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Abstract. For regularly varying tails, estimation of the index of regular
variation or tail index, «, is often performed through the classical Hill estimator, a
statistic strongly dependent on the number k of top order statistics used, and with
a high asymptotic bias as k increases. On the basis of the asymptotic structure of
Hill’s estimator for different k-values, we here propose “asymptotically best linear
unbiased” estimators (BLUE) of the tail index. A similar derivation on the basis
of the log-excesses and of the scaled log-spacings has also been performed. The
asymptotic behaviour of those estimators is derived, and they are compared with
other alternative estimators, including the Hill estimator, both asymptotically
and for finite samples. Asymptotic equivalent estimators may exhibit indeed very
diversified finite sample properties.
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1 Introduction and BLUE estimators

In the general theory of Statistics, whenever we ask the question whether the
combination of information may improve the performance of an estimator,
we are led to think on Best Linear Unbiased Estimators (BLUE), i.e., on
unbiased linear combinations of an adequate set of statistics, with minimum
variance among the class of such linear combinations. The basic theorem un-
derlying this theory is due to Aitken (1935): If X is a vector of observations
with mean values EX = A6 depending linearly on the unknown vector of pa-
rameters 0, with a known coefficient matriz A, and with a covariance matriz
623, known up to a scale factor 6%, the least-squares estimator of 0 is the
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vector 0* which minimizes the quadratic form (X — A 0)'S71(X - A 9).
Such a vector is thus the vector of solutions of the “normal equations”,
A'S71A 6* = A’S71X. This solution is explicitly given by

0* = (A’S"1A) T A'SIX,
and its variance matriz is Var(0*) = §2 (A'E_IA)_I.

Given a vector of m statistics directly related to the tail index ~, let us
say
IE(EIC: Z:k—_m+1,7k)7 1Sm5k,

where k is intermediate, i.e.,
k — o0, k=o(n), asn — oo, (1.1)

let us assume that, asymptotically, the covariance matrix of T is well ap-
proximated by 42X, i.e., it is known up to the scale factor 42, and that its
mean value is asymptotically well approximated by

vs+p(n,k)b

It is thus sensible to think on the following question: Is it possible to
find a linear combination of our set of statistics with “minimum variance”
and “unbiased” in an asymptotic sense? Such a linear combination will
be called an “asymptotically best linear unbiased” estimator and will be
denoted BL,..

Our objective is then to find a vector a’ = (a1,ag, - ,am) such that
a’ ¥ a is minimum, subject to the conditions a’ s = 1 and a’ b = 0. The
solution of such a problem is easily obtained if we consider the function,

H(a;a,8)=a"Ya—a(a s—1)—pa b,
and obtain the solution of the stationarity equations:

2Ya—as—-pb=0
's=1 . (1.2)
Ib:O

o1

From the first equation in (1.2) we get 2 X a =P [ = :I, with P =[s D],

B

and consequently,

g=%z—1p[g]. (1.3)



But from the last two equations in (1.2) we get a’P = [1 0], i.e.,, P'a =
[ (1) ], and consequently,

« LEg -1 1
b]:z(P’z: P) [0]. (1.4)
If we incorporate (1.4) in (1.3), we get
= £ — e 1 1 o
a=x"'PiP='P [O}ZZHE (sb —bs)T™ (1.5)
where A = HP'E’lPH. Since we have denoted T the vector of the m

statistics on which we are going to base our estimation, we get the final
random variable

BL(T”)(k:;m) :=a' T, agivenin (1.5). (1.6)
Provided the results were not asymptotic, could we derive that

, B3 1b

Var (BLgf’) (k; m)) = i

We shall here assume to be working in a context of heavy tail models,
ie., for all z > 0, and with U(t) = F—(1—1/t), t > 1, F~ the generalized
inverse of the underlying model F, one of the following equivalent conditions
holds true:

1-— F(tz) U(tz)

