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Abstract. Let H be a pseudovariety of groups and DRH be the pseudovariety containing all finite

semigroups whose regular R-classes belong to H. We study the relationship between reducibility

of H and of DRH with respect to several particular classes of systems of equations. The classes of

systems considered (of pointlike, idempotent pointlike and graph equations) are known to play a

role in decidability questions concerning pseudovarieties of the forms V ∗W, V ∨W, and V©m W.

1. Introduction

The interest in studying pseudovarieties of semigroups is, in part, justified by Eilenberg’s cor-

respondence [24], which establishes a bijection between pseudovarieties of finite semigroups and

varieties of rational languages. Also, rational languages are a very important object in Theoretical

Computer Science, as they correspond to the languages recognized by finite state automata.

In turn, pseudovarieties are quite often described as a result of applying certain operators on

pairs of other pseudovarieties, such as the semidirect product ∗, the join ∨, and the Mal’cev product

©m . Therefore, it is a natural question to ask whether pseudovarieties of the form V ∗W, V ∨W, or

V©m W are decidable (meaning that they have a decidable membership problem). It is known that

V and W being decidable is not enough to have decidability of any of those pseudovarieties [1, 30].

It was the search for sufficient conditions to preserve decidability under the operator ∗ that led to

the definition of hyperdecidability, a stronger notion of decidability [3]. Shortly after, the notion of

tameness [11, 12] emerged as a method of establishing hyperdecidability of pseudovarieties. Briefly,

it may be described in two steps: decidability of the word problem and reducibility, with respect to

some highly computable implicit signature. Some other variants of stronger versions of decidability

may be found in the literature (see [5] for an overview).

It is also worth mentioning that a particular instance of hyperdecidability, known as strong

decidability, was already considered for several years under the name of computable pointlike sets.
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For instance, in 1988 Henckell [25] proved that aperiodic semigroups have computable pointlike sets

or, in other words, that the pseudovariety A of finite aperiodic semigroups is strongly decidable.

This study was conducted to produce progress in the question of decidability of the Krohn-Rhodes

complexity for semigroups [28]. Along the same line, Ash [19] introduced inevitable sequences in

a finite monoid (for finite groups) in order to prove the Rhodes type II conjecture [27]. Deciding

whether a sequence (s1, . . . , sn) from a finite monoid is inevitable in Ash’s sense translates to

hyperdecidability of the pseudovariety G of finite groups with respect to the equation x1 · · ·xn = 1.

Also, Pin and Weil [29] described a defining set of identities for a Mal’cev product, which in turn

implies that the decidability of idempotent pointlike sets may be used as a sufficient condition

for decidability of Mal’cev products of pseudovarieties. The diversity of motivations behind these

works somehow indicates that hyperdecidability may lead the way to a better understanding of the

structure of finite semigroups. Indeed, many researchers have shown interest in studying strong

versions of decidability for pseudovarieties (see, for instance, [4, 8, 9, 10, 16, 18, 26, 32]).

On the other hand, the pseudovarieties of the form DRH have already been considered in the

literature. In the mid seventies, Schützenberger [31] identified the associated varieties of rational

languages under Eilenberg’s correspondence. Also, more recently, a study on the structure of the

free pro-DRH semigroup was carried out by Almeida and Weil [15]. Pseudovarieties of the form DRH

are the object of our study, in which we answer the following question:

(Q)

Given an implicit signature σ, what conditions on a pseudovariety of groups H

guarantee that the pseudovariety DRH is σ-reducible with respect to a given class C

of finite systems of equations (to be precisely described in Subsection 2.3)?

The classes C considered are precisely those related with the decidability problems mentioned above.

More precisely, we consider systems of pointlike equations (x1 = · · · = xn), of graph equations

(equations arising from finite graphs by assigning to each edge x
y
−→ z the equation xy = z), and of

idempotent pointlike equations (x1 = · · · = xn = x2n).

The paper is organized as follows. We devote Section 2 to an overview of results in the literature

that we use in the rest of the paper. In particular, in Subsection 2.3 we expose some concepts and

results concerning decidability. The subsequent sections focus on pointlike, graph, and idempotent

pointlike equations, in this order. We prove in Section 3 that H being σ-reducible with respect to
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systems of pointlike equations, suffices for DRH to enjoy the same property. That result is achieved

by considering a certain periodicity phenomenon on the constraints. Then, in Section 4, we study

systems of graph equations. We prove that H is σ-reducible with respect to systems of graph

equations if and only if so is DRH. For that purpose, we borrow from [7] the notion of splitting

point considered in the setting of the pseudovariety R. Finally, in the last section, we prove that if

H is σ-reducible with respect to systems of graph equations, then DRH is σ-reducible with respect

to systems of idempotent pointlike equations. The techniques used are somehow similar to the ones

used in Section 3.

2. Preliminaries

We assume that the reader is familiar with the theory of finite and profinite semigroups. We

refer to [2, 6] for this topic. For the basic concepts and results on topology, the reader is referred

to [33].

2.1. General definitions and notation. In the sequel, V and W stand for arbitrary pseudova-

rieties of semigroups, while H stands for an arbitrary pseudovariety of groups. We list below the

pseudovarieties mentioned in this paper.

S consists of all finite semigroups;

Sl consists of all finite semilattices;

G consists of all finite groups;

Ab consists of all finite Abelian groups;

Gp consists of all finite p-groups (for a prime number p);

Gsol consists of all finite solvable groups;

R consists of all finite R-trivial semigroups;

DRH consists of all finite semigroups whose regular R-classes are groups of H;

H consists of all finite semigroups whose subgroups belong to H.

Let A be a finite alphabet. The free A-generated pro-V semigroup is denoted ΩAV, and its

elements are called pseudowords over V (or simply pseudowords, when V = S). Whenever V is not

the trivial pseudovariety, it is usual to identify A with its image under the generating mapping

of ΩAV, so that the free semigroup A+ is a subsemigroup of ΩAV. For a subpseudovariety W

of V, we represent by ρW the canonical projection from V onto W, should V be clear from the

context. When Sl ⊆ V, we denote ρSl by c and call it the content function. An implicit signature
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is a set of pseudowords over A containing the semigroup multiplication, generically denoted σ.

Each pseudoword may be naturally seen as an implicit operation [6, Theorem 4.2]. Hence, each

profinite semigroup is endowed with a structure of σ-algebra. We denote by Ωσ
AV the free A-

generated σ-semigroup over V, and we call σ-words over V (or simply σ-words, when V = S) to its

elements. Further, we let 〈σ〉 denote the implicit signature obtained from σ through composition

of its elements (see [6, Proposition 4.7]). The implicit operations corresponding to the elements of

A+ are called explicit operations. The ω-power is the implicit operation xω that assigns to each

element s of a finite semigroup the unique idempotent that is a power of s. It plays a distinguished

role in this paper.

If S is a semigroup, then we represent by SI the monoid with subsemigroup S, identity I, and

underlying set given by S ⊎ {I}. Based on the identification A+ ⊆ ΩAV, we sometimes call empty

word the identity element I ∈ (ΩAV)
I . We further set c(I) = ∅.

Given a formal equality of pseudowords u = v, also called pseudoidentity, we write u =V v if the

interpretations of u and v coincide on every semigroup of V. Note that this is equivalent to having

ρV(u) = ρV(v). All the expressions u = v modulo V, V satisfies u = v, and u = v holds in V mean

that u =V v.

