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Abstract. In industry, most of the process observations may be assumed to come
from a normal population, but usually we merely want to control the mean value pu. It is
thus sensible to find control statistics, which are “robust” to monitor the process mean,
giving no kind of false alarm whenever that mean is close to the target value, although
not under a normal regime. Simulation studies for a few symmetric and asymmetric
distributions allow us to suggest the total median as a robust location estimator,
and we shall here analyse the robustness of the total median chart comparatively
to the sample mean chart. Some indication is also provided on their comparative
out-of-control behaviour.

AMS 2000 subject classification. Primary 62P30, 62F40; Secondary 62G35,
65C05.
Keywords and phrases. Statistical Quality Control, Control Charts, Robust statistics.

1 Introduction and the total median

Control charts are tools widely used in industry to detect abnormal behaviour in
manufacturing processes. In general we assume that the process observations are
from a normal population with mean p and standard deviation o. However, even
if it is sensible to assume, on the basis of both theoretical and practical reasons,
that the process is normal, there is often a possibility of having disturbances
in the data. We then need to find efficient and robust estimators to monitor
the process parameters. Simulation studies for some symmetric and asymmetric
distributions related to the normal, developed in Figueiredo and Gomes (2000)
allow us to suggest the total median as a robust location estimator.

*Research partially supported by FCT / POCTI / FEDER.



Let (X3, X9, ---,X,) be a random sample of size n from a parent F' and,
as usual, let us denote Xj;.,, 1 < 7 < n, the random sample of the associated
ascending order statistics (o.s.), and (X7, X3, -+, X)) the random bootstrap
sample associated to an observed sample (z1,z2, - ,z,). We thus mean that
X7, 1< i< n, are obtained from our observed sample through a sampling with
replacement, i.e., they are independent, identically distributed (i.i.d.) replicates
from X*, a random variable (r.v.) with distribution function (d.f.)
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the empirical d.f. of our observed sample. Also, as usual, I4 denotes the
indicator function of the set A.

The total median is the statistic
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), 1<i<j<n, (11)
where BMd denotes the median of the bootstrap sample. The probabilities
a;; (also denoted «; ;) will be explicited in section 2 of this paper, where we
shall deal with the total median as a robust location estimator. In section 3 we
analyse the robustness of the total median chart comparatively to the sample
mean chart, drawing a comparison of this new chart with the classical Shewhart
X-chart in an out-of-control context. Finally, in section 4, we shall draw some
overall conclusions.

2 The total median as a robust location estimator

According to the usual definition of sample median we have

P, if n=2m-1
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Following closely the arguments in Efron (1979) and Efron and Tibshirani (1993)
we may easily obtain the probabilities c;; in terms of binomial distributions.

Indeed, let N = ) I{X;:zi}, 1 <4 < n. The random vector (N}, N5,--- ,Ny)
j=1

follows a multinomial scheme, with all parameters equal to 1/n. Let N, (*i) denote



the values of V¥ induced by the o.s. of our sample. For every integer [, 1 <1 < n,
P(X:z:n>xl:n) = P(N(*1)+-|-N( <m-— )
= P (Binomial (n,£) <m—1)
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For ¢ # j the probabilities a;; are obviously equal to 0 if n is odd. For n

even, and for 1 <4 < j < n, we obtain
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For the particular case i = 1, j = n > 1 we have
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For ¢ = j we have for all 7 from 1 till n,
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where [z] denotes the integer part of z.
The particular cases ¢ = 1 and 7 = n may thus be written as
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The total median may also be expressed as a linear combination of the sample
order statistics, i.e.,

and

TMd= i a; Xin,
i=1



where the coefficients a; are obviously related with the previous coefficients o;;,
through the relation
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These coefficients are “distribution-free”, i.e., they are independent of the un-
derlying model F', and depend only on the sample size n. In Table 1 we present
the values a;, with 3 decimal figures, for the most usual rational subgroups n
in Statistical Quality Control (SQC). The missing coefficients in the table are
either zero or obtained by symmetrization, i.e., through the condition

n
@i =an_it1, 1<i<n, 0<a<ap< - <app, » a=L
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Table 1: Values of the coefficients a;, for sample sizes n < 20.

