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A surface with canonical map of degree 24

Carlos Rito

Abstract

We construct a complex algebraic surface with geometric genus py = 3,
irregularity ¢ = 0, self-intersection of the canonical divisor K? = 24 and
canonical map of degree 24 onto P2.

2010 MSC: 14J29.

1 Introduction

Let S be a smooth minimal surface of general type with geometric genus p, > 3.
Denote by ¢ : S --» PPs~! the canonical map and let d := deg(¢). The following
Beauville’s result is well-known.

Theorem 1 ( [Be]). If the canonical image ¥ := ¢(S) is a surface, then either:
() 5y(2) = 0, or
(i) ¥ is a canonical surface (in particular py(X) = py(S)).

Moreover, in case (i) d < 36 and in case (ii) d < 9.

Beauville has also constructed families of examples with x(Og) arbitrarily
large for d = 2,4,6,8 and p,(X) = 0. Despite being a classical problem, for
d > 8 the number of known examples drops drastically. Tan’s example [Tal §5]
with d = 9 and Persson’s example [Pe] with d = 16, ¢ = 0 are well known. Du
and Gao [DG] show that if the canonical map is an abelian cover of P2, then
these are the only possibilities for d > 8. More recently the author has given
examples with d = 12 [Ri2] and d = 16, ¢ = 2 [Ri3].

In this paper we construct a surface S with p, = 3, ¢ = 0 and d = 24,
obtained as a Z3-covering of P2. The canonical map of S factors through a Z3-
covering of a surface with p, = 3, ¢ = 0 and K2 = 6 having 24 nodes, which in
turn is a double covering of a Kummer surface.

Notation

We work over the complex numbers. All varieties are assumed to be pro-
jective algebraic. A (—n)-curve on a surface is a curve isomorphic to P! with
self-intersection —n. Linear equivalence of divisors is denoted by = . The rest
of the notation is standard in Algebraic Geometry.
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2 Zj-coverings

The following is taken from [Cal, the standard reference is [Pal.

Proposition 2. A normal finite G = Zy-covering Y — X of a smooth variety
X is completely determined by the datum of

1. reduced effective divisors Dy, Yo € G, with no common components;

2. divisor classes L1, ..., L., for x1,...,Xr @ basis of the dual group of char-

acters GV, such that
2Li= > D,
xi(o)=-1
Conversely, given 1. and 2., one obtains a mormal scheme Y with a finite
G = Z5-covering Y — X, with branch curves the divisors D,.

The covering Y — X is embedded in the total space of the direct sum of the
line bundles whose sheaves of sections are the Ox(L;), and is there defined by
equations

Uy Ux; = Uxix; H Lo,
xi(0)=x;(0)=—1
where x, is a section such that div(z,) = D,.

The scheme Y can be seen as the normalization of the Galois covering given

by the equations

xi(o)=-1
and Y is irreducible if {¢|D, > 0} generates G.

For a covering 7 : Y — X with ramification divisor R, the Hurwitz formula
Ky = 7m*(Kx) + R holds. Let us describe the canonical system for the case
where 7 is a Z3-covering with smooth branch divisor. We have branch curves
Dy, Dy, Dy and relations 2L; = D;+ Dy, for all permutations (4, j, k) of {1, 2, 3}.
The covering 7 factors as

6 Y 5 Wi, ¢:W; = X,

where ¢ is the double covering corresponding to L;. Let R; be the ramification
divisor of ¢. One has

Ky =¢"(Kw,)+ R, and Ky, =¢"(Kx + L;),
which gives
1
Ky =" (Kx + L;) + 5#*(Di), i=1,2,3.

Finally we notice that taking the quotient by a subgroup H of the Galois
group of the covering corresponds to considering the subalgebra generated by
the line bundles L L where x ranges over the characters orthogonal to H.



3 The construction

We show in the Appendix the existence of reduced plane curves Cg of degree 6
and C7 of degree 7 through points py, ..., ps such that:

- C7 has a triple point at py and tacnodes at p1,...,ps;
- Cg is smooth at ps, has a node at pg and tacnodes at pq,...,p4;

- the branches of the tacnode of C; at p; are tangent to the line 7; through
Po; Dis .] = 1725 1= 17547

- the branches of the tacnode of C; at ps; are tangent to Cl;

- the singularities of Cs 4+ C'7 are resolved via one blow-up at pg and two blow-
ups at each of p1,...,ps.

