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Abstract

In this paper, we discuss an algorithm for the adaptive estimation of a positive
extreme value index, γ, the primary parameter in Statistics of Extremes. Apart
from the classical extreme value index estimators, we suggest the consideration
of associated second-order corrected-bias estimators, and propose the use of boot-
strap computer-intensive methods for an asymptotically consistent choice of the
thresholds to use in the adaptive estimation of γ. The algorithm is described for a
classical γ-estimator and associated corrected-bias estimator, but it can work simi-
larly for the estimation of other parameters of extreme events, like a high quantile,
the probability of exceedance or the return period of a high level.
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1 Introduction and outline of the paper

Heavy-tailed models appear often in practice in fields like Telecommunications, Insurance,

Finance, Bibliometrics and Biostatistics. Power laws, such as the Pareto distribution and

the Zipf’s law, have been observed a few decades ago in some important phenomena in

Economics and Biology, and have seriously attracted scientists in recent years.

We shall essentially deal with the estimation of a positive extreme value index (EVI),

denoted γ, the primary parameter in Statistics of Extremes. Apart from the classical

Hill, moment and generalized-Hill semi-parametric estimators of γ, we shall also consider

associated classes of second-order reduced-bias estimators. These classes are based on

the adequate estimation of a “scale” and a “shape” second-order parameters, β and

ρ, respectively, are valid for a large class of heavy-tailed underlying parents and are

appealing in the sense that we are able to reduce the asymptotic bias of a classical

estimator without increasing its asymptotic variance. We shall call these estimators

“classical-variance reduced-bias” (CVRB) estimators.

After the introduction, in Section 2, of a few technical details in the area of Extreme

Value Theory (EVT), related with the EVI-estimators under consideration in this paper,

we shall briefly discuss, in Section 3, the asymptotic properties of those estimators, and

the kind of second-order parameters’ estimation which enables the building of corrected-

bias estimators with the same asymptotic variance of the associated classical estimators,

i.e., the building of CVRB estimators. In Section 4, we propose an algorithm for the

adaptive estimation of a positive EVI, through the use of bootstrap computer-intensive

methods. The algorithm is described for a classical EVI estimator and associated CVRB

estimator, but it can work similarly for the estimation of other parameters of extreme

events, like a high quantile, the probability of exceedance or the return period of a high

level. In Section 5, we present some of the results of a large-scale Monte-Carlo sim-

ulation related with the behaviour of the non-adaptive and adaptive estimators under

consideration, emphasizing the low coverage probabilities of bootstrap confidence inter-

vals. Finally, Section 6 is entirely dedicated to the application of the algorithm described

in Section 4 to the analysis of environmental data related with the number of hectares

burned during all wildfires that were recorded in Portugal in the period 1999-2003.
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2 The EVI-estimators under consideration

In the area of EVT, and whenever dealing with large values, a model F is said to be

heavy-tailed whenever the right-tail function, F := 1−F , is a regularly varying function

with a negative index of regular variation, denoted −1/γ, i.e., for all x > 0, there exists

γ > 0, such that

F (tx)/F (t) −→
t→∞

x−1/γ. (2.1)

If (2.1) holds, we use the notation F ∈ RV−1/γ, with RV standing for regular variation,

and we are then working in the whole domain of attraction (for maxima) of heavy-tailed

models, denoted D+
M ≡ DM (EVγ)γ>0. Equivalently, with

U(t) := F←
(
1− 1/t

)
= inf {x : F (x) ≥ 1− 1/t}

denoting a reciprocal quantile function, we have the validity of the so-called first-order

condition,

F ∈ D+
M ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ. (2.2)

For these heavy-tailed parents, given a sample Xn := (X1, X2, . . . , Xn) and the as-

sociated sample of ascending order statistics (o.s.’s), (X1:n ≤ X2:n ≤ · · · ≤ Xn:n), the

classical EVI estimator is the Hill (H) estimator (Hill, 1975),

H(k) ≡ Hk,n :=
1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n}, (2.3)

the average of the k log-excesses over a high random threshold Xn−k:n, which needs to

be an intermediate o.s., i.e., k needs to be such that

k = kn →∞ and k/n→ 0, as n→∞. (2.4)

But the Hill-estimator H(k), in (2.3), reveals usually a high non-null asymptotic bias

at optimal levels, i.e., levels k where the mean squared error (MSE) is minimum. This

non-null asymptotic bias, together with a rate of convergence of the order of 1/
√
k, leads

to sample paths with a high variance for small k, a high bias for large k, and a very sharp

MSE pattern, as a function of k. Recently, several authors have been dealing with bias

reduction in the field of extremes (for an overview, see Reiss and Thomas, 2007, Chapter

6, 189-204, as well as the more recent paper by Gomes et al., 2008a). We then need to
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work in a region slightly more restrict than D+
M. In this paper, we shall consider parents

such that, as t→∞, the third-order condition,

U(t) = Ctγ
(
1 + A(t)/ρ+O(A2(t))

)
, A(t) =: γβtρ, (2.5)

holds, with γ > 0, ρ < 0, and β 6= 0. The most simple class of second-order minimum-

variance reduced-bias (MVRB) EVI-estimators is the one in Caeiro et al. (2005), used

for a semi-parametric estimation of lnV aRp in Gomes and Pestana (2007b), with V aRp

standing for the Value-at-Risk at the level p, the size of the loss occurred with a small

probability p. This class of EVI-estimators, here denoted H ≡ H(k), is the CVRB-

estimator associated with the Hill estimator H = H(k), in (2.3), and depends upon the

estimation of the second-order parameters (β, ρ), in (2.5). Its functional form is

H(k) ≡ Hk,n;β̂,ρ̂ := H(k)
(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
, (2.6)

where (β̂, ρ̂) is an adequate consistent estimator of (β, ρ). Algorithms for the estimation

of (β, ρ) are provided, for instance, in Gomes and Pestana (2007a,b), and one of them

will be reformulated in the Algorithm presented in Section 4.2 of this paper.

Apart from the Hill estimator, in (2.3), we suggest the consideration of two other

classical estimators, valid for all γ ∈ R, but considered here exclusively for heavy tails,

the moment (Dekkers et al., 1989) and the generalized-Hill (Beirlant et al., 1996, 2005)

estimators. The moment (M) estimator has the functional expression

M(k) ≡Mk,n := M
(1)
k,n + 1

2

{
1−

(
M

(2)
k,n/(M

(1)
k,n)2 − 1

)−1}
, (2.7)

with

M
(j)
k,n :=

1

k

k∑
i=1

(
lnXn−i+1:n − lnXn−k:n

)j
, j ≥ 1, (2.8)

M
(1)
k,n ≡ H(k), in (2.3). The generalized Hill (GH) estimator is defined for k = 2, . . . , n−1,

and it is given by

GH(k) ≡ GHk,n :=
1

k

k∑
j=1

lnUHj,n − lnUHk,n, (2.9)

UHj,n := Xn−j:nHj,n, 1 ≤ j ≤ k,
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with Hk,n defined in (2.3). To enhance the similarity between the moment estimator, in

(2.7), and the generalized Hill estimator, in (2.10), we can also write an asymptotically

equivalent expression for GH(k), given by

GH∗(k) := Hk,n +
1

k

k∑
i=1

{
lnHi,n − lnHk,n

}
. (2.10)

This means that Hk,n ≡ M
(1)
k,n is estimating γ+ := max(0, γ), both in (2.7) and (2.10),

whereas γ− := min(0, γ) = γ − γ+ is being estimated differently.

