the transitions between the saddles of Γ0 are very fast compared with the times of sojourn near
the periodic solutions Pa, a ∈ Zk (see 4.3) we may conclude that:

Proposition 1 Let f0 be a vector field in R3 satisfying (P1)–(P3). Then:

Λstat(f0|B(Γ0)) =
k⋃

a=1

Pa ⊂ Γ0.

Proof: The flow from Out(Pa) to In(Pa+1) is non-singular as in a flow-box. Since both Out(Pa)
and In(Pa+1) are compact sets, the time of flight between them has a positive maximum. On the other
hand, for each a ∈ Zk, the time of flight inside Va from In(Pa)\W s

loc(Pa) to Out(Pa) tends to infinity as
t approach the stable manifold of Pa, W

s
loc(Pa), or equivalently as the trajectory accumulates on Γ0.

Remark 1 It follows from Proposition 1 that, for each a ∈ Zk, the time intervals in which trajectories
are travelling from Out(Pa) to In(Pa+1) do not affect the accumulation points of the time averages of a
solution that is accumulating on Γ0. This result will be useful in the proof of the Theorem 8 because it
shows that the duration of the journeys between nodes may be statistically neglected.

5.2 Estimates of flight times

In this section, we obtain relations between flight times of a trajectory in consecutive isolating blocks as
well as other estimates that will be used in the sequel.

Lemma 2 For all j ∈ N and any initial condition X ∈ B(Γ0) we have:

τj+1(X)

τj(X)
=

c〈j〉

e〈j+1〉
. (5.8)

In particular the ratio τj+1(X)/τj(X) does not depend on X.

Proof: Given j ∈ N, let Xj = (θj , zj) = φ (Tj(X), X) ∈ In(P〈j〉). Using the expressions (4.5), (4.6)
and the expression for Ψ0

〈j〉 in (4.7), we have:

τj+1(X) =
1

e〈j+1〉
ln

(
ε

ε
( zj

ε

)δ〈j〉

)
=

1

e〈j+1〉
δ〈j〉 [ln(ε)− ln(zj)]

Thus

τj+1(X)

τj(X)
=

1
e〈j+1〉

δ〈j〉 [ln(ε)− ln(zj)]

1
e〈j〉

[ln(ε)− ln(zj)]
=

e〈j〉

e〈j+1〉
δ〈j〉 =

c〈j〉

e〈j+1〉
.

Recall from (3.3) that µa+1 =
ca
ea+1

, a ∈ Zk. With this notation we obtain:

Corollary 3 For i, j ∈ N such that j > i > 1, and for any X ∈ B(Γ0), we have:

1.
τj+k(X)
τj(X) =

∏k

a=1 µa+1 =
∏k

j=1 δj = δ > 1.

2. τj+1(X) = τi(X)
∏j+1

l=i+1 µ〈l〉.

11



We finish this section with a result comparing the two sequences of times (Ti)i∈N and (τi)i∈N. The
proof is very technical and is given in Appendix B.1.

Lemma 4 For a ∈ Zk, and for any X ∈ B(Γ0), the following equalities hold:

1. Ta+nk(X) = Ta(X) + δn−1
δ−1

(
µa + µaµa+1 + . . .+

∏k−1
l=0 µa+l

)
τa−1(X);

2. τa+nk(X) = Ta+1+nk(X)− Ta+nk(X) = δnµaτa−1(X).

5.3 The vertices of the k-polygon

In this section, we show that in B(Γ0) the time averages fail to converge, by finding several accumulation
points for them. For each a ∈ Zk, define the point

Aa =
xa + µa+1xa+1 + µa+1µa+2xa+2 + . . .+

∏k−1
l=1 µa+lxa+k−1

1 + µa+1 + µa+1µa+2 + . . .+
∏k−1

l=1 µa+l

=
num(Aa)

den(Aa)
(5.9)

Note that Aa and num(Aa) lie in R3 and den(Aa) ∈ R. Later we will see that these points are the
vertices of a polygon of accumulation points. First we show that they are accumulation points for the
time averages.

Proposition 5 Let a ∈ Zk, let f0 be a vector field in R3 satisfying (P1)–(P3) and let φ(t,X) a solution
of ẋ = f0(x) with X ∈ B(Γ0). Then

lim
n→+∞

[
1

Ta+nk

∫ Ta+nk

0

φ(t,X)dt

]
= Aa

In order to prove Proposition 5, first we show that it is sufficient to consider the limit when n → ∞
of the averages over one turn around Γ0 and then we prove that these averages tend to Aa. The proof is
divided in two technical lemmas, which may be found in Appendix B.2.

5.4 The sides of the k-polygon

In Section 5.3 we have shown that for a ∈ Zk, the time average over the sequences Ta+nk of times
accumulate, as n → ∞ in the Aa. In this section we describe accumulation points for intermediate
sequences of times tn. For this, it will be useful to know how Aa and Aa+1 are related:

Lemma 6 For all a ∈ Zk, the following equalities hold:

µa+1den(Aa+1) = den(Aa)− (1 − δ) and µa+1num(Aa+1) = num(Aa)− (1− δ)xa. (5.10)

Proposition 7 The point Aa+1 lies in the segment connecting Aa to xa.

Proof: We use Lemma 6 to obtain

num(Aa+1) =
1

µa+1
num(Aa) +

δ − 1

µa+1
xa

and hence

Aa+1 =
num(Aa+1)

den(Aa+1)
=

(
den(Aa)

µa+1den(Aa+1)

)
num(Aa)

den(Aa)
+

(
δ − 1

µa+1den(Aa+1)

)
xa = αAa + βxa.

Again from Lemma 6 we have den(Aa) = µa+1den(Aa+1)− (δ − 1), and therefore

α =
den(Aa)

µa+1den(Aa+1)
= 1− δ − 1

µa+1den(Aa+1)
= 1− β

hence Aa+1 lies in the line through Aa and xa. From the expression in Lemma 6 it follows that
µa+1den(Aa+1) − den(Aa) = δ − 1 < 0, hence 0 < α < 1 and thus Aa+1 lies in the segment from
Aa to xa, proving the result.

12



i+nkT i+1+nkT

Ti+(n+1)k
Ti+1+(n+1)k

Ti+(n+2)k Ti+1+(n+2)k

λnτ i+nk

λ τn+1 i+(n+1)k

λ τn+2 i+(n+2)k

Figure 4: Representation of the sequence of times λnτa+nk, where a ∈ Zk, is fixed and n ∈ N.

We now come to the main result of this section:

Theorem 8 If f0 is a vector field in R3 satisfying (P1)–(P3), then for any X ∈ B(Γ0), the set of

accumulation points of the time average 1
T

∫ T

0 φ(t,X)dt is the boundary of the k-polygon defined by
A1, . . . , Ak ∈ R3 in (5.9). Moreover, when δ → 1 the polygon collapses into a point.

