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Abstract 
 

The endoplasmic reticulum (ER) is a multifunctional organelle with major roles in 

the secretory pathway. More than a mere transit compartment for secretory and 

membrane-targeted proteins, the ER is responsible for their biosynthesis, folding, 

assembly and modifications. The accomplishment of such variety of functions closely 

depends upon the specialized luminal conditions found in the ER, namely: abundance of 

resident molecular chaperones and folding enzymes; high Ca
2+

 stores necessary for 

optimal function of the former members and oxidizing milieu compatible with disulphide 

bond formation. The accuracy of the process is ensured by stringent quality control 

mechanisms, coupled to ER-associated degradation (ERAD) of aberrant proteins. 

Operating together, both systems guarantee that only proteins whose native conformation 

was reached are delivered to the Golgi apparatus towards their final destinations. When 

this operational control fails, the cell senses and protects itself from the ensuing insult 

with a coordinated set of actions designated as the unfolded protein response, the UPR. 

The more widely known response involves induction of ER chaperones and foldases to 

meet the exceptional folding demands, improvement of ERAD of irreparably unfolded 

proteins and global suppression of translation to minimize the burden of new clients 

entering the ER. Recently, however, we and others have shown that the UPR influences 

the cell surface expression of MHC class I molecules and the transcriptional profile of 

iron genes with cellular and systemic regulatory roles. In this review we present the work 

that has revealed the ER stress-iron metabolism axis, also discussing possible 
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implications for understanding the maintenance of cellular and systemic iron homeostasis 

both in physiological and pathological contexts. The review is concluded with the 

consideration of the implications of the wider role of the UPR in cell physiology, iron 

overload, inflammation and hepatic disease.  

 

 

Introduction 
 

Many basic biological discoveries experience three phases of development. In an infant 

phase one person or small group of people find something new that they alone feel is 

important. With time such feeling may be vindicated or dissipated and transformed into 

something else very different, depending on the progress, understanding and confirmation by 

others. In a third phase, if vindicated, a finding may enter basic general knowledge and/or 

gain significance in the medical world. This latter step brings the original finding into a 

limelight that has resulted often in the distinction by great international prizes. Protein folding 

is no exception. Two of the first papers published in Nature on the biological significance of 

protein folding date of 1950 [1] and 1951 [2]. One of the first reviews on the control of 

protein exit from the ER dates from 1989 [3]. In the same year Ellis et al. published a review 

on the molecular chaperone complex [4].  

In universes with over 41,000 publications listed in Pubmed for protein folding and close 

to 14,000 for chaperones, one approaches any new contribution to the field with awe if not 

apologetically. But knowledge moves from the inspiration of great discoveries to touch 

models that seem small drops in its large ocean. We have reason to believe that recent 

observations with protein folding in cellular iron homeostasis contribute to illustrating how 

basic knowledge can benefit from the study of new genetic disease models and move in the 

reciprocal direction to influence understanding of the original disease. The disease model 

reviewed in this chapter is HFE hemochromatosis. The reciprocal influence resides in finding 

the effect of the UPR associated with an HFE mutation on MHC-class I expression and iron 

gene expression. In addition, the chapter will review other disease models that have helped to 

place the Unfolded Protein Response in the biomedical limelight.  

 

 

Visiting the Endoplasmic Reticulum 
 

The multitasking nature of the endoplasmic reticulum (ER), underpinned by its major 

role in cellular processes as diverse as lipogenic reactions [5], Ca
2+ 

homeostasis [6] and 

organelle biogenesis [7], is consolidated by its crucial activity in the secretory pathway. More 

than a mere transit compartment for secretory and membrane-spanning proteins, the ER is 

responsible for their biosynthesis, folding and maturation [8]. Since 30% of the cellular 

proteome is processed through the ER, such functions represent a remarkable challenge to the 

organelle whose large scale achievements closely depend upon specialized luminal conditions 

[9].  