The associated bias-corrected moment and generalized Hill estimators have similar

expressions, due to the same dominant component of asymptotic bias of the estimators

in (2.7) and (2.10), whenever the EVI is positive (see Gomes and Neves, 2008, among

others). Denoting generally W , either M or GH, and with the notation W for either M

or GH, we get

W (k) ≡ W k,n;β̂,ρ̂ := W (k)
(

1− β̂ (n/k)ρ̂ /(1− ρ̂)
)
− β̂ ρ̂ (n/k)ρ̂ /(1− ρ̂)2. (2.11)

In the sequel, we generally denote C any of the classical EVI-estimators, in (2.3), (2.7)

and (2.10), and C the associated CVRB-estimator.

3 Asymptotic behaviour of the estimators

In order to obtain a non-degenerate behaviour for any EVI-estimator, under a semi-

parametric framework, it is convenient to assume a second-order condition, measuring

the rate of convergence in the first-order condition, given in (2.2). Such a condition

involves a non-positive parameter ρ, and can be given by

lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ

(
xρ − 1

ρ

)
, (3.1)

for all x > 0, where A(·) is a suitably chosen function of constant sign near infinity.

Then, |A| ∈ RVρ (Geluk and de Haan, 1987).

In this paper, as mentioned before and mainly because of the reduced-bias estimators

in (2.6) and (2.11), generally denoted C(k) ≡ Ck,n;β̂,ρ̂, we shall slightly more restrictively

assume that the third-order condition (2.5) holds. Then, (3.1) holds, with A(t) = γβtρ,

the parametrization used in (2.5). For the classical H, M and GH estimators, generally
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denoted C, we know that for any intermediate sequence k, as in (2.4), and even under

the validity of the second-order condition in (3.1),

C(k)
d
= γ +

σ
C
ZC
k√
k

+ b
C,1
A(n/k)

(
1 + op(1)

)
, (3.2)

where

σ
H

= γ, b
H,1

=
1

1− ρ
, σ

M
= σ

GH
=
√
γ2 + 1,

b
M,1

= b
GH,1

=
γ(1− ρ) + ρ

γ(1− ρ)2
=

1

1− ρ
+

ρ

γ(1− ρ)2
, (3.3)

being ZC
k (C = H or M or GH) asymptotically standard normal r.v.’s (de Haan and

Peng, 1998; Dekkers et al., 1989; Beirlant et al., 1996, 2005). See also de Haan and

Ferreira, 2006.

The above mentioned properties, together with trivial adaptations of the results in

Caeiro et al. (2005, 2009) and Gomes et al. (2008c), forH, enable us to state, the following

theorem, again for models with a positive EVI. We shall include in the statement of the

theorem both the classical and the associated CVRB estimators.

Theorem 3.1. Assume that condition (3.1) holds, and let k = kn be an intermediate

sequence, i.e., (2.4) holds. Then, there exist a sequence ZC
k of asymptotically standard

normal random variables, and for the real numbers σ
C
> 0 and b

C,1
given in (3.3),

the asymptotic distributional representation (3.4) holds. If we further assume that (2.5)

holds, there exists an extra real number b
C,2

, such that we can write

C(k)
d
= γ +

σ
C
ZC
k√
k

+ b
C,1
A(n/k) + b

C,2
A2(n/k)

(
1 + op(1)

)
, (3.4)

Under the validity of equation (2.5), if we estimate β and ρ consistently through β̂

and ρ̂, in such a way that ρ̂ − ρ = op(1/ lnn), we can guarantee that there exists a pair

of real numbers (b
C,1
, b

C,2
), such that for adequate k values of an order up to k such that√

kA4(n/k)→ λ
A

, finite,

C(k)
d
= γ +

σ
C
ZC
k√
k

+ b
C,1

A(n/k) + b
C,2

A2(n/k) (1 + op(1)). (3.5)

Moreover, b
C,1

= 0, ∀C.
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Proof. The proof of the theorem for H, in (2.6), follows from the above mentioned papers.

For the W estimators, in (2.11), the proof is also similar. If we estimate consistently β

and ρ through the estimators β̂ and ρ̂ in the conditions of the theorem, we may use

Cramer’s delta-method, and write,

W k,n,β̂,ρ̂ = Wk,n ×
(

1− β

1− ρ

(n
k

)ρ
−
(
β̂ − β

) 1

1− ρ

(n
k

)ρ
(1 + op(1))

− β

1− ρ
(ρ̂− ρ)

(n
k

)ρ ( 1

1− ρ
+ ln(n/k)

)
(1 + op(1))

)
− β ρ

(1− ρ)2

(n
k

)ρ
−
{

(β̂ − β)
ρ

(1− ρ)2

(n
k

)ρ
+
β(ρ̂− ρ)

1− ρ

(n
k

)ρ (ρ ln(n/k)

1− ρ
+ 3− ρ

)}
(1 + op(1)).

We can then guarantee the existence of real values u
W

and v
W

such that

W k,n,β̂,ρ̂

d
= W k,n,β,ρ −

A(n/k)

1− ρ

(
u
W

(
β̂ − β
β

)
+ v

W
(ρ̂− ρ) ln(n/k)

)
(1 + op(1)).

The reasoning is then quite similar to the one used in Gomes et al. (2008c) for the H-

estimator. Since β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively, and

(ρ̂ − ρ) ln(n/k) = op(1), the last summand is obviously op(A(n/k)), and can even be

op(A
2(n/k)).

Remark 3.1. Note that the values of b
H,1

, b
M,1

and b
GH,1

, in (3.3), provide an easy

heuristic justification for the CVRB estimators in (2.6) and (2.11).

Remark 3.2. Only the external estimation of both β and ρ at a level k1, adequately

chosen, and the estimation of γ at a level k = o(k1), or at a specific value k = O(k1), can

lead to a CVRB estimator, with an asymptotic variance σ2
C

. Such a choice of k and k1 is

theoretically possible, as shown in Gomes et al. (2008c) and in Caeiro et al. (2009), but

under conditions difficult to guarantee in practice. As a compromise between theoretical

and practical results, and with [x] denoting, as usual, the integer part of x, we have so

far advised any choice k1 = [n1−ε], with ε small (see Caeiro et al., 2005, 2009 and Gomes

et al., 2007, 2008b, among others). Later on, in the algorithm described in Section 4, we

shall consider ε = 0.001, i.e., k1 = [n0.999]. Then we get
√
k1 A(n/k1) → ∞ if and only

if ρ > −499.5, an almost irrelevant restriction in the class (2.5). We can then guarantee

that ρ̂−ρ = op(1/ lnn), and the above mentioned behaviour, described in Theorem 3.1, for

the reduced-bias EVI-estimators. The estimation of γ, β and ρ at the same value k would
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lead to a high increase in the asymptotic variance of the RB-estimators Ck,n;β̂,ρ̂, which

would become σ2
C

((1− ρ)/ρ)4 (see Feuerverger and Hall, 1999; Beirlant et al., 1999; Peng

and Qi, 2004, also among others). The external estimation of ρ at k1, but the estimation

of γ and β at the same k = o(k1), enables a slight decreasing of the asymptotic variance

to σ2
C

((1− ρ)/ρ)2, stilll greater than σ2
C

(see Gomes and Martins, 2002, again among

others). However, even in such cases, the results in Section 4 are still valid.