B = =g/ li =gz 1.7
e . T e Y o

with + the above mentioned tail index. For heavy tails, the classical tail
index estimator is then Hill’s estimator (Hill, 1975):

1 k

H(k) =2 > {InXp_it1n — I Xo g},
i=1

where X;.,, 1 <14 < n, are the ascending order statistics (o.s.) associated to

our random sample (X1, Xa,---,X,). Hill’s estimator is consistent under

the first order framework in (1.7) and for intermediate k, i.e., levels k such

that (1.1) holds. To achieve asymptotic normality we need to assume a
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second order condition. We shall here assume that

. InU(te) —InU(@{) —ylnz 21
- 1.8
tllglo A(t) p iy

for all z > 0, where A is a suitably chosen function of constant sign near
infinity (positive or negative), and p < 0 is the second order parameter. The
limit function in (1.8) is necessarily of this given form, and |A| € RV, (Geluk
and de Haan, 1987). The notation RVp stands for the class of regularly
varying functions at infinity with indez of regular variation equal to 3, i.e.,
positive measurable functions g such that tlgglo g(tz)/g(t) = 2P, for all z > 0.

Under the validity of (1.8), and for intermediate k, the following asymp-
totic distributional representation

H(k) <y + % PH + % A(n/k)(1 + 0p(1)) (1.9)

holds, where P,f{ is asymptotically a standard normal random variable.

In section 2 of this paper we shall consider “asymptotically best linear
combinations” of Hill’s estimators in (1.6), both under a mispecification
p = —1 and for a general p, to be estimated under an adequate method-
ology. For a general p, we have obtained a computer time consuming
estimator of the tail index . And since the computation time has increased
for “asymptotically best linear combinations” of log-excesses, we have
decided to consider in section 3 the same kind of derivation, but now
based on the scaled log-spacings. Such a derivation led us to much simpler
linear combinations, with almost the same exact behaviour and equivalent
asymptotic properties. In section 4 we exhibit the finite sample behaviour
of the “asymptotically best linear unbiased” estimators, comparatively to
the Hill estimator and to the “asymptotically unbiased” estimator with
smallest asymptotic variance, among the ones considered in Gomes and
Martins (2002b). Finally, section 5 is devoted to the finite distributional
behaviour of the estimators under consideration, through the use of Monte
Carlo techniques, and to the drawing of some overall conclusions.

2 “Asymptotically unbiased” linear combinations
of Hill’s estimators

Let us consider Hill’s estimators computed at different intermediate levels
k—m+1,k—m+2,---,k, ie., let us think on the vector

H= (Hy(k—m+1), Hy(k—m+2), -, Hy(k)).
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We are thus working with the top k+ 1 order statistics, down to X,,_.,. We
know that, asymptotically, the covariance matrix of H is well approximated
by
2B =492 =g = . 1<i<j<
7" E=17"[oi4], Smep T a gy (RiEism

On the other side, its mean value is asymptotically well approximated by

k p
1 F=m+1
1 kY
7| . | +bAn/E) | \E-m+2 =1yl +b, A(n/k)b, (2.1)
. 1

where p < 0 is the second order parameter formally defined in (1.8), and
related to the rate of convergence of normalized maximum values towards
a non-degenerate limit law. Here, and taking into account (1.9), we have

by = 1/(1 - p).

We get straightforwardly:

Proposition 2.1. The inverse matriz, ™1, of

1 e
¥ =[], Ui,j:Uj,i=m,1§Z_<_]_<_m,
has entries 0™, 1 < i, j < m, given by
g (k—m+1)(k—m+2) if i=
o =1 2(k—m+1)? if i=2,3,---,m—1,
k2 if i=m

o =0, |i—j|>1.

2.1 Mispecification of p (p = —1)

Proposition 2.2. Under a mispecification of p at —1,

P’2—1P=["c B ]

kP
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where
3k Pu=3k3+3m—1)(k—m+1)?
+3(m—1)%k—m+1)+ (m—1)>—(m-1).

