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Abstract. An unsupervised method for convolutional neural network
(CNN) architecture design is proposed. The method relies on a vari-
able neighborhood search-based approach for finding CNN architectures
and hyperparameter values that improve classification performance. For
this purpose, t-Distributed Stochastic Neighbor Embedding (t-SNE) is
applied to effectively represent the solution in a 2D space. k-Means clus-
tering divides this representation space having in account the relative
distance between neighbors. The algorithm is tested in the CIFAR-10
image dataset. The obtained solution improves the CNN loss by over
15% and the respective accuracy by 5%. Moreover, the network shows
higher predictive power and robustness, validating our method for the
optimization of the CNN design.
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1 Introduction

Convolutional Neural Networks (CNNs) [8] are a machine learning technique ca-
pable of automatically learn relevant features from multi-dimensional data, such
as images. These methods have shown to achieve state-of-the-art performance
in several different tasks being successfully applied on object recognition [6] and
biomedical image analysis [1], among others.

Machine Learning algorithms often require careful tuning of their hyper-
parameters [11]. In particular, deep learning methods, such as CNNs, require
thorough tuning of numerous parameters [11]. The classification accuracy of a
CNN is influenced by multiple factors, such as the number of neurons and or-
ganization of layers of each type, the regularization strength and the dropout
percentage. Parameter search is particularly difficult for these networks since the
evaluation of the goal function is very expensive due to the high training time.

CNNs’ architecture and hyperparameters are usually manually tuned for a
particular dastaset [5], which hardly retrieves a close-to-optimal model and can



be time-consuming. Thus, automatic methods that perform the optimization
of the CNN design are desirable. Some works in the literature aim at the de-
velopment of automatic methods for optimizing the CNN architecture and/or
hyperparameters. Jin et al. [5] proposed a submodularity and supermodularity
method for optimizing neural network architectures, while other hyperparame-
ters were optimized using grid-search or, alternatively, set to recommended val-
ues. Snoek et al. [11] presented methods for Bayesian optimization of machine
learning algorithms’ hyperparameters. The method was tested in the CIFAR-10
dataset [7], using the network from [6]. A total of nine hyperparameters were
optimized, among which are the number of epochs, the learning rate and the
pooling size. They report an improvement of 3% in the validation accuracy rel-
ative to the initial parameter setting.

Heuristic and metaheuristics techniques are commonly used for solving op-
timization problems. However, their implementation for CNN improvement is
still little explored. Further, most optimization methods do not focus on the
architecture design but rather on the optimization of hyperparameters such as
learning rate, weight initialization and the number of epochs to run the model.
We propose a Variable Neighborhood Search-like (VNS) approach for CNN ar-
chitecture and hyperparameter optimizing. The VNS algorithm is composed of
two steps. The first one is a diversification of the search in which a new neigh-
borhood is generated. Then, an intensification step allows to achieve a new local
optima. This process is repeated for increasing neighborhoods, allowing to obtain
different local optima and thus, most likely, improve the incumbent solution [4].

2 Materials and Methods

2.1 Solution representation and neighborhood definition

Let S be a m× n matrix, where m is the number of layers and n the number of
parameters of a network. S is characterized by a set of parameter indices s:

Sm,n =


s1,1 s1,2 · · · s1,n
s2,1 s2,2 · · · s2,n

...
...

. . .
...

sm,1 sm,2 · · · sm,n

 (1)

where s has correspondence to a given layer parameter as function of its column
coordinate in S. For instance, the type of layer is mapped by:

si,1 ∈ {1, 2, 3, 4} 7→ {C,P,D,FC} (2)

where C stands for convolutional, P for pooling, D for dropout, and FC for
fully-connected layers. Both C and FC are followed by rectified linear units
(ReLU), except for the last FC layer, which is activated with a softmax function
to perform the final classification. The remaining columns of the matrix contain
the values of the parameters needed for the network design. The fifth column
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Fig. 1: Example of a Convolutional Neural Network architecture according to the
proposed solution representation. � convolutional kernel; � max-pooling kernel.