Remark 3.3. Let k = kn be intermediate and such that
√
k A(n/k)→ λ, finite, the type

of levels k where the MSE of C(k) is minimum. Let γ̂(k) denote either C(k) or C(k).

Then √
k
(
γ̂(k)− γ

) d−→
n→∞

Normal(λ bγ̂,1, σ
2
C

),

even if we work with the CVRB EVI-estimators, and we thus get asymptotically a null

mean value (b
C,1

= 0). Since b
C,1
6= 0 whereas b

C,1
= 0, the C-estimators outperform the

C-estimators for all k, as illustrated in Figure 1.

0 0.5 1! 

BIAS
C 

2! 

BIAS
C

2

! 

Var
C
"Var

C 

! 

MSE
C

! 

MSE
C 

! 

r = k /n

Figure 1: Patterns of asymptotic variances (V ar), squared bias (BIAS2) and MSE of a classical EVI-estimator, C,

and associated CVRB estimator, C.

Under the conditions of Theorem 3.1, if
√
k A(n/k) → ∞, with

√
k A2(n/k) → λ

A
,

finite, the type of levels k where the MSE of C(k) is minimum, then

√
k
(
C(k)− γ

) d−→
n→∞

Normal
(
λ
A
b
C,2
, σ2

C

)
.
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4 The bootstrap methodology and adaptive classical

and CVRB EVI-estimation

With AMSE standing for “asymptotic MSE”, γ̂ denoting either C or C, and with

kbγ0 (n) := arg min
k
MSE(γ̂(k)), (4.1)

we get, on the basis of (3.4) and (3.5),

k0|bγ(n) := arg min
k
AMSE

(
γ̂(k)

)
(4.2)

= arg min
k

{ (
σ2
C
/k + b2

C,1
A2(n/k)

)
if γ̂ = C(

σ2
C
/k + b2

C,2
A4(n/k)

)
if γ̂ = C

= kbγ0 (n)(1 + o(1)).

The bootstrap methodology can thus enable us to consistently estimate the optimal

sample fraction (OSF), kbγ0 (n)/n, with kbγ0 (n) defined in (4.1), on the basis of a consistent

estimator of k0|bγ(n), in (4.2), in a way similar to the one used for the classical EVI

estimation in Draisma et al. (1999), Danielson et al. (2001) and Gomes and Oliveira

(2001). We shall here use the auxiliary statistics

Tk,n ≡ T (k|γ̂) ≡ Tk,n|γ̂ := γ̂([k/2])− γ̂(k), k = 2, . . . , n− 1, (4.3)

which converge in probability to zero, for intermediate k, and have an asymptotic be-

haviour strongly related with the asymptotic behaviour of γ̂(k). Indeed, under the above-

mentioned third-order framework in (2.5), we easily get

T (k|γ̂)
d
=

σ
γ̂
P γ̂
k√
k

+

{
b
γ̂,1

(2ρ − 1) A(n/k)(1 + op(1)) if γ̂ = C

b
γ̂,2

(22ρ − 1) A2(n/k)(1 + op(1)) if γ̂ = C,

with P γ̂
k asymptotically standard normal.

Consequently, denoting k0|T (n) := arg mink AMSE(Tk,n), we have

k0|bγ(n) = k0|T (n)×

{
(1− 2ρ)

2
1−2ρ (1 + o(1)) if γ̂ = C

(1− 22ρ)
2

1−4ρ (1 + o(1)) if γ̂ = C.
(4.4)
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4.1 The bootstrap methodology in action

How does the bootstrap methodology then work? Given the sample Xn = (X1, . . . , Xn)

from an unknown model F , and the functional in (4.3), Tk,n =: φk(Xn), 1 < k < n,

consider for any n1 = O(n1−ε), 0 < ε < 1, the bootstrap sample

X∗n1
= (X∗1 , . . . , X

∗
n1

),

from the model

F ∗n(x) =
1

n

n∑
i=1

I[Xi≤x],

the empirical d.f. associated with the available sample, Xn.

Next, associate to the bootstrap sample the corresponding bootstrap auxiliary statis-

tic, T ∗k1,n1
:= φk1(X

∗
n1

), 1 < k1 < n1. Then, with k∗0|T (n1) = arg mink1 AMSE
(
T ∗k1,n1

)
,

k∗0|T (n1)

k0|T (n)
=
(n1

n

)− cρ
1−cρ

(1 + o(1)), c =

{
2 if γ̂ = C

4 if γ̂ = C.

Consequently, for another sample size n2, and for every α > 1,(
k∗0|T (n1)

)α
k∗0|T (n2)

=

(
nα1
nα

n

n2

)− cρ
1−cρ {

k0|T (n)
}α−1

(1 + o(1)).

It is then enough to choose n2 = [n (n1/n)α], in order to have independence of ρ. If we

put n2 = [n2
1/n], i.e., α = 2, we have(

k∗0|T (n1)
)2
/k∗0|T (n2) = k0|T (n)(1 + o(1)), as n→∞. (4.5)

On the basis of (4.5), we are now able to consistently estimate k0|T and next k0|γ̂

through (4.4), on the basis of any estimate ρ̂ of the second-order parameter ρ. Such an

estimate is also a consistent estimate of kbγ0 (n), in (4.1). With k̂∗0|T denoting the sample

counterpart of k∗0|T , and ρ̂ an adequate ρ-estimate, we have the k0-estimate

k̂∗0γ̂ ≡ k̂bγ0(n;n1) := min
(
n− 1,

[
cρ̂ (k̂∗0|T (n1))2/k̂∗0|T ([n2

1/n] + 1)
]

+ 1
)
, (4.6)

with

cρ̂ =

{ (
1− 2ρ̂

) 2
1−2ρ̂ if γ̂ = C(

1− 22ρ̂
) 2

1−4ρ̂ if γ̂ = C.

The adaptive estimate of γ is then given by

γ̂∗ ≡ γ̂∗n,n1|T := γ̂(k̂bγ0 (n;n1)). (4.7)
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4.2 Algorithm for adaptive EVI-estimation through C and C

Again, with γ̂ denoting any of the estimators C or C, we proceed with the description of

the algorithm for the adaptive bootstrap estimation of γ, where in Steps 1., 2. and 3.

we reproduce the algorithm provided in Gomes and Pestana (2007b) for the estimation

of the second-order parameters β and ρ.

