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the application to a set of real data in the field of insurance.

AMS 2000 subject classification: Primary 62G32, 62E20; Secondary 65C05.

Keywords and phrases: Extreme value statistics, heavy tails, high quantiles.

∗Research partially supported by FCT / POCTI and POCI / FEDER.

1



1 Introduction.

Denote by Rα the class of functions that are regularly varying at infinity with real index α,

i.e. the class of positive measurable functions g such that

lim
t→∞

g(tx)
g(t)

= xα, (1.1)

for all x > 0. Then, in the context of Extreme Value Theory, a distribution function (d.f.)

F is said to have a heavy right tail whenever there exists a positive γ such that the tail

function F := 1− F ∈ R−1/γ . Equivalently, defining the tail quantile function of F as U(t) :=

F←(1− 1/t) = inf
{
x
∣∣ F (x) ≥ 1− 1/t

}
for 1 < t < ∞, it can be argued that F is heavy-tailed,

i.e. that F ∈ R−1/γ if and only if U ∈ Rγ .

The parameter γ is referred to as the tail index of F and helps to indicate the size and

frequency of certain extreme events. In general, the larger the tail index, the heavier the tail.

Heavy-tailed models have revealed to be quite useful in areas ranging from insurance, economics

and finance until telecommunication and biostatistics. In this paper, we focus on the estimation

of high quantiles, in risk management often referred to as the Value-at-Risk. More specifically,

given a sequence X1, . . . , Xn of independent and identically distributed random variables (r.v.’s)

with common d.f. F and a small value p, we are interested in estimating χp = U(1/p).

Here, extreme value methodology typically applies to probabilities p for which p = O(1/n),

meaning that in view of the asymptotic theory (with n tending to infinity) we have to assume

that p depends on n. Therefore, writing p = pn, we consider the estimation of the quantile

χpn = U(1/pn), where pn → 0 and pn = O(1/n), as n → ∞. Denoting by X1,n ≤ . . . ≤ Xn,n

the order statistics (o.s.’s) corresponding to our original sample, one semi-parametric estimator

for χp can arise quite naturally, under the above framework, as the statistic

χ̂p,k ≡ χ̂p,k(γ̂) := Xn−k,n

(
k + 1

(n + 1)p

)bγ
, (1.2)

introduced by Weissman (1978), where γ̂ is an estimator for the tail index γ, typically based

on the k + 1 top o.s.’s Xn−k,n ≤ . . . ≤ Xn,n, and denoted by γ̂k.

The classical semi-parametric estimator for the tail index which is commonly plugged into
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(1.2), is the popular Hill (1975) estimator, defined as

γ̂H,k =
1
k

k∑
i=1

i (lnXn−i+1,n − lnXn−i,n) , (1.3)

the maximum likelihood tail index estimator under an exponential model (with mean value γ)

for the scaled log-spacings Ui,k = i (lnXn−i+1,n − lnXn−i,n), for 1 ≤ i ≤ k. Furthermore, as

usual for semi-parametric estimators of extreme event parameters, in order to balance certain

asymptotic requirements with respect to consistency of the considered estimators, we will also

assume that k = kn is an intermediate sequence such that kn →∞ and kn = o(n), as n →∞.

In recent literature, it has become a well-established fact that the main source of bias for the

semi-parametric quantile estimator (1.2) can be attributed to the bias introduced through the

estimation of the tail index γ. This bias, in turn, mostly occurs due to a slow convergence rate in

limiting result (1.1) of first order condition U ∈ Rγ . Using the above maximum likelihood point

of view, for instance, the assumption that above a certain high threshold Xn−k,n the scaled

log-spacings Ui,k, 1 ≤ i ≤ k, behave as data from an exponential distribution, is sometimes

over-optimistic and in practice often results in severe bias for values of k that are too large.

Our main aim now is essentially to present new estimators for χp in the lines of both Gomes

and Figueiredo (2003) and Matthys et al. (2004), i.e., based on adequate reduced bias estimation

of the tail index γ and a direct accommodation of the bias for high quantiles, respectively, in a

wide sub-class of Hall’s class of models (Hall and Welsh, 1985). The key feature of these new

estimators exists in the fact that the estimation of the second order parameters in the respective

bias-terms, described in section 2 of this paper, is performed at a level k1 of a larger order than

the level k at which the parameters γ and χp are classically estimated. Doing this, we are able

to guarantee a mean squared error smaller than that of the classical estimators for all levels k

and both for tail index and quantile estimation. In addition, the asymptotic behavior of the

new classes of tail index and of quantile estimators will be derived under appropriate higher

order conditions, in sections 3 and 4, respectively. The Monte Carlo simulation study in section

5 will enable us to obtain some of the features of these new estimators for finite samples and

an illustration of the behavior of the estimators will be provided, in section 6, for a set of real

data in the field of insurance (automobile claims from a European car insurance portfolio).
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2 A brief description of second order parameters’ estimators

In order to be able to correctly assess the asymptotic non-degenerate behavior of semi-

parametric estimators of extreme event parameters as above, we need more than just the first

order condition U ∈ Rγ . A convenient refinement can be found in the assumption that there

exists a constant ρ ≤ 0 and a function A(t) →∞, as t →∞, with constant sign for large values

of t, such that

lim
t→∞

1
A(t)

(
U(tx)
U(t)

− xγ

)
= xγ xρ − 1

ρ
(2.1)

for all x > 0. The limiting function in (2.1) is necessarily of the above form and |A| is regu-

larly varying at infinity with index ρ (Geluk and de Haan, 1987). This so-called second order

condition (which we will denote by U ∈ Rρ
γ) can easily be understood to specify the rate of

convergence in the limiting result (1.1) of the first order condition U ∈ Rγ . We shall often

further assume that we are working in the sub-class of Hall’s class of models (Hall and Welsh,

1985), characterized by the existence of constants γ > 0, ρ < 0, C > 0, D 6= 0 and β 6= 0 such

that

U(t) = Ctγ
(

1 +
γβ

ρ
tρ + Dt2ρ + o

(
t2ρ
))

, (2.2)

as t → ∞, where, comparatively to Hall’s class of models, we merely made explicit a third

order term of power 2ρ. Then, or more generally in Hall’s class of models, we may consider the

parameterization

A(t) := γ β tρ, β 6= 0, ρ < 0, (2.3)

for the regularly varying function A(·) in (2.1), and we are interested in the estimation of the

shape second order parameter ρ and the scale second order parameter β in (2.3). We note

that most common heavy-tailed distributions, like the Fréchet, the Burr and the Student-t

distribution, belong to the class in (2.2), and consequently belong to Hall’s class of models.

2.1 Estimation of the shape second order parameter

We consider particular members of the class of estimators for the second order parameter ρ

as proposed in Fraga Alves et al. (2003). As first argued in Caeiro and Gomes (2004), these
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estimators are understood to depend on a real tuning parameter τ and the corresponding

statistic

T
(τ)
n,k =



“
M

(1)
n,k

”τ
−

“
M

(2)
n,k/2

”τ/2

“
M

(2)
n,k/2

”τ/2
−

“
M

(3)
n,k/6

”τ/3 if τ 6= 0

ln
“
M

(1)
n,k

”
− 1

2
ln

“
M

(2)
n,k/2

”
1
2

ln
“
M

(2)
n,k/2

”
− 1

3
ln

“
M

(3)
n,k/6

” if τ = 0

,

where for any positive real ξ, we define

M
(ξ)
n,k =

1
k

k∑
i=1

{lnXn−i+1,n −Xn−k,n}ξ .

The statistics T
(τ)
n,k can be seen to converge towards 3(1 − ρ)/(3 − ρ), independently of τ ,

whenever the second order condition U ∈ Rρ
γ holds, and the intermediate sequence k is such

that
√

k A(n/k) →∞, as n →∞.