Proof: First we show that all points in the boundary of the polygon are accumulation points. Given
L ∈ [0, 1] and a ∈ Zk, consider the sequence tn = Ta+nk + Lτa+nk, we want the accumulation points of

Ln = 1
tn

∫ tn

0 φ(t,X)dt as n→ ∞. For this we write

Ln =
1

tn

∫ tn

0

φ(t,X)dt =
1

tn

∫ Ta+nk

0

φ(t,X)dt+
1

tn

∫ tn

Ta+nk

φ(t,X)dt

= αn

(
1

Ta+nk

∫ Ta+nk

0

φ(t,X)dt

)
+ βn

(
1

tn − Ta+nk

∫ tn

Ta+nk

φ(t,X)dt

)
,

where

0 < αn =
Ta+nk

tn
≤ 1, 0 ≤ βn =

tn − Ta+nk

tn
≤ 1 and αn + βn = 1.

Since both αn and βn are limited, each one of them contains a converging subsequence. We analyse
separately each of the terms in the expression for Ln above.

We have already seen in Proposition 5 that, if X ∈ B(Γ0), then limn→∞
1

Ta+nk

∫ Ta+nk

0
φ(t,X)dt = Aa.

In particular, if L = 0, then αn = 1, βn = 0 and limn→∞ Ln = Aa.
We claim that if L 6= 0, then limn→∞

1
tn−Ta+nk

∫ tn

Ta+nk
φ(t,X)dt = xa. To see this, note that φ(t,X) ∈

Va for t ∈ [Ta+nk, tn]. Moreover, since limn→∞ τa+nk = ∞, then for large n, we have that tn − Ta+nk =
Lτa+nk is much larger than ξa, the period of Pa. Since X ∈ B(Γ0), then φ(t,X), with t ∈ [Ta+nk, tn],
tends to Pa when n→ ∞ and the average of φ(t,X) tends to xa, the average of Pa.

At this point we have established that any accumulation point of Ln lies in the segment connecting
Aa to xa. We have shown in Proposition 7 that this segment also contains Aa+1. By Proposition 5 we
have that limn→∞ Ln = Aa+1 for L = 1. On the other hand, βn is an increasing function of L, so, as L
increases from 0 to 1, the accumulation points of Ln move from Aa to Aa+1 in the segment connecting
them.

Conversely, any accumulation point lies on the boundary of the polygon. To see this, let A be an
accumulation point of the time average. This means that there is an increasing sequence of times sn,
tending to infinity, and such that limn→∞ Ln = A, where Ln = 1

sn

∫ sn

0
φ(t, x)dt. Since sn tends to

infinity, then it may be partitioned into subsequences of the form snj
= Ta+njk + Lnj

τa+njk for each

13
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Figure 5: The polygon in Theorem 8 with k = 3: the accumulation points of the time average 1

T

∫ T

0
φ(t, x)dt lie

on the boundary of the triangle defined by A1, A2 and A3.

a ∈ Zk, and some Lnj
∈ [0, 1], as shown in Figure 4. The arguments above, applied to this subsequence,

show that the accumulation points of Lnj
lie in the segment connecting Aa to Aa+1. Therefore, since

Ln converges, there are two possibilities. The first is that all the sn (except possibly finitely many) are
of the form above for a fixed a ∈ Zk, and hence A lies in the the segment connecting Aa to Aa+1. The
second possibility is that all the sn (except maybe a finite number) are of one of the forms

snj
= Ta+njk + Lnj

τa+njk or sni
= Ta+1+nik + Lni

τa+1+nik,

and that A = Aa+1. In both cases, the accumulation point of the time average will lie on the boundary of
the polygon. Finally, when δ → 1, the expressions (5.10) in Lemma 6 become µa+1den(Aa+1) = den(Aa)
and µa+1num(Aa+1) = num(Aa), hence

Aa =
num(Aa)

den(Aa)
=
µa+1num(Aa+1)

µa+1den(Aa+1)
= Aa+1

and the polygon collapses to a point at the same time as Γ0 stops being attracting.

Taking the observable as the projection on any component, the first main result of this paper may be
stated as:

Corollary 9 If f0 is a vector field in R3 satisfying (P1)–(P3), then all points in the basin of attraction of
Γ0 have historic behaviour. In particular the set of initial conditions with historic behaviour has positive
Lebesgue measure.

The points of Γ0 do not have historic behaviour. Indeed, if X ∈ Γ0 then either X ∈ Pa or φ(t,X)

accumulates on Pa for some a ∈ {1, . . . , k}. In both cases, limT→∞
1
T

∫ T

0 φ(t,X)dt = xa.

The previous proofs have been done for a piecewise continuous trajectory; when t = Ta, the trajectory
jumps from Va−1 to Va, whereas the real solutions have a continuous motion from Va−1 to Va along the
corresponding heteroclinic connection, during a bounded interval of time. As shown in Proposition 1,
the statistical limit set of Γ0 is

⋃k

a=1 Pa meaning that trajectories spend Lebesgue almost all time near
the periodic solutions, and not along the connections. Therefore, the intervals in which the transition
occurs do not affect the accumulation points of the time averages of the trajectories and the result that
was shown for a piecewise continuous trajectory holds.
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6 Persistence of historic behaviour

From now on, we discuss he differential equation ẋ = fλ(x) satisfying (P1)–(P5), with λ 6= 0. In this case
it was shown in Rodrigues et al [28] that the simple dynamics near Γ0 jumps to chaotic behaviour near
Γλ.

6.1 Invariant manifolds for λ > 0

0 2π
0 2π

y=h (  ) y=g  (  )

2Ι1Ι 12Ο

In(P ) Out(P )

Ο

λ λ
θ



ϕ
θ ϕ

W  (P   )  sW  (P   )  u


a a

aa

a

a-1 a+1

a

a a
a a

Figure 6: For λ close to zero, both W s
loc(Pa+1) ∩ Out(Pa) and W u

loc(Pa) ∩ In(Pa+1) are closed curves, given in
local coordinates as the graphs of periodic functions; this is the expected unfolding from the coincidence of the
invariant manifolds at λ = 0.

We describe the geometry of the two-dimensional local invariant manifolds of Pa and Pa+1 for λ 6= 0,
under the assumptions (P1)–(P5). For this, let fλ be an unfolding of f0 satisfying (P1)–(P5). For λ 6= 0,
we introduce the notation:

• (O1
a, 0) and (O2

a, 0) with 0 < O1
a < O2

a < 2π are the coordinates of the two points where the
connections [Pa → Pa+1] of Properties (P4)–(P5) meet Out(Pa);

• (I1a , 0) and (I2a , 0) with 0 < I1a < I2a < 2π are the coordinates of the two points where [Pa−1 → Pa]
meets In(Pa);

• (Oi
a, 0) and (Iia+1, 0) are on the same trajectory for each i ∈ {1, 2} and a ∈ Zk.

By (P5), for small λ > 0, the curves W s
loc(Pa+1) ∩Out(Pa) and W

u
loc(Pa) ∩ In(Pa+1) can be seen as

graphs of smooth periodic functions, for which we make the following conventions (see Figure 6):

• W s
loc(Pa+1) ∩Out(Pa) is the graph of y = gλa (ϕ), with g

λ
a (O

i
a) = 1, for i ∈ {1, 2} and a ∈ Zk.