2.2. The pseudovariety DRH. For a complete study of pseudovarieties of the form DRH, the

reader is referred to [15]. We proceed with the statement of some structural properties of the free

pro-DRH semigroup that we use later.

It is well known that for every element u of ΩAS (respectively, of ΩADRH) there exists a unique

factorization u = uℓaur, with uℓ and ur possibly the empty word, such that c(uℓa) = c(u) and

a /∈ c(uℓ) (see, for instance, [17, Proposition 2.1] and [15, Proposition 2.3.1]). Such a factorization

(both over S and over DRH) is called the left basic factorization of u.

Let u be either a pseudoword or a pseudoword over DRH. For each k ≥ 1, we define lbfk(u)

inductively as follows. We set u0,r = u. If uk−1,r 6= I, we let uk−1,r = uk,ℓakuk,r be the left basic

factorization of uk−1,r. Then, we set lbfk(u) = I if uk−1,r = I, and lbfk(u) = uk,ℓak otherwise.

The cumulative content of u, denoted ~c(u), is the ultimate value of the sequence (c(lbfk(u)))k≥1.

Observe that this sequence indeed stabilizes since it forms a descending chain of subsets of some

finite set A.
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On the other hand, if we consider the iteration of the left basic factorization to the leftmost

factor, then we obtain uniqueness of the so-called first-occurrences factorization. We state that fact

for later reference.

Lemma 2.1. Let u be a pseudoword (respectively, a pseudoword over DRH). Then, there ex-

ists a unique factorization u = a1u1a2u2 · · · anun over S (respectively, over DRH) such that ai /∈

c(a1u1 · · · ai−1ui−1), for i = 2, . . . , n, and c(u) = {a1, . . . , an}.

We say that ua is an end-marked pseudoword provided a /∈ ~c(u). Also, the product uv is reduced

if v is nonempty and the first letter of v (which is defined, by Lemma 2.1) does not belong to the

cumulative content of u. The following result is used later.

Proposition 2.2 ([8, Proposition 4.8]). The set of all end-marked pseudowords over a finite al-

phabet constitutes a well-founded forest under the partial order ≤R.

We end this subsection with a result concerning identities over DRH, whose proof may be found

in [21].

Lemma 2.3. Let u, v ∈ ΩAS and u0, v0 ∈ (ΩAS)
I be such that c(u0) ⊆ ~c(u) and c(v0) ⊆ ~c(v).

Then, the pseudovariety DRH satisfies uu0 = vv0 if and only if it satisfies u R v and if, in addition,

the pseudovariety H satisfies uu0 = vv0. In particular, by taking u0 = I = v0, we get that u =DRH v

if and only if u R v modulo DRH and u =H v.

2.3. Decidability. Themembership problem for a pseudovariety V amounts to determining whether

a given finite semigroup belongs to V. If there exists an algorithm to solve this problem, then the

pseudovariety V is said to be decidable. As we already referred in the Introduction, other stronger

notions of decidability have been set up over the years. They are related with so-called systems of

pseudoequations.

Let X be a finite set of variables. A pseudoequation is a formal expression u = v with u, v ∈ ΩXS.

If u, v ∈ Ωσ
XS, then u = v is said to be a σ-equation. A finite system of pseudoequations (respectively,

σ-equations) is a finite set

(2.1) {ui = vi : i = 1, . . . , n},

where each ui = vi is a pseudoequation (respectively, σ-equation). For each variable x ∈ X, we

consider a constraint given by a clopen subset Kx of ΩAS. Then, a solution modulo V of the



6 CÉLIA BORLIDO

system (2.1) satisfying the given constraints is a continuous homomorphism δ : ΩXS → ΩAS such

that the following conditions are satisfied:

(S.1) δ(ui) =V δ(vi), for i = 1, . . . , n;

(S.2) δ(x) ∈ Kx, for every variable x ∈ X.

If δ(X) ⊆ Ωσ
AS, then we say that δ is a solution modulo V of (2.1) in σ-words.

Remark 2.4. It follows from Hunter’s Lemma that, for each clopen set Kx, there exists a finite

semigroup Sx and a continuous homomorphism ϕx : ΩAS → Sx such that Kx is the preimage

of ϕx(Kx) under ϕx (see [6, Proposition 3.5], for instance). It is sometimes more convenient to

think of the constraints of the variables in terms of a fixed pair (ϕ, ν), where ϕ : ΩAS → S is a

continuous homomorphism into a finite semigroup S and ν : X → S is a map. In that way, the

requirement (S.2) becomes a finite union of requirements of the form “ϕ(δ(x)) = νj(x), for every

variable x ∈ X”, for a certain finite family (νj : X → S)j of mappings. We may also assume,

without loss of generality that S has a content function (see [13, Proposition 2.1]), that is, that

the homomorphism c : ΩAS → ΩASl factors through ϕ. Moreover, usually, we wish to allow δ to

take its values in (ΩAS)
I . For that purpose, we naturally extend the function ϕ to a continuous

homomorphism ϕI : (ΩAS)
I → SI by letting ϕI(I) = I. It is worth noticing that this assumption

does not lead to trivial solutions since the constraints must be satisfied. We allow ourselves some

flexibility in these points, adopting each approach according to which is the most suitable. In the

case where we consider the homomorphism ϕI , we abuse notation and denote it by ϕ.

Given a class C of finite systems of σ-equations, we say that a pseudovariety V is σ-reducible with

respect to C (or simply, σ-reducible for C) provided a solution modulo V of a system in C guarantees

the existence of a solution modulo V of that system given by σ-words.

An important instance of a class of systems of equations comes from graphs. Let Γ = V ⊎ E be

a directed graph, where V and E are finite sets, respectively, of vertices and edges. We consider

Γ equipped with two maps α : E → V and ω : E → V , such that an edge e ∈ E goes from the

vertex v1 ∈ V to the vertex v2 ∈ V if and only if α(e) = v1 and ω(e) = v2. We may associate to

each edge e ∈ E, the equation α(e)e = ω(e). We denote by S(Γ) the finite system of equations

obtained in this way from Γ. Whenever S is a finite system of this form, we say that S is a system

of graph equations. We notice that any system of graph equations is of the form {xiyi = zi}
N
i=1,

where yi 6= yj for i 6= j and yi /∈ {xj , zj}, for all i, j.
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When the constraints of the variables e ∈ E are set to be given by the clopen subset Ke = {I},

the system S(Γ) is called a system of pointlike equations.

Finally, systems of the form x1 = · · · = xn = x2n are called systems of idempotent pointlike

equations.

The pseudovariety V is said to be σ-reducible if it is σ-reducible for the class of finite systems of

graph equations and it is completely σ-reducible if it is σ-reducible for the class of all finite systems

of σ-equations. The following result involves the notion of reducibility.

Proposition 2.5 ([5, Proposition 10.2]). If V is σ-reducible with respect to the equation x = y,

then V is σ-equational.

Since we are aiming to achieve decidability results for V, it is reasonable to require that V is

recursively enumerable and that σ is highly computable, meaning that it is a recursively enumerable

set and that all of its elements are computable operations. Henceforth, we make this assumption

without further mention. Also, we should be able to decide whether two given σ-words have the

same value over V, the so-called σ-word problem. When σ = κ is the canonical implicit signature

consisting of the multiplication and of the (ω − 1)-power, it is possible to characterize decidability

of the κ-word problem for pseudovarieties of the form DRH in terms of the same property for H.

