
The total median statistic to monitor

contaminated normal data∗

Fernanda Figueiredo† M. Ivette Gomes‡

Abstract

Despite of the advantages of the use of the normal distribution in

Statistical Quality Control the normality assumption is too restrictive

for modeling real data sets, which usually exhibit asymmetry or tails

heavier than the normal tails. But even in potential normal situations

there is often a small to moderate percentage of contamination in the

data. In this paper we analyze the efficiency and robustness of the to-

tal median statistic comparatively to the sample mean and the sample

median to estimate the mean value of symmetric contaminated normal

distributions, close to the normal, but with heavier-than-normal tails.

We also compare the performance of the total median and the sample

mean charts to monitor the mean value of such processes. The simu-

lation results lead us to suggest the use of the total median statistic

due to its efficiency and degree of robustness.
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1 Introduction

Most of the data sets from diverse industrial processes, for instance, in the

areas of telecommunications, reliability, insurance, finance and economics

among others, exhibit asymmetry and/or tails heavier than the normal tail,

and thus, the normality assumption is too restrictive for modeling this kind

of data. But even in potential normal situations, when we are working with

real applications there is often a possibility of having disturbances in the

data, for instance, a small to moderate percentage of contamination.

There are several approaches in the literature to accommodate the pos-

sibility of having non-normal data. Figueiredo and Gomes (2013) suggest

the use of the parametric family of skew-normal distributions to model real

data sets. They enhance the flexibility of this family to accommodate un-

controllable disturbances in the data, such as some level of asymmetry or

non-normal tail behavior, and provide some control charts to monitor in-

dustrial processes based on this class of distributions. For a detailed study

on the properties of the skew-normal distribution see, for instance, Azzalini

(1985, 1986, 2005). Bai and Choi (1995), Castagliola (2000) and Chan and

Heng (2003), among others, propose control charts for skewed populations.

For purposes of robust control charting, we refer Langenberg and Iglewicz

(1986), Chan et al. (1988), Rocke (1989, 1992), Castagliola (2001), Figueiredo

and Gomes (2004, 2009), Jensen et al. (2006), Chakraborti et al. (2009) and

Human and Chakraborti (2010), among others. For a recent overview on
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the latest developments on nonparametric control charts see, for instance,

Chakraborti et al. (2011) and references therein. This paper presents a dif-

ferent approach to monitor contaminated-normal data, based on the use of

the total median statistic.

Contaminated distributions have been used in many areas of application,

including medicine and clinical chemistry in hematology studies, engineering

and physical sciences to model polymer chains length and particles size gen-

erated by multiple mechanisms, genetics in gene mutation and microarray

studies, biology in chain branching processes and fishery to model lengths

of fish in overlapped populations. For details on applications of contami-

nated distributions see, for instance, Brownie et al. (1983), Gleason (1993),

McLaren (1996), Liang and Rathouz (1999), Chen et al. (2008) and Ghosh

and Chinnaiyan (2009).

Although the sample mean is the most efficient estimator for the mean

value of a normal process its efficiency decreases substantially when we have

some deviations to the normality and we can not consider it as a robust

estimator. Similarly, the mean chart, usually designed under the assumption

of independent and identically normal distributed observations, is not the

most appropriate chart to monitor the mean value of processes that exhibit

asymmetry and/or heavy-tails. This chart is not robust to deviations to

the normality assumption, i.e., it easily exhibits average run-length (ARL)

values very different (higher or smaller) from the expected value when we

have non-normal data or even small disturbances in the data. Moreover,

although the mean chart has a reasonable performance to detect moderate

to large changes in the mean value of a normal process, its efficiency can

be drastically affected if the data come from a distribution with moderate

to heavy tails. For details see, among others, Schilling and Nelson (1976),
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Balakrishnan and Kocherlakota (1986), Chan et al. (1988), Chan and Heng

(2003) and Figueiredo and Gomes (2004, 2009).