Also
A={PTP|| = k(P — k),

and

b'EZ b = P

If we put m =0k, 0<6<1,

| 63 —302+30+3
_ —
A noco 0(62-3043)°

k

which is a decreasing function of 6, converging towards 4 as 6 — 1.

It is thus sensible to put m = k, and we then obtain

Plz—-l st

1[000~~- 0 k]

and consequently

d=pir|2 46 - 2k-1) ~Goug |

We may thus state the following result.

Proposition 2.3. If we consider m = k, we get

4k% — 1 K2—1 L, b0S7 4% 4k? -1

- ’ B - A E k2—1

The weights a;, 1= 1,2, ,k, in BLE,{_l)(k) = Zle a; H(7), are given by

61 . 2k —1
kz—‘_—l‘,l—l,Q,"',k’—l, ak—-—k—ﬁ.

a; =



‘We are thus interested in the estimator
k—1
6 2k —1
LA S : .
BL{ V(k) = sy > i H(i) — Ty H(k). (2.2)

=1

Since we have misspecified p, we no longer have a null asymptotic bias
whenever vk A(n/k) — ), finite and non-null, unless p = —1. We may
n—o0

state the following result:

Theorem 2.1. Under the first order framework in (1.7), and for interme-
diate k, the linear combination in (2.2) is consistent for the estimation of
the tail index v. If we further assume a second order framework, i.e. if
we assume that (1.8) holds, our estimator is asymptotically normal. More
specifically, the asymptotic distributional representation

" 2y _BL 2(1+p)
BELUy Ry 2L pile g ST
w W=t B AT e )

holds true, where P,f Lo s an asymptotically standard normal random vari-

able.

A(n/R)(1+0,(1)) (23)

Proof. The proof comes straightforwardly from Hill’s asymptotic distribu-
tional representation in (1.9), together with the results in Proposition 2.3.
The term in (2.3), related to the asymptotic variance, comes from the fact
that
b'S~1b
— 4
A k—oo
and the bias term comes from the fact that

6 =, (k-1)(2k-1
k2_1<,€p;u_< I ))

converges towards 2(1 + p)/(2 — p) as k — oo.

k

ab=

O

Remark 2.1. Note that we are able to get a null bias for p = —1, but at
the expenses of an increase in the variance, which is 4 times the asymptotic
variance of Hill’s estimator — the old trade-off betwen variance and bias.

Remark 2.2. The asymptotic behaviour of this new estimator is the same
than that of the M L-estimator in Gomes and Martins (2002a), given by

S (2% — k — 1)U;

k
ML(k) = H(k) — (% i Ui) = ,
&= i (2 — k — 1)U;

i=1




based on the scaled log-spacings
Ui = [ln Xn—i+1:n —1In Xn—i:n] - (24)

Despite of that, their finite sample behaviour is quite different, as we shall
see in section 4.

2.2 “Asymptotically unbiased” linear combination of Hill’s
estimators for a general p

The equivalent of Proposition 2.3 is:

Proposition 2.4. For a general p, and whenever we consider the k levels
m=1,2,---,k, we have again P'S™1P = L , but where

kB
k=2 P = K217P) — (k(k — 1))}

k-1
D (RS Ve R (RS D B
=1

As well as in Proposition 2.2, we have A = ||P'Z_1PH =k (P — k), and
b= B

The weights a = afl(p), i =1,2,--- ,k, in

k
BLY(F) = 3 afl (o) H(),
i=1
are given by
/3 P = k(Pkk i, k) 2(2 1—1 + 2 2 ’L(Z + ) 7’+1) )
1<i<k-1, (2.5)
afl(p) = SO ol (=k(k—1)S k2Sk) 2.6
L(p) = BBy — ) k—1 T K"k ), (2.6)
where
k-1
Sy 3 MR =R = - = )
j=1

+k(k?—iP) (K" - (k-1)"), 1<i<k.