From this, a suitable class of estimators for the second order parameter ρ can then easily

be defined as

ρ̂τ,k = min

0,
3
(
T

(τ)
n,k − 1

)
T

(τ)
n,k − 3

 . (2.4)

Under adequate general conditions, these semi-parametric estimators are consistent and asymp-

totically normal and show highly stable sample paths for a wide range of large k-values, the

number of top o.s.’s used. Below, we state without a proof, a particular case of the main

theorem in Fraga Alves et al. (2003), where a more general result may be found.

Proposition 2.1. If the second order condition U ∈ Rρ
γ holds, and the intermediate sequence

k1 is such that
√

k1 A(n/k1) →∞, as n →∞, then the statistics ρ̂τ ≡ ρ̂τ,k1 in (2.4) converge in

probability towards ρ, as n →∞, for any τ ∈ R. Furthermore, for models in (2.2), the choice

k1 =
[
n0.995

]
(2.5)

enables us to guarantee that for any intermediate sequence k, we have (ρ̂τ − ρ) ln(n/k) = op(1),

as n →∞, provided that |ρ| < 99.5, which is an almost irrelevant restriction.

Further theoretical and simulated results in Fraga Alves et al. (2003), together with the

use of these estimators in different reduced bias statistics, has led different authors to advise in
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practice the drawing of a few sample paths of ρ̂τ,k (for some τ -values), electing the value of τ

which provides the highest stability for large values of k, by means of any stability criterion, like

for instance the ones in Gomes and Figueiredo (2003) or Gomes and Pestana (2004). Indeed,

the adequate choice of τ is more crucial than the choice of the level k1. Next to the use of k1,

in (2.5), in the simulations of section 5 we have essentially restricted the choice of the tuning

parameter in (2.4) between τ = 0 and τ = 1, with the advise of considering τ = 0 whenever

ρ ∈ [−1, 0) and τ = 1 for ρ ∈ (−∞,−1).

As already mentioned in Proposition 2.1, we will denote generically ρ̂τ any of the estimators

in (2.4), computed at the level k1 in (2.5).

2.2 Estimation of the scale second order parameter

With respect to the estimation of second order parameter β, we consider the class of estimators

as proposed in the maximum likelihood set-up of Gomes and Martins (2002). There, relying on

the fact that in Hall’s class of models the scaled log-spacings Ui,k are approximately exponen-

tially distributed with mean value γ
(
1 + β

(
i

n+1

)−ρ
)
, for 1 ≤ i ≤ k, the joint maximization in

γ, β and ρ of the corresponding log-likelihood quite naturally leads to the definition of

β̂bρ,k =
(

k + 1
n + 1

)bρ dbρ,k D0,k −Dbρ,k

dbρ,k Dbρ,k −D2bρ,k
, (2.6)

as a suitable estimator for the scale second order parameter β, where, for any non-positive real

α, dα,k and the statistic Dα,k are defined by

dα,k =
1
k

k∑
i=1

(
i

k + 1

)−α

and Dα,k =
1
k

k∑
i=1

(
i

k + 1

)−α

Ui,k . (2.7)

We use the simple notation β̂τ = β̂bρτ ,k1
to denote the above estimator, computed at the same

level k1 at which we compute the estimator ρ̂τ as defined in (2.4). We now formalize, without

proofs, the main distributional result needed and available in the literature, related to the class

of estimators in (2.6). For more details, see for instance Gomes and Martins (2002) and Gomes

et al. (2004b).
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Proposition 2.2. If U ∈ Rρ
γ, with A(t) specified as in (2.3), and k1 is an intermediate sequence

such that
√

k1 A(n/k1) → ∞, as n → ∞, then the statistic β̂bρ,k1
in (2.6) is consistent for the

estimation of β provided that (ρ̂− ρ) ln(n/k1) = op(1), as n →∞.

3 Second order reduced bias tail index estimation

The classical tail index estimates, like the Hill estimates in (1.3), exhibit, most of the times, a

strong bias for moderate values of k and sample paths with very short stability regions around

the target value. Theoretically, this is due to the fact that whenever U ∈ Rρ
γ and we consider

intermediate levels k such that
√

k A(n/k) → λ, finite, as n →∞, we may write (de Haan and

Peng, 1998),
√

k
(
γ̂H,k − γ

) d= γPk +

√
kA(n/k)
1− ρ

+ op

(√
kA(n/k)

)
, (3.1)

as n →∞, where Pk is an asymptotically standard normal r.v. This means that
√

k
(
γ̂H,k − γ

)
converges weakly towards a normal r.v., with mean value λ/(1− ρ), possibly non-null.

The problem of reduced bias tail index estimation has been addressed recently by several

authors, among whom we mention Peng (1988), Beirlant et al. (1999), Feuerverger and Hall

(1999) and Gomes et al. (2000). All these researchers consider the possibility of dealing with the

bias term in an appropriate way, building different new second order reduced bias estimators.

For this type of estimators, γ̂R,k say, and under the same conditions as above, with P̃k an

asymptotically standard normal r.v. and σR > 0, we may write

√
k
(
γ̂R,k − γ

) d= σRP̃k + op

(√
kA(n/k)

)
, (3.2)

as n → ∞. Note that in the above mentioned classes of reduced bias tail index estimators we

have σR ≥ γ(1 − ρ)/|ρ|, the minimal asymptotic standard deviation in Drees’ class of models

(Drees, 1998), i.e. σR > γ, the asymptotic standard deviation of the Hill estimator. Under

the same conditions as above,
√

k
(
γ̂R,k − γ

)
has then an asymptotic null mean value even for

λ 6= 0. Furthermore, under mild additional conditions (e.g. Gomes et al., 2004a), we may even

guarantee the asymptotic normality of these estimators for levels k such that
√

k A(n/k) →∞,

as n →∞.
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Among the “asymptotically unbiased” or second order reduced bias tail index estimators

considered in Gomes and Figueiredo (2003) for quantile estimation, we make use here of the one

with the smallest asymptotic variance, i.e. the “maximum likelihood” estimator for γ under

the same exponential model for the scaled log-spacings as used above for estimating the second

order parameter β, and introduced in Gomes and Martins (2002) as

Mbρ,k = D0,k −Dbρ,k
dbρ,k D0,k −Dbρ,k

dbρ,k Dbρ,k −D2bρ,k
, (3.3)

with dα,k and Dα,k provided in (2.7). Note that the estimator depends on the estimation of the

shape second order parameter ρ and the statistic D0,k corresponds to the previously discussed

Hill estimator γ̂H,k, in (1.3). An estimator of the type of the one in (3.3), but implicit, was

first introduced in Beirlant et al. (1999) and Feuerverger and Hall (1999), and has been studied

(with a misspecification of ρ at ρ = −1) in Gomes and Martins (2004). The estimator in (3.3)

attains the minimal asymptotic variance in Drees’ class of functionals. Indeed, we may state:

Proposition 3.1 (Gomes and Martins, 2002). If the second order condition U ∈ Rρ
γ holds, with

ρ < 0, and k is an intermediate sequence such that
√

k A(n/k) → λ, finite and non necessarily

null, as n →∞, then

√
k (Mρ,k − γ) d−→

n→∞
Normal

(
0,

γ2(1− ρ)2

ρ2

)
.

Provided that ρ̂ is consistent for the estimation of ρ, the same limiting behavior also holds if we

consider Mbρ,k instead of Mρ,k.

Considering the estimators γ̂H,k, β̂bρ,k and Mbρ,k as in (1.3), (2.6) and (3.3), respectively, we

can write

Mbρ,k = γ̂H,k − β̂bρ,k

(n

k

)bρ
Dbρ,k.

In a spirit similar to the one in Gomes et al. (2004b) and Caeiro et al. (2004), Gomes et al. (2005)

have considered the estimator β̂ = β̂bρ,k1
for the scale second order parameter, i.e. computed at

an intermediate higher level k1, suggesting the consideration of the estimator

M bβ,bρ,k
= γ̂H,k − β̂bρ,k1

(n

k

)bρ
Dbρ,k, (3.4)
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for a suitable ρ-estimator. This is one of the tail index estimators we shall consider here for

quantile estimation.