stores the output size of each layer, allowing to assess the validity of the network
architecture. The second column of S defines the size of the filters of C (3, 5,
7 or 9 in our experiments) and MP layers (2, 3, 4), the dropout percentage of
D (0, 0.25, 0.50) layers and the number of neurons of FC (4, 16, 32, 64, 128).
Like-wise, the third column indicates the number of maps of C layers (8, 16, 32,
64) and the fourth the L2 regularization (0.01) of C, M and FC layers. A CNN
architecture illustrating the proposed solution representation is shown in Fig. 1

Neighbors of the current solution S are networks that result from movements
of insert, remove and swap applied to S. A neighbor is considered valid if it re-
spects the following rules: 1) it does not have 2 consecutive MP layers or D
layers; 2) the output size of the layer before MP must be divisible by the MP
filter size; 3) MP cannot come after D layers, following the traditional CNN
design; 4) FC must appear only at the end of the CNN;5) the first layer must
be C; Remove movements tend to be easier to perform. To avoid shallow archi-
tectures, these movements are penalized relatively to the other two. Similarly,
swap movements are penalized relative to insert movements. For this purpose,
an exponential function is used for biasing the operation decision.

2.2 Network performance evaluation

In this study, the networks’ performance is evaluated on the independent test set
in terms of i) accuracy (acc), corresponding to the ratio of correctly predicted
image classes (Eq. 3) and ii) loss (L), which is related to how confident the CNN
is in the predicted label (Eq. 4):

acc(u, g) =

∑N
i=1

∑M
j=1 yij ŷij

N
(3) L(u, g) = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (4)

where u is the model in study, g the current training epoch, N is the number of
test samples, M is the number of classes, yij ∈ {0, 1} is a binary variable with
value 1 if observation i belongs to class j, ŷij ∈ {0, 1} a binary variable with
value 1 if the predicted class is j and pij the respective prediction probability.



Minimizing L is the same as maximizing the predictive power of the system, i.e,
of maximizing the certainty of correct labeling over the independent test set.

Let U = {u1, u2, ...up} be the neighborhood of the incumbent solution u0,
generated from u0 by randomly performing r operations. New incumbent solu-
tions are found by minimizing the cost function C(u):

C(u) =

(
1

v

V∑
g=V−v

acctr(u, g)

)−1(
1

v

V∑
g=V−v

acctt(u, g)

)2(
1

v

V∑
g=V−v

Ltt(u, g)

)−1

(5)

where V is the number of training epochs, v the number of epochs to ana-
lyze and u the current network design. The first two terms of Eq. 5 state that
the model should have similar accuracy performance for both training (tr) and
test samples (tt), while prioritizing test accuracy. The third term minimizes the
test loss, thus increasing the generalization capability of the network. A new
incumbent solution u0 is considered every time that C(u)−1 > C(u0)−1. This
strategy is known as first neighbor search.

The training process has a near-constant duration that depends on the com-
plexity of the network. Since predicting the behavior of the network based on few
training epochs is a complex task [2], it is important to select V such that the
obtained performance results are representative without substantially increasing
the tunning time. In this work, V is manually selected by analyzing the behavior
of the initial solutions.

2.3 Solution space exploration

The incumbent solution’s neighborhood is defined as the set of neighbors ob-
tained from u0 by performing r randomly selected viable operations. These
neighbors are characterized by a set of features related to the architecture of
the network which are used for describing the solution space: i) number of C,
MP and FC layers; ii) average number of maps of C layers; iii) average filter
size of C layers and iv) average pooling size of MP. Note that although these
features do not fully describe the solution, their network characterization is more
complete than a measurement of similarity such as the edit distance.

The dimension of the feature space is then reduced to 2D by applying a
t-Distributed Stochastic Neighbor Embedding (t-SNE) [9]. Based on the natu-
ral aggregation of the neighbors, a K-means [10] approach is used for dividing
the solution space. The discussed pre-processing steps allow to obtain a well
defined solution space. This solution space is now searched through a variable
neighborhood search (VNS) approach, as detailed in Algorithm 1.



Algorithm 1 Variable Neighborhood Search for Convolutional Neural Network
design improvement. tr: overall elapsed time; tc: time elapsed in each cluster;
tr,max: maximum running time; tc,max: cluster-search maximum running time;
u0: initial solution; U : set of neighbors of u0; nop: number of operations (insertion,
deletion, swap) to perform; k: number of clusters Clu to form from U .