Within the ER, client proteins fold to adopt the biologically active three-dimensional 

structure, an energetically stable conformation known as native state [10]. Although in the 

early 1960‘s Anfinsen and others have postulated that instructions for the native structure are 
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codified in the amino acid sequence [11-12], spontaneous self-folding capacity is hampered in 

vivo by the intracellular crowded environment, making assistance from molecular chaperones 

and catalysts vital for the folding efficiency. A particularly thorough assistance must be 

provided within the ER, since proteins exiting the organelle are no longer subject to 

chaperone surveillance and must, nevertheless, preserve their stability under demanding 

intra/extracellular conditions. A growing list of ER folding factors, acting in vivo in a 

network-like manner, has emerged in the last decades. Among the most prominent are 

―classical‖ molecular chaperones (eg. BiP and GRP94), lectin chaperones (eg. CNX and 

CRT), redox enzymes (eg. PDI) and peptidyl-prolyl isomerases. As part of a stringent quality 

control system [13], these components assist, accelerate and monitor the protein processing 

events which, coupled to ER-associated degradation (ERAD) of aberrant proteins [14], 

guarantee that only those whose native conformation was met are delivered to the Golgi 

apparatus towards their final destinations. 

 

 

Stressing Out the ER and the Unfolded 

Protein Response 
 

Notwithstanding the zealous quality control mechanisms normally provided by the ER, 

certain physiological states and exogenous stimuli can compromise the above-described 

folding environment, unbalancing the load/capacity ratio of the ER. Such condition, 

collectively termed ER stress, is instigated by numerous acute and chronic factors. Disruption 

of Ca
2+

 stores, alteration of redox status, energy/nutrient deprivation and hypoxia fall into the 

first category [15-16], whereas expression of mutant substrates or ER folding components 

[17], viral infection and even the potent secretory activity of certain cell types [18-19] are 

examples of chronic stress insults. To contain and reverse the accumulation of misfolded 

clients under these deleterious scenarios, cells have evolved specialized ER-to-nucleus 

signaling circuits referred to as the Unfolded Protein Response (UPR). A coordinated array of 

strategies encompassing ER expansion, global slowdown of protein synthesis to attenuate the 

ER load, transcriptional induction of ER chaperones and foldases to face the increased folding 

demands and improvement of ERAD machinery to bolster the clearance of ill-fated proteins 

is set in motion by the UPR [16, 20]. Although eminently displaying a pro-survival goal, if 

the UPR efforts fail to restore ER homeostasis, pro-apoptotic programs are evoked instead 

[21].  

In mammalian cells, three ubiquitous ER-resident transmembrane proteins operate as 

proximal sensors and define the major UPR signaling branches – double-stranded RNA-

dependent protein kinase-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and 

activating transcription factor 6 (ATF6) [16, 20]. Despite this diversity, interaction with the 

chaperone immunoglobulin heavy chain-binding protein (BiP) has been proposed as a 

common regulator of the ER transducers. Under unstressed conditions, BiP binds the luminal 

domains of all sensors, rendering them inactive, whereas massive accumulation of unfolded 

proteins leads to BiP sequestration and allows initiation of the PERK-, IRE1- and ATF6-

dependent cascades [22-23]. Alternative ER stress sensing mechanisms, involving either 

direct interaction of the IRE1‘s major histocompatibility complex (MHC)-like groove with 
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misfolded proteins [24-26] or the redox status of the ATF6 luminal portion [27], have been 

likewise suggested and are still a matter of debate. 

The aforementioned description of the UPR network was given from a ―traditional‖ 

perspective, according to which the UPR appears as a stress response triggered by and aimed 

to mitigate misfolding events in the ER. Over the last few years, however, as the molecular 

details of its signaling pathways came into sharp focus, a broader than anticipated spectrum of 

action for the UPR-derived output was unveiled. In fact, signals emanating from the ER via 

the UPR have been involved in multiple cellular processes, including cell differentiation [28-

29], glucose and lipid homeostasis [30-31], inflammatory and oxidative stress responses [32-

33]. Also reflecting this wide scope is the activation of the UPR by physiological stimuli 

unrelated to the presence of unfolded proteins in the ER. Such an example occurs during B-

cell differentiation, in which the UPR-mediated ER expansion precedes massive 

immunoglobulin production [34]. Owing to these findings, the UPR is increasingly 

recognized as a proactive program, rather than a reactive emergency plan for extreme 

intracellular conditions[35]. 

