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Finite Element Analysis of the effect of High Tibial Osteotomy 

correction angle on articular cartilage loading 

Abstract 
Osteoarthritis (OA) is a globally common disease that imposes a considerable ongoing health and 

economic burden on the socioeconomic system. As more and more biomechanical factors have 

been explored, malalignment of the lower limb has been found to influence the load distribution 

across the articular surface of the knee joint substantially. In this work, a three-dimensional finite 

element analysis was carried out to investigate the effect of varying the High Tibial Osteotomy 

(HTO) correction angle on the stress distribution in both compartments of the human knee joint. 

Thereafter, determine the optimal correction angle to achieve a balanced loading between these 

two compartments. The developed finite element model was validated against experimental and 

numerical results. The findings of this work suggest that by changing the correction angle from 0 

to 10° valgus, HTO shifted the mechanical load from the affected medial compartment to the 

lateral compartment with intact cartilage. The Von Mises and the shear stresses decreased in the 

medial compartment and increased in the lateral compartment. Moreover, a balanced stress 

distribution between the two compartments as well as the desired alignment were achieved under 

a valgus hypercorrection of 4.5° that significantly unloads the medial compartment, loads the 

lateral compartment and arrests the progression of OA. After comparing the achieved results 

against the ones of previously studies that explored the effects of the HTO correction angle on 

either clinical outcomes or biomechanical outcomes, one can conclude that the findings of this 

study agree well with the related clinical data and recommendations found in the literature.  

 

Keywords: Knee Biomechanics, Finite Element Analysis, Stress distribution, Von Mises, 

Osteoarthritis. 
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Introduction 
 The knee is the most vulnerable joint in human body because it bears enormous weight 

and pressure loads while providing flexible movement. The bone epiphyses of the knee joint 

are covered with cartilage, which supports the majority of the loading. Because of its 

mechanical properties and location in the knee joint, cartilage breaks down and subsequently 

degenerates, causing pain and stiffening during normal movements. In fact, the malalignment 

of lower limb substantially influences the load distribution across the articular surface of the 

knee joint (1), which is therefore considered as a critical risk factor for osteoarthritis (OA) 

progression. Concerning the knee afflicted by medial compartment OA, a lateral closing-wedge 

High Tibial Osteotomy (HTO) can be an effective answer to conservative management of 

interrupting the disease progression (2–4). The aim of an HTO is to shift the load from the 

affected area to other areas with intact cartilage by correcting the Hip-Knee-Ankle (HKA) angle 

thereby providing considerable advantages over conventionally used total knee replacement by 

well preserving the biological knee structures. However, the achieving of the appropriate 

alignment is a critical determinant of success for an HTO to treat medial compartment knee 

OA.  

 Actually, clinical studies available in the literature lack consensus on the ideal alignment 

to maximize the osteotomy survival and post-operative knee function. The recommended 

optimal alignment following HTO varies significantly among different authors; some of them 

even present contradictory results. Sprenger and Doerzbacher (5) assessed the correlation 

between various clinical and radiographic factors and the long-term results after HTO 

performed in 66 patients suffered from medial compartment OA. In their study, the radiographic 

valgus angle ranged between 8° and 16° at one year from surgery had the most significant 

positive effect on survivorship for all end points compared with the other parameters. Similarly, 

the retrospective study of Aglietti et al. (6) treated 120 Closing Wedge High Tibial Osteotomies 

for varus gonarthrosis. Only 61 knees were left for clinical and radiographic evaluation. 

Satisfactorily results were correlated to valgus alignment at consolidation between 8° and 15° 

at an average follow-up of 15 years. The best long results in the study of Valenti et al. (7) were 

divided into 3 groups in relations to the correction achieved. The valgus angle was more than 

3° and less than 8° in the group of patients with standard correction and it was more than 8° in 

the group of patients with overcorrection. Indeed, Hernigou et al. (8) evaluated the results of 93 

knees operated by Opening Wedge HTO after a mean length of follow-up of 11.5 years. The 

best outcomes were obtained in the twenty knees that had a HKA angle ranged between 183° 
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to 186° (from 3° to 6° of valgus). Ivarsson, Myrnerts & Gillquist (9) reviewed 99 knees after 

HTO and they reported that a mean angulation of 3° to 7° of valgus significantly ensures a good 

period of relief of symptoms after osteotomy. However, the study of Benzakour et al. (10) 

revealed that an average of 5° mechanical valgus at the time of osteotomy ensures a good patient 

recovery for at least ten years. Therefore, various suggestions have been advanced to define this 

angle. Nevertheless, the determination of the ideal HTO alignment is still controversial. 