Theorem 2.6 ([21, Chapter 3]). Let H be a pseudovariety of groups. Then, the pseudovariety DRH

has decidable κ-word problem if and only if so has H.

We say that V is σ-tame with respect to C, for a highly computable implicit signature σ, if

it is σ-reducible for C and has decidable σ-word problem. We say that V is σ-tame (respectively,

completely σ-tame) when it is σ-tame with respect to the class of all finite systems of graph equations

(respectively, to the class of all finite systems of σ-equations).

We end this subsection with a list of decidability results concerning some pseudovarieties of

groups, to which we refer later.

Theorem 2.7. We have the following:

• the pseudovariety Ab is completely κ-tame ([10]);

• the pseudovariety G is κ-tame ([18] and [11, Theorem 4.9]), but it is not completely κ-

reducible ([22]);
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• for every extension closed pseudovariety of groups H, there exists an implicit signature σ(H)

such that H is σ(H)-reducible ([4]);

• no proper subpseudovariety of G containing a pseudovariety Gp (for a certain prime p) is

κ-reducible (Proposition 2.5 and [20]);

• no proper non locally finite subpseudovariety of Ab is κ-reducible ([23]).

3. Pointlike equations

Throughout this section, we shall assume that σ contains a non-explicit operation. In other

words, that means that 〈σ〉 6= 〈{ · }〉. Clearly, that is the case of the canonical implicit signature κ.

In this section, we take for C in Question (Q) the class of all finite systems of pointlike equations.

To guarantee that DRH is σ-reducible for C, it suffices to suppose that H is σ-reducible for C as

well.

Theorem 3.1. Let σ be an implicit signature containing a non-explicit operation, and assume that

H is a pseudovariety of groups that is σ-reducible for finite systems of pointlike equations. Then,

the pseudovariety DRH is also σ-reducible for finite systems of pointlike equations.

Proof. Let S = {xk,1 = · · · = xk,nk
}Nk=1 be a finite system of pointlike equations in the set of vari-

ables X with constraints given by the pair (ϕ, ν). Without loss of generality, we may assume that,

for all k, ℓ ∈ {1, . . . , N}, with k 6= ℓ, the subsets of variables {xk,1, . . . , xk,nk
} and {xℓ,1, . . . , xℓ,nℓ

} do

not intersect. Further, with this assumption, we may also take N = 1. The general case is obtained

by treating each system of equations xk,1 = · · · = xk,nk
separately. Write S = {x1 = · · · = xn} and

suppose that the continuous homomorphism δ : ΩXS → (ΩAS)
I is a solution modulo DRH of S. To

prove that S also has a solution in σ-words we argue by induction on m = |c(δ(x1))|.

If m = 0, then δ(xi) = I for every i = 1, . . . , n and δ is already a solution in σ-words.

Suppose that m > 0 and that the statement holds for every system of pointlike equations with a

smaller value of the parameter. Whenever the p-th iteration of the left basic factorization of δ(xi)

is nonempty, we write lbfp(δ(xi)) = δ(xi)pai,p and we let δ(xi)
′
p be such that

δ(xi) = lbf1(δ(xi)) · · · lbfp(δ(xi))δ(xi)
′
p.
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Notice that the uniqueness of left basic factorizations in ΩADRH entails the following properties

a1,p = · · · = an,p;

δ(x1)p =DRH · · · =DRH δ(xn)p;

δ(x1)
′
p =DRH · · · =DRH δ(xn)

′
p.

(3.1)

If ~c(δ(x1)) 6= c(δ(x1)), then we set ℓ = min{p ≥ 1: c(δ(x1)
′
p) $ c(δ(x1))}. Otherwise, since S is

finite, there exist indices k < ℓ such that, for all i = 1, . . . , n, we have

ϕ(lbf1(δ(xi)) · · · lbfk(δ(xi))) = ϕ(lbf1(δ(xi)) · · · lbfℓ(δ(xi))).(3.2)

Let η ∈ 〈σ〉 be a non-explicit operation. Without loss of generality, we may assume that η is a

unary operation. In particular, since S is finite, there is an integer M such that ϕ(η(s)) = sM for

every s ∈ S. Then, equality (3.2) yields

ϕ(δ(xi)) = ϕ(lbf1(δ(xi)) · · · lbfk(δ(xi)) · η(lbfk+1(δ(xi)) · · · lbfℓ(δ(xi)))δ(xi)
′
k).(3.3)

Now, consider a new set of variables X ′ = {xi,p, x
′
i : i = 1, . . . , n; p = 1, . . . , ℓ} and a new system of

pointlike equations

(3.4) S
′ =





{x1,p = · · · = xn,p}
ℓ
p=1 ∪ {x′1 = · · · = x′n}, if ~c(δ(x1)) 6= c(δ(x1))

{x1,p = · · · = xn,p}
ℓ
p=1, if ~c(δ(x1)) = c(δ(x1))

By (3.1), the continuous homomorphism δ′ : ΩX′S → (ΩAS)
I assigning δ(xi)p to each variable xi,p

and δ(xi)
′
ℓ to each variable x′i is a solution modulo DRH of S′, with constraints given by (ϕ, ν ′),

where ν ′(xi,p) = ϕ(δ(xi)p), and ν ′(x′i) = ϕ(δ(xi)
′
k) (i = 1, . . . , n and p = 1, . . . , ℓ). Moreover,

whatever is the system S′ considered in (3.4), we decreased the induction parameter. By induction

hypothesis, there exists a solution modulo DRH of S′ in σ-words, say ε′, keeping the values of the

variables under ϕ. We distinguish between the case where ~c(δ(x1)) 6= c(δ(x1)) and the case where

~c(δ(x1)) = c(δ(x1)). In the former, it is easy to check that the continuous homomorphism

ε : ΩXS → (ΩAS)
I

xi 7→ ε′(xi,1)ai,1 · · · ε
′(xi,ℓ)ai,ℓε

′(x′i)
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is a solution modulo DRH of S. In the latter case, we consider the system of pointlike equations

S0 = {x′1 = · · · = x′n}.

From (3.1), it follows that δ′ is a solution modulo H of S0. As we are taking for H a pseudovariety

that is σ-reducible for systems of pointlike equations, there exists a solution modulo H of S0, say

ε′′, keeping the values of the variables under ϕ. Let ε : ΩXS → (ΩAS)
I be given by

ε(xi) = ε′(xi,1)ai,1 · · · ε
′(xi,k)ai,k · η(ε

′(xi,k+1)ai,k+1 · · · ε
′(xi,ℓ)ai,ℓ)ε

′′(x′i).

Since ε′ is a solution modulo DRH of S′, η is non-explicit, and we are assuming that the semigroup

S has a content function, it follows that, for all i, j ∈ {1, . . . , n}, the pseudowords ε(xi) and ε(xj)

are R-equivalent modulo DRH. On the other hand, for all i, j ∈ {1, . . . , n}, the following equalities

are valid in H:

ε(xi) = ε′(xi,1)ai,1 · · · ε
′(xi,k)ai,k · η(ε

′(xi,k+1)ai,k+1 · · · ε
′(xi,ℓ)ai,ℓ)ε

′′(x′i)

= ε′(xj,1)aj,1 · · · ε
′(xj,k)aj,k · η(ε

′(xj,k+1)aj,k+1 · · · ε
′(xj,ℓ)aj,ℓ)ε

′′(x′j)

= ε(xj).

