A surface with q = 2 and canonical map of degree 16

Carlos Rito

Abstract

We construct a surface with irregularity q=2, geometric genus $p_g=3$, self-intersection of the canonical divisor $K^2=16$ and canonical map of degree 16.

2010 MSC: 14J29.

1 Introduction

Let S be a smooth minimal surface of general type. Denote by $\phi: S \dashrightarrow \mathbb{P}^{p_g-1}$ the canonical map and let $d := \deg(\phi)$. The following Beauville's result is well-known.

Theorem 1 ([Be]). If the canonical image $\Sigma := \phi(S)$ is a surface, then either:

- (i) $p_q(\Sigma) = 0$, or
- (ii) Σ is a canonical surface (in particular $p_q(\Sigma) = p_q(S)$).

Moreover, in case (i) $d \leq 36$ and in case (ii) $d \leq 9$.

Beauville has also constructed families of examples with $\chi(\mathcal{O}_S)$ arbitrarily large for d=2,4,6,8 and $p_g(\Sigma)=0$. Despite being a classical problem, for d>8 the number of known examples drops drastically: only Tan's example [Ta, §5] with d=9, the author's [Ri] example with d=12 and Persson's example [Pe] with d=16 are known. Du and Gao [DuGa] show that if the canonical map is an abelian cover of \mathbb{P}^2 , then these examples with d=9 and d=16 are the only possibilities for d>8. These three surfaces are regular, so for irregular surfaces all known examples satisfy $d\leq 8$. We get from Beauville's proof that lower bounds hold for irregular surfaces. In particular,

$$q = 2 \implies d \le 18.$$

In this note we construct an example with q=2 and d=16. The idea of the construction is the following. We start with a double plane with geometric genus $p_g=3$, irregularity q=0, self-intersection of the canonical divisor $K^2=2$ and singular set the union of 10 points of type A_1 (nodes) and 8 points of type A_3 (standard notation, the resolution of a singularity of type A_n is a chain of (-2)-curves C_1,\ldots,C_n such that $C_iC_{i+1}=1$ and $C_iC_j=0$ for $j\neq i\pm 1$). Then we take a double covering ramified over the points of type A_3 and obtain a surface with $p_g=3$, q=0 and $K^2=4$ with 28 nodes. A double covering ramified over 16 of these 28 nodes gives a surface with $p_g=3$, q=0 and $K^2=8$ with 24

nodes (which is a \mathbb{Z}_2^3 -covering of \mathbb{P}^2). Finally there is a double covering ramified over these 24 nodes which gives a surface with $p_q = 3$, q = 2 and $K^2 = 16$ and the canonical map factors through these coverings, thus it is of degree 16.

Notation

We work over the complex numbers. All varieties are assumed to be projective algebraic. A (-n)-curve on a surface is a curve isomorphic to \mathbb{P}^1 with self-intersection -n. Linear equivalence of divisors is denoted by \equiv . The rest of the notation is standard in Algebraic Geometry.

Acknowledgements

The author thanks Thomas Baier for many interesting conversations.

The author is a member of the Center for Mathematics of the University of Porto. This research was partially supported by FCT (Portugal) under the project PTDC/MAT-GEO/0675/2012 and by CMUP (UID/MAT/00144/2013), which is funded by FCT with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

$\mathbf{2}$ \mathbb{Z}_2^n -coverings

The following is taken from [Ca], an alternative reference is [Pa].

Proposition 2. A normal finite $G \cong \mathbb{Z}_2^r$ -covering $Y \to X$ of a smooth variety X is completely determined by the datum of

- 1. reduced effective divisors D_{σ} , $\forall \sigma \in G$, with no common components;
- 2. divisor classes L_1, \ldots, L_r , for χ_1, \ldots, χ_r a basis of the dual group of characters G^{\vee} , such that

$$2L_i \equiv \sum_{\chi_i(\sigma)=-1} D_{\sigma}.$$

Conversely, given 1. and 2., one obtains a normal scheme Y with a finite $G \cong \mathbb{Z}_2^r$ -covering $Y \to X$.