• Wu
loc(Pa−1) ∩ In(Pa) is the graph of y = hλa(θ), with h

λ
a(I

i
a) = 0, for i ∈ {1, 2} and a ∈ Zk.

• omitting the superscript λ, we have: h′a(I
1
a) > 0, h′a(I

2
a) < 0, g′a(O

2
a) > 0 and g′a(O

1
a) < 0, for

i ∈ {1, 2}.
The two points (O1

a, 0) and (O2
a, 0) divide the closed curve W s

loc(Pa+1)∩Out(Pa) in two components,
corresponding to different signs of ra−1. With the conventions above, we get gλa (ϕ) > 1 for ϕ ∈

(
O2

a, O
1
a

)
.

More specifically, the region in Out(Pa) between W
s
loc(Pa+1) and W

u
loc(Pa) given by

A = {(ϕa, ra) ∈ Out(Pa) : 1 < ra < gλa (ϕa)}
is mapped by Ψa into the lower (za < 0) part of In(Pa+1). Similarly, the region

B = {(ϕa, ra) ∈ Out(Pa) : ra > 1}\A = {(ϕa, ra) ∈ Out(Pa) : 1 < ra and gλa (ϕa) < ra}
(see Figure 7) is mapped into the za > 0 component of In(Pa+1).

The maximum value of gλa (ϕ) is attained at some point

(ϕa, ra) = (ϕO
a (λ),M

O
a (λ)) with O2

a < ϕO
a (λ) < O1

a.

We denote by M I
a (λ) the maximum value of hλa .
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6.2 Geometrical preliminaries

We will need to introduce some definitions.

Definition 3 A spiral on the annulus A accumulating on the circle r = ν is a curve on A, without
self-intersections, that is the image, by the parametrisation (ϕ, r) of the annulus, of a continuous map
H : (b, c) → R× [0, 1],

H(s) = (ϕ(s), r(s)) ,

such that:

i) there are b̃ ≤ c̃ ∈ (b, c) for which both ϕ(s) and r(s) are monotonic in each of the intervals (b, b̃)
and (c̃, c);

ii) either lims→b+ ϕ(s) = lims→c− ϕ(s) = +∞ or lims→b+ ϕ(s) = lims→c− ϕ(s) = −∞,

iii) lims→b+ r(s) = lims→c− r(s) = ν.

It follows from the assumptions on the function ϕ(s) that it has either a global minimum or a global
maximum, and that r(s) always has a global maximum. The point where the map ϕ(s) has a global
minimum or a global maximum will be called a fold point of the spiral. The global maximum value of
r(s) will be called the maximum radius of the spiral.

6.3 Geometry of the transition maps Φ
a

Proposition 10 Under the conventions of Section 6.1, for each a ∈ Zk, the local map Φa transforms
the part of the graph of ha with I1a < θ < I2a into a spiral on Out(Pa) accumulating on the circle
Out(Pa) ∩Wu

loc(Pa). This spiral has maximum radius 1 + ε1−δa(M I
a )

δa ; it has a fold point that, as λ
tends to zero, turns around Out(Pa) infinitely many times.

Proof: The curve Φa (W
u
loc(Pa−1) ∩ In(Pa) is given by Ha(θ) = Φa(θ, ha(θ)) = (ϕa(θ), ra(θ)) where:

Ha(θ) = Φa(θ, ha(θ)) =

(
θ − 1

ea
ln

(
ha(θ)

ε

)
, 1 + ε

(
ha(θ)

ε

)δa
)

= (ϕa(θ), ra(θ)). (6.11)

From this expression if follows immediately that

lim
θ→I1

a

ϕa(θ) = lim
x→I2

a

ϕa(θ) = +∞ and lim
θ→I1

a

ra(θ) = lim
θ→I2

a

ra(θ) = 1

hence, conditions ii) and iii) of the definition of spiral hold. Condition i) holds trivially near I2a since

h′a(I
2
a) < 0, hence there is Ĩ2a < I2a such that ϕ′

a(θ) > 1 for all θ ∈
(
Ĩ2a , I

2
a

)
. On the other hand, since

h′a(I
1
a) > 0 and limθ→I1

a
ha(θ) = 0, there is Ĩ1a < θMa , where ϕ′

a(θ) < 0 for all θ ∈
(
I1a , Ĩ

1
a

)
.

W  (P )  u
a

Out(P )a

0

0
2π

aIn(P )

W  (P   )  s
a+1

B

A

(B)

W  (P   )  s
a+1

W  (P )  u
a

a

2π

ψ
ψ

(A)ψ

Figure 7: The component A of Out(Pa) between W s
loc(Pa+1) and W u

loc(Pa) is mapped by Ψa into the lower
(za+1 < 0) part of In(Pa+1), its complement B in the ra > 1 component of Out(Pa) is mapped by Ψa into the
upper (za+1 > 0) part of In(Pa+1).
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Figure 8: A spiral is defined on a covering of the annulus Out(Pa) by a smooth curve that turns around the
annulus infinitely many times as its radius tends to ν ∈ [0, 1]. It contains a fold point and a point of maximum
radius.

The statement about the maximum radius follows immediately from (6.11) and the conventions of
Section 6.1.

Let Ha(θ
⋆
a(λ)) be a fold point of the spiral. Its first coordinate is given by ϕ⋆

a = θ⋆a − 1
ea

ln
(

ha(θ
⋆
a(λ))
ε

)

and ha(θa) ≤ M I
a (λ). Since fλ unfolds f0, then limλ→0M

I
a (λ) = 0 and therefore limλ→0 ϕ

⋆
a = +∞.

Hence, the fold point turns around the cylinder Out(Pa) infinitely many times, as λ tends to zero.

6.4 A set of one-parameter families of vector fields

For any unfolding fλ of f0, as we have seen in Sections 6.1 and 6.3, the maximum radius MO
a (λ) of

W s
loc(Pa+1) ∩Out(Pa), and the maximum height M I

a (λ) of W
u
loc(Pa−1) ∩ In(Pa), satisfy:

lim
λ→0

M I
a (λ) = 0 lim

λ→0

(
1 + ε1−δa(M I

a (λ))
δa
)
= lim

λ→0
MO

a (λ) = 1.

We make the additional assumption that 1 + ε1−δa(M I
a (λ))

δa tends to zero faster than MO
a (λ) for at

least one a ∈ Zk. This condition defines the open set C of generic unfoldings fλ that we need for the
statement of Theorem 11. More precisely,

C =
{
fλ satisfying (P1) – (P5) : ∃a ∈ Zk ∃λ0 > 0 : 0 < λ < λ0 ⇒ 1 + ε1−δa(M I

a (λ))
δa < MO

a (λ)
}
.

(6.12)
The set C is open in the Whitney C2 topology.