Algorithm

1. Given an observed sample (x1, . . . , xn), compute, for the tuning parameters τ = 0

and τ = 1, the observed values of ρ̂τ (k), the most simple class of estimators in

Fraga Alves et al. (2003). Such estimators depend on the statistics

V
(τ)
k,n :=



“
M

(1)
k,n

”
−
“
M

(2)
k,n/2

”1/2

“
M

(2)
k,n/2

”1/2
−
“
M

(3)
k,n/6

”1/3 if τ = 1

ln
“
M

(1)
k,n

”
− 1

2
ln
“
M

(2)
k,n/2

”
1
2

ln
“
M

(2)
k,n/2

”
− 1

3
ln
“
M

(3)
k,n/6

” if τ = 0,

where M
(j)
k,n, j = 1, 2, 3, are given in (2.8), and have the functional form

ρ̂τ (k) := min

(
0,

3(V
(τ)
k,n − 1)

V
(τ)
k,n − 3

)
. (4.8)

2. Consider {ρ̂τ (k)}k∈K, with K =
(
[n0.995], [n0.999]

)
, compute their median, denoted

χτ , and compute Iτ :=
∑

k∈K (ρ̂τ (k)− χτ )2, τ = 0, 1. Next choose the tuning pa-

rameter τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.

3. Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡ β̂τ∗ := β̂ρ̂τ∗ (k1), with k1 = [n0.999], being

β̂ρ̂(k) the estimator in Gomes and Martins (2002), given by

β̂ρ̂(k) :=

(
k

n

)ρ̂
dk(ρ̂) Dk(0)−Dk(ρ̂)

dk(ρ̂) Dk(ρ̂)−Dk(2ρ̂)
, (4.9)

dependent on the estimator ρ̂ = ρ̂τ∗(k1), and where, for any α ≤ 0,

dk(α) :=
1

k

k∑
i=1

(
i

k

)−α
and Dk(α) :=

1

k

k∑
i=1

(
i

k

)−α
Ui,

with

Ui = i
(

ln
Xn−i+1:n

Xn−i:n

)
, 1 ≤ i ≤ k < n,

the scaled log-spacings.
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4. Compute γ̂(k), k = 1, 2, . . . , n− 1.

5. Next, consider the sub-sample size n1 = [n0.955] and n2 = [n2
1/n] + 1.

6. For l from 1 till B, generate independently, from the empirical d.f. F ∗n(x) =
1
n

∑n
i=1 I[Xi≤x], associated with the observed sample, B bootstrap samples

(x∗1, . . . , x
∗
n2

) and (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

),

of sizes n2 and n1, respectively.

7. Denoting T ∗k,n the bootstrap counterpart of Tk,n, in (4.3), obtain, for 1 ≤ l ≤ B,

t∗k,n1,l
, 1 < k < n1, t∗k,n2,l

, 1 < k < n2, the observed values of the statistic T ∗k,ni ,

i = 1, 2, and compute

MSE∗(ni, k) =
1

B

B∑
l=1

(
t∗k,ni,l

)2
, k = 2, . . . , ni − 1.

8. Obtain k̂∗
0T

(ni) := arg min1<k<niMSE∗(ni, k), i = 1, 2.

9. Compute k̂∗0γ̂ ≡ k̂bγ0(n;n1), given in (4.6).

10. Compute γ̂∗ ≡ γ̂∗n,n1|T , given in (4.7).

In order to obtain a final adaptive estimate of γ on the basis of one of the es-

timators under consideration, we still suggest the estimation of the MSE of any of

the EVI-estimators at the bootstrap k0-estimate, in Step 9., say the estimation of

MSE(γ̂(k̂∗0γ̂)), with γ̂ ∈
{
H,H,M,M,GH,GH

}
, and the choice of the estimate γ̂ for

which MSE(γ̂(k̂∗0γ̂)) is minimum, i.e., the consideration of an extra step, after Step 7.:

7’. For k = 2, . . . , n2 − 1, compute Bias∗(ni, k) = 1
B

∑B
l=1 t

∗
k,ni,l

, i = 1, 2.

Finally, we add the extra step:

11. Compute RMSE∗γ̂ =
√
M̂SE(k̂∗0γ̂|γ̂∗), with M̂SE(k̂∗0γ̂|γ̂∗) given by

M̂SE(k̂∗0γ̂|γ̂∗) :=



(γ̂∗)2

k̂∗0γ̂
+
(

(Bias∗(n1,k̂∗0γ̂))2

(2ρ̂−1)Bias∗(n2,k̂∗0γ̂)

)2

if γ̂ = H

(γ̂∗)2

k̂∗0γ̂
+
(

(Bias∗(n1,k̂∗0γ̂))2

(22ρ̂−1)Bias∗(n2,k̂∗0γ̂)

)2

if γ̂ = H

(γ̂∗)2+1

k̂∗0γ̂
+
(

(Bias∗(n1,k̂∗0γ̂))2

(2ρ̂−1)Bias∗(n2,k̂∗0γ̂)

)2

if γ̂ = M or GH

(γ̂∗)2+1

k̂∗0γ̂
+
(

(Bias∗(n1,k̂∗0γ̂))2

(22ρ̂−1)Bias∗(n2,k̂∗0γ̂)

)2

if γ̂ = M or GH,

and consider the final estimate, γ̂∗∗ := arg minγ̂∗ M̂SE(k̂∗0γ̂|γ̂∗).
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4.3 Remarks on the adaptive classical or CVRB estimation

(i) If there are negative elements in the sample, the value of n, in the Algorithm,

should be replaced by n+ :=
∑n

i=1 I[Xi>0], the number of positive elements in the

sample.

(ii) In Step 2. of the Algorithm we are led in almost all situations to the tuning

parameter τ = 0 whenever −1 ≤ ρ < 0 and τ = 1, otherwise. Due to the fact that

bias reduction is really needed when −1 ≤ ρ < 0, we claim again for the relevance

of the choice τ = 0. Whenever we want to refer, in the estimation of γ through any

of the reduced-bias estimators, the use of either τ = 0 or τ = 1 in the estimation

of the second-order parameter ρ, we shall use the notation Cτ , for C equal to H or

M or GH.

(iii) Regarding second-order parameters’ estimation, attention should also be paid to

the most recent classes of ρ-estimators proposed in Goegebeur et al. (2008, 2010)

and in Ciuperca and Mercadier (2010), as well as to the estimators of β in Caeiro

and Gomes (2006) and in Gomes et al. (2010).

(iv) As we shall see later on in Section 5.2, the method is only moderately dependent on

the choice of the nuisance parameter n1, in Step 5. of the Algorithm, particularly

for the MVRB estimators.

(v) The Monte-Carlo procedure in the Steps 6.–10. of the Algorithm can be repli-

cated r1 times if we want to associate standard errors to the OSF and the EVI-

estimates. The value of B can also be adequately chosen.

(vi) We would like to stress again that the use of the random sample of size n2,

(x∗1, . . . , x
∗
n2

), and of the extended sample of size n1, (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

),

leads us to increase the precision of the result with a smaller B, the number of

bootstrap samples generated.