The covering $Y \to X$ is embedded in the total space of the direct sum of the line bundles whose sheaves of sections are the $\mathcal{O}_X(-L_i)$, and is there defined by equations

$$u_{\chi_i} u_{\chi_j} = u_{\chi_i + \chi_j} \prod_{\chi_i(\sigma) = \chi_j(\sigma) = -1} x_{\sigma},$$

where x_{σ} is a section such that $\operatorname{div}(x_{\sigma}) = D_{\sigma}$. The scheme Y can be seen as the normalization of the Galois covering given by the equations

$$u_{\chi_i}^2 = \prod_{\chi_i(\sigma) = -1} x_{\sigma}.$$

The scheme Y is irreducible if $\{\sigma|D_{\sigma}>0\}$ generates G. For the reader's convenience, we leave here the character table for the group \mathbb{Z}_2^3 with generators x, y, z.

x*y*z]	1	1	1	1	-1	-1	-1	-1	Ε
z]	1	1	-1	-1	1	1	-1	-1	Γ
y]		-1	1	-1	1	-1	1	-1	Γ
x]	1	-1	-1	1		1	1	-1	Γ
y*z]		-1	-1	1	1	-1	-1	1	Γ
x*z	1	-1	1	-1	-1	1	-1	1	Γ
x*y]	1	1	-1	-1	-1	-1	1	1	Γ
Id]	1	1	1	1	1	1	1	1	[

3 The construction

Step 1

Let $T_1, \ldots, T_4 \subset \mathbb{P}^2$ be distinct lines tangent to a smooth conic H_1 and

$$\pi: X \longrightarrow \mathbb{P}^2$$

be the double cover of the projective plane ramified over $T_1 + \cdots + T_4$. The curve $\pi^*(H_1)$ is of arithmetic genus 3, from the Hurwitz formula, and has 4 nodes, corresponding to the tangencies to $T_1 + \cdots + T_4$. Hence $\pi^*(H_1)$ is reducible,

$$\pi^*(H_1) = A + B$$

with A, B smooth rational curves. From AB = 4 and $(A + B)^2 = 8$ we get $A^2 = B^2 = 0$. Now the adjunction formula

$$2g(A) - 2 = AK_X + A^2$$

gives $AK_X = -2$ and then the Riemann-Roch Theorem implies

$$h^0(X, \mathcal{O}_X(A)) \ge 1 + \frac{1}{2}A(A - K_X) = 2.$$

Therefore there exists a smooth rational curve C such that $C \neq A$, $C \equiv A$ and AC = 0. The curve

$$H_2 := \pi(C)$$

is smooth rational. The fact $\pi^*(H_2)^2 > C^2$ implies that $\pi^*(H_2)$ is reducible, thus H_2 is tangent to the lines T_1, \ldots, T_4 . As above, there is a smooth rational curve D such that

$$\pi^*(H_2) = C + D$$

and $C^2 = D^2 = 0$. Since $A \equiv C$ and $A + B \equiv C + D$, then $B \equiv D$.

Step 2

Let x, y, z be generators of the group \mathbb{Z}_2^3 and

$$\psi: Y \longrightarrow \mathbb{P}^2$$

be the \mathbb{Z}_2^3 -covering defined by

$$D_1 := D_{xyz} := H_1, \ D_2 := D_z := H_2, \ D_3 := D_y := T_1 + T_2, \ D_4 := D_x := T_3 + T_4,$$

$$D_{yz} := D_{xz} := D_{xy} := 0.$$

Let d_i be the defining equation of D_i . According to Section 2, the surface Y is obtained as the normalization of the covering given by equations

