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Abstract

Profinite techniques are explored in order to prove decidability of a word problem over a family of pseu-
dovarieties of semigroups, which is parameterized by pseudovarieties of groups.

Let κ be the signature that naturally generalizes the usual signature on groups: it consists of the
multiplication, and of the (ω − 1)-power. Given a pseudovariety of groups H, we denote by DRH the
pseudovariety all finite semigroups whose regular R-classes lie in H. We prove that the word problem for
κ-terms is decidable over DRH provided it is decidable over H (in general, the word problem for κ-terms is
said to be decidable over a pseudovariety V if it is decidable whether two κ-terms define the same element
in every semigroup of V). Further, we present a canonical form for elements in the free κ-semigroup over
DRH, based on the knowledge of a canonical form for elements in the free κ-semigroup over H. This extends
work of Almeida and Zeitoun on the pseudovariety of all finite R-trivial semigroups.
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1. Introduction

A pseudovariety is a class of finite semigroups that is closed under taking binary products, subsemi-
groups, and homomorphic images. Since Eilenberg’s correspondence was formulated in 1976 [1, Chapter VII,
Theorem 3.4s] such classes play an important role in the study of rational languages. He showed that pseu-
dovarieties are in a bijective correspondence with varieties of rational languages. In turn, the study of the5

latter is strongly motivated by its application in Computer Science, namely, via Automata Theory [2, 3].
Amongst the decision problems usually considered for classes of algebraic structures, the identity problem

(which is the word problem for relatively free structures and which we call the word problem for the class of
algebraic structures in question) and the membership problem are of great relevance (for a survey, see [4]).
While the former consists in deciding whether two terms (over a fixed signature) have the same interpretation10

in every algebra from the class, the latter asks whether a given algebra belongs to the given class. In the
case where the class considered is a pseudovariety, the two problems are closely related as witnessed by the
work of Albert, Baldinger, and Rhodes [5]: they used undecidability of a certain word problem in order to
prove that decidability of the membership problem for pseudovarieties is not preserved under taking joins
of pseudovarieties.15

Besides being an interesting problem in itself, the word problem for pseudovarieties also appears as
one of the ingredients of a stronger property of pseudovarieties named tameness [6]. As mentioned above,
decidability of the membership problem is not preserved by taking joins of pseudovarieties. It turns out
that this is not the unique relevant operator with this property. Similar results are known, for instance,
with respect to the (two-sided) semidirect product, and the Mal’cev product [5, 7, 8]. When Almeida was20

looking for properties on pseudovarieties that are preserved by taking semidirect products, he came up
with the notion of hyperdecidability [9], which seemed natural at the light of his and Weil’s Pseudoidentity
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Basis Theorem [10, Theorem 5.3].2 However, hyperdecidability is a decision problem that is very hard to
solve in general. That sets the tone to consider the property of being tame, which although stronger than
hyperdecidability, is in general easier to obtain.25

When proving tameness, the main decision component consists in solving a word problem (the other
crucial component of tameness is called reducibility ; see [12] for an overview of related concepts). The
word problem involved may be described as follows: we fix a pseudovariety V and suppose that σ is a
recursively enumerable signature with a computable interpretation in each semigroup of V, which commutes
with homomorphisms between elements of V. Then, solving the σ-word problem over V consists in deciding30

whether two given σ-terms have the same interpretation in every semigroup of V. Note that this is equivalent
to solving the word problem over the free σ-semigroup over V [13]. In this paper we shall consider the word
problem with respect to the canonical signature κ, which consists of the multiplication and of the (ω − 1)-
power. This is the most natural generalization of the usual signature on groups, since the (ω − 1)-power is
interpreted as inversion on finite groups.35

On the other hand, one of the pseudovarieties shown to be of great relevance is R, which consists of
all finite semigroups whose regular R-classes are trivial. It appears naturally in different contexts (see,
for instance, [14, 15, 16, 17]), and has been the focus of many works (other examples are present in [18,
19, 20, 21]). In turn, a natural generalization of R is found in the pseudovarieties of the form DRH for
a pseudovariety of groups H. This class contains all finite semigroups whose regular R-classes are groups40

from H. Observe that, when H is the trivial pseudovariety, the pseudovariety DRH is precisely R.
Also, the pseudovarieties DRH may be seen as a specialization of the pseudovariety DS, of all finite

semigroups whose regular D-classes are subsemigroups. The interest in the latter has been pointed out
by Schützenberger in [22], where he characterizes the varieties of rational languages corresponding to some
subpseudovarieties of DS under Eilenberg’s correspondence, among which DRH. Later, Almeida and Weil [18]45

described the structure of free pro-DRH semigroups. Several other authors have shown interest in better
understanding DS [23, 24, 25]. Furthermore, the results found in the literature suggest that the investigation
of subpseudovarieties of DS may lead to a better understanding of DS itself [26, 27, 17], and thus, DRH is
an interesting instance.