 Another research line that is attaining increasing attention is based on biomechanical 

studies in order to optimize the correction angle. Mina et al. (11) attempted to directly relate 

the correction angle to the contact loading pattern of the knee joint by using electronic pressure 

sensor inserted into the cartilage of cadaveric knee specimen under a specific mechanical testing 

system simulating the functional activity of the knee joint. Based on achieving equal stress 

distribution between the medial and lateral compartments, which is considered most closely 

approximating idealised physiologic loading, they recommended an alignment of 0° to 4° of 

valgus. Briem et al. (12) investigated the effect of the degree of alignment angle after open 

wedge HTO surgery on joint moments, muscle co-contraction and self-reported functional 

outcome. From their study, the authors found that the mean mechanical axis angle was 185° (5° 

of valgus) and the mean weight-bearing line ratio was 73.4% at 1 year after surgery. 

 Several research works (13–42) investigated the biomechanics of the human knee joint 

in order to achieve new insights useful for the clinical area. Some other studies reviewed the 

biomechanical behavior of the knee joint and evaluated the use of finite element method in 

modeling this joint(43–47). In the study of Fernandes et al.(48), a 3D finite element analysis 

(FEA) model was developed to study the biomechanical behavior of the knee joint after an ACL 

rupture and to compare the biomechanical changes induced by an isotropic Marlow and 

anisotropic Holzapfel-Gasser-Ogden (HGO) hyperelastic constitutive models when modeling 

the knee ligaments. The bones were defined as rigid bodies, and the articular cartilage and the 

menisci were modeled as linear elastic isotropic materials. The findings of this study revealed 

that the HGO model presents more accurate results since it has better reproduced the mechanical 

behavior of the ligaments. Moreover, the ACL rupture led to a clear increase in the knee laxity 

in more than one degree of freedom that induced several drastic kinematic changes, which have 

a great impact on the overall biomechanics of the entire knee structure. 

 Peña et al. conducted a series of FEA studies (49–54), using the same magnetic 

resonance imaging (MRI) based model, to investigate the stress and strain behaviors in the soft 

tissues of a healthy human knee joint and after meniscectomy. In the study of meniscectomy 

(54), the minimal principal stresses corresponding to a compressive load at full extension were 
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obtained for the posterior region of the medial meniscus and the corresponding region of the 

cartilage. Under an axial compressive loading at the femur, the maximal contact stress in the 

articular cartilage after meniscectomy was about twice of that in a healthy joint. 

 Another study conducted by Halonen et al. (55) characterized the effects of collagen 

fibrill orientations, collagen distribution and proteoglycan (PG) distribution on the knee joint 

stresses and strains in cartilage during human gait cycle as well as at mechanical equilibrium. 

A 3D FE knee joint model was created including only the femoral and tibial cartilages and the 

menisci. The articular cartilage was assumed to behave as Fibril reinforced poroviscoelastic 

(FRPVE) material and the menisci were modeled as elastic transversely isotropic material. The 

findings of this study revealed that the collagen fibril orientation in cartilage substantially 

affects the depth-wise tissue strains and stresses during dynamic and static loading of a joint. 

Moreover, the mechanical behavior of the tibial articular cartilage in the knee joint is minimally 

affected by the fibril volume density distribution. Finally, the depth-dependent PG content 

substantially affects the cartilage strains and stresses at the standing position of the joint. An 

acceptable approach for analyzing the loading patterns in cartilage during the gait cycle was 

developed using the results obtained by the authors. These results allowed the creation of the 

knee joint model that incorporates the arcade-like collagen orientation in cartilage. However, 

an important role is assumed by the depth-wise PG distribution in the simulations of equilibrium 

loading. 