6.5 Heteroclinic tangencies

Theorem 11 For any family fλ of vector fields in the set C defined in (6.12) there is a ∈ Zk such that:

1. there is a sequence λi > 0 of real numbers with limi→∞ λi = 0 such that for λ = λi the mani-
folds Wu(Pa−1) and W s(Pa+1) are tangent; for λ > λi, there are two heteroclinic connections in
Wu(Pa−1) ∩W s(Pa+1) that collapse into the tangency at λ = λi and then disappear for λ < λi;

2. arbitrarily close to the connection [Pa−1 → Pa] there are hyperbolic periodic solutions at points xi
and infinitely many values λn,i for which the periodic solution has a homoclinic tangency of its
invariant manifolds.

Note that for k = 2, the tangency of assertion 1. is a homoclinic connection.
Proof: Let θa = θ⋆a(λ) correspond to a fold point of the spiral Φa (W

u
loc(Pa−1) ∩ In(Pa)) given by

(6.11). Since fλ ∈ C and using Proposition 10 and (6.12), for λ < λ0 all points in the spiral have second
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Figure 9: When λ decreases, the fold point of the spiral Φa (W
u
loc(Pa−1) ∩ In(Pa)) moves to the right and for

λ = λi, it is tangent to W s(Pa+1) creating a heteroclinic tangency.

coordinate less than MO
a , this is true, in particular, for the fold point Ha(θ

⋆
a(λ)). Also by Proposition 10

the fold point turns around Out(Pa) infinitely many times as λ goes to zero. This means that there is
a positive value λA < λ0 such that Ha(θ

⋆
a(λR)) lies in the region A that will be mapped to za < 0 (see

Section 6.1) and there is a positive value λB < λA such that Ha(θa(λL)) lies in the region B that goes
to za > 0, as in Figure 9. Therefore, the curve Ha(θj(λ)) is tangent to the graph of gλa at some point
Ha(θ

⋆
a(λ1)) with λ1 ∈ (λB , λA).

As λ decreases from λB , the fold point enters and leaves the region A, creating a sequence of tangencies
to the graph of gλa . At each tangency, two points where Ha(θ

⋆
a(λ)) intersects the graph of gλa come

together, corresponding to the pair of transverse heteroclinic connections that collapse at the tangency.
This completes the proof of 1.

For assertion 2., note that by the results of [28] there is a suspended horseshoe near the connection
[Pa−1 → Pa]. Hence, there are hyperbolic fixed points of the first return map to In(Pa−1) arbitrarily
close to the connection; let pi be one of them. Denote by ηa the map Ψa ◦Φa. The image by Φa−1 of an
interval contained in Wu(pi) accumulates on Wu(Pa−1). In particular, it is mapped by ηa ◦ Φa−1 into
infinitely many spirals in Out(Pa), each one having a fold point — see Figure 10. Since the fold points
turn around Out(Pa+1) infinitely many times as λ varies, this curve is tangent to W s(pi) at a sequence
λn,i of values of λ.

The hypothesis (P3) in the definition of C for Theorem 11, that the family fλ unfolds the degeneracy f0,
may be replaced by the assumption that the flow of fλ turns in opposite directions around two successive
nodes Pa and Pa+1, as in [15], ie, by the assumption that two successive nodes have different chirality.
This is because, in the proof of Theorem 11, the heteroclinic tangency is obtained from the presence of a
fold pont in the curve Φa (W

u
loc(Pa−1) ∩ In(Pa)) and from the control of the angular coordinate ϕ of the

fold. This is the content of Proposition 10, where we use the fact that Wu
loc(Pa−1) ∩ In(Pa) is the graph

of a function with a maximum, a consequence of (P3) and (P4). If we assume instead that successive
nodes have different chirality as in [15], then the image by Φa of the curveWu

loc(Pa−1)∩ In(Pa) will have
infinitely many fold points whose coordinates ϕ will form a dense subset of [0, 2π], and hence, as in [15],
an arbitrarily small change in the parameter λ will create a heteroclinic tangency.

6.6 Historic behaviour

The next result is the core of this section. It locates trajectories with historic behaviour C2-close to the
unfolding of a degenerate equation, as a consequence of the tangencies found in Theorem 11.

Theorem 12 For any family fλ of vector fields in the open set C defined in (6.12) there are sequences
0 < ξi < ζi < ξi+1, with limi→+∞ ζi = 0, such that for each λ in (ξi, ζi), there are vector fields arbitrarily
close to fλ in the C2-topology for which there is an open set of initial conditions with historic behaviour.

In the proof we will use the following concept:
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Figure 10: The unstable manifold of a fixed point xi of the first return map to In(Pa−1) accumulates on
W u(Pa−1) and defines a family of curves in Out(Pa) with a fold point. When λ decreases, the fold point moves
to the right and for λ = λn,i, it is tangent to W s(xi) creating a homoclinic tangency.

Definition 4 Let M be a smooth surface and let Diffr(M) be the set of its local diffeomorphisms of class
Cr, r ≥ 2. An open subset N ⊂ Diffr(M) is a Newhouse domain if any element of N is Cr-approximated
by a diffeomorphism g with a homoclinic tangency associated with a dissipative saddle fixed point pg, and
moreover g has a Cr-persistent tangency associated with some basic sets Λg containing pg in the sense
that there is a Cr-neighbourhood of g any element of which has a homoclinic tangency for the continuation
of Λg.

Newhouse has shown in [23] that any C2 diffeomorphism containing a homoclinic tangency to a
dissipative saddle point lies in the closure of a Newhouse domain in the C2 topology.

We will need the definition of historic behaviour for diffeomorphisms:

Definition 5 Let F be a C2 diffeomorphism on a smooth surface M . We say that the forward orbit
{x, F (x), F 2(x), . . . , F j(x), . . .} has historic behaviour if the average

1

n+ 1

n∑

j=0

δF j(x) (6.13)

does not converge as n → +∞ in the weak topology, where δZ is the Dirac measure on M supported at
Z ∈M .

Proof of Theorem 12: For λ = 0 and a ∈ Zk, the derivative of the first return map to In(Pa) has
determinant of the form Czδ−1

a for some constant C > 0. Thus, for sufficiently small λ > 0, and at points
near W s(Pa), the first return map to In(Pa) is also contracting, since the determinant of its derivative
has absolute value less than 1. Moreover, the family fλ unfolds each one of the homoclinic tangencies
of Theorem 11 generically. Hence the arguments of Newhouse, Palis & Takens and Yorke & Alligood
[23, 24, 36] revived in [16] may be applied here to show that near each one of the homoclinic tangencies
there is a sequence of intervals (ξi, ζi) in the set of parameters λ corresponding to a Newhouse domain.
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By Theorem A of Kiriki & Soma [18], each Newhouse domain for the first return map is contained
in the closure of the set of diffeomorphisms having an open set of points with historic behaviour. By
Theorem 11 the family fλ unfolds the heteroclinic tangencies generically. Hence, from the results of [18],
it follows that for each λ ∈ (ξi, ζi), the first return map Fλ

a may be approximated in the C2 topology

by maps F̂ defined in In(Pa) for which we may find an open connected subset U ⊂ In(Pa) and two

sequences of integers, (aj)j∈N and (bj)j∈N, such that, for each x ∈ U , the limits (6.13) for F̂ are different
for n in the two sequences. In particular, there exists a set A ⊂ In(Pa), such that

∀x ∈ U , lim
k→+∞

1

ak + 1

ak∑

j=0

δ
F̂ j(x)(A) 6= lim

k→+∞

1

bk + 1

bk∑

j=0

δ
F̂ j(x)(A)

or, equivalently,

∀x ∈ U , L = lim
k→+∞

1

ak + 1

ak∑

j=0

χA(F̂
j(x)) 6= lim

k→+∞

1

bk + 1

bk∑

j=0

χA(F̂
j(x)) = L̂ (6.14)

where χA denotes the characteristic function on A. According to the proof of [18], the two fixed points
of the horseshoe that arises near the tangency will be visited by orbits of points in the set U .