Apart from the estimator M bβ,bρ,k
in (3.4), we shall also consider, now in a spirit similar to

the one used in Gomes and Pestana (2004), the computation of Dbρ,k, a consistent estimator of

γ/(1 − ρ), at its estimated optimal level. From Gomes and Martins (2004), we know that if

second order condition U ∈ Rρ
γ and k is a intermediate sequence, then

Dα,k
d=

γ

1− α
+

γ√
(1− 2α) k

Z
(α)
k +

A(n/k)
1− α− ρ

(
1 + op(1)

)
, (3.5)

for any α ≤ 0, where Z
(α)
k is asymptotically standard normal. Consequently, if A(t) may be

specified as in (2.3), the asymptotic optimal level for Dρ,k is provided by

k0 = k0(n) =
(

(1− 2 ρ) n−2 ρ

−2 ρ β2

)1/(1−2 ρ)

and with the obvious notation k̂0, we can define

M bβ,bρ,k
= γ̂H,k − β̂bρ,k1

(n

k

)bρ
Dbρ,bk0

, (3.6)

again for an adequate consistent ρ-estimator. Using the notation M̃ to denote either M or M ,

we may state:

Proposition 3.2. If the second order condition U ∈ Rρ
γ holds, with A(t) given as in (2.3), and

k is an intermediate sequence such that
√

k A(n/k) → λ, finite and non necessarily null, as

n →∞, then
√

k
(
M̃β,ρ,k − γ

)
d−→

n→∞
Normal

(
0, γ2

)
.

Provided that (ρ̂− ρ) ln(n/k) = op(1), as n → ∞, being β̂ consistent for the estimation of β,

the same limiting behavior holds if we consider M̃bβ,bρ,k
instead of M̃β,ρ,k.

Proof. Since we may write A(t) = γ β tρ, we have that

Mβ,ρ,k = γ̂H,k −
A(n/k)

γ
Dρ,k and Mβ,ρ,k = γ̂H,k −

A(n/k)
γ

Dρ,k0 .

From (3.1) and (3.5), denoting M̃ , either M or M ,

M̃β,ρ,k
d= γ +

γ√
k

Z
(1)
k +

A(n/k)
1− ρ

+ op(A(n/k))− A(n/k)
γ

×
(

γ

1− ρ
+ op(1)

)
d= γ +

γ√
k

Z
(1)
k + op(A(n/k),
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and the first part of the proposition follows. In the lines of Gomes et al. (2005), now under

a second order framework, and with D′ρ,k = −
∑k

i=1(i/(k + 1))−ρ ln(i/(k + 1)) Ui/k, we may

use the delta-method (Casela and Berger, 2002, pages 240-245), and due to the fact that

ρ̂− ρ = op(1/ ln(n/k)), we may write

M̃bβ,bρ,k
− M̃β,ρ,k

p∼

(
β̂ − β

β

)
A(n/k) Dρ,k + (ρ̂− ρ)

A(n/k)
γ

{
ln(n/k) Dρ,k + D′ρ,k

}
.

This expression enables us to replace (β, ρ) by the estimators (β̂, ρ̂), under the conditions in

the proposition, and still guarantee the same asymptotic properties.

Provided that we adequately choose β̂ and ρ̂, the reduced bias tail index estimators M bβ,bρ,k

and M bβ,bρ,k
in (3.4) and (3.6), respectively, have thus a smaller bias than the classical Hill

estimator for all k, without any increase in the asymptotic variance, which is kept equal to γ2.

4 Reduced bias quantile estimation

When considering the classical quantile estimator χ̂p,k ≡ χ̂p,k (γ̂H,k), and with the notation

cn := k+1
(n+1)p , a sequence that goes to infinity with n, it is well-known that if we choose a level

k such that
√

k A(n/k) → λ 6= 0 and finite, as n → ∞, then
√

k
ln cn

( bχp,k

χp
− 1
)

is asymptotically

normal, with a non-null bias given by λ/(1− ρ) and a variance equal to γ2.

We shall consider two types of reduced bias semi-parametric quantile estimators, to be

introduced in subsections 4.1 and 4.2. Under the same conditions as above these estimators

have a null bias and an asymptotic variance γ2.

4.1 Alternative I, based on reduced bias tail index estimation

Gomes and Figueiredo (2003) suggest the use, in (1.2), of the reduced bias tail index estimators

in Gomes and Martins (2001, 2002) and Gomes et al. (2004a), all of them second order reduced

bias estimators with asymptotic variance σ2
R > γ2. As a result, they have that, under the

same mild restriction on k,
√

k
ln cn

( bχp,k

χp
− 1
)

is asymptotically normal with a null bias even when
√

k A(n/k) → λ 6= 0 and finite, as n →∞, but at expenses of a larger variance σ2
R > γ2.
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We now consider the use, in (1.2), of the reduced bias tail index estimators M bβ,bρ,k
and

M bβ,bρ,k
in (3.4) and (3.6), respectively. Doing that we are able to guarantee that if we choose

a level k such that
√

k A(n/k) → λ 6= 0 and finite, as n → ∞, then, under the same mild

restrictions as before,
√

k
ln cn

( bχp,k

χp
− 1
)

is asymptotically normal, with a null bias and a variance

equal to γ2.

4.2 Alternative II, based on direct accommodation of the bias

Alternatively, trying to reduce the bias of the classical quantile estimator by going directly into

the second order framework, in Matthys et al. (2004) the semi-parametric estimator defined as

χ̂∗p,k ≡ χ̂∗p,k(γ̂) := Xn−k,n

(
k + 1

(n + 1)p

)bγ
exp

ân,k

(
k+1

(n+1)p

)bρ
− 1

ρ̂

 ,

was introduced, where (γ̂, ρ̂, ân,k) is a suitable estimator for (γ, ρ, an,k) and an,k = A
(

n+1
k+1

)
.

There, these authors suggested the use of the maximum likelihood estimators γ̂k, ρ̂k and ân,k

under a second order exponential regression model for the scaled log-spacings Ui,k, with mean

value γ + an,k

(
i

k+1

)−ρ
, for 1 ≤ i ≤ k.

In what follows, we assume to be working in Hall’s class of models, we may thus choose

A(t) as in (2.3), and as a result, the quantile estimator above can be rewritten as

χ̂∗p,k = Xn−k,n

(
k + 1

(n + 1)p

)bγ
exp

γ̂ β̂

(
n + 1
k + 1

)bρ ( k+1
(n+1)p

)bρ
− 1

ρ̂

 , (4.1)

with γ̂, β̂ and ρ̂ suitable estimators for γ, β and ρ. Also here, γ̂ will typically be an estimator

based on the k + 1 top o.s.’s (denoted by γ̂k). Again, just as in subsection 4.1 and for obvious

reasons, we consider, in (4.1), the reduced bias tail index estimators M bβ,bρ,k
and M bβ,bρ,k

in (3.4)

and (3.6), respectively.

4.3 Asymptotic behavior of the quantile estimators

Almost directly from Gomes and Figueiredo (2003), we may state:
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Theorem 4.1. Suppose that U ∈ Rρ
γ and k = kn is an intermediate sequence such that

cn := k+1
(n+1)p →∞ and ln cn√

k
→ 0, as n →∞. Then, with γ̂k any consistent estimator of the tail

index γ, as n →∞, we have that
√

k

ln cn

(
χ̂p,k

χp
− 1
)

d=
√

k
(
γ̂k − γ

)
+ Op(1/ ln cn) + op

(√
k A(n/k)

)
. (4.2)

If (γ̂k, β̂, ρ̂) is any consistent estimator of (γ, β, ρ) for which (ρ̂−ρ) ln(n/k) = op(1), as n →∞,

we may replace, in (4.2), χ̂p,k in (1.2) by χ̂∗p,k in (4.1), getting the same distributional result.