Require: u0, tc,max, tr,max, nop, k
tr ← 0, loss(u0)← train(u0)
while tr < tr,max do

U ← generateNeighbors(u0, nop), C ← cluster(U , k)
for c in Clu do

tc ← 0
while tc < tc,max do

u← randomSelection(c), loss(u)← train(u)
if loss(u) better than loss(u0) then

u0 ← u, break
end if
update(tc)

end while
end for
update(tr), nop ← nop + 1

end while
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Fig. 2: 2D and 3D schemes of the proposed Variable Neighborhood Search
method for Convolutional Neural Network design improvement. The solution
space is reduced via t-SNE and clustering is performed using k-means. 2a: exam-
ple of visited solutions of a neighborhood generated from the incumbent solution
by performing one operation; 2b: visited neighbors with one to five operations.

The proposed method performs a search inside each of the k groups of the
solution space. Each time a network with higher performance is found, as defined
by Eq. 5, the incumbent solution u0 is updated. For that purpose, the algorithm



starts by evaluating randomly selected neighbors in the same cluster of u0. A pre-
liminary accuracy evaluation after 3 training epochs guarantees that the current
solution is viable. Otherwise, a different neighbor is explored. Similarly, redun-
dant neighbors are skipped. When a better solution is found, or alternatively if
the pre-established cluster running time is exceeded, the algorithm moves to a
different cluster. After visiting all clusters, the number of operations r is incre-
mented, a new solution space is generated and the process is repeated until the
overall running time is exceeded. Fig. 2 illustrates the proposed scheme.

3 Results

The proposed VNS-based approach for CNN architecture optimization is evalu-
ated on the CIFAR-10 dataset [7]. This dataset is composed of 50 000 training
images and 10 000 test RGB images of 10 different classes. The small size of
the images lowers the training time by reducing the number of parameters to
learn and memory requirements, thus allowing a simpler assessment of the pro-
posed methodology. The incumbent solution is the network from [3] (Eq. 6).
The achieved architecture is shown in Eq. 7. The influence of the total number
of training epochs, V , and the maximum search time per cluster, tc,max is as-
sessed. Experiments were performed using a CPU Intel i7-5960X workstation,
32GB RAM and GPU Nvidia GTX1080. Python3.5 and Keras framework were
used for experiment design and evaluation. Experiments were performed in GPU.

Sinit =



0 0 0 0 32
1 3 32 0 32
1 3 32 0 32
2 2 0 0 16
3 0.25 0 0 16
1 3 64 0 16
1 3 64 0 16
2 2 0 0 8
3 0.25 0 0 8
4 512 0 0 512
3 0.5 0 0 512
4 10 0 0.05 10



(6) Sf =



0 0 0 0 32
1 3 32 0 32
1 3 32 0 32
2 2 0 0 16
3 0.25 0 0 16
1 3 64 0 16
1 3 64 0 16
1 9 16 0.1 16
3 0.25 0 0 16
4 512 0 0 512
3 0.5 0 0 512
4 10 0 0.05 10



(7)

The validation accuracy and loss metrics (which in our study corresponds
to the performance in the test set) of the obtained models are compared with
the initial model after 200 training epochs. For the solution search process, the
influence of tc,max is studied for tc,max ∈ {2, 4} (hours) with V = 50. Similarly,
V ∈ {20, 50} (training epochs) is studied for tc,max = 2. The total solution
search time is 70 hours for each of the assessed combinations and each training
epoch has an approximate duration of 30 seconds. The average number of better
solutions found is 4.3± 0.4 over all the studies.