Since the maps F̂ are close to the first return map in the C2 topology, they may be seen as the first
return maps to a vector field g that is C2-close to fλ — see, for instance Remark 2 in Pugh and Robinson
[26, Section 7A]. It remains to show that solutions to ẋ = g(x) have historic behaviour in the sense of
Definition 1.

Let τ(x) be the time of first return of x ∈ In(Pa), ie τ(x) > 0 and φ(τ(x), x) ∈ In(Pa) where φ is the
flow associated to ẋ = g(x). Since U is connected, taking its closure U compact and sufficiently small,
τ(x) is approximately constant on U . Rescaling the time t we may suppose τ(x) ≡ 1.

Given b > 0, let Vb = {φ(t, x) : −b < t < b, x ∈ In(Pa)}. For 0 < c < 1 and ε > 0 sufficiently small,
let ψ : R3 → [0, 1] be of class Ck, k ≥ 2, such that ψ =1 on Vc and ψ = 0 outside Vc+ε. Let S(A) be the
saturation of A by the flow φ, given by S(A) = {φ(t, x) : t ∈ R, x ∈ A}. Define the observable H by
H(x) = ψ(x)χS(A)(x). For x ∈ U we have:

∫ ak+1

0

H(φ(t, x))dt =

∫ c

0

H(φ(t, x))dt +

ak∑

j=1

∫ j+c

j−c

H(φ(t, x))dt +

∫ ak+1

ak+1−c

H(φ(t, x))dt + o(ε)

= cχA(F̂
0(x)) + 2c

ak∑

j=1

χA(F̂
j(x)) + cχA(F̂

ak+1(x)) + o(ε).

Hence

1

ak + 1

∫ ak+1

0

H(φ(t, x))dt =
2c

ak + 1

ak∑

j=0

χA(F̂
j(x))− c

ak + 1
χA(x) +

c

ak + 1
χA(F̂

ak+1(x))

where
lim

k→+∞

c

ak + 1
χA(x) = 0 and lim

k→+∞

c

ak + 1
χA(F̂

ak+1(x)) = 0.

Therefore,

lim
k→+∞

1

ak + 1

∫ ak+1

0

H(φ(t, x))dt = lim
k→+∞

2c

ak + 1

ak∑

j=0

χA(F̂
j(x)) + o(ε) = 2cL+ o(ε)

where the last equality follows from (6.14). Similarly,

lim
k→+∞

1

bk + 1

∫ bk+1

0

H(φ(t, x))dt = 2cL̂+ o(ε).
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Since L 6= L̂, then for sufficiently small ε and for all x in the open set S(U) we have:

lim
ai→+∞

1

ai

∫ ai

0

H(φ(t, x))dt 6= lim
bi→+∞

1

bi

∫ bi

0

H(φ(t, x))dt

It follows that for each λ in (ξi, ζi) there are vector fields g arbitrarily close to fλ in the C2-topology
such that there is an open set of initial conditions for which the solution of ẋ = g(x) has historic behaviour,
as claimed.

In the proof of Theorem 12, the conditions defining the set C are only used to obtain Theorem 11.
Hence, for Theorem 12, condition (P3) may be replaced in the definition of C by the assumption that two
successive nodes have different chirality, as remarked after the proof of Theorem 11.

Heteroclinic tangencies also create new tangencies near them in phase space and for nearby parameter
values. Based on [27, 34], it should be possible to obtain a topological interpretation of the asymptotic
properties of these non-converging time averages and obtain a complete set of moduli for the attracting
cycle.

7 An example

In this section we construct a family of vector fields in R3 satisfying properties (P1)–(P5). Thus, via
Theorem 12, we provide an explicit example where trajectories with historic behaviour have positive
Lebesgue measure. Our example relies on Bowen’s example described in [34]. This is a vector field in the
plane with structurally unstable connections. We use the techniques developed by Aguiar et al [2, 28]
combined with symmetry breaking, to lift Bowen’s example to a vector field in R3 with periodic solutions
having robust connections arising from transverse intersections of invariant manifolds.

7.1 The starting point

Consider the differential equation (ẋ, ẏ) = g(x, y) given by
{
ẋ = −y
ẏ = x− x3

(7.15)

that is equivalent to the second order equation ẍ = x−x3. Its equilibria are O = (0, 0) and P± = (±1, 0).

This is a conservative system, with first integral v(x, y) =
x2

2

(
1− x2

2

)
+
y2

2
. From the graph of v (see

Figure 11 (a)) it follows that the origin O is a centre and the equilibria P± are saddles. The equilibria P±

are contained in the v-energy level v(x, y) = 1/4 hence there are two one-dimensional connections, one
from P+ to P− and another from P− to P+. Denote this cycle by Γ1. The region bounded by this cycle,
that is filled by closed trajectories, will be called the invariant fundamental domain. For (x, y) 6= (0, 0)
inside the fundamental domain we have 0 ≤ v(x, y) < 1/4 and the boundary of the fundamental domain
intersects the x = 0 axis at the points (0,±

√
2/2).

7.2 An expression for Bowen’s example

For a given ε, such that 0 < ε << 1, consider the following perturbation of (7.15):
{
ẋ = −y
ẏ = x− x3 − εy

(
v(x, y) − 1

4

) (7.16)

Lemma 13 In the flow of equation (7.16), the cycle Γ1 persists and is asymptotically stable with respect
to the invariant fundamental domain.

Proof: The term −(v(x, y) − 1/4) is zero on Γ1 and positive in the interior of the fundamental
domain. Therefore, the perturbing term −y(v(x, y)− 1/4) has the same sign as y. Hence the heteroclinic
connections [P+ → P−] and [P− → P+] are preserved and solutions starting away from the origin inside
the fundamental domain approach the cycle when time goes to infinity as in Figure 11 (b) and (c).
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Figure 11: (a): First integral and energy level of v(x, 0). (b) First perturbation. (c) Numerics for ε = 0 and
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7.3 Translating the cycle

For z2 = y + 1, Bowen’s example (7.16) takes the form

{
ẋ = 2z2(1− z2)

ż = z
(
x− x3 − ε

(
x2

2 − x4

4 + (z2−1)2

2 − 1
4

)
(z2 − 1)

)
(7.17)

Lemma 14 The following assertions hold for equation (7.17):

1. it is Z2-equivariant under the reflection on the z = 0 axis;

2. the z = 0 axis is flow-invariant;

3. the dynamics of (7.17) in the z > 0 half-plane is orbitally equivalent to that of (7.16) in the y > −1
half-plane.