Step 1 (Construction)
Consider the map
p:X — P?

which resolves the singularities of the curve C7. Then p is given by blow-ups at

pOaplaplla' . ap5apf5)

where p/ is infinitely near to p;. Let Ey, Ev, EY, ..., E5, EL be the corresponding
exceptional divisors (with self-intersection —1).
Let x,y, z, w be generators of the group Z3 and

b Y — X
be the Zj3-covering defined by
D, :=T, — Ey — 2F!,

D, := Ty — Eo — 2},
N 4
D, :=Cgs—2Ey — Z(QEi +2E]) — 2EL,
1
» " 3
Dy i=Cr + Ty — 4By — > _(2E; + 2E)) — (2E4 + 4E}) — (2E5 + 2E}),
1

Dy i=Ts — Eo — 23,
Dy, :i=---:=D,, =0,
where the notation ~ stands for the total transform p*(-).
We note that each of the divisors D, D, D, and Ty — Ey — 2E} (contained
in D,,) is a disjoint union of two (—2)-curves.

For i,7,k,1 € {—1,1}, let x;;m denote the character which takes the value
1,4, k,l on x,y, z, w, respectively. There exist divisors L;;z; such that

2Lijkl = Z DU, (1)

Xijki(0)=—1



thus the covering v is well defined. Since there is no 2-torsion in the Picard
group of X, then 9 is uniquely determined. The surface Y is smooth because
the curves D, ..., Dy, are smooth and disjoint. Division of the equations (I
by 2 gives that the L;j; are according to the following table. For instance

L_1111 = T — EQ — Ei — Eé

T Eo, Ei E, By E, Es Ey E, E, EBEs E.
L_1111 1 -1 0 -1 0 0 0 -1 0 0 0 0
Li_1n1 1 -1 0 0 0 -1 0 -1 0 0 0 0
L1111 1 -1 0 -1 0 -1 0 0 0 0 0 0
L 11 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1
L 11-11 4 -2 -1 -2 -1 -1 -1 -2 -1 -1 0 -1
Li1-11 4 -2 -1 -1 -1 -2 -1 -2 -1 -1 0 -1
Loiion | 4 -2 -1 -2 -1 -2 -1 -1 -1 -1 0 -1
L1111 4 -2 -1 -1 -1 -1 -1 -1 -1 -2 -1 -1
L_111-1 5 -3 -1 -2 -1 -1 -1 -2 -1 -2 -1 -1
Li 111 5 -3 -1 -1 -1 -2 -1 -2 -1 -2 —1 -1
L1111 5 -3 -1 -2 -1 -2 —1 -1 -1 -2 -1 -1
Lii_11 7 -3 -2 -2 -2 -2 —2 _—2 —92 -3 _1 -2
L1111 | 8 -4 -2 -3 -2 -2 -2 -3 -2 -3 -1 -2
Lii 1.1 8§ -4 -2 -2 -2 -3 -2 -3 -2 -3 -1 -2
L1111 \8 -4 -2 -3 -2 -3 -2 -2 -2 -3 -1 -2

Step 2 (Invariants)
Since

5
Kx=-3T+Ey+ Y (E + E)),
1
then )
X(OY):16X(OX)+§Z(L?jkl+KXLijkl) =
=16-1-1-140-1-1-14+0-1-1-140—-1—-1—-1=4.

For the computation of

pe(Y) = pg(X) + Y hO(X, Ox(Kx + Liji)),

let
Ti = (T47E072E4’1+E57Eg),
" N " 4
Ty = <T2+T3+T4—3E0—22E;+E5—Eg>,
2
. 3
Ly:=3T—Ey—» (Ei+E])—Es— Es
1
and

Lo ::‘2Tf(E1+E{)7E27E37E47E5‘.

Each of 71, T3 is a disjoint union of (—2)-curves intersecting negatively Ky +
Li1-1-1, Kx + L1_1-1-1, respectively, thus we have

|[Kx + L1 =T + L1



and
|[Kx +Li—1-1-1] = T2 + Lo.

We show in the Appendix that £, has only one element and L5 is empty. Hence
(X, 0x(Kx + Lii—1-1)) =1

and
(X, 0x(Kx + Li-1-1-1)) = 0.

Analogously
(X, 0x(Kx +L_11-1.1)) =h(X,0x(Kx +L_1_1.1.1)) =0.
It is easy to see that
h(X,0x(Kx + Li1-11)) = h°(X,Ox(Kx + L111-1)) = 1

and
RY(X,0x(Kx + Lijr)) =0

for the remaining cases. We conclude that
pg(Y)=0+14+1+1=3.