However, there is a lack of FEA based studies investigating the effect of varying knee 

alignment on the stress distribution at soft tissues. These studies could have the potential of 

providing a standardized HTO alignment, notably for the optimization of the value of the 

correction angle. Therefore, the present article focuses on developing a 3D FE knee joint model 

to predict the local stress distribution at the tibiofemoral joint and investigate the effect of 

varying the HTO correction angle on the stress distributions at the knee cartilages. Finally, the 

FEA results can be used to determine the optimal correction angle that strongly affects the HTO 

treatment success. 

Material and methods 

Knee joint geometry 
 The human knee has complicated geometry, and modelling of this joint can be notably 

challenging. The 3D model of the right lower limb studied in this work was extracted from a 3D 

anonymous human skeleton obtained from the ZBrush 4R7 (Pixologic, Inc., USA) software. Then, 
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it was exported to SolidWorks (SolidWorks Corporation, USA) where scaling was performed to 

achieve on the one hand, the physiological dimensioning of the lower limb, and on the other hand, 

to perform the proper adjustment to the knee joint to be used as reference for the simulation of 

different corrections of the HTO. The anterior, posterior and lateral weight-bearing Xray views 

were used to assess the knee joint in the normal anatomical position and to better comprehend the 

joint space when the patient is in standing position. 

In a third step, the surface covering the four bones constituting this joint, i.e., femur, tibia, 

fibula and patella, was added. Then, we have taken under account the design of the articular 

cartilage at the distal epiphysis of the femur, the proximal epiphysis of the tibia and the posterior 

epiphysis of the patella. Because it is a simulation model, we assumed that the articular cartilage 

has a constant thickness of 4 mm, which is in accordance with the study of Guess et al. (56). 

Finally, the design of medial and lateral menisci has been accomplished, Figure 1. Both menisci 

and articular cartilage were modeled using SolidWorks and the arthroscopic knee images in order 

to respect the anatomy under study. 

 

< Figure 1 should be around here > 

 

 In order to facilitate the modelling of the joint, the ligament system providing the 

mechanical connection between the femur and the tibia was modeled using axial springs in Abaqus 

(Dassault Systemes, France). 

Once the solid model had been generated, the mesh was built in Abaqus. All bones, 

cartilage and menisci were discretized into 10-node tri-linear tetrahedral elements. Tetrahedral 

elements were chosen over hexahedral elements attributable due to its great flexibility in meshing 

complex curved geometry. Then, in order to this study brings new understand about the behavior 

of soft tissue, a refined mesh was used in the articular cartilage and meniscus, Figure 2. 

 

< Figure 2 should be around here > 

 

Material properties 
 The material properties were assigned according to pertinent literature. Several studies (48–

54,57) have assumed that the femur and tibia as rigid bodies because of their relatively high density 

and Young's modules compared to the cartilage and menisci in the knee joint. On the other hand, 

previous FEA studies (56,58–62) did not take into account the difference between cancellous and 

cortical bone and considered the whole bony structure of the knee joint as cortical bone. For 
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example, Guess et al. 11 developed dynamic 3D anatomical knee joint models with sufficient 

computational competence for human movement simulation. In their study, the tibia was 

considered as a rigid body and the femur assumed to be a linear elastic isotropic material with a 

Young’s modulus of 20 GPa and a Poison’s ratio of 0.2. Moreover, in the study conducted by 

Zheng et al. 15, where the influence of material properties on menisci responses was investigated, 

the concellous bone was neglected and the femur, the tibia and the fibula were modeled as linear 

elastic isotropic material. In this study, the femur, tibia, patella and fibula were assumed to be a 

linear elastic and isotropic material with Young's Modulus of 20 GPa, Poisson’s ratio of 0.3 and 

density of 1600 kg/m3 (56,63–66). 

 Despite being a hydrated tissue, the loading time of interest corresponds to that of a single 

leg stance and the viscoelastic time constant of cartilage approaches 1500 s, the articular cartilage 

is considered as a single-phase isotropic linear and elastic material, with elastic modulus of 5 MPa, 

Poisson’s ratio of 0.46 and density of 1000 kg/m3 (18,19,49,52,54,64,67–73). The same approach 

has been adopted in many other studies (32,49,63,68,74–81), and can be accurate enough to predict 

short-term cartilage response as indicated by Donzelli et al. (33), who proved that there are no 

significant changes in the cartilage contact response shortly after loading. For the same reason, 

menisci were also specified as a single-phase linear isotropic and elastic material with the 

following average properties: elastic modulus of 59 MPa, Poisson’s ratio of 0.49 and density of 

1100 kg/m3 (49,50,52–54,64,81,82). 