Proof: Assertion 1. is a simple calculation, and it implies assertion 2. For 3. with z > 0, use
z2 = y + 1 and ż = ẏ

2z to put equation (7.16) in the form:

{
ẋ = 1− z2

ż = 1
2z

(
x− x3 − ε

(
x2

2 − x4

4 + (z2−1)2

2 − 1
4

)
(z2 − 1)

)
.

Multiplying both equations by the positive term 2z2 does not affect the phase portrait and thus (7.16)
with y > −1 is orbitally equivalent to (7.17) with z > 0.

7.4 The lifting

Now we are going to use a technique presented in [2, 22, 28] which consists essentially in three steps:

1. Start with a vector field on R2 with a heteroclinic cycle where dimFix(γ) = 1, γ ∈ O(2). The
heteroclinic cycle involves two equilibria in Fix(γ) and one-dimensional heteroclinic connections
that do not intersect the line Fix(γ).
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2. Lift this to a vector field on R3 by rotating it around Fix(γ). This transforms one-dimensional
heteroclinic connections into two-dimensional heteroclinic connections. The resulting vector field is
SO(2)-equivariant under a 3-dimensional representation of SO(2). The attracting character of the
cycle is preserved by the lifting.

3. Perturb the vector field to destroy the SO(2)-equivariance and so that the two-dimensional hete-
roclinic connections perturb to transverse connections.

Take (x, z, θ) to be cylindrical coordinates in R3 with radial component z and let (x, z1, z2) =
(x, z cos θ, z sin θ) be the corresponding Cartesian coordinates. Adding θ̇ = 1 to (7.17) we obtain:





ẋ = 2(1− z21 − z22)(z
2
1 + z22)

ż1 = z1

[
x− x3 − ε(z21 + z22 − 1)

(
x2

2 − x4

4 +
(z2

1+z2
2−1)

2 − 1
4

)]
− z2

ż2 = z2

[
x− x3 − ε(z21 + z22 − 1)

(
x2

2 − x4

4 +
(z2

1+z2
2−1)

2 − 1
4

)]
+ z1.

(7.18)

Lemma 15 The flow of (7.18) for ε > 0 has a heteroclinic cycle Γ0 that satisfies (P1)–(P3), consist-
ing of two hyperbolic closed trajectories and two surfaces homeomorphic to cylinders. The cycle Γ0 is
asymptotically stable with respect to the lifting of the fundamental domain of (7.16).

Proof: We follow the arguments of [2, 28]. The periodic solutions are defined by:

P1 : x = 1, z21 + z22 = 1 and P2 : x = −1, z21 + z22 = 1.

The connections are the lift of the one-dimensional connections, rotated around the fixed-point subspace
of the symmetry. It follows that the heteroclinic connections are two-dimensional manifolds diffeomorphic
to cylinders and a branch of the stable manifold of each periodic solution coincides with a branch of the
unstable manifold of the other. As remarked above, the stability of the cycle is preserved.

7.5 Time averages

Theorem 8 applied to (7.18) says that if φ(t,X) ⊂ B(Γ0) is a non-trivial solution of the differential

equation, then the accumulation points of the time average 1
T

∫ T

0
φ(t,X)dt lie in the boundary of the

segment joining the points

A1 =

(
e2 − c1
e2 + c1

, 0, 0

)
and A2 =

(
e1 − c2
e1 + c2

, 0, 0

)
. (7.19)

Since e1 = c1 = e2 = c2 =
√
2, the points A1 and A2 coincide, although the centres of gravity of C1 and

C2 do not. The polygon ensured by Theorem 8 degenerates into a single point, the origin. This is in
contrast to the example constructed in [28]where the polygon is degenerate because the centres of gravity
of the nodes coincide. Usually, for initial conditions in the basin of attraction of heteroclinic cycles, the
time averages do not converge as t→ +∞. However, if the vector field has symmetry, some non-generic
properties appear. To destroy this degeneracy and obtain historic behaviour, it is enough to replace in
(7.15) the first integral by:

ṽ(x, y) = −(x− 1)2(x+ 1)2
(
1 +

x2

2
+ x2

)
+
y2

2
.

For this case, the contracting and expanding eigenvalues at the two equilibria satisfy the conditions:

µ1 =

√
5√
3

and µ2 =

√
3√
5

and thus, for the lift of the corresponding system, A1 6= A2. In particular, the Birkhoff time averages
do not converge and thus they have historic behaviour. The next step, the second perturbation, will be
performed for (7.18), constructed using the first integral v, but it could also be done starting with ṽ.
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7.6 The second perturbation

We perturb (7.17) by adding to the equation for ż1 a term depending on λ, as follows:





ẋ = 2(1− z21 − z22)(z
2
1 + z22)

ż1 = z1

[
x− x3 − ε(z21 + z22 − 1)

(
x2

2 − x4

4 +
(z2

1+z2
2−1)2

2 − 1
4

)]
− z2 + λ(x2 − 1)

ż2 = z2

[
x− x3 − ε(z21 + z22 − 1)

(
x2

2 − x4

4 +
(z2

1+z2
2−1)2

2 − 1
4

)]
+ z1.

(7.20)

A geometric argument is used to show that the invariant manifolds of the periodic solutions of (7.20)
intersect transversely.

Lemma 16 For small λ > 0 and ε > 0, the flow of (7.20) has a heteroclinic cycle associated to two
hyperbolic periodic solutions, P1 and P2, satisfying properties (P1)–(P5).

Proof: Properties (P1)–(P3) follow from the construction and from Lemma 15. The perturbing term
λ(x2−1) is zero on the planes x = ±1 that contain the cycles C1 and C2, so the periodic solutions persist.
Since λ(x2 − 1) is positive for −1 < x < 1, then when λ increases from zero, Wu(Pa), a ∈ Z2, moves
towards larger values of z1, while W

s(Pa+1) moves in the opposite direction. In particular, on the plane
x = 0, for λ 6= 0, each pair of invariant manifolds meets transversely at two points (Figure 12). Hence,
there are two curves where each pair of invariant manifolds of the periodic solutions meets transversely
and properties (P4)–(P5) hold.

Let fλ be the family of vector fields of (7.20). Theorem 11 says that for each a ∈ Z2 there is a sequence
of values of λ for whichWu(Pa) is tangent toW

s(Pa+1), and that for other values of λ arbitrarily close to
the connections there are closed trajectories with homoclinic tangencies. It follows that for these values
of λ the vector field fλ lies in the closure of a Newhouse domain. Theorem 12 ensures that there are
sequences 0 < ξi < ζi < ξi+1, with lim ζi = 0, such that for each λ in (ξi, ζi) there are vector fields g
arbitrarily close to fλ in the C2-topology such that there is an open set of initial conditions for which
the solution of ẋ = g(x) has historic behaviour.