Following Figueiredo and Gomes (2004, 2009), but for other symmetric

distributions close to the normal with heavier-than-normal tails, we have

carried out a simulation study to analyze the efficiency and robustness of

the total median statistic, here denoted TMd, and of the usual estimators

for the mean value, the sample mean and the sample median, here denoted

M ≡ X and Md, respectively. The plan of the paper is as follows. In Section

2 we present a brief description of the total median statistic. In Section 3

we analyze the efficiency and robustness of the total median estimator under

a wide variety of distributional situations and we compare it with the usual

estimators for the process mean value. The results of a simulation experiment

about the performance of the mean and the total median charts are presented

in Section 4. Finally we include some concluding remarks in Section 5.

2 Description of the total median statistic

Let (X1, X2, ..., Xn) be a random sample of size n from a distribution F

and let us denote Xi:n, 1 ≤ i ≤ n, the random sample of the associated

ascending order statistics (o.s.). The bootstrap sample, (X∗
1 , X

∗
2 , ..., X

∗
n), is

obtained by randomly sampling n times, with replacement, from the observed

sample (x1, x2, ..., xn). Denoting BMd the median of the bootstrap sample,

the probabilities αij = P
(
BMd =

xi:n+xj:n

2

)
, 1 ≤ i ≤ j ≤ n, are given by

αij =



1
nn

∑(n−1)/2
k=0

n!(i−1)k

k!(n−k)!

∑n−k
r=[n/2]−k+1

(n−k)!(n−i)n−k−r

r!(n−k−r)!
, 1 ≤ i = j ≤ n

n!{in/2−(i−1)n/2}{(n−j+1)n/2−(n−j)n/2}
nn((n/2)!)2

, n even and 1 ≤ i < j ≤ n

0, n odd and 1 ≤ i < j ≤ n,
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where [x] denotes the integer part of x, with αij = αn−j+1,n−i+1, ∀k. Note

that these probabilities are independent of the underlying model F and they

depend only on the sample size n. Details to obtain the αi,j can be found in

Cox and Iguzquiza (2001) and Figueiredo and Gomes (2004).

The total median statistic, TMd, is given by

TMd :=
n∑

i=1

n∑
j=i

αij
Xi:n +Xj:n

2
=

n∑
i=1

aiXi:n, (2.1)

with ai = 1
2

(∑n
j=i αij +

∑i
j=1 αji

)
, 1 ≤ i ≤ n. These coefficients ai are

independent of F , and for the most common sample sizes in SPC are given

in Table 1.

Table 1: Coefficients ai for sample sizes n from 3 up to 10.

n 1 2 3 4 5

3 0.259 0.482
4 0.156 0.344
5 0.058 0.259 0.366
6 0.035 0.174 0.291
7 0.010 0.098 0.239 0.306
8 0.007 0.064 0.172 0.257
9 0.001 0.029 0.115 0.221 0.268
10 0.001 0.019 0.078 0.168 0.234

We easily observe that the TMd statistic is a linear combination of the

sample order statistics, where the most extreme observations of the sample

have smaller weights than the other observations, which enables us to obtain

a robust estimator to small disturbances in the sample. We also note that

the TMd statistic converges for the median value of the underlying distri-

bution, and thus, for symmetric distributions it is an unbiased estimator for

the process mean value. In general it is not possible to obtain the exact
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distribution of the TMd statistic, but we easily obtain accurate quantiles by

simulation. But when the samples come from an exponential distribution,

the TMd statistic can be written as a mixture of independent exponential

variables or as a linear combination of independent chi-square variables, and

we are able to obtain the exact distribution of the TMd. Note that the

transformation Y = − ln(1 − F (X)) enables us to transform the observa-

tions from a process X with distribution function (d.f.) F into exponential

standard data Y .

3 Efficiency and robustness of the total me-

dian statistic

To analyze the efficiency and the robustness of the total median (TMd),

the sample mean (M) and the sample median (Md) estimators for the mean

value, apart from the standard normal distribution, N(0, 1), we consider sym-

metric contaminated normal distributions, F , close to the normal, but with

heavier-than-normal tails. More precisely, the following models F usually

used for creating outliers and modeling data sets that exhibit heavy tails:

• the scaled-contaminated normal distributions, here denoted CN(α, λ),

for α = 5%, 10%, 15%, 20% and λ = 3, with d.f.