Given its pleiotropic effects, the implication of the UPR in a variety of disease states 

comes as no surprise. Protein misfolding and neurodegenerative disorders are among the most 

obvious, but the list extends to metabolic diseases (eg. diabetes and obesity) [36-37], viral 

infections and cancer [38], just to mention a few. Despite these correlations, whether the UPR 

is the underlying cause or, instead, a consequence of disease remains undefined in the 

majority of cases. Positing that the UPR does play an active role in the pathological process, 

may it establish and help to bring into light new disease paradigms?  

 

 

Is the UPR Changing the Paradigm of Disease? 

HFE Hemochromatosis as Model 
 

Emerging from faulty regulation of duodenal iron absorption in the face of increasing 

iron stores, HFE-associated hereditary hemochromatosis (HH) is a heritable condition of iron 

overload caused by mutant forms of HFE [39]. The product encoded by this gene shares 

structural homology to a MHC-class I protein, requiring association with 2-microglobulin 

(2m) for cell surface expression [40-41]. Unlike conventional MHC-class I molecules, 

however, HFE is not coupled to antigen presentation functions, probably due to the narrow 

dimensions of its peptide binding groove [41]. The C282Y point mutation of HFE, in which a 

G-A transition replaces the amino acid cysteine by tyrosine at position 282, is carried by the 

majority of HH patients (>80%) [40]. The demonstration that the HFE-2m heterodimer 

competes with diferric transferrin for binding to transferrin receptor (TfR)1 was the definitive 

evidence implicating HFE in iron homeostasis [42-43]. With the binding capacity of HFE 

later extended to TfR2 [44], a partnership involving HFE, TfR1 and TfR2 has emerged as a 

critical pathway governing systemic iron balance [45-46]. According to this model, when iron 

stores are replete, circulatory holotransferrin binds avidly to TfR1. Displaced HFE becomes 

therefore available to interact with TfR2, initiating a signaling program that culminates with 

the induction of hepcidin expression [45, 47]. Hepcidin, a 25-residue peptide hormone first 

described as an antimicrobial molecule, is presently acknowledged as the seminal orchestrator 

of systemic iron homeostasis and the iron exporter ferroportin its cognate receptor [48]. 
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Mainly secreted by hepatocytes [49], hepcidin targets the membrane-anchored ferroportin, 

triggering its internalization, ubiquitination and lysosomal degradation [50]. Iron egress from 

enterocytes and macrophages is thereby inhibited, ultimately restricting the availability of the 

biometal in circulation.  

Blocking the formation of a disulphide bond in the 3 domain of HFE, the C282Y 

mutation prevents assembly with 2m [51-52]. As a consequence, transport of the mutant 

protein through the secretory pathway is impaired and its accumulation in the ER as high 

molecular weight aggregates undergoing proteasome-dependent degradation ensues [52]. Due 

to compromised cell surface presentation, the C282Y variant of HFE fails to bind TfR1 or 

stabilize TfR2 according to the prevailing transferrin saturation levels. 

Besides loss of protein function [53-54], the C282Y mutation was recently coupled to 

UPR activation [55-56]. The possibility that novel regulatory mechanisms imparted by the 

C282Y-mediated ER stress events might play a role in HH disease expression is thus 

foreseeable. A number of findings support such hypothesis: i) a causal relation between 

diminished MHC-class I cell surface expression and HFE C282Y-triggered UPR activation 

was disclosed [55, 57], an effect later broadened to other ER insults (eg. palmitate and 

glucose starvation) [58]; ii) a correlation between calreticulin (CRT) expression levels and the 

clinical phenotype of HH-individuals was reported, with a protective role being attributed to 

this ER-chaperone [59]; iii) poor penetrance and high phenotypic heterogeneity among 

C282Y carriers are remarkable features of HH [60-62], strongly suggesting the existence of 

additional factors modifying this genetically determined disorder. These observations, tied to 

the progressive course of HH and onset of symptoms at middle age, has encouraged the 

classification of HH as a conformational disorder [63-64]. A reasonable explanation for the 

clinical variability referred above would rely, at least in part, on disparate individual abilities 

to mount an appropriate protective response towards the C282Y mutant client. Although 

conceptually interesting, this hypothesis is far from consensual. One argument militating 

against it relates to the low tissue levels of HFE expression, recently estimated below 0.53 

nmol/g of total protein in human liver [65]. Nonetheless, and despite some controversial data 