 On modelling ligaments, two important assumptions were made: First, no difference in the 

material behavior between the ligament body and its insertion can be noticed. Second, material 

characteristics depending on time, such as viscoelasticity, creep and relaxation, can be neglected 

(41), again due to the high ratio between the viscoelastic time constant of the material and the 

loading time of interest in this study. We used therefore, spring elements that connect the femur to 

the tibia. Each ligament bundle consisted of two springs with a total stiffness of 1600 N/mm or 

800 N/mm per spring (32). 

Loads and boundary conditions 
 For a static analysis in Abaqus, small sliding surface interactions were defined between 

lateral meniscus-femoral cartilage, lateral meniscus-tibial cartilage, medial meniscus-femoral 

cartilage and medial meniscus-tibial cartilage pairs, femoral cartilage and tibial cartilage on both 

the lateral and medial sides. The contact pressure-clearance relationship used to define the 

interaction between these surfaces was a ‘’hard contact’’ model, which means that no penetration 

was allowed of the nodes from one surface into the other surface and no transfer of tensile stress 
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was allowed across the interface (68). An augmented Lagrangian algorithm was adopted to 

simulate the contacts between femoral cartilage, tibial cartilage and menisci with frictionless 

behavior assumed to mimic the lubrication in the knee joint. 

Tie constraints were also generated between femur and cartilage, tibia and both medial and 

lateral cartilage, patella and cartilage, fibula and tibia and the four horns of menisci and the tibial 

plateau. A slave and master surfaces were defined for each contact pair set. Each slave node was 

checked for penetration into its corresponding master surface. During simulation, the proximal 

surface of the femur was considered to be fixed in all degrees of freedom, whereas the tibia and 

fibula were free in all degrees of freedom, Figure 3. 
 

< Figure 3 should be around here > 

 

Finally, a single axial force was applied to obtain the stress distribution at the articular 

cartilage for the different correction angles adopted in this study. Most of the FEA studies on knee 

joint only concerned the stress distribution at both cartilage and menisci under pure axial loading 

(56,62,83). In this study, we supposed that the subject under analysis had a weight of 125 kg, and 

a single axial force approximately to the body weight of 1250 N was applied at the coupling point 

of the distal surfaces of the tibia and the fibula. However, a little exception was done in order to 

compare the developed knee model with those available in the literature. A single axial force of 

740 N was applied on the femur to obtain the stress distribution at the menisci and cartilage, which 

can be compared against the stress values obtained in those studies. Nevertheless, it should be 

noted that most of the FEA studies on knee joints are only concerned with the stress distribution 

at both cartilage and menisci under pure axial loading. 

HTO modeling 
 A Closed-Wedge High Tibial varus Osteotomy (CWHTO) is a very specific surgical 

technique that removes a part of the bone in the medial section of the knee joint at the top of 

the tibia to restore the stability of the knee. The accuracy of the correction depends on the 

surgical technique because the lack of accuracy and precision when cutting the wedge of the 

bone affects the quality of the patient’s recovery. Prior to the modeling of the osteotomy, we 

generated a varus knee model from the healthy knee model. This was made by creating a bone 

deflection forming an inclination angle α=12° between the mechanical axis of the femur and 

the mechanical axis of the tibia. Therefore, as shown in Figure 4, the mechanical axis of the 

tibia of the healthy knee joint was shifted medially to produce a varus knee model with a HKA 
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angle of 168°. Since this model was not obtained from a pathologic knee, it does not include 

the thinned cartilage nor sclerosed bone. 

< Figure 4 should be around here > 

 

 The next step was the planning of the operative steps of the HTO for each value of the 

correction angle (γ), which represents the sum of the hypercorrection (β) and the inclination angle 

(α). Indeed, the hypercorrection in valgus is necessary during osteotomy. It is confirmed by most 

of the results published in the literature (7,8,84–87) that its value is within a range of 0 to 10º. 