The second equality holds because ε′ and ε′′ are solutions modulo H of S′ and S0, respectively.

Therefore, Lemma 2.3 yields that DRH satisfies ε(xi) = ε(xj). It remains to verify that the given

constraints are still satisfied. But that is straightforwardly implied by (3.3). �

Remark 3.2. We observe that the construction performed in the proof of the previous theorem

not only gives a solution modulo DRH in σ-terms of the original pointlike system of equations, but

it also provides a solution keeping the cumulative content of each variable.

As a consequence of Propositions 2.5 and Theorem 3.1, we have the following.

Corollary 3.3. If a pseudovariety of groups H is σ-reducible with respect to the equation x = y,

then DRH is σ-equational. �

As far as we are aware, all known examples of pseudovarieties of groups that are σ-reducible with

respect to systems of pointlike equations are also σ-reducible. For that reason, for now, we skip such

examples, since they illustrate stronger results in the next section. We just point out the case of
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the pseudovariety Ab (recall Theorem 2.7). It is interesting to observe that, although Ab is not a κ-

equational pseudovariety [14, Theorem 3.1], by Corollary 3.3 the pseudovariety DRAb = DRG∩Ab is.

On the other hand, taking into account Theorem 2.6, we also have the following.

Corollary 3.4. If H is a pseudovariety of groups that is κ-tame with respect to finite systems of

pointlike equations, then so is DRH. �

4. Graph equations

With the aim of proving tameness, we now let C be the class of all systems of graph equations.

We prove that, for an implicit signature σ containing a non-explicit operation, if H is a σ-reducible

pseudovariety of groups, then so is DRH. To this end, we drew inspiration from [7]. Moreover, we

assert the converse statement, which holds for every σ.

Henceforth, we fix a finite graph Γ = V ⊎ E and a solution δ : ΩΓS → (ΩAS)
I modulo DRH of

S(Γ) such that, for every x ∈ Γ the pseudoword δ(x) belongs to the clopen subset Kx of (ΩAS)
I .

We further denote by 1 the identity element of ΩAH.

Let y be an edge of Γ, and let x = α(y) and z = ω(y). If c(δ(y)) * ~c(δ(x)) then, by Lemma 2.1,

we have unique factorizations δ(y) = uyavy and δ(z) = uzavz such that c(uy) ⊆ ~c(δ(x)), a /∈ ~c(δ(x))

and the pseudovariety DRH satisfies both δ(x)uy = uz and vy = vz. We refer to these factorizations

as direct DRH-splittings associated with the edge y and we say that a is the corresponding marker.

We call direct DRH-splitting points the triples (uy, a, vy) and (uz, a, vz).

The first remark spells out the relationship between the notion of a DRH-splitting factorization

defined above and the notion of a splitting factorization in the context of [7] (in [7], a splitting

factorization is defined as being an R-splitting factorization). It is a consequence of Lemma 2.1

applied to the pseudovariety DRH and to the pseudovariety R.

Remark 4.1. Let y ∈ E be such that c(δ(y)) * ~c(δ(α(y))). Consider factorizations δ(y) =

uyavy and δ(ω(y)) = uzavz, with c(uy) ⊆ ~c(δ(α(y))) and a /∈ ~c(δ(α(y))), such that DRH satisfies

δ(α(y))uy = uz, as above. Then, these factorizations are direct R-splittings (note that δ is also a

solution modulo R of S(Γ) and so, it makes sense to refer to R-splitting factorizations) if and only

if they are direct DRH-splittings.

We also define the indirect DRH-splitting points as follows. Let t ∈ Γ and suppose that we have

a factorization δ(t) = utavt, with a /∈ ~c(ut). Then, one of the following three situations may occur.
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• If there is an edge y ∈ E such that α(y) = t and ω(y) = z, then there is also a factorization

δ(z) = uzavz with DRH satisfying ut = uz and vtδ(y) = vz. In fact, this is a consequence of

the pseudoidentity δ(t)δ(y) = δ(z) modulo DRH, which holds for every edge t
y
−→ z in Γ.

• Similarly, if there is an edge y ∈ E such that α(y) = x and ω(y) = t (and so, DRH satisfies

δ(x)δ(y) = δ(t)), then the factorization of δ(t) yields either a factorization δ(x) = uxavx

such that DRH satisfies ux = ut and vxδ(y) = vt, or a factorization δ(y) = uyavy such that

DRH satisfies δ(x)uy = ut and vy = vt.

• On the other hand, if t is itself an edge, say α(t) = x and ω(t) = z, and if δ(x)uta is an end-

marked pseudoword, then the factorization of δ(t) determines a factorization δ(z) = uzavz,

such that DRH satisfies δ(x)ut = uz and vz = vt.

These considerations make clear the possible propagation of the DRH-direct splitting points. If

the mentioned factorization of δ(t) comes from a DRH-(in)direct splitting factorization obtained

through the successive factorization of the values of edges and vertices under δ in the way described

above, then we say that each of the triples (ux, a, xx), (uy, a, vy), and (uz, a, vz) is an indirect DRH-

splitting point induced by the (in)direct DRH-splitting point (ut, a, vt).

Yet again, we obtain a nice relationship between the indirect DRH-splitting points just defined

and the indirect splitting points introduced in [7] (which are the indirect R-splitting points). The

reason is precisely the same as in Remark 4.1, together with the definition of indirect splitting

points.

Remark 4.2. Let t0 ∈ Γ and δ(t0) = u0av0 be a direct R-splitting factorization and consider

{(ui, a, vi)}
n
i=1 ⊆ (ΩAS)

I ×A× (ΩAS)
I . Then, the following are equivalent:

(a) (ui, a, vi) is an indirect R-splitting point induced by (ui−1, a, vi−1), for i = 1, . . . , n;

(b) (ui, a, vi) is an indirect DRH-splitting point induced by (ui−1, a, vi−1), for i = 1, . . . , n.

The following lemma ensures that a direct R-splitting point does not propagate infinitely many

times.

Lemma 4.3 ([7, Lemma 5.14]). Given a solution δ over R of a system of graph equations, there is

only a finite number of splitting points in the values of variables under δ.

As an immediate consequence of Lemma 4.3 and of the relationship between (in)direct R-splitting

points and (in)direct DRH-splitting points made explicit in Remarks 4.1 and 4.2, we have the

following:
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Corollary 4.4. Given a solution δ over DRH of a system of graph equations, there is only a finite

number of splitting points in the values of variables under δ. �

Taking into account Remarks 4.1 and 4.2, from now on we say (in)direct splitting point (respec-

tively, factorization) instead of (in)direct DRH-splitting point (respectively, factorization).

Let Γ be a finite graph and consider the system of equations S(Γ). For each variable x ∈ Γ, let

{(ux,i, ax,i, vx,i)}
mx

i=1 be the (finite) set of splitting points of δ(x). By definition, each pseudoword

ux,iax,i is an end-marked prefix of δ(x). By Proposition 2.2, we may assume, without loss of

generality, the following relations:

ux,1ax,1 >R ux,2ax,2 >R · · · >R ux,mxax,mx >R δ(x).