(vi) We would like to notice again the “almost independence” on the choice of n1, which

enhances the practical value of the method. Consequently, although aware of the

need of n1 = o(n), it seems that, once again, we get good results up till n.
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5 Monte-Carlo simulations

5.1 Non-adaptive estimation

In this section, and comparatively with the behaviour of the classical estimators H(k),

M(k) and GH(k), in (2.3), (2.7) and (2.10), respectively, we are interested in the finite-

sample behaviour, as functions of k, of the CVRB EVI-estimators, H(k) and W (k), in

(2.6) and (2.11), respectively, with W denoting either M , with M the estimator in (2.7),

or GH, with GH the estimator in (2.10). We have performed a multi-sample simulation

with size 5000× 10, i.e., 10 replicates with 5000 runs each. For details on multi-sample

simulation refer to Gomes and Oliveira (2001). The patterns of mean values (E) and

root mean squared errors (RMSE) are based on the first replicate and are considered as a

function of h = k/n. We have considered in this article the following underlying parents:

I. the Fréchet(γ) model, F (x) = exp(−x−1/γ), x > 0, with γ = 0.25 (ρ = −1);

II. the Burr(γ, ρ) model, with d.f. F (x) = 1 − (1 + x−ρ/γ)1/ρ, x > 0, for a few values

of (γ, ρ), the pairs, (0.25,−0.5), (0.25,−1) and (1,−1);

III. the Student’s tν model with ν degrees of freedom, with a probability density func-

tion ftν (t) = Γ((ν + 1)/2) [1 + t2/ν]
−(ν+1)/2

/(
√
πν Γ(ν/2)), t ∈ R (ν > 0), for

which γ = 1/ν and ρ = −2/ν. The illustration will be done for ν = 4 degrees of

freedom, i.e. (γ, ρ) = (0.25,−0.5);

IV. the extreme value EVγ model, with d.f. EVγ(x) = exp(−(1 + γx)−1/γ), x > −1/γ,

for which ρ = −γ. We shall consider γ = 0.25 (ρ = −0.25) and γ = 1 (ρ = −1).

V. the Generalized Pareto GPγ model, with d.f. GPγ(x) = 1 − (1 + γx)−1/γ, x > 0,

(ρ = −γ, as in IV.), also for γ = 0.25 (ρ = −0.25) and γ = 1 (ρ = −1).

5.1.1 Mean values and root mean squared errors patterns

In Figure 2, as an illustration of the results obtained, we show the simulated patterns

of mean values for all the estimators under study, as a function of the sample fraction

h = k/n, for the underlying Fréchet parent, and sample sizes n = 500 and n = 5000.

Figure 3 is equivalent to Figure 2, but with the root mean squared errors (RMSE) patterns

of the estimators. Similar results have been obtained for all simulated models.
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Figure 2: Patterns of mean values of the classical estimators H, M and GH, in (2.3), (2.7) and (2.10) (top) and the

associated CVRB estimators (bottom), as functions of k/n, for an underlying Fréchet parent with γ = 0.25 (ρ = −1).

From Figure 2 it is clear the reduction in bias achieved by any of the reduced-bias

estimators. Such a bias reduction leads to much lower mean squared errors for the CVRB

estimators, as can be seen from Figure 3.

5.1.2 Relative efficiencies and mean values at optimal levels

Given a sample Xn = (X1, . . . , Xn), let us denote S(k) = S(k;Xn) any statistic or r.v.

dependent on k, the number of top o.s.’s to be used in an inferential procedure related

with a parameter of extreme events. Just as mentioned before for the Hill estimator

H(k), in (2.3), the OSF for S(k) is denoted kS0 /n, with kS0 := arg minkMSE (S(k)). We

have obtained, for n = 100, 200, 500, 1000, 2000 and 5000, and with • denoting H or

M or GH or Hτ or M τ or GHτ , τ = 0 and 1, the simulated OSF (OSF•0 = k•0/n), bias

(B•0 = E•0 − γ) and relative efficiencies (REFF •0 ) of the EVI-estimators under study,

at their optimal levels. The search of the minimum MSE has been performed over the

region of k-values between 1 and [0.95 × n]. For any EVI-estimator different from H,
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Figure 3: Patterns of RMSEs of the classical estimators H, M and GH, in (2.3), (2.7) and (2.10) (top) and the

associated CVRB estimators (bottom), as functions of k/n, for an underlying Fréchet parent with γ = 0.25 (ρ = −1).

generally denoted S, and with the notation S0 = S(kS0 ), the REFF S
0 indicator is

REFF S
0 :=

√
MSE (H0)

MSE (S0)
=:

RMSEH
0

RMSES
0

.

As an illustration, we present in Tables 1, 2 and 3, the obtained simulated results for

models with |ρ| < 1 (the generalized Pareto model with γ = 0.25, and consequently

ρ = −γ = −0.25), |ρ| = 1 (the Burr parent with γ = 0.25 and ρ = −1) and |ρ| > 1 (the

Student parent with ν = 1, for which γ = 1/ν = 1 and ρ = −2/ν = −2), respectively.

Among the estimators considered, and for all n, the one providing the smallest squared

bias and the smallest MSE, i.e., the highest REFF is underlined and in bold. The

second highest REFF indicators are written in italic and underlined. The MSE of H0,

Hill estimators at their simulated optimal level, is also provided so that it is possible to

recover the MSE of any other EVI-estimator. Moreover, we present the B0 and REFF0

indicators of the r.v.’s Ck,n;β,ρ at their optimal levels, with C = H, M and GH, denoted

Hβ,ρ, Mβ,ρ and GHβ,ρ, respectively, just to make it clear that in most situations some
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improvement is still possible with a better estimation of the second-order parameters.

Note however, that some times the estimation of the parameters in the model (if nicely

done) accommodates better the statistical fluctuations in the sample and produces better

results than the use of the “true known values”. Extensive tables for all simulated models

as well as 95% confidence intervals (CIs) associated with all the estimates are available

from the authors.

Table 1: Simulated bias at optimal levels (B•0 ), relative efficiency indicators (REFF •0 ) and MSE of H0, for a generalized

Pareto GPγ parent with γ = 0.25 (ρ = −0.25).

n 100 200 500 1000 2000 5000

B•0

H 0.2352 0.1219 0.0869 0.0991 0.1292 0.0448

H0 0.1979 0.1339 0.1132 0.1007 0.1046 0.0414

H1 0.2347 0.1217 0.0908 0.0991 0.1292 0.0447

M 0.1290 0.0700 0.0801 0.0805 0.0644 0.0239

M0 0.1470 0.0761 0.0840 0.0305 0.0124 0.0082

M1 0.1512 0.0548 0.0801 0.0753 0.0658 0.0160

GH 0.1210 0.0301 0.0646 0.0543 0.0606 0.0097

GH0 0.1169 0.0337 0.0650 0.0567 0.0591 0.0079

GH1 0.1280 0.0243 0.0666 0.0576 0.0557 0.0079

Hβ,ρ 0.0325 0.0256 0.0212 0.0175 0.0102 0.0099

Mβ,ρ 0.0200 0.0098 0.0224 −0.0016 −0.0076 0.0010

GHβ,ρ 0.0360 0.0177 0.0284 0.0236 0.0226 0.0086

REFF •0

H0 1.1489 1.1170 1.0880 1.0688 1.0577 1.0421

H1 1.0015 1.0007 1.0003 1.0001 1.0001 1.0000

M 1.0585 1.1600 1.2506 1.3032 1.3479 1.3999

M0 1.3376 1.3194 1.3055 1.4244 1.6963 2.1667

M1 1.0832 1.1549 1.2346 1.2880 1.3334 1.4179

GH 1.3591 1.3605 1.3798 1.3946 1.4166 1.4424

GH0 1.5844 1.4981 1.4313 1.3991 1.3850 1.3767

GH1 1.3654 1.3563 1.3693 1.3851 1.4077 1.4364

Hβ,ρ 4.8574 5.3039 5.8883 6.4205 6.9599 7.7053

Mβ,ρ 4.1515 4.8043 5.2907 5.7535 6.7673 8.6844

GHβ,ρ 4.6909 4.5833 4.4753 4.4443 4.4596 4.4941

MSEH0 0.0561 0.0382 0.0238 0.0172 0.0126 0.0084

In summary we may draw the following final conclusions:
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Table 2: Simulated bias at optimal levels (B•0 ), relative efficiency indicators (REFF •0 ) and MSE of H0, for a Burr

parent with (γ, ρ) = (0.25,−1).