The obtained loss and accuracy curves for the found solutions are shown in
Fig. 3a and Fig. 3b, respectively, for 120 training epochs. Fig. 3a shows that the



Table 1: Validation accuracy and loss of the obtained solutions for key train-
ing epochs. S0 - initial model; S1 - 2h/cluster with 20 training epochs; S2 -
2h/cluster with 50 training epochs; S3 - 4h/cluster with 50 training epochs;

(a) Accuracy

Epoch S0 S1 S2 S3

30 0.63 0.60 0.73 0.67

65 0.81 0.53 0.63 0.54

70 0.81 0.56 0.61 0.52

111 0.98 0.61 0.68 0.52

(b) Loss

Epoch S0 S1 S2 S3

30 0.80 0.79 0.78 0.77

65 0.82 0.84 0.82 0.82

70 0.82 0.84 0.83 0.83

111 0.82 0.84 0.83 0.83
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Fig. 3: Validation accuracy and loss curves of the obtained solutions. Two rep-
etitions are performed for the initial model and for the 50 epochs with 4 hours
per cluster study. 3a: validation loss of the best found solutions; 3b: validation
accuracy of the best found solutions.

found solutions yield a lower and more constant loss than the initial model. The
best architectures provide a higher degree of confidence in their predictions and
are less prone to over-fit to the training data. Accuracy-wise, the new models
show to either perform similarly or slightly better than the initial model. Overall,
the found solutions are more robust than the initial model without compromising
the accuracy. This shows that the proposed VNS-based heuristic is successfully
capable of improving the design of the CNN.

The key results achieved for the studied V and tc,max values are summarized
in Table 1a and Table 1b. During the 70 hours of search, in the S1 and S3
approaches (refer to Table 1a) approximately 240 different solutions are visited
while in S2 the number decreases to 100. The minimum achieved loss is 0.52,
corresponding to an improvement of 17% relatively to the original solution loss.
For 30 training epochs, number for which the lowest loss value of the original
solution is obtained, the improvement is 5%. Accuracy-wise, the proposed sys-
tem allows a maximum 5% accuracy improvement. For 30 epochs the obtained



accuracy is lower only because the increased complexity of the obtained solu-
tion tends to slow down the training process in terms of epochs. Furthermore,
although not directly comparable because of the difference in the initial network
and implementation, this value is greater than the 3% achieved by [11] for the
same running time. Note that, despite the success of the proposed methodol-
ogy, further improvements could be achieved by increasing the solution space to
include different network optimizers, regularization values, etc. For instance, it
would be easy to vary the stride of C layers, which has shown to be an alterna-
tive to adding MP layers [12]. Furthermore, the selection of the V and tc,max

parameters seems not to be crucial since in the performed study, all the obtained
models achieve high performance given enough number of training epochs.

The comparison between the studied approaches indicates that S1 shows
the best compromise between loss and accuracy improvement as function of
the number of training epochs. For this model, shown in Eq. 7, a significant
performance boost is achieved by doubling the network training time in relation
to the initial solution. Note that in terms of CNN architecture the obtained
model is uncommon and thus would not probably be studied during manual
network tuning. The added 9 × 9 convolution layer in the end of the C-MP
sequence is aggregating the previously learned filters into a smaller feature space,
which may contribute to the improvement of the performance. However, further
studies need to be done to confirm this hypothesis. Because of this, automatic
design methods such as this may prove to be advantageous. The lower tc,max and
V values, reinforced by cluster-wise division achieved via t-SNE and k-means
methods, allow the VNS-based approach to visit neighbors with lower similarity,
which contributes to the identification of better solutions.

4 Conclusions

An unsupervised method for CNN architecture design is proposed. A VNS-based
approach is used for finding solutions that improve a problem-oriented cost func-
tion. For that purpose, t-SNE allows to effectively represent the solution space
in a 2D space, which is easier to interpret and k-Means clustering divides the
solution space having in consideration the distance between neighbors. The ob-
tained solution improves the CNN loss by over 15% and the respective accuracy
by 5%. The obtained solution shows higher predictive power and robustness.

Based on the achieved results, further improvements to the system can be
performed. Generically, the initial solution could be randomly generated instead
of being user provided. This could diversify the solution space and thus allow for
further performance improvement. Ultimately, the entire network design process
could be automated. It would be of interest to study classification tasks of higher
complexity, such as medical image analysis. For that purpose, other relevant pa-
rameters, such as the learning rate, weight initialization, loss function, among
others, could be optimized. A more complete set of features to describe the solu-
tion space could be used for describing the solution space. Similarly, the number
of epochs needed to evaluate to network could be adapted to the complexity of



the network i.e., reducing the number of epochs to a minimum should allow to
increase the number of neighbors visited for the same period of time.
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