ADAPTIVE REDUCED BIAS ESTIMATION OF FINANCIAL LOG-RETURNS⁷

Fernanda Figueiredo

Faculdade de Economia do Porto and CEAUL, Portugal

E-mail: otilia@fep.up.pt

M. Ivette Gomes

Universidade de Lisboa, FCUL, DEIO and CEAUL, Portugal

E-mail: ivette.gomes@fc.ul.pt

M. Manuela Neves

ISA/UTL, and CEAUL, Portugal

E-mail: manela@isa.utl.pt

Abstract: Jointly with a set of classical extreme value index (EVI) estimators, we suggest the consideration of associated second-order corrected-bias estimators, and propose the use of resampling-based methods for an asymptotically consistent choice of the *thresholds* to use in an adaptive EVI-estimation of financial log-returns.

1. CVRB EVI-estimators under study

We shall deal with the estimation of a positive *extreme value index* (EVI), denoted γ , the primary parameter in *Statistics of Extremes*. Apart from the classical Hill (Hill, 1975) and moment (Dekkers *et al.*, 1989) semi-parametric EVI-estimators, based on the largest k top order statistics and denoted H(k) and M(k), respectively, we shall also consider associated classes of second-order reduced-bias estimators, in the lines of Gomes *et al.* (2011). These classes are based on the adequate estimation of a "scale" and a "shape" second-order parameters, $\beta \neq 0$ and $\rho < 0$, respectively, are valid for a large class of heavy-tailed underlying parents and are appealing in the sense that we are able to reduce the asymptotic bias of a classical estimator without increasing its asymptotic variance. We shall call these estimators "classical-variance reduced-bias" (CVRB) estimators. The CVRB class associated with H(k) was introduced in

⁷Research partially supported by FCT/OE, POCI 2010 and PTDC/FEDER.

Caeiro et al. (2005) and it is given by

$$\overline{H}(k) := H(k) \left(1 - \hat{\beta} (n/k)^{\hat{\rho}} / (1 - \hat{\rho}) \right),$$

being a minimum-variance reduced-bias (MVRB) class of EVI-estimators. Associated with M(k), we have the CVRB EVI-estimator,

$$\overline{M}(k) := M(k) \left(1 - \hat{\beta} (n/k)^{\hat{\rho}} / (1 - \hat{\rho}) \right) - \hat{\beta} \hat{\rho} (n/k)^{\hat{\rho}} / (1 - \hat{\rho})^{2}.$$

Let us generally denote C any of the classical H and M estimators, and $\overline{C}(k)$ any of the reduced-bias estimators. Under the validity of adequate third-order conditions, and adequate estimation of (β, ρ) (see Caeiro *et al.*, 2009; Gomes *et al.*, 2011), $\overline{C}(k)$ outperforms C(k), $\forall k$.

In Section 2, we briefly refer an adaptive EVI-estimation based on bootstrap methods, similar in spirit to the bootstrap adaptive classical EVI-estimation in Gomes and Oliveira (2001), and references therein, and to the bootstrap adaptive MVRB estimation in Gomes *et al.* (2009). In Section 3, we refer partial results of a Monte-Carlo simulation related with the behaviour of the non-adaptive estimators. Finally, in Section 4, we provide an application to the analysis of log-returns of a financial time series.

2. Adaptive classical and CVRB EVI-estimation

With AMSE standing for "asymptotic mean square error (MSE)", $\hat{\gamma}$ denoting either C or \overline{C} , and with $k_0^{\widehat{\gamma}}(n) := \arg\min_k MSE(\widehat{\gamma}(k))$, we again get $k_{0|\widehat{\gamma}}(n) := \arg\min_k AMSE(\widehat{\gamma}(k)) = k_0^{\widehat{\gamma}}(n)(1+o(1))$, and a double bootstrap based on subsamples of size $n_1 = o(n)$ and $n_2 = [n_1^2/n]$ enabled Gomes $et\ al.$ (2011) to consistently estimate the optimal sample fraction of $\overline{C}(k)$, on the basis of a consistent estimator of $k_{0|\widehat{\gamma}}(n)$. Such a double bootstrap leads to a k_0 -estimate $\hat{k}_{0\widehat{\gamma}}^*$ and to an adaptive EVI-estimate, $\widehat{\gamma}^* := \widehat{\gamma}(\hat{k}_{0\widehat{\gamma}}^*)$. In order to obtain a final adaptive EVI-estimate on the basis of one of the estimators under consideration, we still suggest the estimation of the MSE of any of the EVI-estimators at the bootstrap k_0 -estimate, denoted $\widehat{MSE}(\hat{k}_{0\widehat{\gamma}}^*|\widehat{\gamma}^*)$, and the choice of the estimate $\widehat{\gamma}^{**} := \arg\min_{\widehat{\gamma}^*} \widehat{MSE}(\hat{k}_{0\widehat{\gamma}}^*|\widehat{\gamma}^*)$.

3. A Monte-Carlo simulation

Comparatively with the behaviour of the classical EVI-estimators H(k) and M(k), we next illustrate, in Figure 2.6, the finite-sample behaviour of the

CVRB EVI-estimators, $\overline{H}(k)$ and $\overline{M}(k)$, providing the patterns of mean values (E) and root mean square errors (RMSE) of the estimators, as a function of h = k/n, for an underlying Fréchet parent, and sample sizes n = 500. Similar results have been obtained for other simulated models. Note the clear reduction in bias achieved by any of the reduced-bias estimators. Such a bias reduction leads to lower mean square errors for the CVRB estimators, comparatively with the associated classical EVI-estimators.

Figure 2.6: Patterns of mean values (*left*) and root mean square errors (*right*) of the classical estimators H and M, jointly with the associated CVRB estimators, as functions of k/n, for an underlying Fréchet parent with $\gamma = 0.25$ ($\rho = -1$).

4. An application to financial data

For the daily log-returns of IBM, collected from January 4, 1999, until November 17, 2005 (with a size $n=1762, n^+=881$), we show in Figure 2.7, the sample paths of C(k) and $\overline{C}(k)$, for C=H and M, jointly with the bootstrap adaptive EVI-estimates described in Section 2. The results clearly favour the \overline{C} -estimators. We have been led to the estimate $\overline{H}^{**}=0.364$.

Figure 2.7: Estimates of γ , through the EVI-estimators under consideration, for the IBM log-returns.

References

- 1. Caeiro, F., Gomes, M.I. and Pestana, D. (2005). Direct reduction of bias of the classical Hill estimator. *Revstat* **3**:2, 111–136.
- 2. Caeiro, F., Gomes, M.I. and Henriques-Rodrigues, L. (2009). Reduced-bias tail index estimators under a third order framework. *Commun. in Statist. Theory and Methods* **38**:7, 1019–1040.
- 3. Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. *Ann. Statist.* **17**, 1833–1855.
- 4. Gomes, M.I. and Oliveira, O. (2001). The bootstrap methodology in Statistical Extremes: choice of the optimal sample fraction. *Extremes* **4**:4, 331–358.
- 5. Gomes, M.I., Mendonça, S. and Pestana, D. (2009). The bootstrap methodology and adaptive reduced-bias tail index and Value-at-Risk estimation. *Comm. Statist. Theory and Methods*. In press.
- 6. Gomes, M.I., Figueiredo, F. and Neves, M.M. (2011). Adaptive Estimation of Heavy Right Tails: the Bootstrap Methodology in Action. Notas e Comunicações CEAUL 04/2011.
- 7. Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. *Ann. Statist.* **3**, 1163–1174.