n 100 200 500 1000 2000 5000

B•0

H 0.0357 0.0112 0.0293 0.0280 0.0206 0.0115

H0 0.0041 −0.0066 0.0035 −0.0006 −0.0028 −0.0018

H1 0.0289 0.0110 0.0268 0.0278 0.0201 0.0107

M −0.1557 −0.1408 −0.0481 −0.0305 −0.0132 −0.0305

M0 −0.0353 −0.0731 −0.0071 0.0043 −0.0014 −0.0026

M1 −0.1173 −0.1389 −0.0399 −0.0279 −0.0137 −0.0385

GH −0.1581 −0.1364 −0.0514 −0.0395 −0.0200 −0.0403

GH0 −0.0065 −0.0210 0.0038 0.0028 −0.0007 −0.0007

GH1 −0.0223 −0.0354 0.0066 0.0045 −0.0003 −0.0008

Hβ,ρ 0.0206 0.0055 0.0068 0.0055 0.0029 0.0047

Mβ,ρ −0.0438 −0.0760 −0.0078 −0.0023 −0.0037 −0.0042

GHβ,ρ −0.0026 −0.0199 0.0060 0.0028 −0.0006 −0.0007

REFF •0

H0 1.9835 2.1260 2.4273 2.6968 2.9520 3.3957

H1 1.0432 1.0381 1.0243 1.0196 1.0159 1.0116

M 0.2648 0.2909 0.3148 0.3289 0.3431 0.3530

M0 0.5120 0.5659 0.6314 0.6826 0.7363 0.8146

M1 0.3168 0.3396 0.3553 0.3631 0.3710 0.3750

GH 0.3287 0.3330 0.3406 0.3463 0.3540 0.3593

GH0 1.2003 1.3118 1.4779 1.6396 1.8180 2.0970

GH1 0.7779 0.8633 0.9711 1.0776 1.2145 1.4126

Hβ,ρ 1.8925 1.9854 2.1210 2.2252 2.3388 2.4827

Mβ,ρ 0.4466 0.4976 0.5544 0.5957 0.6356 0.6875

GHβ,ρ 1.0802 1.1947 1.3522 1.4988 1.6665 1.9248

MSEH0 0.0044 0.0026 0.0013 0.0008 0.0005 0.0003

1. For underlying parents with |ρ| < 1, the highest efficiency is generally achieved

through GH0 for n < 1000 and through M0 otherwise. The highest bias reduction

pattern is not so clear-cut, as can be seen in Table 1, but the results are not a long

way from the ones related with efficiency.

2. Again at optimal levels, and for underlying parents with ρ = −1, the highest bias

reduction as well as the highest efficiency is generally achieved through the use of

H0, followed by GH0. Only for very large values of n, say n ≥ 2000, did GH0 beat
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Table 3: Simulated bias at optimal levels (B•0 ), relative efficiency indicators (REFF •0 ) and MSE of H0, for a Student

parent with ν = 1 degrees of freedom (γ = 1, ρ = −2).

n 100 200 500 1000 2000 5000

B•0

H 0.0794 0.1117 0.0936 0.0471 0.0573 0.0254

H0 −0.2632 −0.0608 0.0845 −0.0195 0.0250 −0.0048

H1 −0.1252 0.0222 0.0744 0.0116 0.0390 0.0275

M −0.0142 0.0704 0.0915 0.0240 0.0539 0.0051

M0 −0.2392 −0.0999 0.0018 −0.0820 −0.0390 −0.0849

M1 −0.1865 −0.0235 0.0761 0.0068 0.0380 0.0073

GH −0.0210 0.0503 0.0719 0.0190 0.0421 0.0334

GH0 −0.6775 −0.0997 0.0710 −0.0188 0.0235 0.0179

GH1 −0.6224 −0.0371 0.0667 0.0084 0.0328 0.0301

Hβ,ρ 0.0397 0.0488 0.0479 0.0144 0.0207 0.0152

Mβ,ρ −0.0950 0.0021 0.0198 −0.0128 0.0039 −0.0073

GHβ,ρ −0.0805 0.0008 0.0413 0.0126 0.0274 0.0310

REFF •0

H0 0.2359 0.5818 0.9376 0.9826 1.1084 1.3939

H1 0.2073 0.7966 1.1590 1.1583 1.1593 1.1641

M 0.7932 0.8668 0.9151 0.9234 0.9232 0.9273

M0 0.2145 0.5045 0.7283 0.7116 0.6741 0.6095

M1 0.1895 0.6698 0.9660 0.9962 1.0299 1.0676

GH 1.0459 1.0683 1.0600 1.0469 1.0266 1.0102

GH0 0.2969 0.5618 0.9363 0.9948 1.1002 1.3348

GH1 0.2705 0.7593 1.1151 1.1165 1.1260 1.1406

Hβ,ρ 1.3399 1.4229 1.5261 1.6359 1.7199 1.8236

Mβ,ρ 0.9507 1.1146 1.2612 1.3644 1.4499 1.5628

GHβ,ρ 1.1897 1.3858 1.4854 1.5209 1.5228 1.5304

MSEH0 0.0693 0.0370 0.0166 0.0095 0.0053 0.0025

H0 regarding the bias-indicator (refer to Table 2).

3. Almost generally, and for models such that |ρ| ≤ 1, M0 (GH0) works better than

M (GH). But, for models with |ρ| = 1, M0 never beats H0 regarding efficiency.

Regarding bias reduction, GH0 beats H0 for large n, almost generally.

4. For the range of ρ-values close to zero (−1 < ρ < 0), the use of τ = 1 in Hτ provides

results only slightly better than the ones associated with the classical estimator.

5. For underlying parents with ρ < −1, bias-reduced estimators work only for large n,
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say n ≥ 500. Then the highest efficiency is generally achieved through the use of

H1, followed by GH1. Again, and even worse than for the case |ρ| < 1, the highest

bias reduction pattern is not clear-cut, as can be seen in Table 3.

5.2 Adaptive estimation

In order to understand the performance of the adaptive bootstrap estimates as well as

of bootstrap CIs, we have run Steps 6.–10. of the Algorithm in Section 4.2, r1 = 100

times, for the models considered in Section 5.1. The overall estimates of γ, denoted H∗,

H
∗
τ , M

∗, M
∗
τ , GH

∗ and GH
∗
τ , τ = 0 or 1, are the averages of the corresponding r1 partial

estimates.

5.2.1 Bootstrap EVI-estimates and CIs

In Figure 4, and as an illustration of the overall simulated behaviour of the bootstrap

estimates, γ̂∗, with γ̂ = H,M,GH,H0,M0 and GH0, we present, for a Fréchet model

with γ = 0.25, the bootstrap adaptive EVI-estimates, as a function of the sample size n.