Proof. Since
Xn−k,n

U
(

n+1
k+1

) d= 1 +
γ Bk√

k
+ op(A(n/k)),

with Bk asymptotically standard normal and χp = U(1/p) = U
(

n+1
k+1 cn

)
, we have

χ̂p,k

χp
− 1 d= (γ̂k − γ) ln cn +

γ Bk√
k
− cρ

n − 1
ρ

A(n/k) + op(A(n/k)),

and consequently

χ̂p,k

χp
− 1 d= (γ̂k − γ) ln cn +

γ Bk√
k

+
A(n/k)

ρ
+ op(A(n/k)), (4.3)

as n →∞. If on the other hand, we consider χ̂∗p,k, we get

χ̂∗p,k

χp
− 1 d= (γ̂k − γ) ln cn +

γ Bk√
k
− cρ

n − 1
ρ

A(n/k) + γ̂k β̂
(n

k

)bρ cbρ
n − 1
ρ̂

+ op(A(n/k)),

as n →∞. Now, γ̂k = γ(1 + op(1)) and

γ β̂
(n

k

)bρ cbρ
n − 1
ρ̂

−A(n/k)
cρ
n − 1
ρ

p∼

(
β̂ − β

β

)
A(n/k)

cρ
n − 1
ρ

+ (ρ̂− ρ) A(n/k)
[
ln
(n

k

) cρ
n − 1
ρ

+
1
ρ

(
cρ
n ln cn −

cρ
n − 1
ρ

)]
.

Since (ρ̂− ρ) ln(n/k) = op(1) and furthermore (cρ
n − 1) /ρ → −1/ρ and cρ

n ln cn → 0, as n →∞,

we have
χ̂∗p,k

χp
− 1 d= (γ̂k − γ) ln cn +

γ Bk√
k

+ op(A(n/k)), (4.4)

as n →∞.
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If we look at the asymptotic distributional representations in (4.2) we notice immediately

that the main contribution in terms of bias is provided by a possible bias of γ̂k and it thus seems

obvious that, both in (1.2) and (4.1), it is better to use a reduced bias tail index estimator rather

than a classical one. Remark however that although the main contribution comes from the first

term on the right of (4.2), we still expect to get slightly different results when using χ̂∗p,k instead

of χ̂p,k in practice, due to the difference in the remainder terms (see equations (4.3) and (4.4)).

4.4 Some general comments

The results obtained in subsection 4.3 as well as the ones obtained in the Monte Carlo simulation

in subsection 5.2 lead us to strongly advise the use of the quantile estimator in (4.1), with the

tail index estimator Mk ≡ M bβ,bρ,k
in (3.4), or the quantile estimator in (1.2), with the tail index

estimator Mk ≡ M bβ,bρ,k
in (3.6). Anyway, the estimator in (4.1), with the tail index estimator

Mk ≡ Mbρ,k in (3.3), does also exhibit an interesting mean value stability around the true target

value, particularly for all the simulated models with ρ 6= −1.

5 Simulated behavior of the tail index and quantile estimators

We have here implemented multi-sample Monte Carlo simulation experiments of size 5000× 10

both for the tail index and quantile estimators. For any details on multi-sample simulation refer

to Gomes and Oliveira (2001). Let us generically denote Tn,k any statistic or r.v. dependent

on k, the number of top o.s.’s to be used in an inferential procedure related to any parameter

of extreme or even rare events. The optimal sample fraction for Tn,k is denoted kT
0 (n)/n, with

kT
0 (n) := arg min

k
MSE [Tn,k] and we shall use the common notation Tn0 := Tn,kT

0 (n).

5.1 Distributional properties of the tail index estimators

As mentioned before, we shall use the notation β̂j = β̂bρj ,k1
, ρ̂j = ρ̂j,k1 , j = 0, 1, with ρ̂τ,k, k1

and β̂bρ,k given in (2.4), (2.5) and (2.6), respectively. The estimators
(
β̂j , ρ̂j

)
of (β, ρ) have

been incorporated in the tail index estimators under study, leading to Mj ≡ Mj,k ≡ Mbρj ,k,

M j ≡ M j,k ≡ M bβj ,bρj ,k
and M j ≡ M j,k ≡ M bβj ,bρj ,k

, j = 0, 1. The simulations show that the

13



tail index estimators M j and M j , with j equal to either 0 or 1, according as |ρ| ≤ 1 or |ρ| > 1,

seem to work quite well, as illustrated in the sequel. Indeed, for all models simulated, the use

of either M1 or M1 always enables us to achieve a better performance than the one we get

with the Hill estimator H. In a “blind” way, we might advise such a choice. But M0 and M0

provide much better results than M1 and M1, respectively, whenever |ρ|, unknown, is smaller

than or equal to 1.

In Figures 1, 2 and 3, for samples of size n = 1000 from Fréchet(γ), γ = 0.25, and Burr(γ, ρ),

(γ, ρ) = (0.25,−0.5) and (0.25,−2), parents, respectively, we show the simulated patterns of

the scaled mean values, E [•] /γ, and mean squared errors, MSE [•] /γ2, of M j,k and M j,k in

(3.4) and (3.6), respectively, together with the ones of the Hill estimator γ̂H,k in (1.3), denoted

H, and the Mj,k estimator in (3.3), j = 0 or 1 according as |ρ| ≤ 1 or |ρ| > 1. The Fréchet(γ)

d.f. is F (x) = exp
{
−x−1/γ

}
, x ≥ 0, γ > 0, and the Burr(γ, ρ) d.f. has the functional form,

F (x) = 1−
(
1 + x−ρ/γ

)1/ρ
, x ≥ 0, γ > 0, ρ < 0. The mean values and mean squared errors of

the estimators are based on the first replicate, with 5000 runs.
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Figure 1: Simulated scaled mean values (left) and mean squared errors (right) of M0, M0, M0 and the Hill estimator

H, for samples of size n = 1000 from a Fréchet parent with γ = 0.25 (ρ = −1)

We may draw the following specific comments:

• For a Fréchet model (with ρ = −1) (Figure 1) both the bias and the mean squared error

of M0 and M0 are smaller than the corresponding ones of the H-estimator, for all k.

Both statistics are close to each other and close to the target value γ for small values of
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Figure 2: Simulated scaled mean values (left) and mean squared errors (right) of M0, M0, M0, the Hill estimator H

and the r.v. M ≡Mβ,ρ, for samples of size n = 1000 from a Burr parent with (γ, ρ) = (0.25,−0.5)
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Figure 3: Simulated scaled mean values (left) and mean squared errors (right) of M0, M0, M0 and the Hill estimator

H, for samples of size n = 1000 from a Burr parent with (γ, ρ) = (0.25,−2)

k. Next they diverge from each other, and it may be even sensible to investigate whether

this feature would enable us to develop an adaptive statistical choice of the threshold.

The statistic M0 attains the smallest minimum mean squared error, among the ones

considered. This type of behavior is more generally true for all simulated parents with

ρ = −1.

• For values of ρ > −1 (Figure 2), and apart from the M0-statistic, which exhibits a high

volatility for small k, all the other statistics considered are positively biased for all k.

The M0 and M0 statistics are much better than the H-statistic, both regarding bias and
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mean squared error. In this region of ρ-values, further improvement in the second order

parameters’ estimation is still welcome. Indeed, and for comparison, we have also pictured

in Figure 2 the analogue behavior of the r.v. M ≡ Mβ,ρ: the improvement is obvious,

with M behaving like an unbiased estimator of γ.

• For ρ < −1 (Figure 3), we need to use ρ̂1 (instead of ρ̂0). The associated M1 and M1

statistics perform better than the H-statistic, but not a long way from it. Indeed, the

Hill estimator already exhibits a quite interesting performance for this region of ρ-values.