P2
P1

x=-1

x=
0

x=1

P2
P1

x=-1

x=
0

x=1

λ=0  λ=0  

Figure 12: Sketch of the invariant manifolds of P1 and P2 in (7.20). For λ = 0 (left) pairs of branches of invariant
manifolds of the closed trajectories coincide. For λ 6= 0 (right) each pair of invariant manifolds meets transversely
at two curves corresponding to two points on the plane x = 0.
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A Appendix: C2-Linearizing the hyperbolic periodic solution

For a ∈ {1, . . . , k}, let Πa be a cross section transverse to the flow at pa ∈ Pa. Since Pa is hyperbolic,
there is a neighbourhood of pa where the first return map to pa, denoted by πa, is C

1-conjugate to its
linear part. Moreover:

Lemma 17 Let πa be the first return map to Πa. For each r ≥ 2 there is an open and dense subset of
R2 such that, if the eigenvalues (ca, ea) of dπa lie in this set, then there is a neighbourhood V ∗

a of pa in
Πa where πa is Cr conjugate to its linear part.

Proof: Let r ≥ 2. In order to ensure the existence of a Cr conjugacy between dπa and the first
return map to Πa, we use the Takens’ criterion [33, Sections 1 and 5] which asks for the Sternberg
α (dπa, k)-condition. Following Takens’ terminology [33], let us define:

λ1 = λc = e−ca < 1, λ2 = λe = eea > 1, s = u = 1, h = 2

and
M = λe = m > 1, N = λ−1

c = n > 1.

In order to apply the criterion, we should define the function α (dπa, k). The definition will depends
on an auxiliary function β (dπa, k). This proof will be divided in three steps: characterisation of β,
characterisation of α and application of the criterion.
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1. The function β: The value of β (dπa, k) is that of the smallest j ∈ N for which:

∀r < k, NM
r
nr−j < 1.

In other words, β (dπa, k) is the smallest j ∈ N for which:

∀r < k, Φ(λc, λe, r)λ
j
c < 1, where Φ(λc, λe, r) =

(
1

λc

)1+r

λre. (A.21)

Thus β depends on dπa through the latter’s eigenvalues. In particular, β (dπa, k) > 1+ r for r < k.
Moreover, for j − (r + 1) ∈ N large enough, the map Φ(λc, λe, r) increases with r. Therefore, it is
sufficient to check condition (A.21) for r = k. Indeed, the value of β (dπa, k) is that of the smallest
j ∈ N for which:

(λ−1
c λe)

kλ−1
c λjc < 1 ⇐⇒ (λ−1

c )k+1λk+1
c λkeλ

j−(k+1)
c < 1 ⇐⇒ λkeλ

j−(k+1)
c < 1.

Define j−(k+1) = l. Then it is easy to see that β (dπa, k) is the smallest j ∈ N such that λkeλ
l
c < 1.

Taking logarithms, it follows that this is equivalent to:

k lnλe + l lnλc < 0 ⇐⇒ l > −k lnλe
lnλc

.

Since l ∈ N, its minimum value will be

l = 1 +

[
−k lnλe

lnλc

]
⇐⇒ β (dπa, k) = k + 2 +

[
−k lnλe

lnλc

]
,

where [x] represents the largest integer less than or equal to x ∈ R.

2. The function α: The value of α (dπa, k) is that of the smallest j ∈ N for which:

∀r < β (dπa, k) , MN
r
mr−j < 1.

In other words, α (dπa, k) is the smallest j ∈ N for which:

∀r < β (dπa, k) , Φ(λc, λe, r)λ
−j+1
e < 1, with Φ(λc, λe, r) =

(
1

λc

)r

λre.

Since Φ(λc, λe, r) increases with r, we would like to find the smallest j ∈ N for which

(λ−1
c λe)

β(dπa,k)λ−j+1
e < 1.

If j = β (dπa, k) + 1 + l, then:

(λ−1
c )β(dπa,k)λ(β(dπa,k)+1)

e < λ(β(dπa,k)+1)
e λle ⇐⇒ λ−β(dπa,k)

c < λle

that happens if and only if −β (dπa, k) ln(λc) < l ln(λe). Therefore, α (dπa, k) = β (dπa, k) + 1 + l
where l is the smallest integer l such that −β (dπa, k) ln(λc) < l ln(λe). Noting that ln(λc) < 0 and
l ∈ N, we have:

l > −β (dπa, k) lnλc
lnλe

with minimum value l = 1 +

[
−β (dπa, k) lnλc

lnλe

]
.

In conclusion, since lnλc = −ca and lnλe = ea, it follows that:

β (dπa, k) = k + 2 +

[
kea
ca

]

and

α (dπa, k) = β (dπa, k) + 1 + l = k + 4 +

[
kea
ca

]
+

[(
k + 2 +

[
kea
ca

])
ca
ea

]
.
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3. Applying the Sternberg condition: In order to have Cr conjugacy between πa and its linear
part, the eigenvalues of dπa must satisfy the α (dπa, r)-condition, that we proceed to explain in this
context. For all ν1, ν2 ≥ 0 such that 2 ≤ ν1 + ν2 ≤ α (dπa, r) we should have:

λν1−1
c λν2e 6= 1, λν2−1

e λν1c 6= 1 and |λν1c λν2e | 6= 1

Indeed, λν1c λ
ν2
e = e−ν1cae−ν2ea = 1 if and only if −ν1ca = ν2ea. In summary, for all ν1, ν2 ≥ 0 such

that 2 ≤ ν1 + ν2 ≤ α (dπa, r), the following conditions should hold:

• (ν1 − 1)ca 6= ν2ea

• (ν1)ca 6= (ν2 − 1)ea

• ν1ca 6= ν2ea.

The set of smooth vector fields that satisfy the Sternberg α (dπa, r)-condition, for each r ≥ 2, is
open and dense in the set of vector fields satisfying (P1) – (P5). Hence, generically the assumptions are
satisfied.

B Control of flight times

B.1 Proof of Lemma 4

1. If n = 0 (n corresponds to the number of loops around the cycle Γ0), it is trivial. For n ≥ 1, we
may write the following equality, omitting the dependence on X :

Ta+nk = Ta + τa + τa+1 + . . . τa+k−1 +

+ τa+k + τa+k+1 + . . . τa+2k−1 + . . .

+ τa+(n−1)k + τa+(n−1)k+1 + . . . τa+nk−1

Using Corollary 3, the previous equality yields:

Ta+nk = Ta +µaτa−1 + µaµa+1τa−1 + . . .

k−1∏

l=0

µa+lτa−1 +

+δµaτa−1 + δµaµa+1τa−1 + . . . δ

(
k−1∏

l=0

µa+l

)
τa−1 + . . .

+δn−1µaτa−1 + δn−1µaµa+1τa−1 + . . . δn−1

(
k−1∏

l=0

µa+l

)
τa−1 =

= Ta +
δn − 1

δ − 1

(
µa + µaµa+1 + . . .+

k−1∏

l=0

µa+l

)
τa−1

2. This item follows from Corollary 3. Indeed, we have:

τa+nk(X) = µaτa+nk−1(X) = µaµa−1τa+nk−2(X) = . . . = δnτa(X) = δnµaτa−1(X).