3z 2 3 4 5 6 i 8 9 10 15 20

2

il 1.000 0.500 0.259 0.156 0.058 0.035 0.010 0.007 0.001 0.001 0.000 0.000
2 0.482 0.344 0.259 0.174 0.098 0.064 0.029 0.019 0.000 0.000
3 0.366 0.291 0.239 0.172 0.115 0.078 0.040 0.000
4 0.306 0.257 0.221 0.168 0.021 0.001
5 0.268 0.234 0.063 0.070
6 0.125 0.023
i 0.183 0.055
8 0.208 0.099
9 0.143
10 0.172

A large scale simulation study of size 25 x 2500 has been undertaken to eval-
uate the performance of the location estimators X and T'Md; such evaluation
was done in terms of their mean squared error; as a by-product, we have also
evaluated the performance of the sample median Md and of the bootstrap me-
dian BMd. In this simulation we have considered an adequate set of parent
distributions, in order to have different skewness and tail-weight coefficients.
The skewness and tail-weight coefficients herewith considered are

M3
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Ho

where p, denotes the r-th central moment of F', and
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respectively. F~! and ®~! denote the inverse functions of F' and of the standard
normal distribution function @, respectively. The global set of distributions
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considered includes the following well-known symmetric distributions: the
normal (with tailweight 1), the logistic (with tailweight 1.21), Student-t
models (with tailweights from 1.07 till 1.72) and several contaminated normal
models, with high tailweights. The asymmetric distributions considered were
the lognormal, the chi-square and the gamma distributions, with the usual
parametrization (Johnson et al., 1994, 1995); in this set of distributions we have
got values 7y, between 0 and 33.5, and values 7, between 1 and 5.9. Notice that
for all symetric models v, = 0 and that for the normal d.f. 7, = 1.

In Figure 1 we present the most efficient estimator (the one with smallest
mean squared error) among the ones considered, for the estimation of the
location of a symmetric distribution. Figures 2 and 3 are equivalent to Figure
1, but for the estimation of the mean and the median, respectively, of an
asymmetric distribution.
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Figure 1: Most efficient estimator for the location of a symmetric distribution.

To obtain the “robust estimator” we have applied a MazMin criterion:

1. For every model we have obtained the most efficient estimator, among the
ones considered.

2. Next, we have computed the efficiency of the other estimators relatively
to the best one, selected in 1., retaining the smallest one.

3. The “degree of robustness” is given by that minimum efficiency, and our
“robust estimator” is the one with the highest minimum efficiency.
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Figure 2: Most efficient estimator for the mean of an asymmetric distribution.
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Figure 3: Most efficient estimator for the median of an asymmetric distribution.

The conclusions regarding the robustness of the total median are summa-
rized graphically in Figures 4, 5 and 6. In Figure 4 we represent the minimum
relative efficiencies of the location estimators under study, whenever we take
into account all the symmetric distributions under consideration. Figures 5 and
6 are analogous to Figure 4, but related to the estimation of the mean and the
median of an asymmetric distribution, respectively.
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Figure 4: “Degree of robustness” of the location estimators under study, for symmetric parents.
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F igure 5: “Degree of robustness” of the mean value estimators under study, for asymmetric parents.
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Figure 6: “Degree of robustness” of the median estimators under study, for asymmetric parents.



We have also evaluated the breakdown point of the T'Md estimator, which
depends obviously on the precision of the weights a;, considered with an
adequate fixed number of decimal figures. Informally, the breakdown point of
an estimator corresponds to the largest fraction of observations we may change
in our sample, keeping the estimator under control. For small sample sizes, the
breakdown point of the T'Md is equal to 0, such as happens to the breakdown
point of the mean estimator X. However, such a value increases with n, and
tends to 1/2, the breakdown point of the median Md, as n increases to infinity.