Therefore, seven values of the hypercorrections β = {0°, 3°, 4°, 4.5°, 5°, 6°, 10°} were chosen in 

this study in order to investigate the effect of varying the correction angle on the stress distribution 

in the knee joint and therefore, to determine the optimal angle that limits the degeneration of the 

articular cartilage. Figure 5 summarizes all the angles taken into account when modeling the 

CWHTO. 
 

< Figure 5 should be around here > 

 

 Following the rules of the operating technique of the HTO, the osteotomy line should 

be distant from the tibial joint line of d = 25 mm, Figure 5. Once the geometry is defined, the 

wedge of bone is removed, the osteotomy is closed, and the cut surfaces of the tibia are held 

together, Figure 6. As this highlights the effect of the valgisation angle on the stress distribution 

in the articular cartilage, it was assumed that the period of consolidation after surgery is 

accomplished and that the plate and screws used during the closure of the osteotomy are 

removed since this exclusion optimizes the results. 

 

< Figure 6 should be around here > 

 

The last step was the export of the built models to Abaqus to numerically simulate each case 

and study the stress distribution in the knee joint after the correction of the femorotibial angle. The 

same load and boundary conditions were assigned to all the models. 
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Results 

Validation of intact knee model 
 In this work, under a 740 N compressive load, the lateral and medial compartment carried 

42.2 and 57.8% of the total load, respectively, and the menisci transferred about 68% of the total 

load.  

 The highest contact pressure took place in the posterior region of the medial meniscus, with 

a maximum of 8.7 MPa, and in the anterior horn of the lateral meniscus, with a maximum of 6.4 

MPa. Basically, these locations corresponded to the contact zones between the femoral condyles 

and the menisci, and the obtained values were slightly similar to those obtained experimentally by 

Walker & Erkiuan (88). The maximum Von Mises stress in articular cartilages were obtained to 

see overall stress distribution. Hence, our results revealed that the maximum Von Mises stress in 

the femoral cartilage, medial tibial cartilage and lateral tibial cartilage were equal to 1.75, 2.65 and 

1.93 MPa, respectively. 

 Furthermore, this study was also developed taking into account clinical real cases. Hence, 

Figure 7 shows a human knee suffering from a varus, and with the cartilage of the medial condyle 

damaged, which was also addressed in this study. 

 

< Figure 7 should be around here > 

 

Effect of the correction angle on the stress redistribution 

 The findings of this study showed that the variation of the degree of the HTO correction 

from 0 to 10° valgus (shifting the loading axis laterally), had effectively decreased the medial 

compartment stresses and increased the lateral compartment stresses.  

 As shown in Figure 8, the maximum Von Mises stress decreased from 11.04 to 5.58 MPa 

(50% reduction) in the medial tibial cartilage and from 7.77 to 5.1 MPa (35% reduction) in the 

medial femoral cartilage. While, it increased in the lateral tibial cartilage from 4.45 to 6.85 MPa 

(54% increase) and from 3.6 to 6.3 MPa (75% increase) in the lateral femoral cartilage. 

 Observing Figure 9, one can realize that the maximum shear stress was calculated 

decreasing in the medial dimensions of femoral and tibial cartilage, which is a reduction from 7.37 

to 5.57 MPa (33% reduction) and from 8.21 to 4.85 MPa (41% reduction), respectively. At the 

same time, the maximum shear stress for the lateral femoral and tibial cartilage can be observed 

to increase from 4.83 to 6.86 MPa (42% increase) and from 4.4 to 6.71 MPa (53% increase), 

respectively, when the knee alignment varied from 0 to 10° valgus. 
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< Figures 8 and 9 should be around here > 

 

 As shown in Figures 9 and 10, for a correction angle of 16.5°, the medial compartment 

supports 51% and the lateral compartment supports 49% of the total load. Thereby allowing 

asserting that a balanced stress distribution between two compartments was achieved when the 

tibia was cut by a correction angle of 16.5°. 