$$u_1^2 = d_1 d_2 d_3 d_4, \ u_2^2 = d_1 d_2, \dots, \ u_7^2 = d_3 d_4.$$

Since the branch curve $D_1 + \cdots + D_4$ has only negligible singularities, the invariants of Y can be computed directly. Consider divisors $L_{i...h}$ such that $2L_{i...h} \equiv D_i + \cdots + D_h$ and let T be a general line in \mathbb{P}^2 . We have

$$L_{1234}(K_{\mathbb{P}^2} + L_{1234}) = 4T \cdot T = 4,$$

$$L_{ij}(K_{\mathbb{P}^2} + L_{ij}) = 2T(-T) = -2,$$

thus

$$\chi(Y) = 8\chi \left(\mathbb{P}^2\right) + \frac{1}{2}\left(4 + 6 \times (-2)\right) = 4,$$
$$p_q(Y) = p_q\left(\mathbb{P}^2\right) + h^0\left(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(T)\right) + 6h^0\left(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-T)\right) = 3.$$

So a canonical curve in Y is the pullback of a line in \mathbb{P}^2 and then

$$K_{\rm V}^2 = 8$$
.

Step 3

Notice that the points where two curves D_i meet transversely give rise to smooth points of Y, hence the singularities of Y are:

- · 16 points p_1, \ldots, p_{16} corresponding to the tacnodes of $D_1 + \cdots + D_4$;
- · 8 nodes p_{17}, \ldots, p_{24} corresponding to the nodes of D_3 and D_4 .

We want to show that p_1, \ldots, p_{24} are nodes with even sum.

The surface X defined in Step 1 is the double plane with equation $u_7^2 = d_3 d_4$, thus the covering ψ factors trough a \mathbb{Z}_2^2 -covering

$$\varphi: Y \longrightarrow X$$
.

The branch locus of φ is A+B+C+D plus the 4 nodes given by the points in $D_3 \cap D_4$. The points p_1, \ldots, p_{16} are nodes because they are the pullback of nodes of A+B+C+D.

The divisor $\varphi^*(A+C)$ is even $(A+C \equiv 2A)$, double (A+C) in the branch locus of φ), with smooth support (A+C) smooth and $p_1, \ldots, p_{16} \in \varphi^*(A+C)$,

 $p_{17}, \ldots, p_{24} \notin \varphi^*(A+C)$. Consider the minimal resolution of the singularities

$$\rho: Y' \longrightarrow Y$$

and let $A_1, \ldots, A_{24} \subset Y'$ be the (-2)-curves corresponding to the nodes $p_1, \ldots, p_{24} \subset Y'$ p_{24} . The divisor $(\varphi \circ \rho)^*(A+C)$ is even and there exists a divisor E such that

$$(\varphi \circ \rho)^*(A+C) = 2E + \sum_{i=1}^{16} A_i.$$

Thus there exists a divisor L_1 such that $\sum_{1}^{16} A_i \equiv 2L_1$. Analogously one shows that the nodes p_{17}, \ldots, p_{24} have even sum, i.e. there exists a divisor L_2 such that $\sum_{17}^{24} A_i \equiv 2L_2$. This follows from $\psi^*(T_1 + T_3)$ even, double, and with support of multiplicity 1 at p_{17}, \ldots, p_{24} and of multiplicity 2 at 8 of the nodes p_1, \ldots, p_{16} .

Step 4

So there is a divisor $L := L_1 + L_2$ such that

$$\sum_{1}^{24} A_i \equiv 2L.$$

Consider the double covering $S \longrightarrow Y$ ramified over p_1, \ldots, p_{24} and determined by L. More precisely, given the double covering

$$\eta: S' \longrightarrow Y'$$

with branch locus $\sum_{i=1}^{24} A_i$, determined by L, S is the minimal model of S'. We have

$$\chi(S') = 2\chi(Y') + \frac{1}{2}L(K_{Y'} + L) = 8 - 6 = 2.$$

Since the canonical system of Y is given by the pullback of the system of lines in \mathbb{P}^2 , the canonical map of Y is of degree 8 onto \mathbb{P}^2 . We want to show that the canonical map of S' factors through η .