In Figure 8 we represent a “quasi-change-value scatterplot” for the T Md
statistic, similar to the change-value curve. The change-value curve measures
the rate of change in an estimator whenever an extra observation z is added to
our sample (Hampel et al., 1986). Here, the “Quasi-Change-Value scatterplot”,
QCV, (i), measures the rate of change in our estimator when one of the o.s.
in the sample, say z;.,, changes to a position z € (Zi—1:n, Tit1n), 1 <P < n
(xo:n = —00, Tpt1:m = +00). It is thus possible to say that the introduction of
a new observation in a small sample has a small influence on the TMd, being
such an influence negligible for large sample sizes and whenever such a new
observation is an extreme order statistic.

The total median also enables us to obtain non-parametric confidence inter-
vals for the quantiles with a smaller size than those based on the sample median,
for the same coverage probability. Details on robust estimators may be found in
Hoaglin et al. (1983), Lax (1985) and Tatum (1997). Cox and Iguzquiza (2001)
provide an application of the total median in metrology, in the area of intra-
laboratory comparisons, providing a robust estimate of a reference value, which
enables the comparison of different laboratories’ nominal measures of the same
quantity.

3 Robustness of the X and TMd control charts

Whenever we are controlling the mean process at 0, assuming an underlying
normal parent for our data, a control chart based on a statistic W is said to be
“robust” if the alarm rate is as small as possible whenever the model changes
but the mean is kept at the target uo.

To investigate the robustness of the X and T'Md control charts we have
thus computed either analitically or through Monte Carlo simulation tech-
niques the alarm rates of both charts given that there are deviations from
normality, always maintaining the mean at po = 0, without loss of generality.
In our study we have considered 3-sigma control charts both for X and
TMd. We are however aware that it would have been preferable for the
T'Md statistic to use control limits based on its sampling distribution. For the
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Figure 7: “Quasi-change-value scatterplots” of the total median, TMd.

standard normal parent we have E[T'Md] = 0 and Var[T Md] is given in Table 2.

Table 2: Variance of the total median in a standard normal model.

1 == 6 0.18062 il 0.10757 16 0.07647
2 0.50000 T 0.16038 12 0.09881 i 0.07286
3 0.33907 8 0.14066 13 0.09267 18 0.06886
4 0.25681 9 0.12853 14 0.08628 19 0.06592
5 0.21476 10 0.11592 15 0.08157 20 0.06274

In Tables 3 and 4 we present, for sub-rational groups of size n = 3,4,5,6,7,
10, 15 and 20, those control limits and the alarm rates for the X and the
TMd charts, respectively, whenever we consider standardized data from sev-
eral well-known distributions with different skewness and tail-weight. Apart
from the ones considered before, we have also included several chi-squared mod-



els, X7 = Gama(0, 2, k/2), the Inverse Gaussian model, with d.f. Fgr(z;u,() =

¢ (w/C/SC (z/p— 1))+62</”<I> (—\/C/m (x/p+ 1)) , ¢ > 0, with ® the standard
Gaussian d.f., and the standard Weibull model.

Table 3: Alarm rates of the 3-sigma X-chart.

