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Abstract

In this paper, we discuss an algorithm for the adaptive estimation of a positive

extreme value index, γ, the primary parameter in Statistics of Extremes. Apart from

classical extreme value index estimators, we suggest the consideration of associated

second-order corrected-bias estimators, and propose the use of bootstrap computer-

intensive methods for the adaptive choice of thresholds.

Keywords. Heavy tails; statistics of extremes; extreme value index; adaptive semi-

parametric estimation; bias reduction; location/scale invariant estimation.

1 Introduction and outline of the paper

Heavy-tailed models appear often in practice in fields like Telecommunications, Insurance,

Finance, Bibliometrics and Biostatistics. We shall deal with the estimation of a positive

extreme value index (EVI), γ, the primary parameter in Statistics of Extremes. Apart from

the classical Hill, moment and generalized-Hill semi-parametric estimators of γ, detailed in

Section 2, we shall consider the associated classes of second-order reduced-bias estimators,

based on an adequate estimation of generalized scale and shape second-order parameters,

valid for a large class of heavy-tailed underlying parents, and appealing in the sense that

we are able to reduce the asymptotic bias of a classical estimator without increasing its

asymptotic variance. We shall call these estimators “classical-variance reduced-bias” (CVRB)

estimators.
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After the introduction, in Section 2, of a few technical details in the area of Extreme Value

Theory (EVT), related with the EVI-estimators under consideration in this paper, we shall

briefly discuss, in Section 3, the kind of second-order parameters’ estimation which enables

the building of reduced-bias estimators with the same asymptotic variance of the associated

classical estimator. After the discussion, in Section 4, of the asymptotic behaviour of the

estimators under consideration, we propose and discuss in Section 5, and in the lines of [13],

an algorithm for the adaptive estimation of a positive EVI, through the use of bootstrap

computer-intensive methods. The algorithm is described for a classical EVI estimator and

associated CVRB estimator, but it works similarly for the estimation of any other parameter

of extreme events, like a high quantile, the probability of exceedance or the return period

of a high level. Section 6 is entirely dedicated to the application of the algorithm to the

analysis of environmental data, the number of hectares burned during all wildfires recorded

in Portugal in the period 1999-2003.

2 The EVI-estimators under consideration

In the area of EVT, and for large values, a model F is said to be heavy-tailed whenever

the right-tail function, F := 1 − F , is a regularly varying function with a negative index

of regular variation, denoted −1/γ, i.e., if for all x > 0, there exists γ > 0, such that

F (tx)/F (t) → x−1/γ, as t → ∞. If this holds, we use the notation F ∈ RV−1/γ, and

we are working in the whole domain of attraction (for maxima) of heavy-tailed models,

denoted DM (EVγ)γ>0. Equivalently, with U(t) := F←
(
1− 1/t

)
=inf {x : F (x) ≥ 1− 1/t},

F ∈ DM (EVγ)γ>0 ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ, the so-called first-order condition. For

these heavy-tailed parents, given a sample Xn := (X1, . . . , Xn) and the associated sample

of ascending order statistics (o.s.’s), (X1:n ≤ · · · ≤ Xn:n), the classical EVI estimator is the

Hill estimator ([15]),

Hk ≡ Hk,n :=
1

k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n}, (1)

the average of the k log-excesses over a high random threshold Xn−k:n, an intermediate o.s.,

i.e., with k such that

k = kn →∞ and k/n→ 0, as n→∞. (2)
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But the Hill-estimator Hk, in (1), reveals usually a high non-null asymptotic bias at

optimal levels, i.e., levels k where the mean squaed error (MSE) is minimum. This non-null

asymptotic bias, together with a rate of convergence of the order of 1/
√
k, leads to sample

paths with a high variance for small k, a high bias for large k, and a very sharp MSE pattern,

as function of k. Recently, several authors have been dealing with bias reduction in the field

of extremes (for an overview, see [17], Chapter 6, as well as the more recent paper, [4]). For

technical details, we then need to work in a region slightly more restrict than DM (EVγ)γ>0.

In this paper, we shall consider parents such that, with γ > 0, ρ < 0, and β 6= 0,

U(t) = Ctγ
(
1 + A(t)/ρ+O(A2(t))

)
, as t→∞, A(t) =: γβtρ. (3)

The most simple class of second-order minimum-variance reduced-bias (MVRB) EVI-

estimators is the one in [3], used for a semi-parametric estimation of lnV aRp in [9]. This

class, here denoted H ≡ Hk, is the CVRB-estimator associated with the Hill estimator

H = Hk, in (1), and depends upon the estimation of the second-order parameters (β, ρ), in

(3). Its functional form is

Hk ≡ Hk,n,β̂,ρ̂ := Hk

(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
, (4)

where (β̂, ρ̂) is an adequate consistent estimator of (β, ρ). Algorithms for the estimation of

(β, ρ) are provided, for instance, in [9] , and will be reformulated in Section 3 of this paper.