5.2 Distributional properties of the quantile estimators

5.2.1 Mean values and mean squared error patterns

In Figures from 4 until 8, again on the basis of the first 5000 runs from a multi-sample

experiment of size 5000 × 10, we show, for p = 1/n and j = 0 or 1, the simulated patterns

of mean value, E[•], and root mean squared error, RMSE[•], of some of the following

normalized χp-estimators: χ̂p,k(H)/χp, χ̂p,k(Mj)/χp, χ̂p,k(M j)/χp, χ̂p,k(M j)/χp, χ̂∗p,k(Mj)/χp,

χ̂∗p,k(M j)/χp and χ̂∗p,k(M j)/χp, based thus on the Hill estimator, H, and the “maximum

likelihood” reduced bias estimators Mj , M j and M j , j = 0, 1, in (3.3), (3.4) and (3.6),

respectively. For sake of simplicity, we shall denote these quotients by QH , QMj , QMj
, Q

Mj
,

Q∗Mj
, Q∗

Mj
and Q∗

Mj

, respectively, with j = 0, 1. The models underlying the simulated data,

in Figures from 4 until 7, are the Fréchet model with γ = 0.25 and the Burr models with

(γ, ρ) = (0.25,−0.5), (0.25,−1) and (0.25,−2), respectively, where we have pictured only the

case τ = 0 in (2.4). Figure 9 is the only one where we represent the scaled quantile estimators

associated to τ = 1 in (2.4) for the Burr model with (γ, ρ) = (0.25, −2). In all figures, for any

of the tail index estimators M , M j and M j , j = 0 or 1, we place usually only one of the scaled

quantile estimators (either Q• or Q∗•, the one providing the smaller minimum mean squared

error).

Remark 5.1. Note that, similarly to what has happened before with the tail index estimation,

the computation of both second order parameters’ estimators, at the high value k1 in (2.5),
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Figure 4: Underlying Fréchet parent with γ = 0.25 (ρ = −1).
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Figure 5: Underlying Burr parent with γ = 0.25 and ρ = −1.

enables us to work with high quantiles’ estimators, with a mean squared error smaller than

the mean squared error of the classical estimator χ̂p,k(γ̂H,k), with χ̂p and γ̂H,k given in (1.2)

and (1.3), respectively, for most values of the threshold k. Those high quantile estimators are

provided by the use in either (1.2) or (4.1), of the tail index estimator M or M in (3.4) and

(3.6), respectively.
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Figure 6: Underlying Burr parent with γ = 0.25 and ρ = −0.5.
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Figure 7: Underlying Burr parent with γ = 0.25 and ρ = −2 (estimators related to τ = 0 in (2.4)).

5.2.2 Behavior of quantile estimators at optimal levels

We shall also present, for n = 200, 500, 1000, 2000 and 5000, the simulated mean values

and relative efficiencies of Q• and Q∗•, at their optimal levels, for the different second order

reduced bias estimators under study. The search of the minimum mean squared error has been

performed over the region of k-values between 1 and [0.95 × n]. The root mean squared error

(RMSE) of QH is also provided so that it is possible to recover the RMSE of any other

quantile estimator. For a certain QT , the REFF T
0 indicator is given by

REFF T
0 :=

√
MSE

[
QH (kH

0 )
]
/MSE

[
QT (kT

0 )
]

=:
RMSEH

0

RMSET
0

.
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Figure 8: Underlying Burr parent with γ = 0.25 and ρ = −2 (estimators related to τ = 1 in (2.4)).

Among the estimators considered, and for every n, the one providing the smallest mean squared

error, or equivalently, the highest REFF is underlined and in bold. Tables 1, 2, 3 and 4 are

related to underlying Fréchet and Burr parents with ρ = −1, ρ = −0.5 and ρ = −2, respectively.

In summary we may draw the following conclusions:

1. The new asymptotically unbiased quantile estimators have in general reasonably stable

sample paths, which make less troublesome the choice of the optimal level k.

2. The reduced bias quantile estimator χ̂∗p,k(M0) is the one we elect for models with ρ = −1,

but χ̂p,k(M0) exhibits also a quite interesting performance.

3. A similar comment applies to models with ρ > −1. In this region of ρ-values, χ̂p,k(M0)

is also worth considering as a valuable alternative to the aforementioned estimators.

4. Finally, for models with ρ < −1, the choice of χ̂∗p,k(M0) seems to be sensible as well as

the choices χ̂∗p,k(M1) and χ̂∗p,k(M1)

5. The choice χ̂p,k(M1) works also nicely for models with ρ = −1.
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Table 1: Simulated mean values (E0), root mean squared error of QH and relative efficiency measures (REFF0) at

optimal levels, together with corresponding 95% confidence intervals, for a Fréchet parent with γ = .25.

n 200 500 1000 2000 5000

E0 (and 95% confidence intervals)

QH 1.0553 ± 0.0041 1.0523 ± 0.0025 1.0479 ± 0.0022 1.0397 ± 0.0015 1.0364 ± 0.0016

QM0 0.9096 ± 0.0055 0.9302 ± 0.0047 0.9460 ± 0.0034 0.9537 ± 0.0025 0.9634 ± 0.0014

Q
M0

0.9450 ± 0.0030 0.9620 ± 0.0014 0.9681 ± 0.0025 0.9755 ± 0.0012 0.9812 ± 0.0015

Q
M0

1.0126 ± 0.0037 1.0239 ± 0.0036 1.0243 ± 0.0019 1.0242 ± 0.0021 1.0213 ± 0.0017

Q∗
M0

0.9592 ± 0.0032 0.9735 ± 0.0014 0.9806 ± 0.0016 0.9861 ± 0.0017 0.9910 ± 0.0013

Q∗
M0

0.9638 ± 0.0025 0.9773 ± 0.0021 0.9841 ± 0.0014 0.9872 ± 0.0012 0.9920 ± 0.0010

Q∗
M0

1.0270 ± 0.0034 1.0311 ± 0.0015 1.0328 ± 0.0022 1.0297 ± 0.0019 1.0260 ± 0.0013

QM1 0.9461 ± 0.0030 0.9718 ± 0.0020 0.9885 ± 0.0017 0.9964 ± 0.0015 0.9999 ± 0.0013

Q
M1

1.0021 ± 0.0018 1.0331 ± 0.0024 1.0456 ± 0.0059 1.0217 ± 0.0117 0.9983 ± 0.0011

Q
M1

1.0440 ± 0.0032 1.0439 ± 0.0023 1.0444 ± 0.0017 1.0379 ± 0.0029 1.0346 ± 0.0009

Q∗
M1

0.9831 ± 0.0030 1.0155 ± 0.0054 1.0376 ± 0.0074 1.0256 ± 0.0099 1.0076 ± 0.0023

Q∗
M1

1.0341 ± 0.0062 1.0523 ± 0.0025 1.0430 ± 0.0116 1.0324 ± 0.0149 1.0049 ± 0.0027

Q∗
M1

1.0437 ± 0.0040 1.0466 ± 0.0028 1.0445 ± 0.0023 1.0377 ± 0.0016 1.0356 ± 0.0008

RMSE0 [QH ] 0.0264 ± 0.0007 0.0181 ± 0.0002 0.0134 ± 0.0002 0.00967 ± 0.0001 0.0063 ± 0.0001

REFF0 (and 95% confidence intervals)