Distribution Y T = = = = = =110 7= 15 =20
Normal 0.000 1.000 0.0027 0.0027 0.0028 0.0028 0.0027 0.0028 0.0027 0.0028
Dj : tgo 0.000 1.067 0.0034 0.0032 0.0032 0.0031 0.0030 0.0030 0.0030 0.0028
Dy : tio 0.000 1.145 0.0046 0.0043 0.0039 0.0037 0.0037 0.0034 0.0032 0.0031
D3 : Log(1) 0.000 1.212 0.0051 0.0046 0.0041 0.0040 0.0039 0.0036 0.0033 0.0031
Dy : t3 0.000 1721 0.0117 0.0112 0.0107 0.0104 0.0100 0.0091 0.0084 0.0079
Ds : W(2) 0.631 0.911 0.0038 0.0035 0.0032 0.0032 0.0031 0.0030 0.0029 0.0028
Dg : X%O 0.632 1.001 0.0043 0.0039 0.0037 0.0037 0.0034 0.0032 0.0030 0.0033
D7 : X%O 0.894 1.004 0.0055 0.0049 0.0044 0.0041 0.0040 0.0036 0.0033 0.0033
Dg : Ga(2) 1:414 1.018 0.0085 0.0075 0.0066 0.0061 0.0059 0.0049 0.0043 0.0038
Dg : LN(0.5) 1.750 1.143 0.0106 0.0093 0.0084 0.0079 0.0073 0.0062 0.0052 0.0046
Dip : Ezp(1) 2.000 | 1.062 0.0118 0.0105 0.0093 0.0087 0.0080 0.0067 0.0057 0.0049
Diy 2 X% 2.828 | 1.218 0.0156 0.0141 0.0128 0.0117 0.0109 0.0093 0.0075 0.0067
D3 : Ga(0.5) 2.828 1.218 0.0159 0.0140 0.0129 0.0117 0.0112 0.0092 0.0076 0.0067
Dq3 : GI(1) 3.000 1371 0.0164 0.0147 0.0135 0.0126 0.0115 0.0101 0.0082 0.0072
Di4: LN(1) 6.185 1.658 0.0171 0.0168 0.0161 0.0158 0.0154 0.0141 0.0127 0.0118
Djs : W(0.5) 6.619 2.260 0.0201 0.0198 0.0192 0.0187 0.0180 0.0169 0.0150 0.0136
Control limits 732 +1.500 +1.842 1225 +£1.134 +.949 TS +.671
Table 4: Alarm rates of the 3-sigma T'M d-chart.

Distribution =3 n=4 =5 =16 T = T = 10 =15 =20

Normal 0.00270 0.00262 0.00276 0.00277 0.00271 0.00283 0.00271 0.00277

Dy itog 0.00325 0.00288 0.00268 0.00252 0.00249 0.00236 0.00206 0.00206

Dy : t1o 0.00397 0.00340 0.00264 0.00242 0.00207 0.00181 0.00156 0.00141

D3 : Logistic(1) 0.00449 0.00356 0.00273 0.00247 0.00206 0.00161 0.00129 0.00108

Dy it 0.00814 0.00550 0.00197 0.00113 0.00056 0.00020 0.00005 0.00003

Ds : W(2) 0.00378 0.00339 0.00301 0.00291 0.00274 0.00281 0.00330 0.00410

D X%O 0.00405 0.00346 0.00295 0.00287 0.00244 0.00227 0.00234 0.00237

D : X%O 0.00511 0.00415 0.00316 0.00274 0.00247 0.00193 0.00205 0.00268

Dg : Ga(2) 0.00746 0.00572 0.00389 0.00307 0.00238 0.00134 0.00113 0.00210

Dg : LN(0.5) 0.00841 0.00585 0.00360 0.00283 0.00187 0.00096 0.00057 0.00096

Dip : Ezp(1) 0.00950 0.00704 0.00433 0.00329 0.00222 0.00101 0.00039 0.00064

Dy s X% 0.01150 0.00797 0.00431 0.00292 0.00166 0.00057 0.00013 0.00003

Dj3 : Ga(0.5) 0.01181 0.00806 0.00427 0.00291 0.00181 0.00060 0.00016 0.00005

Dj3 : GI(1) 0.01170 0.00777 0.00390 0.00269 0.00144 0.00050 0.00010 0.00003

Di4 : LN(1) 0.01201 0.00805 0.00302 0.00165 0.00072 0.00018 0.00002 0.00000

Dis5 : W(0.5) 0.01353 0.00890 0.0283 0.00163 0.00066 0.00010 0.00001 0.00000

Control limits 14T #+1.520 +1.390 S 1.2%5 =+=1.201 =102 +0.857 +0.751

For the most usual rational subgroups in SQC, n = 5 and n = 10, we

present in Figure 7 the alarm rates of both the X and the TMd charts. We
have separated symmetric and asymmetric distributions, and we have ordered
the symmetric distributions by the tail-weight coefficient 7 and the asymmetric
distributions by the skewness coefficient . It is clear from Tables 3 and 4,
partially pictured in Figure 8, that there is a reasonably high variability of
alarm rates for both charts when the model is no longer normal (much more
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evident for the X-chart). Neverthless, for small samples, particularly for the
usual rational subgroup size, n = 5, the differences to the normal-case are much
smaller whenever we consider the T'M d-chart, even for asymmetric models with
a high tail-weight, like the x?.
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Figure 8: Alarm rates of the 3-sigma X and the TMd control charts for n = 5 and n = 10.