F (x) = (1− α)Φ(x) + αΦ(x/λ);

• the student-contaminated normal distribution, here denoted CN(α, tk),

for α = 5%, 10%, 15%, 20% and k = 3, with d.f.

F (x) = (1− α)Φ(x) + αFtk(x),

where Ftk denotes the d.f. of the Student-t distribution, tk.
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Note that a distribution that is stretched relative to the Gaussian is said

to have tails heavier than the normal tails, i.e., its quantiles change more

rapidly than the Gaussian quantiles. To measure the weight of the tails of

a symmetric distribution F, Hoaglin et al. (1983) proposed the tail-weight

coefficient, τ , given by

τ =
(

F−1(0.99)−F−1(0.5)
F−1(0.75)−F−1(0.5)

)
/
(

Φ−1(0.99)−Φ−1(0.5)
Φ−1(0.75)−Φ−1(0.5)

)
,

where F−1 and Φ−1 denote the inverse of the d.f. F and of the standard

normal d.f. Φ.

Let us generally denote the estimators under study by Tn. To compare the

efficiency of the estimators we evaluate their variance, V ar(Tn), by a Monte

Carlo simulation experiment of size 1000000. The most efficient estimator is

the one that presents the minimum value of V ar(Tn).

To select a robust estimator among the estimators under study, we have

proceeded as follows:

• first, for every considered distribution we have obtained the most effi-

cient estimator, among the ones under study;

• next, we have computed the relative efficiency of the other estimators

relatively to the best one selected previously (given by the quotient of

their variances), and we have retained the smallest value.

The degree of robustness of an estimator is given by this minimum efficiency,

and the robust estimator is the one with the highest minimum efficiency.

Table 2 presents the most efficient estimator for the mean value of the

distributions under study and for samples of size 3 up to 10. Table 3 indicates
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their efficiency relatively to the best one, for samples of size 5. From these

tables, and with some exceptions, the total median estimator turns out to

be the most efficient estimator for the mean value as the tail-weight of the

underlying distribution increases. The sample mean is the most efficient only

when we consider samples of N(0, 1) data or moderate-to-large samples of

CN(5%, t3) data. The sample median is the most efficient in the extreme

cases of very small samples from CN(15%, 3) and CN(20%, 3) distributions,

the ones with the highest tail-weight. For samples of size 5, we obtain several

relative efficiencies of the sample mean and of the sample median significantly

smaller than 100%, with minimum values of 75.02% and 69.75%, respectively,

while the minimum value obtained for the relative efficiency of the total

median estimator is 92.94%.

The degree of robustness of the M , TMd and Md estimators is presented

in Table 3. These values are pictured in Figure 1 and allow us to easily

identify the most robust estimator for the mean value and see how distant it

is from the other estimators. Without any doubt, the total median statistic is

the most robust estimator for the mean value among the ones here considered,

and the sample mean is not at all robust.

Table 2: Most efficient estimator for sample sizes 3 up to 10

Distribution τ 3 4 5 6 7 8 9 10

N(0, 1) 1.000 M M M M M M M M

CN(5%, t3) 1.029 TMd TMd M M M M M M

CN(10%, t3) 1.062 TMd TMd TMd TMd TMd TMd TMd TMd

CN(15%, t3) 1.098 TMd TMd TMd TMd TMd TMd TMd TMd

CN(20%, t3) 1.139 TMd TMd TMd TMd TMd TMd TMd TMd

CN(5%, 3) 1.205 TMd TMd TMd TMd TMd TMd TMd TMd

CN(10%, 3) 1.532 TMd Md TMd TMd TMd TMd TMd TMd

CN(15%, 3) 1.717 Md Md TMd TMd TMd TMd TMd TMd

CN(20%, 3) 1.802 Md Md TMd TMd TMd TMd TMd TMd
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Table 3: Relative efficiency of the estimators for samples of size 5.