Now we compute the self-intersection of the canonical divisor for the minimal
model S of Y. The divisor

&1 = %w* <23: (ﬁ — Ey — 2E{)>
1

is a disjoint union of 8 x 6 = 48 (—1)-curves and the divisor
L (= / /
& 1= 5 <T4 — Ey— 2B, + Es — E5)

is a disjoint union of 8 x 3 = 24 (—1)-curves.

The covering 1) factors through the double covering ¢ : W — X with branch
locus D, + D,,. We have Ky = ¢p*(Kx + L11—-1-1), hence the Hurwitz formula
gives

Ky =& +9¢"(Kx + L11-1-1).

Thus one of the canonical curves of Y is

&1+ 28 +v*(0),

where C is the unique element in the linear system L£; defined above. From
&1& = Y (C) = ¥*(C)? = 0 and &9*(C) = 24, we get K& = —48. We show
in the Appendix that the curve C is irreducible, therefore ¢*(C) is nef and then
K2 =24.

Step 3 (The canonical map)
The divisors
DZ) Dwa DZ'LU



define a Z3-covering
p:U— X.

We have
x(Ov) = 4x(0x) + % > (L + KxLiw) =4+0+0+0=4
and
pe(U) = pg(X) + 3 (X, Ox (Kx + Liw)) =0+ 1+1+1=3.
The surface U is the quotient of Y by the subgroup H generated by z,y. The

group H acts on the minimal model S of Y with only isolated fixed points, so
S/H is the canonical model U of U and then

2
Finally we want to show that the canonical map of U is of degree 6 onto P2,

It suffices to verify that the canonical system has no base component nor base
points. The canonical system of U is generated by the divisors

Ky = %p*(DZ) +p"(Kx + L111-1),
Ky = %p* (Dw) + p"(Kx + Li1-11),
Ky := %P* (Dzw) +p"(Kx + Li1—1-1)-
Denote by 91, ...,%, the four (—1)-curves
1~
5" (T — Bo — 2E})
and by 95,96 the two (—1)-curves

1 *
3P (Es — Ex).

Let

7:U—=U
be the contraction to the minimal model and g¢1,...,¢6 € U’ be the points
obtained by contraction of ¥1, ..., ¥. If x is an effective canonical divisor of U’
then

H:=7"k)+01+ -+

is a canonical curve of U. So, the multiplicity of a curve ¥; in H is 1 if and only
if the curve k does not contain the point ¢;.

Since the multiplicity of 95 4+ ¢ in K7 is 1, the points ¢s5, g¢ are not base
points of the canonical system of U’. The multiplicity of ¢; + --- + 94 in Ks
is 1, so also the points ¢1, ..., qq are not base points of the canonical system of
U’. Now to conclude the non-existence of other base points, it suffices to show
that the plane curves

Ko p(Kl)a i1=1,2,3,



have common intersection {pg,p1,...,ps} and their singularities are no worse
than stated. This is done in the Appendix. Here we just note that these curves
are

Ty+Cs, C7, Ty+ Cs,

where Cj3 is the plane cubic corresponding to the unique element in the linear
system L;, defined in Step 2 above.

Step 4 (Conclusion)
The Zj-covering 1 : Y — X factors as

4:1 4:1

Y — U — X.

Since py(Y) = py(U) = 3 and the canonical map of U is of degree 6, then the
canonical map of Y is of degree 24.

Remark 3. Consider the intermediate double covering € : Q@ — X of p with
branch locus D,. Then Q is a Kummer surface: each divisor €* (f — FEy — QE;)
is a disjoint union of four (—2)-curves. The surface U contains 24 disjoint

(=2)-curves Ax, ..., Aay, the pullback of Z? € (ﬁ — Ey — 2EZ’) , such that the

covering Y — U is a Z2-Galois covering ramified over the divisors

Ay + -+ Ag, Ag+ -+ Asg, A1z + -0+ Aoa.

Appendix

The following code is implemented with the Computational Algebra System
Magma [BCP], version V2.21-8.

First we compute the curves Cs and C7 referred in Section We choose
the points po,...,ps with a symmetry axis and compute the curves using the
Magma function LinSys given in [Ril].