Apart from the Hill estimator, in (1), we suggest the consideration of two other classical

estimators, valid for all γ ∈ R, but taken here exclusively for heavy tails, the moment ([5])

and the generalized-Hill ([1], [2]) estimators. The moment estimator (M) has the functional

expression

Mk ≡Mk,n := M
(1)
k,n + 1

2

{
1−

(
M

(2)
k,n/(M

(1)
k,n)2 − 1

)−1}
, (5)

with M
(j)
k,n := 1

k

∑k
i=1

(
lnXn−i+1:n − lnXn−k:n

)j
, j ≥ 1

(
M

(1)
k,n ≡ Hk, in (1)

)
. The generalized

Hill estimator (GH), based on Hk,n, in (1), is given by

GHk ≡ GHk,n := Hk,n +
1

k

k∑
i=1

{
lnHi,n − lnHk,n

}
. (6)

The associated CVRB estimators have similar expressions, due to same dominant component

of asymptotic bias of the estimators in (5) and (6), for a positive EVI. Denoting W either

M or GH, and with the notation W for either M or GH, we get

W k ≡ W k,n,β̂,ρ̂ := Wk

(
1− β̂ (n/k)ρ̂ /(1− ρ̂)

)
− β̂ ρ̂ (n/k)ρ̂ /(1− ρ̂)2. (7)
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In the sequel, we generally denote C any of the classical EVI-estimators, in (1), (5) and (6),

and C the associated CVRB-estimator.

3 Estimation of second-order parameters

The estimation of γ, β and ρ at the same value k leads to a high increase in the asymptotic

variance of CVRB-estimators Ck,β̂,ρ̂, which becomes σ2
C

((1− ρ)/ρ)4 (see [16], among others).

The external estimation of ρ at k1, but the estimation of γ and β at k = o(k1), slightly

decreases the asymptotic variance to σ2
C

((1− ρ)/ρ)2, stilll greater than σ2
C

(see [7], among

others). The external estimation of both β and ρ at a level k1, and the the estimation

of γ at a level k = o(k1), or even k = O(k1), can lead to a CVRB estimator with an

asymptotic variance σ2
C

, provided we choose adequately k1 (see [3], [10], [11]). Such a choice

is theoretically possible (see [12] and [4]), but under conditions difficult to guarantee in

practice. As a compromise between theoretical and practical results, we have so far advised

any choice k1 = n1−ε, with ε small. We shall consider here ε = 0.001.

Algorithm (second-order parameters’ estimation):

1. Given an observed sample (x1, . . . , xn), plot the observed values of ρ̂τ (k), the most

simple estimator in [6], for the tuning parameters τ = 0 and τ = 1.

2. Consider {ρ̂τ (k)}k∈K, with K = ([n0.995], [n0.999]), compute their median, denoted ητ ,

and compute Iτ :=
∑

k∈K (ρ̂τ (k)− ητ )2, τ = 0, 1. Next choose the tuning parameter

τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.

3. Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡ β̂τ∗ := β̂ρ̂τ∗ (k1), with k1 = n0.999, being β̂ρ̂(k),

the estimator in [7].

Remark 1. This algorithm leads usually to the tuning parameter τ = 0 whenever |ρ| ≤ 1

and τ = 1, otherwise. For details on this and similar algorithms, see [9].
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4 Asymptotic distributional behaviour of the estima-

tors

In order to obtain a non-degenerate behaviour for any semi-parametric EVI-estimator, it

is convenient to assume a second-order condition, measuring the rate of convergence in the

first-order condition. Such a condition, valid for all x > 0, involves a parameter ρ ≤ 0, a

rate function A, with |A| ∈ RVρ and is given by

lim
t→∞

(U(tx)/U(t)− xγ)/A(t) = xγ (xρ − 1)/ρ. (8)

In this paper, and mainly because of the reduced-bias estimators in (4) and (7), generally

denoted Ck ≡ Ck,n,β̂,ρ̂, we shall assume that (3) holds. Then, (8) holds, with A(t) = γ βtρ.

Let Ck be the associated classical estimator of γ. Trivial adaptations of the results in

the above-mentioned papers (see also [14]) enable us to state, without proof, the following

theorem, again for models with γ > 0.

Theorem 1. Assume that condition (8) holds, and let k = kn be an intermediate sequence,

i.e. (2) holds. Then, there exist a sequence ZC
k of asymptotically standard normal random

variables, σ
C
> 0 and real numbers b

C,1
such that Ck=

d γ+σ
C
ZC
k /
√
k+b

C,1
A(n/k) (1+op(1)).