Distribution τ M TMd Md

N(0, 1) 1.000 1.0000 0.9294 0.6975
CN(5%, t3) 1.029 1.0000 0.9950 0.7597
CN(10%, t3) 1.062 0.9568 1.0000 0.7730
CN(15%, t3) 1.098 0.9074 1.0000 0.7861
CN(20%, t3) 1.139 0.8813 1.0000 0.7946
CN(5%, 3) 1.205 0.8935 1.0000 0.7992
CN(10%, 3) 1.532 0.8086 1.0000 0.8445
CN(15%, 3) 1.717 0.7679 1.0000 0.8849
CN(20%, 3) 1.802 0.7502 1.0000 0.9163

Table 4: Degree of robustness of the M , TMd and Md estimators.

Sample size n M TMd Md Robust estimator

3 0.8699 0.9647 0.7435 TMd
4 0.7647 0.9073 0.8389 TMd
5 0.7502 0.9294 0.6975 TMd
6 0.7258 0.9230 0.7764 TMd
7 0.6964 0.8899 0.6780 TMd
8 0.6856 0.8885 0.7433 TMd
9 0.6747 0.8650 0.6701 TMd
10 0.6691 0.8622 0.7217 TMd

0,0

0,2

0,4

0,6

0,8

1,0

1,2

3 4 5 6 7 8 9 10
sample size

M
TMd
Md

Figure 1: Degree of robustness of the estimators under study
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4 The mean and the total median charts

We have implemented the mean and the total median charts, here denoted,

M -chart and the TMd-chart, for rational subgroups of size 5, with lower and

upper control limits, LCL and UCL, placed at the quantiles χ0.001 and χ0.999

of the simulated distribution of the control statistic. When the process is

in-control state we assume its mean value is µ0 and its standard deviation is

σ0. When the process is out-of-control, we assume µ = µ0 + δσ0 with δ 6= 0,

and that the standard deviation maintains equal to σ0.

To analyze the ability of the M and TMd charts to detect changes in the

process mean value we have computed, through a Monte Carlo simulation

experiment of size 1000000, the ARL (Average Run Length) value, ie.,

the expected number of samples taken before the chart signals, for a few

different magnitude changes ∆ = δσ0. For the symmetric distributions

here considered, already referred in Section 3, the distribution of the TMd

statistic is nearly symmetric, and thus, we have only computed the ARL

values for δ > 0. The in-control ARL is approximately 500. The obtained

ARL estimates are presented in Tables 5-6, together with the upper and

the lower control limits of the charts. The comparison of the ARL-behavior

of the M and TMd charts is easily understood through the ARL values

pictured in Figures 2-3.

For normal processes, despite of the fact that the M -chart presents

smaller ARL values than the ones obtained for the TMd-chart, as expected,

the differences are not too large. For the other models, the TMd chart
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exhibits a considerable better performance than the M -chart, and detects

small to moderate changes in the process mean value very fast. The results

obtained for the scaled-contaminated normal distributions can be explained

by the fact that changes in α and λ affects the scale of the distribution, and

thus, the tail-weight effect is mystified by these changes in scale.

Table 5: ARL estimates of the M and TMd charts implemented for samples
of size 5 and ∆ = δσ0 magnitude changes in the process mean value. Normal
and scaled-contaminated normal in-control distributions.