Hence, by Lemma 2.1, we have a reduced factorization

δ(x) = δ(x)0 · δ(x)1 · · · δ(x)mx ,(4.1)

such that δ(x)0 · · · δ(x)i−1 = ux,i, for i = 1, . . . ,mx, induced by the splitting points of δ(x). If

x ∈ V , then we write the reduced factorization in (4.1) as δ(x) = wx,1 ·wx,2 · · ·wx,nx and, if y ∈ E,

then we write that factorization as δ(y) = wy,0wy,1 · · ·wy,ny . Observe that, for x ∈ V , we have

nx = mx + 1, while for y ∈ E, we have ny = my. Although this notation may not seem coherent,

it is justified by property (c) of Lemma 4.5.

Lemma 4.5. Let xy = z be an equation of S(Γ). Using the above notation, the following holds:

(a) nx + ny = nz;

(b) DRH satisfies





wx,k = wz,k, for k = 1, . . . , nx − 1;

wx,nxwy,0 = wz,nx ;

wy,k = wz,nx+k, for k = 1, . . . , ny;

(c) c(wy,0) ⊆ ~c(wx,nx);

(d) each of the following products is reduced:

wx,k · wx,k+1 (k = 1, . . . , nx − 1);

(wx,nxwy,0) · wy,1;

wz,k · wz,k+1 (k = 1, . . . , nz − 1).



14 CÉLIA BORLIDO

Proof. As we already observed, the number of splitting points of δ(z) is mz = nz−1. We distinguish

between two situations.

• If c(δ(y)) * ~c(δ(x)), then there are two direct splitting factorizations given by δ(y) = uyavy

and δ(z) = uzavz. So, by definition, the inclusion c(uy) ⊆ ~c(δ(x)) holds. We notice that

any other splitting point of δ(y), say (u′y, b, v
′
y), is necessarily induced by a splitting point

of δ(z), say (u′z, b, v
′
z). Moreover, since the product (δ(x)u′y) · bv

′
y is reduced (because so

is u′z · (bv
′
z) and DRH satisfies δ(x)u′y = u′z), the pseudoword uy is a prefix of u′y. On the

other hand, the set of all splitting points of δ(z) induces a factorization of the pseudoword

δ(x)δ(y), say

(4.2) δ(x)δ(y) = w′
1 · w

′
2 · · ·w

′
nz
.

Of course, for each k = 1, . . . , nx − 1, the prefix w′
1 · · ·w

′
k of δ(x)δ(y) corresponds to the

first component of one of the splitting points of δ(x) (which is either induced by one of

the splitting points of δ(z) or it induces a splitting point of δ(z)). More specifically, the

pseudoidentity wz,k = w′
k = wx,k is valid in DRH. From the observation above, we also

know that the first components of the indirect splitting points of δ(y) have uy as a prefix.

Therefore, we have uy = wy,0, the factor w
′
nx

= wz,nx coincides with wx,nxwy,0 modulo DRH,

and c(wy,0) = c(uy) ⊆ ~c(δ(x)) = ~c(wx,nx). It also follows that w′
nx+k = wz,nx+k = wy,k

modulo DRH, for k = 1, . . . , ny. We just proved (b), (c) and (d). Finally, part (a) results

from counting the involved factors in both sides of (4.2).

• If c(δ(y)) ⊆ ~c(δ(x)), then δ(y) has no direct splitting points. As y is an edge, an indirect

splitting point of δ(y) must be induced by some splitting point of δ(z). Suppose that

(uz, a, vz) is a splitting point of δ(z) that induces a splitting point in δ(y), say (uy, a, vy).

Then, we would have a reduced product (δ(x)uy) · (avy), which contradicts the assumption

c(δ(y)) ⊆ ~c(δ(x)). Therefore, the pseudoword δ(y) has no splitting points at all. With the

same kind of argument as the one above, we may derive the claims (a)–(d). �
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Now, write S(Γ) = {xiyi = zi}
N
i=1. Note that yj /∈ {xi, zi} for all i, j. We let S1 be the system of

equations containing, for each i = 1, . . . , N , the following set of equations:

(xi)k = (zi)k, for k = 1, . . . , nxi
− 1;

(xi)nxi
yi,0 = (zi)nxi

;

yi,k = (zi)nxi
+k, for k = 1, . . . , nyi .

(4.3)

In the system S1, we are assuming that (xi)k and (xj)k (respectively, and (zj)k) represent the same

variable whenever so do xi and xj (respectively, and zj). By Lemma 4.5, it is clear that each

solution modulo DRH of S1 yields a solution modulo DRH of S(Γ) and conversely. We next prove

that, for a σ-reducible pseudovariety of groups H, if S1 has a solution modulo DRH, then it has a

solution modulo DRH given by σ-words, thus concluding that the same happens with S(Γ). Before

that, we establish the following.

Proposition 4.6. Let σ be an implicit signature that contains a non-explicit operation. Let H be

a σ-reducible pseudovariety of groups and Γ = V ⊎E be a finite graph. Suppose that there exists a

solution δ : ΩΓS → (ΩAS)
I modulo DRH of S(Γ) such that:

(a) ~c(δ(x)) 6= ∅, for every vertex x ∈ V ;

(b) c(δ(y)) ⊆ ~c(δ(α(y))), for every edge y ∈ E.

Then, S(Γ) has a solution modulo DRH in σ-words, say ε, such that ϕ(ε(x)) = ϕ(δ(x)), for all

x ∈ Γ.

Proof. Without loss of generality, we may assume that Γ has only one connected component (when

disregarding the directions of the arrows). Otherwise, we may treat each component separately.

Because of the hypothesis (b), the pseudowords δ(α(y)) and δ(ω(y)) are R-equivalent modulo DRH

for every edge y ∈ E. Since we are assuming that all vertices of Γ are in the same connected

component, it follows that for all x, z ∈ V , the pseudowords δ(x) and δ(z) are R-equivalent modulo

DRH. Fix a variable x0 ∈ V and let u0 be an accumulation point of (lbf1(δ(x0)) · · · lbfm(δ(x0)))m≥1

in ΩAS. Since, in DRH, the pseudowords u0 and δ(x0) are R-equivalent, for each x ∈ V there is a

factorization δ(x) = uxvx (with vx possibly empty) such that c(vx) ⊆ ~c(ux) and ux =DRH u0.



16 CÉLIA BORLIDO

Consider the set V̂ = {x̂ : x ∈ V } with |V | distinct variables, disjoint from Γ, the system of

equations S0 = {x̂ = ẑ : x, z ∈ V } with variables in V̂ , and let

δ0 : ΩV̂ ⊎Γ
S → (ΩAS)

I

x̂ 7→ ux, if x̂ ∈ V̂ ;

x 7→ vx, if x ∈ V ;

y 7→ δ(y), otherwise.

By construction, the homomorphism δ0 is a solution modulo DRH of S0 which is also a solution

modulo H of S(Γ). Hence, on the one hand, Theorem 3.1 together with Remark 3.2 yield a solution

ε0 : ΩV̂
S → ΩAS modulo DRH in σ-words of S0 such that

ϕ(ε0(x̂)) = ϕ(δ0(x̂)) = ϕ(ux),

~c(ε0(x̂)) = ~c(δ0(x̂)),

for every x̂ ∈ V̂ . On the other hand, the fact that H is σ-reducible implies that there is a solution

ε′ : ΩΓS → (ΩAS)
I modulo H of S(Γ) given by σ-words satisfying

ϕ(ε′(x)) = ϕ(δ0(x)),

for every x ∈ Γ. Thus, we take ε : ΩΓS → (ΩAS)
I to be the continuous homomorphism defined by

ε(x) = ε0(x̂)ε
′(x) if x ∈ V , and ε(y) = ε′(y) otherwise. Taking into account that S has a content

function, we may use Lemma 2.3 to deduce that ε is a solution modulo DRH of S(Γ) in σ-words.