Moreover,

I kB E1b = s P " (1 = p>2
kl»ngo A e Pkk —k " p ’

We may thus state the following general result.

Theorem 2.2. If the second order condition (1.8) holds and if k =k, is a
sequence of intermediate positive integers, i.e., (1.1) holds, then, with

k
BLY (k) = all(p) H(0),
=1

afl(p), 1<i<k—1 and al(p) given in (2.5) and (2.6), respectively,

(2

= (p)
BLY £ 4 4 % PP 4 oy (A(n/k)),

(p)
with P,f L asymptotically standard normal.
Consequently, if Vk A(n/k) — ), finite, non necessarily null, then
n—oo

vk (BLg’)(k) - 'y) 2, Normal (O, M) .

Moreover, the same distributional result holds true if we consider the
tail index estimators BL@, for any second order parameter estimator p
such that p — p = op(1) for the levels k on which we are going to base the
estimation of the tail indez ~y.

Proof. The first part of the theorem comes straighforwardly from the pre-
vious results. The last result in the theorem comes essentially from the
assumption that p — p = o0p(1), and from the fact that we have the distri-

butional representation BL@(IC) 4 BLg’)(k) + (P — p) &(p) (1 + 0p(1)),
with & = O, (1/\/15) Consequently, we may write vk (BLS? (k) — fy) 4
vk (BLg’)(k) —7) +0p(1), whenever vk A(n/k) e A finite, non necessar-
ily null. O



Remark 2.3. For p we may choose, such as in Gomes and Martins
(2002b), one of the estimators in Fraga Alves et al. (2003). More specifi-
cally, we shall here consider particular members of the class of estimators

5, := min (0, %) . k; = min (n = [anIZn]) (2.7)

where
(MO ) - (MPwy2)”
(MPwy2) " - (P wy/6) " ke
Ty = 4
(MO ®)-im(MPwys2)
1 (M (k)/2) -1 n (M (k) /6) ¥ =8
with

k
1
MD(k) = - ( = ’“") .. d=1,38
k Z: Xn—k:n ¥
We have p— p = O, (1/ (V1 A(n/k1))) = op(1) for any level k such that
VE A(n/k) — X, finite.

We advise practitioners not to choose blindly the value of T in (2.7). It
is sensible to draw a few sample paths of ,’o‘(nT)(k:) in (2.7), as functions of k,
electing the value of T which provides higher stability for large k, by means
of any stability criterion. Anyway, in all the Monte Carlo simulations we
have considered the level ky in (2.7) and the p-estimators

3 (T,EO) (k1) — 1)
Po :=min | 0, , advisable for p> —1, (2.8)

T k) - 3

and

3 (T,El) (k1) — 1)
p1 :=min | 0, , advisable for p < —1. 2.9
TV (k) - 3 Y

Remark 2.4. The results in Theorem 2.2 are now equivalent to the ones
got in Gomes and Martins (2002b) for the “Mazimum Likelihood” estimator,
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based on an external estimation p of p, and given by

k
ML® (k) := % MU

based on the scaled log-spacings U; in (3.1).

3 Linear combinations of scaled log-spacings

Since the linear combination obtained in section 2 is a bit intrincate, and
things become still a bit more intricate if we directly approach linear com-
binations of log-excesses, we are now going to think on linear combinations
of the vector of scaled log-spacings

H = (Ui = [lan—i+1:n —In Xn—i:n] ; 1 < 7 = k) y (3.1)

For heavy tails, and whenever k = k, — oo and k = k, = o(n), as n —
oo, the scaled log-spacings U;, 1 < ¢ < k, are approximately independent
and exponential with mean value

=+ A/ (1) @+o), (32)

as n — oo (Draisma, 2000, pages 43-59), where A(.) and p < 0 are related to
the second order behaviour of F'. We may thus consider approximately that
> =1, the identity matrix, and the “best linear unbiased” combinations of
the scaled log-spacings are for sure much easier to derive. We my state the
following:

Proposition 3.1. We now have

eoa @)

0" EO™

i =

<
ey

Py lp =

and consequently.