[66], increased hepatic mRNA expression of Hfe was reported in iron-supplemented mice 

[67-68], a trend also recapitulated by microglia derived cells subjected to stressor agents and 

serum deprivation [69]. Accordingly, one could envisage a scenario in which the basally 

innocuous HFE pool may accumulate with time to levels that congest the ER with the C282Y 

misfolding variant as iron overload progresses in HH, thus favoring ER stress conditions, an 

explanation compatible with the more frequent expression of the disease in the late thirties in 

men and in postmenopausal women. Alternatively, it is conceivable that the presence of the 

C282Y mutant protein sensitizes cells to nuanced but persistent ER stress over which 

independent stimuli might exert cumulative or synergetic effects throughout life. Whether and 

how this model influences the in vivo pathophysiology of HFE-linked HH remains elusive. 

While no definitive answers are provided, one has certainly benefited from the recently 

uncovered interplay between iron homeostasis and UPR activation [70-71].  
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The UPR-Iron Metabolism Axis: Putative 

Physiological Significance 
 

Compelling evidence extending the UPR beyond the realm of protein misfolding and 

proteotoxicity attenuation has been provided. An intersection with iron metabolism was first 

suggested by differential gene expression screenings. Two such examples are the increased 

transcript levels of the ER chaperones CRT and BiP found in iron-burdened astrocytoma cells 

[72] and the transferrin gene down-modulation reported in stable transfectants of the stress-

inducible transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein 

(CHOP) [73]. Proteomic analysis also revealed increased hepatic BiP expression in dietary 

iron-loaded mice [74], but details of this putative interconnectivity have remained 

inconclusive.  

 

 

Figure 1. UPR-induced modulation of iron-related genes. Upon UPR activation, increased levels of CHOP 

expression deplete the C/EBP protein pool, therefore limiting its availability to stimulate hepcidin (HAMP) 

promoter. With the maintenance of the stress response, CHOP levels return to basal values, enhancing the 

C/EBP-binding capacity to HAMP promoter. Increased expression of HAMP under stress conditions was 

also attributed to CREBH-dependent stimulation of its promoter. Both ferritin H (FTH1) and ferroportin 

(FPN) harbor putative binding sites recognized by ER stress-inducible transcription factors, which might 

confer some UPR-responsiveness to these genes. 

Challenging a hepatocytic cell line with chemical agents interfering with disulphide bond 

formation (dithiothreitol and homocysteine) in ER client proteins, ongoing ER stress was 

shown to significantly reshape the expression profile of iron-related genes, namely hepcidin, 

ferroportin and ferritin H. Using this experimental approach, the molecular mechanism 

underlying the biphasic modulation of hepcidin was likewise deciphered, with the nuclear 

factors C/EBP and CHOP appearing as suspected important mediators [70]. The interplay 

between iron metabolism and the UPR signaling pathways was independently reported by 

Vecchi et al. that after stressing hepatoma-derived cells with the ER-to-Golgi transport 
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inhibitor brefeldin A, calcium ionophore A23187 and tunicamycin reported increased levels 

of hepcidin transcripts, a pattern also detected in the liver of tunicamycin-treated mice [71]. 

The stimulation of hepcidin was linked to cAMP response element-binding protein H 

(CREBH)-dependent activation of its promoter [71]. The two proposed mechanisms for 

hepcidin induction under stress scenarios are not incompatible and could likely coexist 

(Figure 1).  

The systemic impact of the UPR has been underscored by the connection to insulin 

secretion and peripheral resistance [36, 75], glucose homeostasis [76] and inflammation [77]. 

With the UPR-induced hepcidin modulation [70-71], a new piece can be added to this puzzle. 

By limiting duodenal iron absorption, hepcidin up-regulation in stressful states may be part of 

an anticipatory ―strategy‖ to evade extra sources of stress, as those associated with iron-

generated ROS. In line with hepcidin‘s antimicrobial role [49], consequences on the innate 

immunity are expected as well, thereby furthering the scope of the recently uncovered ER 

stress-mediated inflammatory responses [32, 78]. In keeping with the cell context-dependent 

nature of the UPR [35, 79-80] and since production of hepcidin has been also reported in 

macrophages, neutrophils [81] and lymphocytes [82], the qualitative and quantitative output 

of UPR signaling pathways on these extra-hepatic sources merits closer scrutiny. 