N(0, 1) CN(5%, 3) CN(10%, 3) CN(15%, 3)
δ M TMd M TMd M TMd M TMd

0.0 501.3 501.5 499.8 499.8 499.5 499.8 499.5 500.0
0.1 405.5 395.9 452.5 426.1 452.1 430.5 446.0 451.9
0.2 234.6 242.8 357.3 276.2 340.7 313.9 339.2 336.6
0.3 127.6 137.1 268.1 159.8 238.8 201.3 232.1 228.1
0.4 71.2 77.0 186.4 91.7 162.8 119.7 152.1 143.3
0.5 41.5 45.2 126.5 53.5 110.6 70.5 100.1 86.9
0.6 25.1 27.9 84.7 31.8 74.7 41.6 66.8 52.6
0.7 15.8 17.6 56.3 19.5 50.8 25.0 44.9 31.9
0.8 10.4 11.6 37.4 12.4 34.4 15.5 30.4 19.5
0.9 7.1 8.0 24.6 8.2 23.4 9.9 20.8 12.1
1.0 5.1 5.7 16.3 5.6 15.9 6.5 14.2 7.8
1.1 3.8 4.2 10.9 4.1 10.9 4.5 9.9 5.3
1.2 2.9 3.3 7.5 3.1 7.5 3.3 6.9 3.7
1.3 2.3 2.6 5.3 2.4 5.3 2.5 5.0 2.7
1.4 1.9 2.1 3.9 1.9 3.9 2.0 3.6 2.1
1.5 1.7 1.8 2.9 1.6 2.9 1.7 2.8 1.7
2.0 1.1 1.1 1.3 1.1 1.3 1.1 1.2 1.1

LCL -1.3801 -1.4318 -1.9683 -1.6452 -2.2397 -1.8841 -2.4543 -2.1285
UCL 1.3840 1.4348 1.9754 1.6397 2.2308 1.8775 2.4303 2.1182
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Table 6: ARL estimates of the M and TMd charts implemented for samples
of size 5 and ∆ = δσ0 magnitude changes in the process mean value. Student-
contaminated normal in-control distributions.

CN(5%, t3) CN(10%, t3) CN(15%, t3) CN(20%, t3)
δ M TMd M TMd M TMd M TMd

0.0 499.3 500.0 499.8 500.0 499.8 500.0 500.0 499.8
0.1 455.8 401.6 474.2 411.4 488.8 422.1 491.6 424.8
0.2 351.1 252.1 408.0 260.8 449.2 279.3 460.2 286.6
0.3 239.3 142.9 333.6 148.8 391.5 161.9 408.7 167.1
0.4 149.3 79.7 247.3 84.1 325.6 91.1 346.1 95.8
0.5 88.6 46.5 170.4 48.3 252.8 52.1 278.4 55.0
0.6 52.8 28.3 109.4 28.9 186.4 30.9 210.7 32.3
0.7 32.1 17.8 68.4 18.0 130.8 19.0 156.1 19.6
0.8 20.1 11.7 42.2 11.6 86.2 12.1 107.3 12.3
0.9 12.9 7.9 26.3 7.8 55.1 8.1 71.5 8.1
1.0 8.7 5.6 16.6 5.5 34.7 5.6 46.5 5.6
1.1 6.0 4.1 10.9 4.0 22.0 4.0 29.7 4.0
1.2 4.4 3.1 7.4 3.0 14.2 3.0 18.9 3.0
1.3 3.3 2.5 5.2 2.4 9.4 2.4 12.3 2.3
1.4 2.6 2.2 3.8 2.0 6.4 1.9 8.2 1.9
1.5 2.1 1.7 2.9 1.7 4.6 1.6 5.7 1.6
2.0 1.2 1.1 1.3 1.1 1.5 1.1 1.6 1.1

LCL -1.5958 -1.4794 -1.8388 -1.5234 -2.0810 -1.5818 -2.1931 -1.6109
UCL 1.5972 1.4805 1.8286 1.5252 2.0792 1.5808 2.2262 1.6280

5 Concluding remarks

The main conclusions of this study can be summarized as follows. The sample

mean is not the most efficient/robust estimator for the process mean value

of distributions with heavier-than-normal tails or even when we have small

disturbances in potential normal data. Consequently, the mean chart is not

appropriate to monitor the process mean value in many practical situations,

and we suggest the use of the TMd chart as an alternative, for instance to

detect small-to-moderate changes in the process mean value of contaminated

normal data.
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Figure 2: ARL estimates for normal and scaled-contaminated normal data.
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Figure 3: ARL estimates for student-contaminated normal data.
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