One has

$$p_a(S') = p_a(Y') + h^0(Y', \mathcal{O}_{Y'}(K_{Y'} + L)),$$

so the canonical map factors if

$$h^0(Y', \mathcal{O}_{Y'}(K_{Y'} + L)) = 0.$$

Let us suppose the opposite. Hence the linear system $|K_{Y'} + L|$ is not empty and then $A_i(K_{Y'}+L)=-1$, $i=1,\ldots,24$, implies that $\sum_{i=1}^{24}A_i\equiv 2L$ is a fixed component of $|K_{Y'} + L|$. Therefore

$$h^{0}(Y', \mathcal{O}_{Y'}(K_{Y'} + L - 2L)) = h^{0}(Y', \mathcal{O}_{Y'}(K_{Y'} - L)) > 0$$

and then

$$h^{0}(Y', \mathcal{O}_{Y'}(2K_{Y'}-2L)) = h^{0}\left(Y', \mathcal{O}_{Y'}\left(2K_{Y'}-\sum_{1}^{24}A_{i}\right)\right) > 0.$$

This means that there is a bicanonical curve B through the 24 nodes of Y. We claim that there is exactly one such curve. In fact, the strict transform in Y' of the line T_1 is the union of two double curves $2T_a$, $2T_b$ such that

$$T_a \sum_{1}^{24} A_i = T_b \sum_{1}^{24} A_i = 6$$

and $T_a\rho^*(B) = T_b\rho^*(B) = 4$. This implies that $\rho^*(B)$ contains T_a and T_b . Analogously $\rho^*(B)$ contains the reduced strict transform of T_2, T_3 and T_4 . There is only one bicanonical curve with this property, with equation $u_7 = 0$ (the bicanonical system of Y is induced by $\mathcal{O}_{\mathbb{P}^2}(2)$ and u_2, \ldots, u_7).

As

$$h^0(Y', \mathcal{O}_{Y'}(2K_{Y'}-2L)) = 1 \implies h^0(Y', \mathcal{O}_{Y'}(K_{Y'}-L)) = 1,$$

then such bicanonical curve is double. This is a contradiction because the curve given by $u_7 = 0$ is not double.

So $h^0(Y', \mathcal{O}_{Y'}(K_{Y'} + L)) = 0$ and we conclude that the surface S has invariants $p_g = 3$, q = 2, $K^2 = 16$ and the canonical map of S is of degree 16 onto \mathbb{P}^2 .

References

- [Be] A. Beauville, L'application canonique pour les surfaces de type général, Invent. Math., **55** (1979), no. 2, 121–140.
- [Ca] F. Catanese, Differentiable and deformation type of algebraic surfaces, real and symplectic structures, Symplectic 4-manifolds and algebraic surfaces, vol. 1938 of Lecture Notes in Math., Springer, Berlin (2008), 55–167.
- [DuGa] R. Du and Y. Gao, Canonical maps of surfaces defined by abelian covers, Asian J. Math., 18 (2014), no. 2, 219–228.
- [Pa] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math., 417 (1991), 191–213.
- [Pe] U. Persson, Double coverings and surfaces of general type, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977), vol. 687 of Lecture Notes in Math., Springer, Berlin (1978), 168–195.
- [Ri] C. Rito, New canonical triple covers of surfaces, P. Am. Math. Soc., to appear (2015).
- [Ta] S.-L. Tan, Surfaces whose canonical maps are of odd degrees, Math. Ann., **292** (1992), no. 1, 13–29.

Carlos Rito

Permanent address:

Universidade de Trás-os-Montes e Alto Douro, UTAD Quinta de Prados 5000-801 Vila Real, Portugal www.utad.pt crito@utad.pt

Current address:
Departamento de Matemática
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto, Portugal
www.fc.up.pt
crito@fc.up.pt