Apart from the systemic influence driven by hepcidin, repercussions of UPR activation 

are also evident at the cellular iron metabolism level, as suggested by the modulation of 

ferroportin and ferritin H expression imposed by ER insults [70]. The mRNA enrichment of 

both genes in cells enduring ER stress may reflect an attempt to circumvent intracellular 

deposition of free iron either via its sequestration or export, respectively (Figure 1). 

 

 

The UPR-Iron Metabolism Axis: Possible Link to 

Pathological Conditions 
 

The novel association between ER stress and iron homeostasis may provide an interesting 

framework to further understand the pathogenic mechanism(s) behind selected disorders other 

than HFE hemochromatosis. To illustrate this idea we focus on the following examples. 

Iron accumulation in affected brain regions is a commonality of various 

neuropathologies, including Alzheimer‘s disease (AD) and Parkinson‘s disease (PD) [83]. 

Regardless of the yet uncertain mechanisms driving this deposition, the significance of 

inherent oxidative stress to neuronal damage has been vastly recognized [84]. Although a 

causal relationship between these disorders and the UPR awaits definitive confirmation, 

protein misfolding and aggregation are hallmarks of AD and PD, probably potentiating 

neuronal cell death [85-86]. The neurodegeneration field may be therefore worth exploring 

for the dialogue between iron homeostasis and ER stress. It is tempting to speculate, for 

example, that the transcriptional modulation triggered by UPR activation takes part on the 

brain iron imbalance observed in AD and PD.  

Another foreseeable repercussion of these new findings touches on the virus-iron 

metabolism-UPR defined triad. The ability of viruses to usurp the biochemical machineries of 

host cells to mass-replicate themselves is a longstanding concept. One of the widely studied 

processes is the viral interference with multiple steps of MHC-class I antigen presentation 

route, thought to evolve to elude immune surveillance [87]. Because iron availability is 
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critical for efficient proliferation, an additional subversive approach triggered by viruses 

includes manipulation of host iron status. Despite our still tangential understanding of this 

strategy, progress has been made by demonstrating that TfR1 might be engaged in the viral 

entry process [88-89]. Furthermore, US2 and Nef proteins encoded in the genomes of human 

cytomegalovirus (HCMV) and human immunodeficiency virus (HIV)-1, respectively, were 

shown to down-regulate the cell surface expression of HFE [90-91], presumably with the 

consequence of replenishing intracellular iron stores and benefit viral growth. Also supporting 

this interaction, repressed hepcidin synthesis was attributed to hepatitis C virus (HCV) 

infection [92]. The UPR, whose activation has been proven in infected cells [93-95], emerges 

as a plausible common denominator of the aforementioned viral strategies. In fact, by 

exploiting the UPR pathways, viruses might simultaneously: i) guarantee ER expansion to 

accommodate massive production of viral proteins; ii) impair MHC-class I presentation [55, 

58], thus helping in the immune evasion endeavor and iii) tune the activity of host proteins 

involved in iron metabolism to ensure adequate supply of this biometal. 

Diabetes and cancer, two additional platforms of convergence between iron 

(dys)regulation and UPR activity [36, 96-101], may also benefit from the ER stress-iron 

homeostasis crosstalk recently uncovered. Its biological relevance in pathological contexts 

must be thoroughly characterized, warranting promising research directions. 