If we further assume that (3) holds, and estimate β and ρ consistently through β̂ and ρ̂, in

such a way that ρ̂−ρ = op(1/ lnn), we can guarantee that there exists a pair of real numbers

(b
C,1
, b

C,2
), with b

C,1
= 0, such that Ck,n,β̂,ρ̂ =d γ+σ

C
ZC
k /
√
k+b

C,1
A(n/k)+b

C,2
A2(n/k) (1+

op(1)).

As n → ∞, let k = kn be intermediate such that
√
k A(n/k)→ λ, finite, the lev-

els k where the MSE of Ck is minimum. Let γ̂k denote either Ck or Ck. Then, we

have
√
k
(
γ̂k − γ

) d→ Normal(λ bγ̂,1, σ
2
C

), even if we work with CVRB EVI-estimators.

If
√
k A(n/k) → ∞, with

√
kA2(n/k) → λ

A
, finite, the levels k where the MSE of Ck is

minimum,
√
k
(
Ck − γ

) d→ Normal
(
λ
A
b
C,2
, σ2

C

)
. We have σ2

H
= γ2, σ2

M
= σ2

GH
= 1 + γ2,

b
H,1

= 1/(1− ρ), b
M,1

= b
GH,1

= (γ − γρ+ ρ)/(γ(1− ρ)2), b
H,1

= b
M,1

= b
GH,1

= 0. Conse-

quently, since b
C,1
6= 0 whereas b

C,1
= 0, the C-estimators outperform the C-estimators for

all k, as can be seen in Figure 1.
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Figure 1: Comparative asymptotic variances (Var), squared bias (BIAS2) and mean squared

errors (MSE) of a classical EVI-estimator and associated CVRB estimator.

5 The bootstrap methodology and adaptive EVI-

estimation

With AMSE standing for “asymptotic MSE”, and kbγ
0 (n) := arg minkMSE(γ̂k),

k0|bγ(n) := arg min
k
AMSE

(
γ̂k
)

(9)

= arg min
k


(
σ2
C
/k + b2

C,1
A2(n/k)

)
(if γ̂ = C)(

σ2
C
/k + b2

C,2
A4(n/k)

)
(if γ̂ = C)

= kbγ
0 (n)(1 + o(1)).

The bootstrap methodology can thus enable us to consistently estimate the optimal

sample fraction (OSF), kbγ
0 (n)/n, on the basis of a consistent estimator of k0|bγ(n), in (9), in

a way similar to the one used for classical EVI-estimation (see, for instance, [8]). We shall

here use the most obvious auxiliary statistics, the statistics Tk|γ̂ ≡ Tk,n|γ̂ := γ̂[k/2]− γ̂k, k =

2, . . . , n−1, which converge in probability to zero, for intermediate k, and have an asymptotic

behaviour strongly related with the asymptotic behaviour of γ̂k. Indeed, under the above-

mentioned third-order framework in (3), we easily get:

Tk|γ̂
d
=

σ
γ̂
P γ̂
k√
k

+

 b
γ̂,1

(2ρ − 1) A(n/k)(1 + op(1)) (if γ̂ = C)

b
γ̂,2

(22ρ − 1) A2(n/k)(1 + op(1)) (if γ̂ = C)
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with P γ̂
k asymptotically standard normal. Consequently, denoting k0|T (n) :=

arg mink AMSE(Tk), we have

k0|bγ(n) = k0|T (n)

 (1− 2ρ)
2

1−2ρ (1 + o(1)) (if γ̂ = C)

(1− 22ρ)
2

1−4ρ (1 + o(1)) (if γ̂ = C).

5.1 How does the bootstrap methodology then work?

Given the sample Xn = (X1, . . . , Xn) from an unknown model F , and the functional

Tk,n =: φk(Xn), 1 < k < n, consider for any n1 = O(n1−ε), 0 < ε < 1, the bootstrap

sample X∗n1
= (X∗1 , . . . , X

∗
n1

), from the model F ∗n(x) = 1
n

∑n
i=1 I[Xi≤x], the empirical d.f.

associated to the available sample, Xn. Next, associate to the bootstrap sample the cor-

responding bootstrap auxiliary statistic, T ∗k1,n1
:= φk1(X

∗
n1

), 1 < k1 < n1. Then, with

k∗0|T (n1) = arg mink1 AMSE
(
T ∗k1,n1

)
,

k∗0|T (n1)

k0|T (n)
=
(n1

n

)− c ρ
1−c ρ

(1 + o(1)), c =

 2 (if γ̂ = C)

4 (if γ̂ = C).
(10)

Consequently, for another sample size n2, and for every α > 1,(
k∗0|T (n1)

)α
k∗0|T (n2)

(
nα1
nα

n

n2

)− c ρ
1−c ρ

=
{
k0|T (n)

}α−1
(1 + o(1)).