B.2 Proof of Proposition 5

We divide the proof in two lemmas. First we show in Lemma 18 that it is sufficient to consider the limit
when n → ∞ of the averages over one turn around Γ0. Then in Lemma 19 we show that these averages
tend to Aa.
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Lemma 18 Let Tℓ, ℓ ∈ N, be a sequence 0 = T0 < Tℓ < Tℓ+1 with limℓ→∞ Tℓ = ∞. Given h : R → Rm

an integrable map,

if lim
ℓ→∞

1

Tℓ+1 − Tℓ

∫ Tℓ+1

Tℓ

h(t)dt = ω, then lim
ℓ→∞

1

Tℓ

∫ Tℓ

0

h(t)dt = ω.

Proof: First note that

1

Tℓ

∫ Tℓ

0

h(t)dt− ω =
1

Tℓ

∫ Tℓ

0

(h(t)− ω)dt =

ℓ∑

j=1

(
Tj − Tj−1

Tℓ

)[
1

Tj − Tj−1

∫ Tj

Tj−1

(h(t)− ω)dt

]
.

From the hypothesis, given ε > 0 there exists N1 such that ℓ > N1 implies

1

Tℓ − Tℓ−1

∣∣∣∣∣

∫ Tℓ

Tℓ−1

(h(t)− ω)dt

∣∣∣∣∣ <
ε

2
.

Let A =

∣∣∣∣∣

∫ TN1

0

(h(t)− ω)dt

∣∣∣∣∣. Since Tℓ → ∞ then there exists N2 such that TN2 > 2A/ε. Let N0 =

max {N1, N2}. If ℓ > N0 then

∣∣∣∣∣
1

Tℓ

∫ Tℓ

0

(h(t)− ω)dt

∣∣∣∣∣ ≤ 1

Tℓ

∣∣∣∣∣

∫ TN1

0

(h(t)− ω)dt

∣∣∣∣∣+
1

Tℓ

∣∣∣∣∣

∫ Tℓ

TN1

(h(t)− ω)dt

∣∣∣∣∣

≤ A

Tℓ
+

ℓ∑

j=N1

(
Tj − Tj−1

Tℓ

)
1

Tj − Tj−1

∣∣∣∣∣

∫ Tj

Tj−1

(h(t)− ω)dt

∣∣∣∣∣

≤ ε

2
+

ℓ∑

j=N1

(
Tj − Tj−1

Tℓ

)
ε

2
≤ ε

2


1 +

ℓ∑

j=1

Tj − Tj−1

Tℓ


 = ε.

Lemma 19 Let f0 be a vector field in R3 satisfying (P1)–(P3). For each a ∈ Zk, and for each X ∈ B(Γ0),
the limit of the spatial average of of φ(t,X) over one full turn around the heteroclinic cycle Γ0 starting
at In(Pj) is Aj . More precisely:

lim
n→∞

1

Ta+(n+1)k(X)− Ta+nk(X)

∫ Ta+nk(X)

Ta+(n+1)k(X)

φ(t,X)dt = Aa.

Proof: First, recall that we are assuming that, for all a ∈ Zk, the jumps from Out(Pa) to In(Pa+1)
are instantaneous (see Remark 1). Since X ∈ B(Γ0), then for t ∈ [Ta+nk, Ta+1+nk] with large n, the
trajectory φ(t,X) gets very close to Pa. Therefore, omitting the (X) for shortness, we have:

lim
n→∞

1

Ta+1+nk − Ta+nk

∫ Ta+1+nk

Ta+nk

φ(t,X)dt = lim
n→∞

1

τa+nk

∫ Ta+1+nk

Ta+nk

φ(t,X)dt = xa. (B.22)

Without loss of generality, from now on we take a = 1. Then

1

Tk+1+nk − T1+nk

∫ Tk+1+nk

T1+nk

φ(t,X)dt

=
1

Tk+1+nk − T1+nk

[∫ T2+nk

T1+nk

φ(t,X)dt+

∫ T3+nk

T2+nk

φ(t,X)dt+ · · ·+
∫ Tk+1+nk

Tk+nk

φ(t,X)dt

]

=
k∑

b=1

Tb+1+nk − Tb+nk

Tk+1+nk − T1+nk

[
1

Tb+1+nk − Tb+nk

∫ Tb+1+nk

Tb+nk

φ(t,X)dt

]
.
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Recall that T2+nk − T1+nk = τ1+nk, and by Corollary 3, for any b ∈ {2, . . . , k}
Tb+1+nk − Tb+nk

Tk+1+nk − T1+nk

=
τb+nk

τ1+nk + τ2+nk + . . .+ τk+nk

=
µbµb−1 . . . µ2τ1+nk

τ1+nk + µ2τ1+nk + . . .+ µkµk−1 . . . µ2τ1+nk

=
µbµb−1 . . . µ2

denA1
.

Therefore, the value of

lim
n→+∞

1

Tk+1+nk − T1+nk

∫ Tk+1+nk

T1+nk

φ(t,X)dt

is, by (B.22),

lim
n→+∞

1

denA1

[
1

T2+nk − T1+nk

∫ T2+nk

T1+nk

φ(t,X)dt+

k∑

b=2

µbµb−1 . . . µ2

Tb+1+nk − Tb+nk

∫ Tb+1+nk

Tb+nk

φ(t,X)dt

]

=
x1 + µ2x2 + . . .+ µkµk−1 . . . µ2xk

1 + µ2 + . . .+ µkµk−1 . . . µ2
= A1.

B.3 Proof of Lemma 6

Expanding den(Aa) and den(Aa+1), yields:

den(Aa) = 1 + µa+1 + µa+1µa+2 + · · ·+
k−1∏

l=1

µl+a den(Aa+1) = 1 + µa+2 + µa+2µa+2 + · · ·+
k−1∏

l=1

µl+a+1

hence, since
∏k−1

l=0 µl+a+1 = δ,

µa+1den(Aa+1) = µa+1 + µa+1µa+2 + µa+1µa+2µa+2 + · · ·+ µa+1

k−1∏

l=1

µl+a+1

= µa+1 + µa+1µa+2 + µa+1µa+2µa+2 + · · ·+
k−1∏

l=1

µl+a + δ

= den(Aa)− (1 − δ).

For num(Aa) and num(Aa+1) we obtain

num(Aa) = xa + µa+1xa+1 + µa+1µa+2xa+2 + · · ·+
(

k−1∏

l=1

µl+a

)
xa+k−1

num(Aa+1) = xa+1 + µa+2xa+2 + µa+2µa+3xa+3 + · · ·+
(

k−1∏

l=1

µl+a+1

)
xa+k

and, since xa+k = xa, we get

µa+1num(Aa+1) = µa+1xa+1 + µa+1µa+2xa+2 + µa+1µa+2µa+3xa+3 + · · ·+ µa+1

(
k−1∏

l=1

µl+a+1

)
xa+k

= µa+1xa+1 + µa+1µa+2xa+2 + µa+1µa+2µa+3xa+3 + · · ·+
(

k−1∏

l=1

µl+a

)
xa+k−1 + δxa

= num(Aa)− (1− δ)xa

and the lemma is proved.
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