 

Table 1. Knowledge of the effects of C282Y mutation compared to other UPR eliciting 

gene mutations 

 

Mutation 
Affected 

protein 
Disease 

Documented 

effects 
Correcting 

C282Y HFE 
HFE-

hemochromatosis 

- ER retention 

- Proteasomal 

degradation  

- Diminished MHC-

class I surface 

expression 

- Iron genes 

expression 

Yes (in vitro) 

[56, 113] 

F508 CFTR Cystic fibrosis 

- ER retention 

- Proteasomal 

degradation 

- Reduced 

endogenous WT 

CFTR mRNA levels  

Yes (in vitro) 

[114-115] 

Z variant 1-antitrypsin 
1-antitrypsin 

deficiency 

- ER retention 

- UPR activation 

dependent on 

additional insults 

- Activation of ER 

caspases 

Yes (in vitro) 

[116] 
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1-antitrypsin deficiency and cystic fibrosis (see Table 1) are examples of two other 

diseases with gene mutations evoking the UPR [102-105] in which links of severity of disease 

expression to the presence of HFE mutations are just being unveiled [56, 106-109]. Such 

interactions involving the UPR will inevitably come to pose new challenges to the crosstalk 

between the consequences of HFE mutations reviewed in this chapter and the variability seen 

in expression of other diseases, enlarging the biomedical stage and enhancing the position of 

the UPR in the biomedical limelight referred to in the introduction.  

 

 

Conclusion 
 

Originally described as a check-and-balance program focused on the recovery of stress-

corrupted ER folding environment, compelling evidence has revealed that the UPR is co-

opted for the maintenance of key basic cell functions [35]. The connection between the UPR 

and the modulation of genes relevant for iron metabolism reviewed in the present chapter 

extends this networking model, highlighting further the multi-tasking nature of the UPR. 

 Clearly, such interaction with cellular physiology has placed the UPR at the crossroads 

of multiple pathological conditions as well. Over the last years, substantial effort to decipher 

details of these associations was set in motion. In the future, the challenge will be to 

discriminate between the role of UPR in disease causality and/or its activity as a secondary 

disease manifestation. Once clarified, the UPR may incite a paradigm switch of certain 

disorders. One aspect of the importance of changing disease paradigms in light of novel 

findings is that it may inspire the design of new therapeutic approaches. The HFE-linked HH 

is no exception. With the standard therapy relying on blood-letting, early initiation of 

treatment efficiently prevents organ failure due to iron toxicity and restores normal lifespan 

[39], although the immunological abnormalities consistently found in HH patients remain 

unresponsive to phlebotomies [110]. Such anomalies encompass decreased counts of 

circulating CD8
+
 T cells in comparison to control individuals [111], accompanied by 

defective cytotoxic activity [112]. A link between these observations and the impaired MCH-

class I expression imposed by the C282Y-evoked UPR [55] has been hypothesized [63] 

(Figure 2). Together, the protective role against oxidative stress recently attributed to CRT in 

HFE C282Y stable transfectants, plus the negative correlation between expression of this ER 

chaperone and the number of clinical manifestations of HH subjects [59], convey the rationale 

for considering that pharmacological chaperones might be valuable in the context of HFE 

hemochromatosis. This possibility, already studied in vitro for the chemical chaperones 

taurine-conjugated ursodeoxycholic acid (TUDCA) and sodium 4-phenylbutyrate (4PBA) 

[56, 113], awaits in vivo assessment if we aim to understand the broad impact of UPR 

activation (and mitigation) in the context of HH. An attractive approach in this regard would 

be the Hfe C282Y knock-in murine model.  
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Figure 2. The UPR-iron metabolism axis: insights from HFE-hemochromatosis. The C282Y mutation of HFE 

accounts for the majority of cases of the iron overload disorder hereditary hemochromatosis (HH). This 

mutation, blocking the formation of an intramolecular disulphide bond, triggers two major consequences. 

From a functional point of view, the ability of HFE to interact with transferrin receptor (TfR)1 or TfR2 and in 

so doing regulate hepcidin levels is lost in the C282Y mutant form. Furthermore, C282Y molecules remain in 

the endoplasmic reticulum (ER) as high molecular weight aggregates that undergo accelerated proteasomal 

degradation and activate an Unfolded Protein Response (UPR). Activation of UPR signaling pathways was 

shown to down-regulate the cell surface expression of MHC-I molecules, also reshaping the mRNA 

expression prolife of iron-related genes. The possibility of a C282Y-mediated interplay between the UPR 

cascades and iron homeostasis influencing disease progression is therefore attractive. The impaired MHC-I 

cell surface expression triggered by UPR activation may also contribute to the low numbers of CD8+ T 

lymphocytes found in HH patients.  
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