It is then enough to choose n2 = n (n1/n)α, to have independence of ρ. If we put n2 = n2
1/n,

i.e., α = 2, we have
(
k∗0|T (n1)

)2
/k∗0|T (n2) = k0|T (n)(1 + o(1)), as n → ∞. We are now

able to estimate kbγ
0 (n), on the basis of any estimate ρ̂ of ρ. With k̂∗0T denoting the sample

counterpart of k∗0T , and ρ̂ the ρ-estimate in Step 3. of the algorithm, initiated in Section 3,

we have the k0-estimate

k̂bγ
0(n;n1) := min

(
n− 1,

[
Cρ̂ (k̂∗0|T (n1))

2/k̂∗0|T ([n2
1/n] + 1)

]
+ 1
)
, (11)

with Cρ̂ =
(
1− 2cρ̂/2

) 2
1−cρ̂ , c given in (10).

Again, with γ̂ denoting either C or C, we proceed with the algorithm.

Algorithm (cont.) (bootstrap adaptive estimation of γ):

4. Compute γ̂k, k = 1, 2, . . . , n− 1;
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5. Next, consider the sub-sample size n1 = n0.955 and n2 = [n2
1/n] + 1;

6. For l from 1 till B = 250, generate independently, from the empirical d.f. F ∗n(x) =

1
n

∑n
i=1 I[Xi≤x], associated with the observed sample, B bootstrap samples (x∗1, . . . , x

∗
n2

)

and (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

), of sizes n2 and n1, respectively;

7. Denoting T ∗k,n the bootstrap counterpart of Tk,n, obtain (t∗k,n1,l
, t∗k,n2,l

), 1 ≤
l ≤ B, the observed values of the statistic T ∗k,ni , i = 1, 2, compute

MSE∗(ni, k) = 1
B

∑B
l=1

(
t∗k,ni,l

)2
, k = 1, 2, . . . , ni − 1, and obtain k̂∗

0T
(ni) :=

arg min1≤k≤ni−1MSE∗(ni, k), i = 1, 2;

8. Compute k̂bγ
0(n;n1) in (11);

9. Compute γ̂∗n,n1|T := γ̂
k̂bγ
0 (n;n1)

.

6 An application to burned areas data

Most of the wildfires are extinguished within a short period of time, with almost negligible

effects. However, some wildfires go out of control, burning hectares of land and causing

significant and negative environmental and economical impacts. The data we analyse here

consists of the number of hectares, exceeding 100 ha, burnt during wildfires recorded in

Portugal during 14 years (1990-2003). The data (a sample of size n = 2627) do not seem to

have a significant temporal structure, and we have used it as a whole, although we think also

sensible, to try avoiding spatial heterogeneity, considering at least three different regions:

the north, the centre and the south of Portugal (a study out of the scope of this note).

The box-plot and a histogram of the available data provide evidence on the heaviness

of the right-tail. We shall next consider, for this type of data, the performance of the

adaptive CVRB-EVI estimates H, in (4), which is minimum variance reduced-bias (MVRB).

These MVRB estimators exhibit stabler sample paths than Hill estimators, as functions

of k, and enable us to take a decision upon the estimates to be used, even with the help

of any heuristic stability criterion. The algorithm in this paper enables us to adaptively

estimate the OSF associated with the MVRB or CVRB estimates. For a sub-sample size

n1 = [n0.955] = 1843, and B=250 bootstrap generations, we have got k̂H0∗ = 1319 and the
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bootstrap MVRB-EVI-estimate H
∗

= 0.658, the value pictured in the following figure, jointly

with the above-mentioned adaptive bootstrap Hill estimate, H∗ = 0.73. Note the fact that

the MVRB EVI-estimators look practically “unbiased” for the data under analysis.

The MVRB-EVI estimators

look practically "unbiased"
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Figure 2: Estimates of the EVI, γ, through the Hill estimator, H, in (1), and the MVRB es-

timator, H, in (4), for the burned areas under analysis, together with the bootstrap adaptive

estimates H∗ and H
∗
.

A few practical questions may be raised under the set-up developed: How does the

asymptotic method work for moderate sample sizes? Is the method strongly dependent on

the choice of n1? What is the sensitivity of the method with respect to the choice of ρ-

estimate? Although aware of the need of n1 = o(n), what happens if we choose n1 = n?

Answers to these questions are expected not to be a long way from the ones given for classical

estimation (see [8]), have lightly been addressed in [13], for reduced-bias estimation, but are

out of the scope of this paper.
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