QM0 0.7624 ± 0.0093 0.7971 ± 0.0059 0.8293 ± 0.0058 0.8615 ± 0.0045 0.9136 ± 0.0085

Q
M0

1.1243 ± 0.0063 1.0905 ± 0.0047 1.0884 ± 0.0033 1.0857 ± 0.0030 1.0932 ± 0.0045

Q
M0

0.9724 ± 0.0075 0.9836 ± 0.0053 1.0128 ± 0.0072 1.0485 ± 0.0063 1.1225 ± 0.0081

Q∗
M0

0.9638 ± 0.0076 1.0074 ± 0.0051 1.0557 ± 0.0071 1.1133 ± 0.0063 1.2216 ± 0.0089

Q∗
M0

1.1110 ± 0.0079 1.1160 ± 0.0069 1.1444 ± 0.0076 1.1853 ± 0.0075 1.2770 ± 0.0117

Q∗
M0

1.0787 ± 0.0050 1.0557 ± 0.0017 1.0501 ± 0.0022 1.0453 ± 0.0031 1.0512 ± 0.0014

QM1 0.9879 ± 0.0090 1.0512 ± 0.0057 1.1072 ± 0.0087 1.1801 ± 0.0063 1.3158 ± 0.0168

Q
M1

1.1992 ± 0.0058 1.1398 ± 0.0058 1.0718 ± 0.0045 1.0528 ± 0.0080 1.1632 ± 0.0209

Q
M1

1.0646 ± 0.0040 1.0312 ± 0.0019 1.0202 ± 0.0026 1.0136 ± 0.0016 1.0119 ± 0.0004

Q∗
M1

1.1113 ± 0.0056 1.0892 ± 0.0100 1.0479 ± 0.0147 1.0696 ± 0.0345 1.2725 ± 0.0730

Q∗
M1

1.1647 ± 0.0048 1.0654 ± 0.0040 1.0438 ± 0.0043 1.0487 ± 0.0270 1.2627 ± 0.0713

Q∗
M1

1.0353 ± 0.0014 1.0160 ± 0.0003 1.0092 ± 0.0018 1.0069 ± 0.0004 1.0054 ± 0.0003
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Table 2: Simulated mean values (E0), root mean squared error of QH and relative efficiency measures (REFF0) at

optimal levels, together with corresponding 95% confidence intervals, for a Burr parent with (γ, ρ) = (0.25,−0.5).

n 200 500 1000 2000 5000

E0 (and 95% confidence intervals)

QH 1.0843 ± 0.0067 1.0799 ± 0.0040 1.0805 ± 0.0065 1.0725 ± 0.0049 1.0700 ± 0.0034

QM0 0.7874 ± 0.0079 0.8343 ± 0.0083 0.8594 ± 0.0049 0.8817 ± 0.0048 0.9037 ± 0.0030

Q
M0

0.9211 ± 0.0032 0.9413 ± 0.0022 0.9605 ± 0.0020 0.9759 ± 0.0014 0.9912 ± 0.0007

Q
M0

0.9974 ± 0.0093 1.0204 ± 0.0062 1.0338 ± 0.0051 1.0376 ± 0.0040 1.0405 ± 0.0034

Q∗
M0

0.9119 ± 0.0052 0.928 ± 0.0052 0.9452 ± 0.0031 0.9605 ± 0.0020 0.9776 ± 0.0013

Q∗
M0

0.9615 ± 0.0021 0.9821 ± 0.0016 0.9888 ± 0.0011 0.9936 ± 0.0008 0.9975 ± 0.0005

Q∗
M0

1.0432 ± 0.0030 1.0443 ± 0.0033 1.0498 ± 0.0046 1.0457 ± 0.0038 1.0491 ± 0.0046

QM1 0.9535 ± 0.0047 0.9834 ± 0.0040 0.9890 ± 0.0022 0.9908 ± 0.0013 1.1055 ± 0.0006

Q
M1

0.9843 ± 0.0016 0.9896 ± 0.0019 0.9925 ± 0.0012 1.0571 ± 0.0022 1.0698 ± 0.0038

Q
M1

1.0806 ± 0.0074 1.0798 ± 0.0053 1.0797 ± 0.0064 1.0718 ± 0.0046 1.0699 ± 0.0038

Q∗
M1

0.9729 ± 0.0056 0.9810 ± 0.0033 1.0642 ± 0.0017 1.0711 ± 0.0047 1.0679 ± 0.0036

Q∗
M1

0.9743 ± 0.0018 1.1179 ± 0.0070 1.0802 ± 0.0062 1.0723 ± 0.0045 1.0700 ± 0.0038

Q∗
M1

1.0814 ± 0.0068 1.0787 ± 0.0048 1.0780 ± 0.0056 1.0719 ± 0.0049 1.0697 ± 0.0035

RMSE0 [QH ] 0.0647 ± 0.0020 0.0477 ± 0.0009 0.0383 ± 0.0007 0.0303 ± 0.0004 0.0224 ± 0.0004

REFF0 (and 95% confidence intervals)

QM0 0.7988 ± 0.0119 0.8409 ± 0.0103 0.8773 ± 0.0071 0.9120 ± 0.0082 0.9698 ± 0.0082

Q
M0

1.4638 ± 0.0253 1.6197 ± 0.0177 1.8397 ± 0.0200 2.1339 ± 0.0251 2.7468 ± 0.0327

Q
M0

1.3062 ± 0.0141 1.2784 ± 0.0080 1.2604 ± 0.0077 1.2332 ± 0.0038 1.2149 ± 0.0061

Q∗
M0

1.0853 ± 0.0162 1.1990 ± 0.0111 1.335 ± 0.0131 1.4995 ± 0.0154 1.8375 ± 0.0227

Q∗
M0

1.7520 ± 0.0290 2.0468 ± 0.0171 2.3391 ± 0.0174 2.6593 ± 0.0268 3.2509 ± 0.0333

Q∗
M0

1.1454 ± 0.0052 1.1242 ± 0.0029 1.1141 ± 0.0018 1.1050 ± 0.0019 1.0983 ± 0.0013

QM1 1.3074 ± 0.0252 1.5311 ± 0.0152 1.7473 ± 0.0154 2.0543 ± 0.0211 1.2275 ± 0.0117

Q
M1

1.4805 ± 0.0259 1.6386 ± 0.0163 1.8414 ± 0.0208 1.6868 ± 0.0276 1.0026 ± 0.0004

Q
M1

1.0169 ± 0.0015 1.0086 ± 0.0005 1.0056 ± 0.0005 1.0035 ± 0.0004 1.0021 ± 0.0004

Q∗
M1

1.2407 ± 0.0211 1.4687 ± 0.0152 1.4287 ± 0.0157 1.0223 ± 0.0023 1.0259 ± 0.0052

Q∗
M1

1.2898 ± 0.0232 1.0989 ± 0.0251 1.0040 ± 0.0008 1.0024 ± 0.0006 1.0018 ± 0.0003

Q∗
M1

1.0107 ± 0.0004 1.0054 ± 0.0000 1.0033 ± 0.0003 1.0022 ± 0.0000 1.0013 ± 0.0004
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Table 3: Simulated mean values (E0), root mean squared error of QH and relative efficiency measures (REFF0) at

optimal levels, together with corresponding 95% confidence intervals, for a Burr parent with (γ, ρ) = (0.25,−1).

n 200 500 1000 2000 5000

E0 (and 95% confidence intervals)