&=|[PEP| =

J

(375"
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The weights a¥ = a¥(p), i = 1,2, ,k, are given by

a?:% (2 <%>—-2p_ <é>_p z’“:@)p)’ 1<i<k. (3.3)

I= J=1
Moreover,
1 (iy~2p
L b'Y-1p Z;(E) 1= 2
lim ———— = lim = g =
k—co A k—o0 3 k §5 =9 i k —— P
L e 2 (%)
We may thus state the following general result:
Theorem 3.1. The results of Theorem 2.2 hold true for the r.v.
k
BLY (k) =) _a](p) U;
i=1
1kU 1 i\ —2p 1 AN o4 1 & iy P
LU 75;(%) 5 E;(E) i E;(E)
v 1 i) =2 1S iyp ’ ’
Rl I Sl ¥ 2 (%)

with U; and a¥ (p), 1 < i < k given in (3.1) and in (3.3), respectively, as well
as for the tail index estimators Bngﬁ), with p in the conditions of Theorem
2.2,

Proof. The proof of Theorem 2.2 applies here as well. The result comes also
easily from the fact that Zle i%~1/k* = 1/a + O(1/k), and that, as has
been proved in Gomes and Martins (2002a),

k anda—1

b g b d o (@ | @ A(n/k)
T gl Nionr——-ZF " el sl
k;<k> - Ca-1Dk * %= g (140y(1)), «

where Zlga) =+/(2a-1k (Zf:l i®1E; /k* — 1/a> is asymptotically stan-
dard normal. The asymptotic variance comes from the random term

\/lE ((ﬂ)Q Zm (1-p)vI-2p Z}gl—m) ’

p P
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and from the fact that the asymptotic covariance between Z (1) and Zy, (1=p)

is vI=2p/(1 - p)
O

As expected, the exact behaviour of “best linear unbiased” combinations
based on the Hill estimators, on the log-excesses or on the scaled log-scacings,
do not differ significantly, as it is shown in Figure 1, where we picture, for
a Fréchet underlying parent and for a sample size n = 1000, the sample
paths of BLEL;I), BLg—l) and BL%;I), where V' denotes the vector of the

log-excesses
=V =InXp—ivin—InXp g, 1 <0< k) )

and which “almost” overlap. We picture also the behaviour of BL(p ’)

BLg") and BL%f’), i = 0,1, also “overlapping”. The sample paths of
MLGY and ML®) 4 = 0,1 are also pictured, being possible to detect a
significantly different behaviour between the BL and the M L statistics.

1.5 1.5 1.5
” ML(FA%)
=i Po
1.0 ML 1.0 1 = 1.0
BL(:I) BL(f’o) BIJ(‘pl)
0.5 ks k os k

[} 500 1000 0 500 1000 0 500 1000

Figure 1: Simulated sample paths of the BL and M L-estimators for a Fréchet(1) parent.

In Figure 2 we picture the differences BL(' (k) — BL ')(k) in black and
BL(')(k) BL ')(k) in grey, also when we c0n31der p mispecified at —1
(left), estimated through po (center) and estimated through py (right). Only
for very small values of k, as well as, but not so significantly, for large values
of k, do appear significative differences, which have no special influence in
the final properties of the estimators. This justifies the use, in practice, and
also in the simulations performed, of BLEJ@, instead of either BLEP or BL@.