It is easy to check that the constraints for the variables of Γ are also satisfied. Therefore, ε is the

required homomorphism. �

Lemma 4.7. Let S1 be the system of equations (4.3) in the set of variables X1 and let δ1 : ΩX1
S →

(ΩAS)
I be its solution modulo DRH. Suppose that the implicit signature σ contains a non-explicit

operation. If the pseudovariety H is σ-reducible, then S1 has a solution modulo DRH in σ-words.

Proof. Analyzing the equations in (4.3), we easily conclude that there are no variables occurring

simultaneously in the first row and in one of the other two rows. Therefore, the system S1 can be

thought as a system of pointlike equations S2 together with a system of graph equations S3 such

that the condition (b) of Proposition 4.6 holds and none of the variables occurring in S2 occurs in
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S3. Note that we are also including in S2 the equations in the last two rows of (4.3) such that the

cumulative content of the value of the involved variables under δ1 is empty.

By Theorem 3.1 the system S2 has a solution modulo DRH in σ-words, while by Proposition 4.6

the system S3 has a solution modulo DRH in σ-words. Therefore, the intended solution for S1 also

exists. �

We just proved the announced result.

Theorem 4.8. When σ is an implicit signature containing a non-explicit operation, the pseudova-

riety DRH is σ-reducible if so is H. �

We recall that, by Theorem 2.7, for every nontrivial extension closed pseudovariety of groups H,

there is an implicit signature σ(H) ⊇ κ that turns H into a σ(H)-reducible pseudovariety. For

instance, Gp and Gsol are both extension closed. Thus, DRGp and DRGsol are both σ-reducible for

suitable signatures σ.

The combination of Theorems 2.6 and 4.8 yields the next result.

Corollary 4.9. Let H be a pseudovariety of groups. If H is κ-tame, then so is DRH.

We further prove that the converse of Theorem 4.8 also holds.

Proposition 4.10. Let H be a pseudovariety of groups such that the pseudovariety DRH is σ-

reducible. Then, the pseudovariety H is also σ-reducible.

Proof. Let Γ = V ⊎E be a graph such that S(Γ) admits δ : ΩΓS → (ΩAS)
I as a solution modulo H.

We consider a new graph Γ̂ = V̂ ⊎ Ê, where V̂ = {v̂ : v ∈ V } ⊎ {v0} and Ê = V ⊎ E. The

functions α and ω of Γ̂ are given by α(v) = v0 and ω(v) = v̂, for all v ∈ V and by α(e) = v̂1

and ω(e) = v̂2 whenever e ∈ E and (α(e), ω(e)) = (v1, v2). The relationship between the graphs

Γ and Γ̂ is depicted in Figure 1. Let u ∈ ΩAS be a regular pseudoword modulo DRH such that

v1
e

++ v2 v̂1
e

++ v̂2

v0

v1

``

v2

>>

Figure 1. On the left, an edge of Γ; on the right, the corresponding edges of Γ̂.

c(δ(x)) ⊆ ~c(u) for all x ∈ Γ. We take δ′ : Ω
Γ̂
S → (ΩAS)

I to be the continuous homomorphism
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defined by δ′(e) = δ(e), if e ∈ E; δ′(v) = δ(v) and δ′(v̂) = uδ(v), if v ∈ V ; and δ′(v0) = u.

Then, Lemma 2.3 combined with the fact that δ is a solution modulo H of S(Γ) imply that δ′ is a

solution modulo DRH of S(Γ̂). Thus, since DRH is σ-reducible, there exists a solution in σ-words

ε : Ω
Γ̂
S → (ΩAS)

I modulo DRH of S(Γ̂). In particular, for each edge e ∈ E such that α(e) = v1 and

ω(e) = v2, we have that v0v1 = v̂1, v̂1e = v̂2, and v0v2 = v̂2 are equations of S(Γ̂). Therefore, the

equalities ε(v0v1e) = ε(v̂1e) = ε(v̂2) = ε(v0v2) hold in DRH. Hence, H satisfies ε(v1e) = ε(v2) and

so, we may conclude that the restriction of ε to ΩΓS is a solution in σ-words modulo H of S(Γ). �

Combined with Proposition 4.10, the results in the literature supply a family of pseudovari-

eties DRH that are not κ-reducible. Namely, DRGp and DRH for every proper non locally finite

subpseudovariety H of Ab (recall Theorem 2.7).

5. Idempotent pointlike equations

We now take for C the class of all systems of idempotent pointlike equations. In the two preceding

situations, the answers to Question (Q) were of the form “it is enough to assume that H is σ-reducible

with respect to C”. When considering systems of idempotent pointlike equations, we have been

unable to give such an answer. However, we prove that assuming σ-reducibility of H with respect

to a still “satisfactory” class of systems serves our purpose. More precisely, we prove that, for an

implicit signature σ satisfying certain conditions, if H is a σ-reducible pseudovariety of groups, then

DRH is σ-reducible with respect to systems of idempotent pointlike equations.

In order to make the expression “reducible for systems of graph equations” more embracing, we

first introduce a definition.

Definition 5.1. Let V be a pseudovariety and S a finite system of equations in the set of variables

X with certain constraints. We say that S is V-equivalent to a system of graph equations if there

exists a graph Γ such that X ⊆ Γ and such that every solution modulo V of S can be extended

to a solution modulo V of S(Γ) (the constraints for the variables of X ⊆ Γ are those given by the

system S). Moreover, whenever δ is a solution modulo V of S(Γ), the restriction δ|ΩXS
is a solution

modulo V of S. Each graph Γ with that property is said to be an S-graph and we say that S is

V-equivalent to S(Γ) for every S-graph Γ.

It is immediate from the definition that any σ-reducible pseudovariety V is σ-reducible for systems

of equations that are V-equivalent to a system of graph equations. In the next few results we exhibit
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some systems of equations that are H-equivalent to a system of graph equations (for a pseudovariety

of groups H). Instead of giving complete proofs, we identify on each situation what graph should

be considered and leave the details to the reader.

Lemma 5.2. Let S = {x1w1 · · ·xnwnxn+1 = 1} be a system consisting of a single equation, where

xi is a variable with xi 6= xj whenever i 6= j, {wi}
n
i=1 ⊆ A∗, and the constraint of the variable xi is

given by the clopen subset Ki ⊆ (ΩAS)
I . Then, for every pseudovariety of groups H, the system S

is H-equivalent to a system of graph equations.

Proof. Let Γ = V ⊎E be the finite graph with the sets of vertices and edges given by V = {yi, zi : i =

1, . . . , n+1} and E = {x0} ⊎ {xi : i = 1, . . . , n+1} ⊎ {wi : i = 1, . . . , n}, respectively. To define the

mappings α and ω, we take

(α(x0), ω(x0)) = (y1, zn+1);

(α(xi), ω(xi)) = (yi, zi), for i = 1, . . . , n+ 1;

(α(wi), ω(wi)) = (zi, yi+1), for i = 1, . . . , n ;

as shown in Figure 2. Let us denote by Kx the clopen set that defines the constraint of x ∈ Γ. We

y1

x1
))

x0

33z1

w1
))
y2

x2
))
z2

w2

&& ··· zn

wn ,,
yn+1

xn+1
,,
zn+1

Figure 2. The graph Γ.

set Kxi
= Ki, Kwi

= {wi}, Kx0
= {I}, and Kyi = (ΩAS)

I = Kzi (for every i such that each of the

variables is defined). Then, Γ is an S-graph. �

Lemma 5.3. Let H be a pseudovariety of groups. If S is H-equivalent to a system of graph equations,

x is a variable occurring in S, and S0 = {x = x1 = · · · = xn}, where x1, . . . , xn are new variables,

then S ∪ S0 is also H-equivalent to a system of graph equations.