QH 1.0673 ± 0.0072 1.0566 ± 0.0037 1.0544 ± 0.0016 1.0478 ± 0.0032 1.0410 ± 0.0016

QM0 0.8623 ± 0.0065 0.8887 ± 0.0053 0.9039 ± 0.0026 0.9199 ± 0.0039 0.9370 ± 0.0023

Q
M0

0.9236 ± 0.0032 0.9336 ± 0.0030 0.9412 ± 0.0020 0.9465 ± 0.0022 0.9548 ± 0.0016

Q
M0

0.9940 ± 0.0033 1.0023 ± 0.0029 1.0021 ± 0.0021 1.0070 ± 0.0027 1.0075 ± 0.0020

Q∗
M0

0.9383 ± 0.0063 0.9475 ± 0.0029 0.9539 ± 0.0024 0.9601 ± 0.0017 0.9661 ± 0.0018

Q∗
M0

0.9461 ± 0.0027 0.9523 ± 0.0026 0.9559 ± 0.0014 0.9593 ± 0.0011 0.9665 ± 0.0019

Q∗
M0

1.0017 ± 0.0027 1.0086 ± 0.0044 1.0130 ± 0.0036 1.0137 ± 0.0020 1.0122 ± 0.0021

QM1 0.9412 ± 0.0035 0.9614 ± 0.0023 0.9760 ± 0.0020 0.9893 ± 0.0014 0.9962 ± 0.0008

Q
M1

0.9877 ± 0.0025 0.9947 ± 0.0012 0.9964 ± 0.0011 0.9974 ± 0.0006 0.9983 ± 0.0006

Q
M1

1.0557 ± 0.0032 1.0514 ± 0.0027 1.0494 ± 0.0038 1.0469 ± 0.0016 1.0406 ± 0.0014

Q∗
M1

0.9800 ± 0.0019 0.9868 ± 0.0018 0.9919 ± 0.0017 0.9942 ± 0.0007 0.9977 ± 0.0004

Q∗
M1

0.9971 ± 0.0011 0.9948 ± 0.0016 0.9961 ± 0.0014 0.9970 ± 0.0010 1.0337 ± 0.0004

Q∗
M1

1.0607 ± 0.0042 1.0513 ± 0.0035 1.0501 ± 0.0030 1.0460 ± 0.0029 1.0394 ± 0.0018

RMSE0 [QH ] 0.0354 ± 0.0005 0.0243 ± 0.0004 0.0180 ± 0.0003 0.0133 ± 0.0001 0.0087 ± 0.0001

REFF0 (and 95% confidence intervals)

QM0 0.7523 ± 0.0055 0.7550 ± 0.0053 0.7565 ± 0.0045 0.7627 ± 0.0057 0.7643 ± 0.0059

Q
M0

1.1234 ± 0.0084 1.0996 ± 0.0077 1.0908 ± 0.0074 1.0799 ± 0.0073 1.0647 ± 0.0078

Q
M0

1.2949 ± 0.0129 1.3192 ± 0.0044 1.3399 ± 0.0074 1.3663 ± 0.0072 1.3981 ± 0.0085

Q∗
M0

0.9930 ± 0.0067 1.0238 ± 0.0051 1.0556 ± 0.0079 1.0878 ± 0.0078 1.1274 ± 0.0081

Q∗
M0

1.3270 ± 0.0112 1.3371 ± 0.0072 1.3416 ± 0.0107 1.3425 ± 0.0093 1.3323 ± 0.0098

Q∗
M0

1.1924 ± 0.0064 1.1918 ± 0.0047 1.2020 ± 0.0075 1.2175 ± 0.0068 1.2368 ± 0.0045

QM1 1.1437 ± 0.0107 1.2774 ± 0.0057 1.4247 ± 0.0105 1.6053 ± 0.0105 1.8833 ± 0.0153

Q
M1

1.5085 ± 0.0196 1.6404 ± 0.0128 1.7567 ± 0.0154 1.8914 ± 0.0092 2.1133 ± 0.0153

Q
M1

1.0535 ± 0.0030 1.0343 ± 0.0020 1.0286 ± 0.0016 1.0237 ± 0.0011 1.0187 ± 0.0008

Q∗
M1

1.2383 ± 0.0092 1.3886 ± 0.0101 1.5254 ± 0.0124 1.6952 ± 0.0105 2.0010 ± 0.0162

Q∗
M1

1.4090 ± 0.0180 1.5390 ± 0.0122 1.6554 ± 0.0140 1.8010 ± 0.0096 1.6131 ± 0.0109

Q∗
M1

1.0345 ± 0.0010 1.0234 ± 0.0008 1.0195 ± 0.0000 1.0160 ± 0.0005 1.0131 ± 0.0003
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Table 4: Simulated mean values (E0), root mean squared error of QH and relative efficiency measures (REFF0) at

optimal levels, together with corresponding 95% confidence intervals, for a Burr parent with (γ, ρ) = (0.25,−2).

n 200 500 1000 2000 5000

E0 (and 95% confidence intervals)

QH 1.0447 ± 0.0026 1.0380 ± 0.0030 1.0333 ± 0.0019 1.0276 ± 0.0018 1.0219 ± 0.0013

QM0 0.9104 ± 0.0035 0.9309 ± 0.0037 0.9476 ± 0.0038 0.9567 ± 0.0018 0.9672 ± 0.0020

Q
M0

0.9374 ± 0.0023 0.9459 ± 0.0041 0.9551 ± 0.0027 0.9609 ± 0.0016 0.9676 ± 0.0013

Q
M0

0.9862 ± 0.0025 0.9956 ± 0.0019 0.9971 ± 0.0012 1.0002 ± 0.0012 1.0010 ± 0.0010

Q∗
M0

0.9573 ± 0.0016 0.9620 ± 0.0032 0.9668 ± 0.0019 0.9723 ± 0.0016 0.9772 ± 0.0010

Q∗
M0

0.9462 ± 0.0022 0.9535 ± 0.0022 0.9597 ± 0.0017 0.9650 ± 0.0019 0.9709 ± 0.0017

Q∗
M0

0.9987 ± 0.0036 1.0020 ± 0.0017 1.0026 ± 0.0022 1.0045 ± 0.0017 1.0037 ± 0.0008

QM1 0.9451 ± 0.0031 0.9601 ± 0.0019 0.9677 ± 0.0020 0.9736 ± 0.0019 0.9795 ± 0.0008

Q
M1

0.9850 ± 0.0013 0.9994 ± 0.0014 1.0074 ± 0.0013 1.0128 ± 0.0007 1.0171 ± 0.0006

Q
M1

1.0191 ± 0.0037 1.0214 ± 0.0028 1.0227 ± 0.0020 1.0195 ± 0.0018 1.0158 ± 0.0011

Q∗
M1

0.9792 ± 0.0025 0.9901 ± 0.0017 0.9961 ± 0.0019 0.9992 ± 0.0019 0.9992 ± 0.0016

Q∗
M1

1.0172 ± 0.0023 1.0261 ± 0.0016 1.0257 ± 0.0013 1.0233 ± 0.0015 1.0193 ± 0.0009

Q∗
M1

1.0213 ± 0.0031 1.0225 ± 0.0015 1.0214 ± 0.0010 1.0204 ± 0.0012 1.0158 ± 0.0013

RMSE0 [QH ] 0.0207 ± 0.0004 0.0130 ± 0.0002 0.0090 ± 0.0002 0.0061 ± 0.0001 0.0036 ± 0.0000

REFF0 (and 95% confidence intervals)

QM0 0.7127 ± 0.0055 0.7086 ± 0.0046 0.7109 ± 0.0048 0.7111 ± 0.0046 0.7129 ± 0.0054

Q
M0

0.8781 ± 0.0053 0.8326 ± 0.0059 0.8133 ± 0.0047 0.7967 ± 0.0046 0.7776 ± 0.0069

Q
M0

1.0724 ± 0.0087 1.0692 ± 0.0073 1.0876 ± 0.0115 1.1163 ± 0.0058 1.1670 ± 0.0074

Q∗
M0

0.8963 ± 0.0047 0.8903 ± 0.0041 0.8915 ± 0.0052 0.8911 ± 0.0055 0.8908 ± 0.0073

Q∗
M0

0.9887 ± 0.0044 0.9301 ± 0.0063 0.9010 ± 0.0054 0.8724 ± 0.0036 0.8434 ± 0.0081

Q∗
M0

1.1109 ± 0.0070 1.1030 ± 0.0075 1.1102 ± 0.0080 1.1247 ± 0.0044 1.1512 ± 0.0069

QM1 0.9366 ± 0.0042 0.9529 ± 0.0066 0.9729 ± 0.0068 0.9950 ± 0.0048 1.0251 ± 0.0102

Q
M1

1.1621 ± 0.0061 1.1534 ± 0.0084 1.1600 ± 0.0130 1.1711 ± 0.0067 1.1629 ± 0.0138

Q
M1

1.0968 ± 0.0039 1.0704 ± 0.0044 1.0605 ± 0.0041 1.0564 ± 0.0037 1.0468 ± 0.0103

Q∗
M1

1.0549 ± 0.0033 1.0775 ± 0.0086 1.1063 ± 0.0126 1.1494 ± 0.0073 1.2182 ± 0.0202

Q∗
M1

1.1600 ± 0.0080 1.1237 ± 0.0056 1.1103 ± 0.0092 1.1069 ± 0.0041 1.0950 ± 0.0103

Q∗
M1

1.0725 ± 0.0023 1.0519 ± 0.0023 1.0438 ± 0.0036 1.0416 ± 0.0022 1.0336 ± 0.0093
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6 A case-study

We shall first consider an illustration of the performance of the above mentioned estimators,

through the analysis of the n = 371 automobile claim amounts exceeding 1,200.000 Euro over

the period 1988-2001 and gathered from several European insurance companies co-operating

with the same re-insurer (Secura Belgian Re). This data set was studied both in Beirlant et al.