4 The finite sample behaviour of the estimators

To enhance the fact that despite their asymptotic equivalence BL(~1) and
MLGY | here denoted BL and M L, respectively, have a reasonably different
behaviour as the underlying model changes, we present, in Figure 3, the
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0.005

0.005

0.005

0.000 0.000 0.000

-0.005 -0.005

-0.005

Figure 2: Differences BLS) — BLE;), in black, and BLE;) — BLg,.), in grey, for a Fréchet(1)
parent and for p = —1 (left), po (center) and p1 (right).

relative efficiencies of M L|BL at their optimal levels. Such a measure is
given by

MSE BL,]

REFFy1ip; =\ 5B ML

with both estimators considered at their optimal levels, i.e., the levels

where the mean squared error is minimum: for any estimator G of the tail

index v, we denote Go = G(k§ (n)), with k§(n) := argmin MSE [G(k)].
k

Notice that high relative efficiencies correspond to better performances of
the M L-estimator relatively to the B L-estimator, and the other way round
for low relative efficiencies. Notice also that in Figure 3 (right) we have
pictured, in a different scale the three central REF'F measures presented
in Figure 3 (left).

— 2.0
4 1 AT
"/%URR(—D
5 { 1.5 FRE
o BURR(-2)
= - 1.0 o g---goo==-cggocc-ooocooones
; ¢ ‘r BURR(-O.25)|1
——— w BURR(-0.5)

0 HBLURR(=025)], : in 0.5 . i

0 5000 10000 15000 20000 0 5000 10000 15000 20000

Figure 3: Relative efficiencies of M L|BL for different parents.
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E MSE

3 0.8
H
2.5 i
ML(—l) 0.6
2 ML
1.5 0.4
q
0.2 7D
0.5 1 BIGY
0 T y T k 0+ - - - k
0 200 400 600 800 0 200 400 600 800

Figure 4: Simulated distributional behaviour of the estimators under study for a Burr(1, —0.25).

Some general comments:

1. As p approaches 0, the BL mean squared error exhibits two minima
for large n — look at Figure 4, where we picture the mean value
and the mean squared error of the BL and ML estimators, together
with the Hill estimator, for a Burr(1,—0.25) parent, with d.f. F, ,(z) =
1—(14zP/Mr £ >0, v>0, p<0. The global minimum is always
achieved at the largest k-value, and the comparison has been done for
both minimum values of MSE. The REFF measure associated to
the global minimum is pictured in Figure 3 (left), with the subscript
2, and the one associated to the first minimum is pictured in the same
figure (left and right), with the subscript 1.

2. For p = —0.5 the two minima are undistinguishable for the sample
sizes considered (see Figure 6, for instance) — that’s the reason why
we picture the relative efficiency only in Figure 3 (left). For p = —1
the ML estimator reveals no bias, and that’s the reason for the high
relative efficiency of M L|BL, exhibited in Figure 3 (left).

3. The results we think sensible to consider are the ones in Figure 3
(right), also pictured in the central part of Figure 3 (left). And for
those parents, the relative efficiency will ultimately achieve the value
one, although still a long way from one for the Fréchet model and for
a sample size n = 20000. All the other REFF measures are related
to “peculiarities” of the estimators.

4. The main message seems to be the following: asymptotically equiva-
lent estimators may reveal quite distinct finite sample behaviour, and
even if asymptotically equivalent, estimators should be compared for
finite sample through Monte Carlo simulation techniques.
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In Figures 5, 6 and 7 we present the patterns of mean values (E),
mean squared errors (MSE) and of vk Var of the Hill (H) and of
the BL = BL() and the ML = MLV for the Fréchet(1), the
Burr(1,—0.5) and the Burr(1,—2) parents, respectively. The Fréchet(y)
model is a basic heavy tail model, with d.f. F,(z) = exp (—m_l/'y) =)
The simulation has been based on 1000 runs. In these figures we also
picture the mean value and mean squared error of the estimator BLSJE"),
denoted BLP:, as well as of ML) for the adequate value of 4, either 0 or 1.