Proof. Let Γ = V ⊎ E be an S-graph. We construct a new graph Γ′ as follows. If x ∈ V , then we

consider new variables x0, x1, . . . , xn and Γ′ is obtained by adding to Γ the edges represented in

Figure 3 on the left. Otherwise, if x ∈ E, then n new edges are added to Γ as depicted in Figure 3

on the right, resulting the graph Γ′. We do not explicit the constraints on the new variables, since



20 CÉLIA BORLIDO

x0

x1

&&

xn

<<
... x α(x)

x

  x1
,,

xn

>>
... ω(x)

Figure 3. The piece of the graph Γ′ where it differs from Γ, when x ∈ V (left) and
when x ∈ E (right).

they may be taken to be given by the clopen set ΩAS. In any case, it is a routine matter to verify

that the system S ∪ S0 is H-equivalent to S(Γ′). �

Lemma 5.4. Let H be a pseudovariety of groups, S be a system of equations with variables in X that

is H-equivalent to a system of graph equations and S0 = {x = x1w1 · · ·xnwnxn+1}, where x ∈ X,

x1, . . . , xn are new variables, xn+1 is either the empty word or a new variable, and {wi}
n
i=1 ⊆ A∗.

Then, S ∪ S0 is also H-equivalent to a system of graph equations.

Proof. We start by observing that it really does not matter whether xn+1 is the empty word or a

new variable. Indeed, if it is the empty word, then we just need to set a constraint Kxn+1
= {I}

for xn+1 and we may treat it as a variable.

Let Γ = V ⊎E be an S-graph. We construct a new graph Γ′ depending on whether x is a vertex

or an edge. If x is a vertex, then we add to Γ a new path going from a new vertex y1 to x, whose

edges are labeled by x1, w1, . . . , xn, wn, xn+1 in this order, as depicted in Figure 4. We further take

y1

x1
))
z1

w1
))
y2

x2
))
z2

w2

&& ··· zn

wn ,,
yn+1

xn+1

))
x

Figure 4. The new path in Γ if x is a vertex.

Ky1 = {I}, Kyi+1
= (ΩAS)

I = Kzi , and Kwi
= {wi} as the clopen sets defining the constraints

for the new variables yi+1, zi, and wi, respectively (i = 1, . . . , n). On the other hand, when x

is an edge, we simply obtain Γ′ by adding a path in Γ from α(x) to ω(x) with edges labeled by

x1, w1, . . . , xn, wn, xn+1 (see Figure 5). We leave it to the reader to verify that, in both situations,

α(x)

x1

>>

x

,,

w1

99 ···

xn

99
wn

99
xn+1

22 ω(x)

Figure 5. The added path to Γ if x is an edge.

S ∪ S0 is H-equivalent to S(Γ′). �
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Corollary 5.5. Let H be a pseudovariety of groups and let S be a system of equations H-equivalent

to a system of graph equations and suppose that x1, . . . , xN are variables occurring in S. Also,

suppose that the variables yi,1, . . . , yi,ki and zi,1, . . . , zi,ni
(i = 1, . . . , N) are all distinct and do not

occur in S, and let {wi,p : i = 1, . . . , N ; p = 1, . . . , ki} ⊆ A∗. We make each ti be either the empty

word or another different variable. Then, the system of equations

S
′ = S ∪ {xi = yi,1wi,1 · · · yi,kiwi,kiti}

N
i=1

∪ {ti = zi,1 = · · · = zi,ni
: i = 1, . . . , N and ti is not the empty word}

is also H-equivalent to a system of graph equations.

Proof. The result follows immediately by successively applying Lemmas 5.3 and 5.4. �

The next statement consists of a general scenario that is instrumental for establishing the claimed

answer to Question (Q) mentioned in the beginning of this section.

Proposition 5.6. Let H be a σ-reducible pseudovariety of groups, where σ is an implicit signature

such that 〈σ〉 contains a non-explicit operation η such that η = 1 in H. Let S1 and S2 be finite

systems of equations, such that S1 contains only pointlike equations, and both S1∪S2 and S2 are H-

equivalent to systems of graph equations. Further assume that, if X is the set of variables occurring

in S1 ∪ S2, then the constraint on each variable x ∈ X is given by a clopen subset Kx ⊆ (ΩAS)
I .

Then, the existence of a continuous homomorphism that is simultaneously a solution modulo DRH

of S1 and a solution modulo H of S2 entails the existence of a continuous homomorphism in σ-words

with the same property.

Proof. Without loss of generality, we assume that η is a unary implicit operation. Let S1 =

{xi,1 = · · · = xi,ni
}Ni=1, with xi,p 6= xj,q, for all i 6= j. We consider a continuous homomorphism

ϕ : (ΩAS)
I → SI such that each clopen set Kx is the preimage of a finite subset of SI under ϕ

(recall Remark 2.4). We argue by induction on the parameter

M = max{|c(δ(xi,p))| : i = 1, . . . , N, p = 1, . . . , ni}.

If M = 0, then δ(xi,p) = I for all i = 1, . . . , N and p = 1, . . . , ni and therefore, every solution

ε modulo H of S2 such that ε(xi,p) = I (for i = 1, . . . , N , and p = 1, . . . , ni) is trivially a solution
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modulo DRH of S1. Since we are assuming that S2 is H-equivalent to a system of graph equations

and we are taking for H a σ-reducible pseudovariety, there exists such an ε given by σ-words.

Suppose that M > 0 and that the result holds for any smaller parameter. If δ(xi,p) has empty

cumulative content, then we let ki be the maximum integer such that lbfki(δ(xi,p)) is nonempty

and we write lbfm(δ(xi,p)) = δ(xi,p)mai,m, for m = 1, . . . , ki. Otherwise, for each m ≥ 1, we

consider the m-th iteration of the left basic factorization to the right of δ(xi,p), say δ(xi,p) =

δ(xi,p)1ai,1 · · · δ(xi,p)mai,mδ(xi,p)
′
m. Since S and A are both finite, there are integers 1 ≤ k < ℓ such

that, for all i, p satisfying ~c(δ(xi,p)) 6= ∅, we have

~c(δ(xi,p)) = c(δ(xi,p)k+1ai,k+1);

ϕ(δ(xi,p)) = ϕ(δ(xi,p)1ai,1 · · · δ(xi,p)kai,k · η(δ(xi,p)k+1ai,k+1 · · · δ(xi,p)ℓai,ℓ)δ(xi,p)
′
k).

Now, consider a new set of variables X ′ given by the union

X ⊎ {xi,p;m, ai,m : i = 1, . . . , N ; p = 1, . . . , ni; ~c(δ(xi,p)) = ∅; m = 1, . . . , ki}

⊎{xi,p;m, ai,m, x′i,p : i = 1, . . . , N ; p = 1, . . . , ni; ~c(δ(xi,p)) 6= ∅; m = 1, . . . , ℓ},

where all the introduced variables are distinct. In order to simplify the notation, we set ℓi = 0

if ~c(δ(xi,p)) = ∅, and ki = k and ℓi = ℓ, otherwise. We further take the constraints on X ′ to be

given by Kx if x ∈ X, and by the clopen sets Kxi,p;m
= ϕ−1(ϕ(δ(xi,p)m)), Kai,m = {ai,m}, and

Kx′

i,p
= ϕ−1(ϕ(δ(xi,p)

′
k)) for the remaining cases.