The method works asymptotically, as can be seen from Figure 4. But is also works for

small n, particularly if we take into account the estimate H
∗
0.
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Figure 4: Bootstrap adaptive EVI-estimates as a function of the sample size n, for data simulated from a Fréchet

parent with γ = 0.25 (ρ = −1).

Those estimates are also provided in Table 4, with associated standard errors pro-

vided between parenthesis, close to the estimates, at the first row of each entry. In the
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second row of each entry, we present the 99% bootstrap CIs. These bootstrap CIs are

based on the quantiles of probability 0.005 and 0.995 of the r1 = 100 partial bootstrap

estimates, and are written in italic whenever they do not cover the true value of γ, with

the upper limit smaller than γ (underestimation). They are written in italic and under-

lined, whenever they do not cover the true value of γ, with the lower limit larger than γ

(overestimation).

H∗ H
∗
0 M∗ M

∗
0 GH∗ GH

∗
0

n = 100

0.326 (0.0079) 0.251 (0.0044) 0.190 (0.0248) 0.205 (0.0139) 0.118 (0.1081) 0.213 (0.0815)

(0.3003, 0.3416) (0.2289, 0.2587) (0.1122, 0.2452) (0.1867, 0.2620) (-0.0689, 0.2798) (-0.0635, 0.2993)

n = 200

0.294 (0.0136) 0.244 (0.0075) 0.123 (0.0201) 0.194 (0.0351) 0.066 (0.1083) 0.172 (0.1281)

(0.2758, 0.3181) (0.2106, 0.2521) (0.0804, 0.1668) (0.1548, 0.2936) (-0.3605, 0.1823) (-0.3409, 0.2759)

n = 500

0.281 (0.0196) 0.239 (0.0031) 0.122 (0.0127) 0.219 (0.0068) 0.087 (0.0783) 0.147 (0.1205)

(0.2404, 0.3080) (0.2332, 0.2457) (0.0854, 0.1561) (0.2045, 0.2297) (-0.1410, 0.1653) (-0.1853, 0.2566)

n = 1000

0.286 (0.0021) 0.240 (0.0008) 0.197 (0.0061) 0.246 (0.0063) 0.119 (0.1442) 0.210 (0.1210)

(0.2819, 0.2905) (0.2382, 0.2414) (0.1841, 0.2181) (0.2370, 0.2626) (-0.4448, 0.2032) (-0.4258, 0.2627)

n = 2000

0.253 (0.0092) 0.254 (0.0004) 0.197 (0.0073) 0.258 (0.0023) 0.197 (0.1327) 0.263 (0.0931)

(0.2529, 0.2548) (0.2233, 0.2626) (0.1885, 0.2172) (0.2436, 0.2645) (-0.0766, 0.6833) (0.1698, 0.7219)

n = 5000

0.254 (0.0159) 0.246 (0.0023) 0.179 (0.0041) 0.256 (0.0082) 0.177 (0.1032) 0.234 (0.0422)

(0.2501, 0.2578) (0.2430, 0.2541) (0.1751, 0.1938) (0.2301, 0.2665) (-0.0951, 0.4413) (0.1593, 0.2788)

Table 4: Bootstrap adaptive estimates of γ through the classical C estimators, and the associated CVRB estimators

Cτ , with τ = 0, for C = H,M and GH and for an underlying Fréchet parent, with γ = 0.25 (ρ = −1).

A few comments on the bootstrap EVI-estimates and CIs:

• Almost generally, the bootstrapM∗ andGH∗-estimates provide a systematic under-

estimation of γ, which is compensated by the consideration of the associated CVRB-

estimates.

• On another side, and except for EVγ underlying parents, the bootstrap H∗-

estimates provide a systematic over-estimation of γ, which is again compensated

by the consideration of the associated CVRB-estimates, H
∗
. Moreover, for several
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values of n, the bootstrap 99% CIs, associated with the H∗-estimates, have lower

limits above γ.

• The 99% bootstrap CIs associated with GH
∗

do always cover the true value of γ,

but at expenses of very large sizes. Moreover, and despite of the volatility of the

simulated GH∗ estimates, some of the associated 99% bootstrap CIs have upper

limits below γ.

• In general, and despite of a slight under-estimation for a few values of n and some

of the simulated parents, the results are clearly in favour of the bootstrap H
∗
-

estimation procedure. However, the performance of M
∗

is also interesting for most

of the simulated underlying parents, particularly for large sample size n.

5.2.2 Sensitivity of the algorithm to the subsample size n1

In order to detect the sensitivity of the algorithm to changes of n1, we have run it

for values of n1 = [na], a = 0.950(0.005)0.995. In Figures 5 and 6, and again as an

illustration, we present for the same Fréchet underlying parent, the bootstrap γ-estimates

as a function of a, for n = 200 and n = 2000, respectively.
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Figure 5: Bootstrap adaptive EVI-estimates, for samples of size n = 200 from a Fréchet parent with γ = 0.25 (ρ = −1).

A few comments on the results:

• As expected, and due to the fact that the method works asymptotically, there is a

general improvement in the estimation as the sample size, n, increases.

• The sensitivity of the Algorithm in Section 4.2 to the nuisance parameter n1 is

weak for H∗, H
∗
, M∗ and M

∗
, particularly if n is large. Such a dependency is

however not so weak for both GH∗ and GH
∗
.

22



n=2000

0.0

0.1

0.2

0.3

0.4

0.95 0.97 0.99

H
*

H0
*

  

 

! = 0.25

a 0.0

0.1

0.2

0.3

0.4

0.95 0.97 0.99

  

 

! = 0.25

a 0.0

0.1

0.2

0.3

0.4

0.95 0.97 0.99

  

 

! = 0.25

a

M
*

M0

*

GH
*

GH0
*

Figure 6: Bootstrap adaptive EVI-estimates, for samples of size n = 2000 from a Fréchet parent with γ = 0.25 (ρ = −1).

5.2.3 Bootstrap CIs’ sizes and coverage probabilities

Due to the reasonably high number of bootstrap 99% CIs not covering the true value

of γ (see Table 4), we felt the need and the curiosity of analyzing the performance of

these bootstrap CIs, on the basis of a terribly time-consuming computer program. More

specifically, in order to obtain information on the coverage probabilities and on the sizes

of the bootstrap CIs, we have also run r2 = 100 times, the whole algorithm in Section 4.2,

after the r1 = 100 replicates of Steps 6.– 10., suggested in Section 5.2. This is a terrible

time-consuming algorithm, and we have thus run it only for small values of n. Again as an

illustration, we provide in Table 5, for a Student t2 underlying parent and for n = 100,

200 and 1000, the overall EVI-estimates, the sizes of the 99% bootstrap CIs and the

coverage probabilities of those CIs, in the first, second and third row, respectively. The

overall EVI-estimate closer to the target, the minimum size and the maximum coverage

probability are written in bold.

A few general comments:

• We need to be careful with the use of bootstrap CIs, due to the fact that we can

indeed get very small coverage probabilities, comparatively with the target value,

0.99.

• Large coverage probabilities are attained only by the bootstrap GH∗ and GH
∗

estimates, but at expenses of a very large size.