The way the T'M d-chart has been devised, with the main objective of provid-
ing no kind of false alarm whenever the mean of the process is close to the target
value, led us to think that the T'M d-chart would have, in an out-of-control situa-
tion, a worse performance than the X-chart. Astonishingly, for a great diversity
of models, the T Md-chart is even able to overpass the X-chart, providing a faster
alarm signal when the process is out of control. We shall next compare the effi-
ciencies of an X and a TMd control chart, whenever monitoring the mean value
of non-normal processes, for rational subgroups of size n = 5 and control limits
placed at the quantiles x0.001 and xo.999 of the respective statistic. In Table 5 we
present the power functions of both charts for processes from some of the models
previously described, sometimes with specific re-parametrizations. For instance:

s
the Logistic(n,0) model, has a d.f. F,(z;p,0) = <1+exp <——L;§:—)>> )

z € R; the lognormal model, LNy (u, 0, §), is a model with mean value p and stan-

dard deviation o such that, with £ = p—o/+/exp(62) — 1, In{LNs(p, 0,6) — £}
is normal with mean value {ln (O’/ \exp(6?) — 1) - 62/ 2} and standard devi-

ation §; the Exp(0,d) model has a d.f. given by F,(z) = 1 — e g =
the Gamma(§,6,0) model has a probability density function (p.d.f.) given by
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9(z;€,6,0) = (z — &) exp{—252}/(6°T(0)); and finally, a Weibull(¢,s,0)
model has a d.f. given by F,, (z;¢,6,0) = 1 — e~(@=8/9° 2 > ¢,

Table 5: Power functions of the X and the TMd charts with control limits at X, go; a0d Xo. 0005
whenever detecting changes in the mean value (1) or the scale parameter () of the process (n = 5).

P [0 | 20 [ I5 [ 10 | 00 [ 0 | 15 [ 20 [ 30 || LOL | UCL
Logistic(p, 1)

X 1.000 | 0.883 | 0.523 | 0.140 | 0.002 | 0.150 | 0.542 | 0.892 | 0.999 || -1.475 | 1.454
TMd 0.999 0.897 0.545 0.147 0.002 0.156 0.562 0.905 1.000 -1.452 1.434
IN;(s 1,005
X 0.999 0.975 0.876 0.563 0.002 0.032 0.152 0.501 1.000 -0.985 1.946
TMd 1.000 0.983 0.901 0.603 0.002 0.045 0:219 0.654 1.000 -1.028 1.709
IN: (5,1, D)

X 0.997 0.985 0.958 0.858 0.002 0.004 0.009 0.024 0.268 -0.616 3.140
TMd 1.000 0.997 0.986 0.927 0.002 0.019 0.101 0.538 1.000 -0.631 1.775
é | 0.1 0.3 0.5 0.7 170 | 156 | 2.0 3.0 5.0 ” LCL l UCL
Exp(0, d)

X 0.854 0.101 0.017 0.004 0.002 0.033 0.142 0.457 0.825 -0.854 1.945
TMd 0.793 0.090 0.015 0.004 0.002 0.028 0.116 0.393 0.770 -0.881 1.781
Gamma(0, §, 2)

X 1.000 0.521 0.077 0.011 0.002 0.068 0.310 0.773 0.983 -0.997 1.780
TMd 1.000 0.457 0.067 0.010 0.002 0.058 0.268 0.722 0.972 -1.045 1707
Weibull(0, 6, 2)

X 1.000 0.881 0.162 0.018 0.002 0.193 0.650 0.966 1.000 -1.177 1.531
TMd 1.000 0.772 0.120 0.015 0.002 0.166 0.585 0.944 0.999 -1.250 1.571

4 Some overall conclusions

We here summarize the main conclusions:

1. The total median T'Md is a fully non-parametric location estimator, highly
efficient and robust for small-to-moderate rational subgroup sizes, the most
usual ones in SQC.