Correction angle emphasis 

 In order to better investigate the effect of this correction degree of HTO (γ=16.5°) on the 

stress distribution across both the compartments, the range of the maximum stress to minimum 

stress had been set constant for all models and the same range of stress legend was adopted for 

each component. Therefore, the stress distribution pattern between the healthy knee joint model 

and the per/post-operative knee joint models becomes easily comparable. Also, in the related 

figures, the blue region indicates the higher Von Mises stresses whilst the red region indicates the 

lower Von Mises stresses. 

The Von Mises stresses distributions obtained for the three models are shown in Figure 10. 

In the case of a varus knee, a high stress concentration was noticed in the posterior region of the 

lateral tibial cartilage and in the anterior region of the femoral cartilage and the lateral tibial 

cartilage. However, the trend of decrease in the Von Mises stress concentration on the medial and 

lateral side was clearly observed after shifting the loading axis laterally. Yet, it becomes relatively 

similar to that in the healthy knee joint. 
 

< Figure 10 should be around here > 

 

 Once more, the trend of decrease in the shear stress concentration on the medial side and 

subsequent increase in the stress concentration in the lateral side after shifting the loading axis 

laterally were observed, Table 1. The maximum shear stress decreased in the medial femoral 

cartilage and in the medial tibial cartilage from 8.67 to 5.76 MPa and from 12.21 to 6.01 MPa, 

respectively. While, the maximum shear stress increased in the lateral femoral cartilage and in the 

lateral tibial cartilage from 4.27 to 5.67 MPa and from 4.8 to 5.6 MPa, respectively. 

 

< Table 1 should be around here > 
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Discussion 
 The motivation for this work was the development of a 3D FE knee joint model that 

efficiently simulate the stress distributions in articular cartilages when varying the HTO correction 

angle. The underlying main goal was to determine the optimal correction angle that provides a 

balanced stress distribution between the two compartments.  

 One key finding of this study was that the model was successfully validated against 

experimental and numerical results from the literature (32,49,50,64,83,89–93). Regarding the 

geometric accuracy, under a single compressive force of 740 N, the load distribution values in our 

model were very close to the ones reported in the literature. In the study of Zhu et al. (90), the 

lateral and medial compartment carried 44.9 and 55.8% of the total load, respectively, under a 

compressive load of 1000 N (respectively, 42.2 and 57.8% in this study). The menisci transferred 

about 69% of the total load (68% in this study). The little observed discrepancy is a result of the 

different loads applied to the models. 

A similarity in contact pressure was found between our model and results reported in the 

literature. In the previous work of Pena et al. (49), an axial compressive load of 1150 N was applied 

on a FE model of knee joint. The bone was considered as rigid body, cartilages and menisci 

behaved as a linear elastic and isotropic material, and ligaments were modelled as hyperelastic and 

isotropic. In their study, the maximal contact pressure appeared in the posterior region of the 

medial meniscus with average value of 2.9 MPa and in the anterior horn of the lateral meniscus 

with average value of 1.45 MPa. The contact pressure was slightly higher in our study, probably, 

due to the difference between the subjects modelled; mainly, the difference in the thickness of 

cartilage and the thickness of meniscus. Thereby, the difference in the geometry might be an 

important factor towards the stress deviation. 

Moreover, the maximum Von Mises stresses were found to be similar to those reported in 

literature. Table 2 presents a comparison between our results and results of previous FEA studies. 

Similar to other studies (62,89,90), the cartilage stress in the medial compartment was found to be 

larger than that in the lateral compartment, which corresponds to clinical findings showing a 

greater prevalence of medial OA (94). Hence, the consistency between the results as to shear and 

Von Mises stresses in this work and the ones in the literature demonstrated that the current FE 

model is able to generate truthful results. 

 

< Table 2 should be around here > 
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 The second important key finding of this work was that the increase in the HTO correction 

angle leads to the decrease of stress in the medial compartment and the increase of stress in the 

lateral compartment. Thus, previous to the investigation of varying the correction angle on the 

stress distribution, it is important to clarify that the correction angle is different to the HKA angle 

used in the clinical area. The correction angle referred to the amount of valgus correction degree, 

while the HKA angle referred to the Hip-Knee-Ankle alignment. In the conventional HTO surgery, 

the principal target of alignment is referred to the HKA angle since the amount of correction varies 

from patient to patient. However, in this work, the correction angle was used for biomechanical 

analysis to merely investigate the effect of changing the correction angle on the stress distribution 

of the knee joint. 