Consider the system

S
′
1 = {xi,1;m = · · · = xi,ni;m : i = 1, . . . , N ; m = 1, . . . ,max{ki, ℓi}}.

A new system S′2 is obtained from the system S1 ∪ S2 (which is H-equivalent to a system of graph

equations, by hypothesis) by adding two sets of equations:

• for each i = 1, . . . , N , if there exists an index p such that xi,p is a variable occurring in S2,

then we choose such an index, say pi. Then, we add the equation

xi,pi = xi,pi;1ai,1 · · ·xi,pi;kiai,kizi,pi ,

where zi,pi stands for the empty word if ℓi = 0, and for x′i,pi otherwise;



REDUCIBILITY PROPERTIES FOR DRH 23

• and we add the set of equations

{x′i,1 = · · · = x′i,ni
: i = 1, . . . , N, ℓi 6= 0}.

By Corollary 5.5, the new system S′2 is still H-equivalent to a system of graph equations. Moreover,

if we denote by X ′
j the set of variables occurring in S′j (j = 1, 2), then the following equality holds:

X ′
1 ∩X ′

2 = {xi,pi;m : i = 1, . . . , N ; pi is defined; and m = 1, . . . ,max{ki, ℓi}}.

Thus, Lemma 5.3 yields that the system S′1 ∪ S′2 is H-equivalent to a system of graph equations as

well. Let δ′ : ΩX′S → (ΩAS)
I be the continuous homomorphism defined by

δ′(xi,p;m) = δ(xi,p)m, if i = 1, . . . , N ; p = 1, . . . , ni; m = 1, . . . ,max{ki, ℓi};

δ′(x′i,p) = δ(xi,p)
′
k, if i = 1, . . . , N ; p = 1, . . . , ni;

δ′(x) = δ(x), otherwise.

It follows from its definition that δ′ is a solution modulo DRH of S′1 which is also a solution modulo H

of S′2. Since the induction parameter corresponding to the triple (S′1, S
′
2, δ

′) is smaller than the one

corresponding to the triple (S1, S2, δ), we may use the induction hypothesis to deduce the existence

of a continuous homomorphism ε′ : ΩX′S → (ΩAS)
I in σ-words that is both a solution modulo DRH

of S′1 and a solution modulo H of S′2.

Finally, we define ε as follows:

ε : ΩXS → (ΩAS)
I

xi,p 7→ ε′(xi,p;1)ai,1 · · · ε
′(xi,p;ki)ai,ki , if ℓi = 0;

xi,p 7→ ε′(xi,p;1)ai,1 · · · ε
′(xi,p;k)ai,k

· η(ε′(xi,p;k+1)ai,k+1 · · · ε
′(xi,p;ℓ)ai,ℓ) · ε

′(x′i,p), if ℓi 6= 0;

x 7→ ε′(x), otherwise.

Then, a straightforward computation shows that ε plays the desired role. �

We now state and prove the result claimed at the beginning of the section.
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Theorem 5.7. Let σ be an implicit operation such that there exists η ∈ 〈σ〉 non-explicit, with

η = 1 in H. If H is a σ-reducible pseudovariety of groups, then DRH is σ-reducible for idempotent

pointlike systems of equations.

Proof. Let S = {x1 = · · · = xn = x2n} be an idempotent pointlike system of equations with

constraints on the variables given by the pair (ϕ, ν), and let δ : Ω{x1,...,xn}S → ΩAS be a solution

modulo DRH of S. Suppose that δ(xi) = ui. Since idempotents over DRH are precisely the

pseudowords with cumulative content coinciding with the content and with value 1 over H (cf. [15,

Corollary 6.1.5]), DRH satisfies u1 = · · · = un = u2n if and only if the following conditions hold:

c(un) = ~c(un);

un =H 1;(5.1)

u1 =DRH · · · =DRH un.

For each i ∈ {1, . . . , n} and m ≥ 1, let ui = lbf1(ui) · · · lbfm(ui)u
′
i,m and lbfm(ui) = ui,mam. Since

S is finite, there are positive integers k < ℓ such that for all i = 1, . . . , n the equality

ϕ(lbf1(ui) · · · lbfk(ui)) = ϕ(lbf1(ui) · · · lbfℓ(ui))

holds. Take the set of variables

X = {xi,p : i = 1, . . . , n; p = 1, . . . , ℓ} ⊎ {x′i : i = 1, . . . , n},

with constraints given by (ϕ, ν ′), where ν ′(x) = ϕ(ui,p) if x = xi,p, and ν ′(x) = ϕ(u′i,k) if x = x′i.

We consider the systems of equations S1 = {x1,p = · · · = xn,p}
ℓ
p=1 and S2 = {xn,1a1 · · ·xn,kakx

′
n =

1, x′1 = · · · = x′n}. Then, the homomorphism

δ′ : ΩXS → (ΩAS)
I

xi,p 7→ ui,p, for i = 1, . . . , n; p = 1, . . . , ℓ;

x′i 7→ u′i,k, for i = 1, . . . , n;

is a solution modulo DRH of S1 that is also a solution modulo H of S2. Besides that, since by

Lemma 5.2 the system {xn,1a1 · · ·xn,kakx
′
n = 1} is H-equivalent to a system of graph equations,

Lemma 5.3 yields that so is S2. In turn, again Lemma 5.3 implies that S1 ∪ S2 is H-equivalent to
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a system of graph equations. Thus, we may invoke Proposition 5.6 to derive the existence of a

continuous homomorphism ε′ : ΩXS → (ΩAS)
I in σ-words that is a solution modulo DRH of S1,

and a solution modulo H of S2.

Now, assuming that η is unary, we let ε : Ω{x1,...,xn}S → ΩAS be given by

ε(xi) = ε′(xi,1)a1 · · · ε
′(xi,k)ak · η(ε

′(xi,k+1)ak+1 · · · ε
′(xi,ℓ)aℓ)ε

′(x′i).

It is easily checked that DRH satisfies ε(x1) = · · · = ε(xn), and H satisfies ε(xn) = 1. Furthermore,

by the choice of k and ℓ, we also know that ϕ(ε(xi)) = ϕ(δ(xi)) and, as we are assuming that η is

non-explicit and S has a content function, the equality ~c(ε(xi)) = c(ε(xi)) holds. So, by (5.1), we

may conclude that ε is a solution modulo DRH of S in σ-words that keeps the values under ϕ. �

We observe that, whenever the ω-power belongs to 〈σ〉, the hypothesis of Theorem 5.7 concerning

the implicit signature σ is satisfied. That is the case of the canonical implicit signature κ. Hence,

using again Theorem 2.6, we may conclude the following.

Corollary 5.8. If H is a κ-tame pseudovariety of groups, then DRH is κ-tame with respect to finite

systems of idempotent pointlike equations. �

In particular, the pseudovarieties DRG and DRAb are both κ-tame with respect to finite systems

of idempotent pointlike equations and DRGp and DRGsol are σ-reducible with respect to the same

class (recall Theorem 2.7).
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