We also present in Tables 1, 2 and 3 the simulated optimal sample
fractions, bias and mean square errors of the different estimators under
play. Denoting generically G(k) any estimator of -, we shall denote
OSFC := k§(n)/n, k§ (n) := argmin, MSE [G(k)], E§ := E [G (k§(n))]
and MSE§ = MSE [G (k§(n))]. The extra subscript s in the tables
denotes “simulated”. = The Monte Carlo simulation is amulti-sample
simulation of size 1000 x 10 for n = 100,200,500 and 1000, and of size
1000 x 5 for n= 2000 and 5000. Standard errors are not presented, but are
available from the authors. The smallest bias and mean square errors are
double underlined, being only underlined the second smallest.

MrP

T v k
0 200 400 600 800 1000

Figure 5: Simulated distributional behaviour of the estimators under study for a Fréchet(1)
parent (p = —1).

We now advance with some extra comments:
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MSE

0.2

™7 V,L(Pu)
0.1 4

0 200 400 600 800 0 200 400 600 800

0 200 400 600 800 1000

Figure 6: Simulated distributional behaviour of the estimators under study for a Burr(1, —0.5).

Table 1: Simulated Optimal Sample Fractions (OSF) of the tail index estimators

| n I H BL-D mML(-1) Br®) pML(P) BL/1) ML(PILI
STUDENT(v = 4)

200 0.0405  0.1990 0.1280 0.1180 0.2965 0.1470 0.1450

500 0.0278  0.2024 0.0968 0.1222 0.2096 0.2354 0.0846

1000 | 0.0195  0.2070 0.0697 0.1181 0.1594 0.3534 0.0577

2000 | 0.0141  0.2139 0.0419 0.1112 0.1230 0.3697 0.0390

5000 | 0.0095  0.2126 0.0415 0.1012 0.0853 0.3721 0.0241

STUDENT(v = 2)

200 | 0.0850 02115 _ 0.3850  0.1310 _ 0.3855 _ 0.2005 _ 0.2640
500 | 0.0672 0.1818  0.3536  0.1410  0.4252  0.2468  0.1908
1000 | 0.0563 0.1678  0.3214  0.1339  0.4439 02767  0.1607
2000 | 0.0458 0.1571  0.2820  0.1143  0.4633  0.3176  0.1139
5000 | 0.0315 0.1371  0.2465  0.0947  0.4762  0.3194  0.0894

STUDENT(v = 1)

200 | 0.1665 0.2500  0.3780 _ 0.1665  0.3685  0.2445 _ 0.3740
500 | 01448 0.2174  0.3356  0.1950  0.2978  0.2560  0.3752
1000 | 01339 0.1985 02816  0.1901  0.2638  0.2175  0.2922
2000 | 0.1191 0.1815  0.2386  0.1737  0.2199  0.2560  0.3311
5000 | 0.0971  0.1553 01919  0.1496  0.1876  0.2409  0.3055
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Table 2: Simulated Bias of the tail index estimators