(2004) and Vandewalle and Beirlant (2005) as an example to excess-of-loss reinsurance rating

and heavy-tailed distributions in car insurance.

In Figure 9, we present the sample path of the ρ̂τ estimates in (2.4) (left), as function of k,

for τ = 0 and τ = 1, together with the sample paths of the β-estimators in (2.6), also for τ = 0

and τ = 1 (right).
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Figure 9: Estimates of the shape second order parameter ρ (left) and of the scale second order parameter β (right) for

the Secura Belgian Re data.

Note that the sample paths of the ρ-estimates associated to τ = 0 and τ = 1 lead us to

choose, on the basis of any stability criterion for large k, the estimate associated to τ = 0.

From previous experience with this type of estimates, we conclude that the underlying ρ-value

is larger than or equal to −1, and the consideration of τ = 0 is then advisable. The estimate

of ρ is in this case ρ̂0 = −0.65, obtained at the level k1 = 360. The associated β-estimator is

β̂0 = 0.78.

In Figure 10, we present, at the left, the estimates of the tail index γ, provided by the Hill
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estimator, γ̂H,k in (1.3), denoted H, the M -estimator in (3.4) and the M estimator in (3.6).

At the right we present the corresponding quantile estimators associated to p = 0.001, i.e., the

quantile estimates QH , Q∗
M

and Q∗
M

.
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Figure 10: Estimates of the tail index γ (left) and of the quantile χp, associated to p = 0.001 (right) for the Secura

Belgian Re data.

Regarding the tail index estimation, note that whereas the Hill estimator is unbiased for the

estimation of the tail index γ when the underlying model is a strict Pareto model, it exhibits

a relevant bias when we have only Pareto-like tails, as happens here, and may be seen from

Figure 10 (left). The other estimators, which are “asymptotically unbiased” reveal a smaller

bias, and enable us to take a decision upon the estimate of γ to be used, with the help of any

heuristic stability criterion, like the “largest run” suggested in Gomes and Figueiredo (2003).

For the Hill estimator, as we know how to estimate the second order parameters β and ρ,

we have simple techniques to estimate the optimal sample fraction. Indeed, we get k̂H
0 =(

(1− ρ̂)2n−2bρ/(−2 ρ̂ β̂2
))1/(1−2bρ)

= 58. Unfortunately, we do not have yet the possibility of

adaptively estimate the optimal sample fraction associated to the second order reduced bias

estimates. The estimate pictured, γ̂ = 0.23, is the median of the M(k) estimates for k between

k̂H
0 and 4 × k̂H

0 . A similar technique led us to the quantile estimate χ̂0.001 = 10, 009.158, as

pictured in Figure 10.

25



References

[1] Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G. (1999). Tail index estimation

and an exponential regression model. Extremes 2, 177-200.

[2] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes.

Theory and Applications. Wiley.

[3] Caeiro, F. and Gomes, M. I. (2004). A new class of estimators of the “scale” second order

parameter. Notas e Comunicações CEAUL 20/04. Submitted.

[4] Caeiro, F., Gomes, M. I. and Pestana, D. D. (2004). Direct reduction of bias of the classical

Hill estimator. RevStat 3 (2), 111-136.

[5] Drees, H. (1998). A general class of estimators of the extreme value index. J. Statist.

Planning and Inference 98, 95-112.

[6] Ferreira, A., de Haan, L. and Peng, L. (2003). On optimising the estimation of high

quantiles of a probability distribution. Statistics 37(5), 401-434.

[7] Feuerverger, A. and Hall, P. (1999). Estimating a tail exponent by modelling departure

from a Pareto distribution. Ann. Statist. 27, 760-781.

[8] Fraga Alves, M. I., Gomes M. I. and de Haan, L. (2003). A new class of semi-parametric

estimators of the second order parameter. Portugaliae Mathematica 60:2, 194-213.

[9] Geluk, J. and L. de Haan (1987). Regular Variation, Extensions and Tauberian Theorems.

CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, Netherlands.

[10] Gomes, M. I. and Figueiredo, F. (2003). Bias reduction in risk modelling: semi-parametric

quantile estimation. To appear at Test.

[11] Gomes, M. I., Caeiro, F. and Figueiredo, F. (2004a). Bias reduction of a tail index estimator

through an external estimation of the second order parameter. Statistics 38(6), 497-510.

26



[12] Gomes, M. I., de Haan, L. and Rodrigues, L. (2004b). Tail index estimation through accom-

modation of bias in the weighted log-excesses. Notas e Comunicações C.E.A.U.L. 14/2004.

Submitted.

[13] Gomes, M. I. and M. J. Martins (2001). Alternatives to Hill’s estimator — asymptotic

versus finite sample behaviour. J. Statist. Planning and Inference 93, 161-180.

[14] Gomes, M. I. and M. J. Martins (2002). “Asymptotically unbiased” estimators of the tail

index based on external estimation of the second order parameter. Extremes 5:1, 5-31.

[15] Gomes, M. I. and M. J. Martins (2004). Bias reduction and explicit estimation of the tail

index. J. Statist. Planning and Inference 124, 361-378.

[16] Gomes, M. I., Martins, M. J. and Neves, M. (2000). Alternatives to a semi-parametric

estimator of parameters of rare events – the Jackknife methodology. Extremes 3:3, 207-

229.

[17] Gomes, M. I., Martins, M. J. and Neves, M. (2005). Revisiting the second order reduced

bias “maximum likelihood” tail index estimators. Notas e Comunicações CEAUL 10/2005.

Submitted.

[18] Gomes, M. I. and Pestana, D. (2004). A simple second order reduced bias’ tail index

estimator. To appear at J. Statist. Comp. and Simul..

[19] Gomes, M. I. and Pestana, D. (2005). A sturdy second order reduced bias’ Value at Risk

estimator. Notas e Comunicações 05/2005. Submitted.

[20] Haan, L. de and Peng, L. (1998). Comparison of tail index estimators. Statistica Neer-

landica 52, 60-70.

[21] Haan, L. de and H. Rootzén (1993). On the estimation of high quantiles. J. Statist. Planning

and Inference 35, 1-13.

[22] Hall, P. and Welsh, A.H. (1985). Adaptive estimates of parameters of regular variation.

Ann. Statist. 13, 331-341.

27



[23] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution.

Ann. Statist. 3, 1163-1174.

[24] Matthys, G. and Beirlant, J. (2003). Estimating the extreme value index and high quantiles

with exponential regression models. Statistica Sinica 13, 853-880.

[25] Matthys, G., Delafosse, M., Guillou, A. and Beirlant, J. (2004). Estimating catastrophic

quantile levels for heavy-tailed distributions. Insurance: Mathematics and Economics 34,

517-537.

[26] Peng, L.(1998). Asymptotically unbiased estimator for the extreme-value index. Statistics

and Probability Letters 38(2), 107-115.

[27] Vandewalle, B. and Beirlant, J. (2005). On univariate extreme value statistics and the

estimation of reinsurance premiums. Accepted at Insurance Mathematics and Economics.

[28] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest

observations. J. Amer. Statist. Assoc. 73, 812-815.

28