A<x,y>:=AffineSpace(Rationals(),2);
p:=[A!'[0,0],A![2,2],A![-2,2] ,A'[3,1],A! [-3,1],A![0,5]];
Mi:=[[2],[2,2],[2,2],[2,2],[2,2],[1,1]1];
M2:=[[3],[2,2],[2,2],[2,2],[2,2],[2,2]];
T:=(0J,[[1,1]],0(-1,117,((8,1]]1,[[-8,1]],[[1,01]1];
J6:=LinSys(LinearSystem(A,6) ,P,M1,T);
J7:=LinSys(LinearSystem(A,7),P,M2,T);
C6:=Curve(A,Sections(J6) [1]);
C7:=Curve(A,Sections(J7) [1]);

We consider the projective closure of the curves and verify that they are irre-
ducible and the singularities are exactly as stated.

P2<x,y,z>:=ProjectiveClosure(A);
C6:=ProjectiveClosure(C6) ;
C7:=ProjectiveClosure(C7);
IsAbsolutelyIrreducible(C6) ;
IsAbsolutelyIrreducible(C7);



SingularPoints(C6 join C7);
HasSingularPointsOverExtension(C6 join C7);
[ResolutionGraph(C6,P[i]):i in [1..#P-1]17;
[ResolutionGraph(C7,P[i]):i in [1..#P]];
[ResolutionGraph(C6 join C7,P[i]):i in [1..#P]];

To clarify the situation at the origin, we use:

d:=DefiningEquation(TangentCone(C7,A![0,0]));
d eq y*(x"2 + 40585383/1587545%y"2) ;

thus the singularity is ordinary.

The defining polynomials of Cg and C'; are

289*x76+754326%x 4%y~ 2+2610657*x " 2%y ~4+1906344*y~6-2013848%x " 4*y*z
—17946576%x " 2%y~ 3%z-22212504*y " 5xz+1336400*x"4*z"2

+35856160*%x 2%y~ 2%z~ 2+89326224*y 4%z~ 2-22270208*x " 2*y*z"3
-146421504*y~ 3%z~ 3+295936%x " 2%z~ 4+84049920*y 2%z~ 4

and

8683464 *x~6xy-494984955*x"4*y~3-1064093674*x " 2%y~ 5-558251235%y "7
-11358312%x"6%z+1253331746%x " 4*y~2%z+8340957732%x " 2%y ~4*z
+7286240034*y~6*z-920312219%x " 4*y*z~2-17394911410%x " 2%y~ 3%z~ 2
-3229228997 1%y ~5xz~2+179839940*x " 4%z~ 3+11716330200%x " 2%y 2%z~ 3
+55580514660*y~4*z~3-1270036000%*x ~2*y*z~4-32468306400*y " 3*z"4

Now we show that the linear system £, defined in Step 2 above, has exactly
one element. Let L; be the corresponding linear system of plane cubics. By
parameter counting, dim(L;) > 0. If dim(L;) > 1, then one of its curves contains
the line T3, because

3
(Tngongng) <3TEOZ(EZ-+E§)E4E5> —0.
1

The other component of this curve is a conic, but one can verify that the conic
through p4 tangent to the lines 77,75 at py, p2, which is given by the equation

2 — 9y + 32y — 32 =0,

does not contain the point p5. We compute the unique plane cubic C3 in L, and
show that it is irreducible:

M:=[[1],([1,1],[1,1],(1,1],[1,0],[1,0]1];
J3:=LinSys(LinearSystem(A,3) ,P,M,T);
#Sections(J3) eq 1;
C3:=ProjectiveClosure(Curve(A,Sections(J3) [1]1));
IsAbsolutelyIrreducible(C3);

The defining polynomial of C is

17%x73-924*x" 2%y -153*x*y~2-996*y "~ 3+1164*x " 2%z
+544%xxy*z+6516%y " 2%xz-544%x*z"2-7680%y*z"2



To conclude that the linear system Lo, defined in Step 2, is empty, it suffices
to note that the conic C' through pq,...,ps is not tangent to the line 77 at the
point p1. An equation for C' is

—122% + 11y% — 93y + 190 = 0.
Finally we verify that the curves
Ty+Cs, Cr, Ty+Cs,

referred in the end of Section Bl have intersection {pg, p1,...,ps5} :

T4:=Curve (P2,x+3%y);
PointsOverSplittingField((T4 join C6) meet C7 meet (T4 join C3));

and the singularities are no worse than stated:
[ResolutionGraph(T4 join C3 join C6 join C7,p):p in P];
To clarify the situation at the origin, we use:

TC:=TangentCone(T4 join C3 join C6 join C7,P2![0,0,11);
DefiningEquation(TC) eq y*(x+3*y)*(x + 240/17*y)
*x(x72 + 82080/289*y~2)*(x"2 + 40585383/1587545%y"2) ;

thus the singularity is ordinary.
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