As the shear stress is commonly considered one of the major risks of accelerating the 

degeneration of cartilage (95), the peak overall shear stresses of each model were calculated to 

realize if the shifted loading axis has some effect on the decrease in shear stress in the medial 

compartment. 

A smaller amplitude difference between medial stress decrease and lateral stress increase 

was derived from the larger reduction of shear stress in the medial compartment, which could 

explain why knee OA occurs more frequently on the medial compartment of the knee than on the 

lateral compartment (96). 

 Another key finding of this work revealed that a balanced stress distribution between two 

compartments was achieved when the tibia was cut by 16.5°, which is equivalent to a 

hypercorrection of 4.5°. This finding might contribute to the decision of choosing the optimal 

correction angle during HTO surgery, since it allows straightening the mechanical axis deformity 

of the lower limb and brings the knee back to its normal state. In fact, the experimental study of 

Hernigou et al. (97) showed that all patients who remained within a range of 3 to 6º were relieved 

of symptoms after 10 years. Beyond 6º, there were found degradations of the external joint space. 

This was also the conclusion of the SOFCOT Symposium in 1991. Furthermore, large amount of 

clinical studies recommended different HKA alignment, varying from 2° valgus up to 8° valgus 

(2,5,98–101). The possible reasons that give rise to such debatable issues may be due to the 

different surgical techniques, the population and the statistical analysis used in these distinct 

studies. More importantly, the patient’s variability rises as another possible reason for this 

controversial angle recommendation. 

 Ultimately, the purpose of the osteotomy surgery is to change the alignment of the knee so 

that the weight-bearing part of the knee is shifted off the diseased or deformed cartilage in the 

medial compartment to healthier tissue in the lateral compartment in order to relieve pain and 
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increase knee stability. This surgery reduces the progression of OA and consequently, stave off 

total joint replacement. This clinical objective was well proved by the numerical results of this 

study. Therefore, the results of this study provide certain biomechanical insights into the evaluation 

of an optimal correction angle during HTO treatment in terms of stress redistribution. 

 Regrettably, limited studies were focused on the actual intra-articular effect of an 

osteotomy, which was target to shift the loading axis from varus to valgus. The only related study, 

by Yang et al. (83), was to investigate the effect of the frontal plane HKA angle on the stress and 

strain distributions at the knee cartilage, which developed three FE knee joint models for three 

individuals. Their results revealed a lower stress in the medial compartment of the varus aligned 

knee joint compared with the one calculated in the same compartment of both valgus and normal 

aligned knee joint. 

 Compared to the study of Yang et al. (83), the results obtained from the current  study 

limited the investigation only into the effect of changing correction angle on the stress distribution 

in the knee joint, which seemed a more specific and effective method for the simulation of HTO 

treatment. 

 Despite the lack of biomechanical evidence to rigorously define the optimal correction 

angle in an individual patient, this work was carried out to give a more direct way to investigate 

the alignment optimization by analyzing the stress distribution in the knee joint. Presumably, the 

appropriate correction depends on the accurate hypercorrection (minimum) necessary to achieve 

unloading in medial compartment and prevent recurrence of varus deformity. Consequently, 

avoiding overloading on lateral compartment cartilage by excessive valgus. 

 The main limitation of the present work is the use of a geometry of a knee model artificially 

created and not the one specifically developed for a pathological knee. Our study was conducted 

by considering the knee model in full extension and under one axial force, and therefore, we did 

not study the dynamic behavior of the model when it is loaded by a gait cycle. Another limitation 

resides on neglecting the concellous bone and the muscle forces, which could play an important 

role on the biomechanics of the knee joint during the functional activities. Therefore, considering 

both the magnitude of the net knee joint loading and the location of the applied muscle forces 

would increase the overall stress magnitudes on the cartilage and menisci, which might change the 

patterns of the stress distribution. Moreover, all the knee components were considered as linearly 

homogenous isotropic material. However, the non-linear behavior of the menisci and the 

hyperelastic behavior of the ligaments in FEA would lead to more important results, which is 

promising for the future researches. Additionally, the effect of the mesh refinement in the FE 

model should also be investigated. 
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 Finally, in order to clinically validate the results obtained in the determination of the 

optimal HTO correction angle, it is important to apply the methodology described in this article to 

support the treatment of real patients and monitor the quality of their recovery. 
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FIGURE CAPTIONS 

 

Figure 1 - Design of the human knee joint (A: anterior view, B: posterior view). 