I n | H BLCD pmL=D) BL(®o) M L(Po) BL(P1) ML(®1)
STUDENT(v = 4)
200 0.0572 —0.0541 0.0754 —0.0594 0.0105 —0.0018 0.0760
500 0.0536  —0.0436 0.0658 —0.0434 0.0349 0.0295 0.0780
1000 | 0.0546  —0.0045 0.0628 —0.0081 0.0349 0.0172 0.0570
2000 | 0.0856 —0.0022 0.0284 0.0072 0.0540 0.0252 0.0760
5000 | 0.0259 —0.0072 0.0405 —0.0118 0.0220 0.0027 0.0314
STUDENT(v = 2)
200 0.1305 0.0498 0.0397 —0.0848 —0.0083 0.0653 0.0986
500 0.0078 —0.0869 —0.0191 —0.1176 —0.0748 —0.0567 —0.0127
1000 | 0.0155 —0.0545 0.0013 —0.0812 —0.0290 —0.0075 0.0120
2000 | 0.0154 —0.0180 0.0105 —0.0432 —0.0127 —0.0061 0.0219
5000 | 0.0111 —0.0252 —0.0006 —0.0413 —0.0100 —0.0047 0.0107
STUDENT(v = 1)
200 0.0089 —0.2525 —0.1782 —0.2567 —0.2137 —0.2756 —0.0979
500 0.0171 —0.1250 —0.1128 —0.1866 —0.1178 —0.0341 —0.0278
1000 | 0.0334 —0.0413 —0.0576 —0.0289 —0.0455 —0.0257 0.0074
2000 | 0.0278 —0.0253 —0.0502 —0.0325 —0.0406 —0.0081 0.0187
5000 | 0.0206 —0.0402 —0.0419 —0.0413 —0.0443 0.0031 0.0228
Table 3: Simulated mean square errors of the tail index estimators
| n [ H BL-D mMLGD  Br®) pMLPo)  BL(®P1) pML(PL)
STUDENT(v = 4)
200 0.0206 0.0179 0.0084 0.0516 0.0084 0.0209 0.0196
500 0.0109 0.0071 0.0055 0.0150 0.0049 0.0103 0.0111
1000 | 0.0073 0.0035 0.0037 0.0070 0.0032 0.0055 0.0073
2000 | 0.0047  0.0018 0.0022 0.0034 0.0023 0.0031 0.0048
5000 | 0.0028  0.0007 0.0022 0.0014 0.0014 0.0012 0.0028
STUDENT(v = 2)
200 0.0238  0.0370 0.0084 0.1650 0.0129 0.0365 0.0177
500 0.0115  0.0156 0.0038 0.0304 0.0039 0.0100 0.0092
1000 | 0.0069  0.0083 0.0022 0.0154 0.0017 0.0050 0.0057
2000 | 0.0041 0.0044 0.0013 0.0082 0.0007 0.0025 0.0035
5000 | 0.0022  0.0020 0.0007 0.0039 0.0003 0.0010 0.0019
STUDENT(v = 1)
200 0.0366  0.1025 0.0396 1.2807 0.0809 0.2114 0.0378
500 0.0164  0.0437 0.0217 0.0555 0.0293 0.0249 0.0131
1000 | 0.0093  0.0241 0.0141 0.0274 0.0169 0.0126 0.0080
2000 | 0.0054 0.0135 0.0091 0.0151 0.0105 0.0057 0.0036
5000 | 0.0025  0.0062 0.0046 0.0066 0.0050 0.0023 0.0016
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F igure 7: Simulated distributional behaviour of the estimators under study for a Burr(1, —2).

5. For not very large values of n (say n < 1000) there exists only a
slight improvement in terms of smaller minimum mean squared error,
when we use p instead of a misspecification of p at —1, unless p is
reasonably small (see Figures 5 and 7, for parents with p = —1 and
p = —2, respectively).

6. As p approaches 0 (see Figure 6, for a parent with p = —0.5), there is a
significant difference between the mean value pattern of the estimators
BL(=1 and BL®).  Indeed, the BL(°) estimator exhibits sample
paths highly stable around the target value ~, but with a reasonably
high volatility. Such a volatity gives rise to similar mean squared
errors, as functions of k£, both when we misspecify or estimate p.

7. In general, we may say that, whenever p # —1, the replacement of
p = —1 by p enables us to achieve sample paths with a reasonable
high volatility, but around the target value v for a wide region of k-
values. Indeed, the sample paths of the B L-estimators are much more
stable (around the target value <) than those of the corresponding
M L-estimators. However, the trouble with the B L-estimators are re-
lated to the fact that the variance of vk (BL(k) — ) is, for finite n,
an increasing function of k, contrarily to what happens to the corre-
sponding M L-estimators. This gives rise to a general better perfor-
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mance of of the M L comparatively to the equivalent BL, when both
are considered at their optimal levels.
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