• As expected, and in general, there is a decreasing trend in the sizes, as n increases,

and a slight increasing trend in the coverage probabilities. However, in some cases,

the coverage probabilities decrease with n.

• As a compromise between size and coverage probability, we are inclined to the
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H∗ H
∗
0 H

∗
1 M∗ M

∗
0 M

∗
1 GH GH

∗
0 GH

∗
1

n = 100

0.5751 0.4882 0.5885 0.4010 0.4238 0.4042 0.4753 0.4815 0.5427

0.1880 0.1427 0.2443 0.2431 0.2354 0.3850 0.6440 0.4842 0.5974

29% 31% 35% 27% 31% 36% 54% 44% 55%

n = 200

0.5648 0.4898 0.5881 0.4362 0.4406 0.4704 0.4800 0.4818 0.5366

0.1573 0.1154 0.1899 0.17320 0.1722 0.2323 0.7195 0.5486 0.6544

29% 34% 31% 33% 36% 46% 64% 52% 67%

n = 1000

0.5479 0.4994 0.5623 0.4877 0.4702 0.4965 0.5362 0.5220 0.5772

0.1139 0.0862 0.1327 0.1315 0.1396 0.2705 1.2217 0.7944 1.0453

28% 40% 27% 30% 31% 55% 82% 84% 81%

Table 5: Overall EVI-estimates (first row), sizes (second row) and percentage coverage probabilities (third row) of the

99% bootstrap CI’s for γ, obtained on the basis of the classical C estimators, and the associated CVRB estimators Cτ ,

with τ = 0 and τ = 1, for C = H,M and GH and for an underlying Student tν parent, with ν = 2 (γ = 1/ν = 0.5, ρ =

−2/ν = −1).

choice of H
∗
0 whenever |ρ| ≤ 1 and M

∗
1 for models with |ρ| > 1. Indeed, these

bootstrap EVI-estimates are quite close to the target γ.

6 An application to burned areas data

Most of the wildfires are extinguished within a short period of time, with almost negligible

effects. However, some wildfires go out of control, burning hectares of land and causing

significant and negative environmental and economical impacts. The data we analyse here

consists of the number of hectares, exceeding 100 ha, burnt during wildfires recorded in

Portugal during 14 years (1990-2003). The data (a sample of size n = 2627) do not seem

to have a significant temporal structure, and we have used the data as a whole, although

we think also sensible, to try avoiding spatial heterogeneity, the consideration of at least

3 different regions: the north, the centre and the south of Portugal (a study out of the

scope of this paper).

The box-plot and the histogram of the available data, in Figure 7, provide evidence

on the heaviness of the right tail.

In Figure 8, we present the sample path of the ρ̂τ (k) estimates in (4.8), as function

of k, for τ = 0, together with the sample paths of the associated β-estimators in (4.9),
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Figure 7: Box-and-whiskers plot (left) and Histogram (right) associated with burned areas in Portugal over 100 ha

(1990-2003).

also for τ = 0, the value obtained in the Algorithm of Section 4.2 for the tuning

parameter τ . We have been led to the ρ-estimate, ρ̂ ≡ ρ̂0 = −0.39, obtained at the level

k1 = [n0.999] = 2606, and to the associated β-estimate, β̂ ≡ β̂0 = 0.47, both recorded in

Figure 8.
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Figure 8: Estimates of the shape second-order parameter ρ and of the scale second-order parameter β for the burned

areas data.

Next, in Figure 9, we present the adaptive and non-adaptive EVI-estimates provided
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by H and associated MVRB estimates H (left), as well as M , GH and the associated

CVRB estimates, M and GH (right).
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Figure 9: Estimates of the EVI, γ, through the EVI estimators under consideration, H, M and GH and associated

CVRB estimators, H, M and GH, for the burned areas under analysis.

For the Hill estimator, we have simple techniques to estimate the OSF. Indeed, we

get k̂H0 (n) =
[(

(1 − ρ̂)2n−2ρ̂/
(
− 2 ρ̂ β̂2

))1/(1−2ρ̂)
]

= 157, and an associated γ-estimate

equal to 0.73. The algorithm in this paper helps us to adaptively estimate the OSF

associated not only with the classical EVI-estimates but also with the MVRB or even

CVRB estimates. For a sub-sample size n1 = [n0.955] = 1843, and B=250 bootstrap

generations, we have got k̂H0 (n;n1) = 1317 and the MVRB-EVI-estimate H
∗

= 0.659,

the value pictured in Figure 9, left, jointly with the bootstrap adaptive Hill estimate, H∗,

equal to 0.769, due to the fact that we were led to k̂H0 (n;n1) = 52. The estimated RMSEs,

in Step 11. of the Algorithm, were RMSE∗H = 0.164 and RMSE∗
H0

= 0.049. Again

with W denoting either M or GH, we were led to k̂W0 (n;n1) = 105, k̂W0 (n;n1) = 339,

W ∗ = 0.746 and W
∗

= 0.652, the values pictured at Figure 9 (right). The estimated

RMSEs were RMSE∗W = 0.173 and RMSE∗
W 0

= 0.276. Note the fact that the MVRB

EVI-estimators look practically “unbiased” for the data under analysis and the associated

adaptive estimator H
∗
0, was the chosen one, due to the smallest estimated RMSE, the

value RMSE∗
H0

= 0.049.

Regarding the dependency of the bootstrap methodology on the subsample size n1,

we refer to Figure 10, where apart from the adaptive bootstrap estimates we also picture

the medians of the values obtained for n1 from 1750 until 2600, with step 1.

26



0.6

0.7

0.8

0.9

1700 2100 2500

0.6

0.7

0.8

0.9

1700 2100 2500

0.6

0.7

0.8

0.9

1700 2100 2500

! 

"
1/ 2

H*
= 0.75

! 

"1/2
H *

= 0.66

! 

"1/2
M *

= 0.64
! 

"1/2
M *

= 0.75

! 

"1/2
G H *

= 0.65

! 

"1/2
GH*

= 0.73

! 

n1

! 

n1

! 

n1

Figure 10: Bootstrap adaptive estimates of the EVI, γ, as a function of the subsample size n1, done through (H∗, H
∗
0)

(left), (M∗,M
∗
0) (center) and (GH∗, GH

∗
0) (right), for the burned areas data under analysis.

It is clear the small sensitivity, to changes in n1, of H
∗
0(n;n1), contrarily to the high

sensitivity of GH∗(n;n1). We consider this to be another point in favour of H
∗
0. The

consideration of all the above mentioned values of n1, i.e., n1 = 1750, 1751, . . . 2600, led

us to a minimum RMSE given by RMSE∗
H0

= 0.018, attained at n1 = 1320, with an

associated EVI-estimate given by H
∗
0 = 0.66, just as before. We finally exhibit, in Figure

11, not only a zoom of the adaptive bootstrap estimates H
∗
0 (right) but also of k̂0H

∗
0

(left),

again as a function of n1, as well as the medians of the values obtained for n1 from 1750

until 2600, with step 1.
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Figure 11: Bootstrap adaptive estimates of the optimal level (left) and of the EVI (right), done through the adaptive

MVRB estimator, H
∗
0, for the burned areas data under analysis.
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