2. The sample mean X is an efficient estimator of the mean value of a sym-
metric distribution with moderate tails, although it is not at all robust;
for symmetric parents the sample median turns out to be the most robust
estimator (among the ones considered) for sample sizes smaller than 10,
being the total median the most robust one for sample sizes larger than 10.
If the parent model has not too heavy tails, i.e. if we compute the “degree
of robustness” only on the basis of a smaller set of symmetric distributions,
choosing a threshold in the tail-weight, the total median works better than
the sample median, from a point of view of robustness, for sample sizes
larger than a value n which decreases as the threshold decreases.

3. For the estimation of either the mean value or the median of an asymmetric
distribution we suggest the total median as a robust and efficient location
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estimator for small-to-moderate samples. Whenever estimating the mean
value, the sample median exhibits the best performance for very small
sample sizes; for large sample sizes and not too heavy tail models the
sample mean may exhibit the best performance. For the estimation of the
median, the TMd clearly overpasses all the other estimators for sample
sizes n > 5.

The T'Md statistic must however be carefully chosen, because in non-
normal situations the alarm rate of such a control chart can be much
smaller than expected, particularly if n is large. Together with the con-
sideration of the T'Md control statistic, the use of a rational subgroup size
n = 5 is highly advisable in practice.

As expected, for normal data the TMd chart is less efficient than the
X-chart to monitor the location of the process; however, for some magni-
tudes of shift both charts are approximately equivalent, even for normal
data. For other distributions, like for instance the lognormal, the T'Md
chart performs better, being thus advisable in practice due to its robust-
ness comparatively to the common X control chart.

. The bootstrap median, which might appear as a serious alternative to the

sample median shows the worst performance among the location estimators
herewith considered.

References

[1]

[2]

Borror, C. N., Montgomery, D. C. and Runger, G. C. (1999). Robustness of the
EWMA control chart to non-normality. J. of Quality Technology 31, 309-316.

Cox, M. G. and Iguzquiza, E. P. (2001). The total median and its uncertainity. In
Ciarlini et al. (eds.), Advanced Mathematical and Computational Tools in Metrology
5, 106-117.

Efron, B. (1979). Bootstrap methods — another look at the Jackknife. The Ann.
Statist. 7T, 1-26.

Efron, B. and R. J. Tibshirani (1993). An Introduction to the Bootstrap. Chapman
and Hall.

Figueiredo, F. and Gomes, M. I. (2000). Estimadores robustos de localizacdo. In
M. Neves et al. (eds.)A Estatistica em Movimento, 193-204, Edigdes SPE.

Hoaglin, D. C., Mosteller, F. and Tukey, L. G. (1983). Understanding Robust and
Ezploratory Data Analysis. John Wiley and Sons, New York.

Hampel, F. R., Ronchetti, E. M., Rousseew, P. J. and W. Stahel (1986). Robust
Statistics: the Approach based on Influence Functions. Wiley.

13



(8] Lax, D. A. (1985). Robust estimators of scale: finite sample performance in long-
tailed symmetric distributions. J. Amer. Statist. Assoc. — Theory and Methods
80, 736-741.

[9] Johnson, N. L., Kotz, S. and N. Balakrishnan (1994). Continuous Univariate Dis-
tributions, Vol. 1, 2nd edition, John Wiley and Sons.

[10] Johnson, N. L., Kotz, S. and N. Balakrishnan (1995). Continuous Univariate Dis-
tributions, Vol. 2, 2nd edition, John Wiley and Sons.

[11] Tatum, L. G. (1997). Robust estimation of the process standard deviation for
control charts. Technometrics 39, 127-141.

14