Figure 2 - Finite element model built of the knee joint (1: femoral cartilage, 2: external and 

internal meniscus, 3: tibial cartilage on both medial and lateral sides). 

Figure 3 - Loads and Boundary conditions assigned to the knee joint model. 

Figure 4 - Knee model with a varus deformity of 12°. 

Figure 5 - Bone resection technique and the different correction angles studied by FE modeling. 

Figure 6 - Example of the different steps of the HTO modeling for a correction angle of 15°. 

Figure 7 - A real femoral cartilage and the stress distribution obtained in the modeled articular 

cartilage by FE simulation (real image from 

http://www.drballester.com/lesiondelcartilagodelarodilla.html). 

Figure 8 - Variation of the maximum Von Mises stresses in femoral and tibial cartilage of both 

compartments across the change of valgus correction. 

Figure 9 - Variation of maximum shear stresses in femoral and tibial cartilage of both 

compartments across the change of valgus correction. 

Figure 10 - Stress distribution in the articular cartilages on the healthy knee model and in pre 

and post-operative. 
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Figure 5 
 

 
 
 
 

 

Inclination angle (α) Hypercorrection (β) Correction angle (γ) 
γ = α + β 

 
 
 
 
 
 

12° 

0° 12° 

3° 15° 

4° 16° 

4.5° 16.5° 

5° 17° 

6° 18° 

10° 22° 

 
 

  

Tibial joint line 
Osteotomy line 



 26 

Figure 6 

 

 

Figure 7 
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Figure 8 

 

 

Figure 9 

 

  

0
1
2
3
4
5
6
7
8
9

12 15 16 16.5 17 18 22

Sh
ea

r s
tre

ss
 (M

Pa
)

Correction angles

Tibial cartilage

Lateral Medial

0
1
2
3
4
5
6
7
8

12 15 16 16.5 17 18 22

Sh
ea

r s
tre

ss
 (M

Pa
)

Correction angles

Femoral cartilage

Lateral Medial

0

2

4

6

8

10

12

12 15 16 16.5 17 18 22

V
on

 M
is

es
 st

re
ss

 (M
Pa

)

Correction angles

Tibial cartilage

Lateral Medial

0
1
2
3
4
5
6
7
8
9

12 15 16 16.5 17 18 22

V
on

 M
is

es
 st

re
ss

 (M
Pa

)

Correction angles

Femoral cartilage

Lateral Medial



 28 

 

Figure 10 
Healthy knee Varus knee before HTO Varus knee after HTO 

(β=4.5°) 
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TABLES CAPTIONS 

 

Table 1 - Maximum Shear Stresses (MPa) on cartilages and menisci in the healthy knee joint 

and in pre and postoperative 

Table 2 - Comparison between the Von Mises stresses (MPa) obtained in the present study and 

the ones indicated in the literature 
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TABLES 

Table 1 

Maximum Shear Stresses (MPa) on cartilages and menisci in the healthy knee joint 
and in pre and postoperative 

 α=0° 
(normal knee) 

α=12° 
(varus knee) 

α=0° after HTO 
(β=4.5°) 

Medial Femoral cartilage 6.1 8.67 5.76 
Lateral Femoral cartilage 5.34 4.27 5.67 
Medial tibial cartilage 5.9 12.21 6.01 
Lateral tibial cartilage 5.46 4.8 5.6 

 
 

Table 2 

Comparison	between	the	Von	Mises	stresses	(MPa)	obtained	in	the	present	study	

and	the	ones	indicated	in	the	literature 

 The present work 
(F=740 N) 

The study of Zhu et al.(90) 
(F=1000 N) 

The study of Zheng (89) 
(F=740 N) 

Femoral cartilage 1.75 - 1.88 

Medial tibial cartilage 2.65 2.68  
3.06 

Lateral tibial cartilage 1.93 2.43 

 

 