We mention some related work. In 2007, Almeida and Zeitoun [28] solved the κ-word problem over the50

pseudovariety R. Their methods have been adapted by Moura [29] to the pseudovariety DA, consisting of
all finite semigroups whose regular D-classes are aperiodic subsemigroups. In this paper, we solve the same
problem for some of the pseudovarieties of the form DRH. The only condition we impose on H is quite
reasonable: we require that it have a decidable κ-word problem. Further, it is expected that, combining
Moura’s work with our own, the same approach may be extended to DO ∩ H, that is, to the pseudovariety55

of all finite semigroups whose regular D-classes are orthodox semigroups and whose subgroups lie in H. The
pseudovariety DO ∩ H may be considered as the simplest non aperiodic version of DA. The key ingredient
in these approaches is the study of certain factors of pseudowords over the considered pseudovariety. Such
factors are obtained by taking successive refinements of factorizations of a given pseudoword. When it
concerns a pseudovariety DRH, each factor obtained in this way is characterized both by its projection60

onto R and a component over H. This somehow explains why we were not able to use the results on R, but
we had to extend them instead.

This paper is organized as follows. Section 2, of preliminaries, is divided into four subsections: in the
first we set up the general notation; we recall some aspects related with theory of profinite semigroups in
the second; we describe the κ-word problem in the third; and we reserve the fourth to the statement of some65

general facts on the structure of free pro-DRH semigroups. In Section 3 we introduce DRH-automata, which
are a generalization of R-automata defined in [28], and are useful to represent the R-classes of free pro-DRH
semigroups. We devote Section 4 to the presentation of a canonical form for κ-words over DRH assuming
the knowledge of a canonical form for κ-words over H. Section 5 presents a number of technical results that
are instrumental in Section 6, in which we describe an algorithm to solve the κ-word problem over DRH.70

Finally, in Section 7 we apply our results to the particular case of the pseudovariety DRG.

2It was later realized that the referred theorem has a gap in its proof. Although it is not known so far the full generality of
the result, it remains valid in some relevant cases (see also [11, Section 3.7]).
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2. Preliminaries

We assume that the reader is familiar with pseudovarieties, (pro)finite semigroups, and the basics of
topology. For further reading we refer to [30, 13, 31]. Some knowledge of automata theory may be useful,
although no use of deep results is made. For this topic, we refer to [2]. A study of pseudovarieties of the75

form DRH may be found in [18].

2.1. Notation

Given a semigroup S, we let SI represent the monoid obtained by adjoining an identity to S (even if S
is already a monoid). If s1, . . . , sn are elements in S, then

∏n
i=1 si denotes the product s1 · · · sn. An infinite

sequence (si)i≥1 ⊆ S defines the infinite product (
∏n
i=1 si)n≥1.80

The free semigroup (respectively, monoid) on a (possibly infinite) set B is denoted B+ (respectively,
B∗). Elements in B∗ are called words. The empty word of B∗ is the identity element ε. The length of a
word u ∈ B∗ is |u| = 0 if u = ε, and |u| = n if u = b1 · · · bn, for certain b1, . . . , bn ∈ B. The free group on
B is denoted FGB , and we denote by B−1 the set {b−1 : b ∈ B} disjoint from B, where b−1 represents the
inverse of b in FGB .85

We say that a set of symbols is an alphabet. Generic finite alphabets are denoted A, while Σ = {0, 1} is
a fixed two-element alphabet.

Let A = 〈V,→, v0, F 〉 be a deterministic automaton over an alphabet A (where V is the set of states, →
is the transition function, and {v0} and F are the sets of initial and terminal states, respectively). We write

transitions in A as v
a−→ v.a, for v ∈ V and a ∈ A∗. Given a state v ∈ V , we denote by Av the sub-automaton90

of A rooted at v, that is, the (deterministic) automaton 〈v.A∗,→ |v.A∗ , v, F ∩ (v.A∗)〉.
The symbols R, H, and D denote some of Green’s relations. We reserve the letter H to denote an arbitrary

pseudovariety of groups, and DRH stands for the pseudovariety of all finite semigroups whose regular R-
classes belong to H. Other pseudovarieties playing a role in this work are S, the pseudovariety of all finite
semigroups; G, the pseudovariety of all finite groups; and R, the pseudovariety of all finite semigroups with95

trivial R-classes.

2.2. Profinite semigroups

Let V be a pseudovariety of semigroups. We denote the free A-generated pro-V semigroup by ΩAV.
Elements of ΩAV are called pseudowords over V (or simply pseudowords, when V = S). Let ι : A → ΩAV
be the generating mapping of ΩAV. We point out that, unless V is the trivial pseudovariety, ι is injective.100

For that reason, we often identify the alphabet A with its image under ι. With this assumption, we obtain
that the free semigroup A+ is a subsemigroup of ΩAV and thus, it is coherent to say that I ∈ (ΩAV)I is the
empty word/pseudoword. On the other hand, if B ⊆ A, then we have an injective continuous homomorphism
ΩBV→ ΩAV, induced by the inclusion map B → ΩAV. So, we consider ΩBV as a subsemigroup of ΩAV. In
turn, if W is a subpseudovariety of V, then we denote by ρV,W the natural projection from ΩAV onto ΩAW.105

We shall write ρW when V is clear from the context. Whenever the pseudovariety Sl of all finite semilattices
is contained in V, we denote the projection ρSl = ρV,Sl by c and call it the content function.

Finally, a pseudoidentity over V (or simply pseudoidentity, when V = S) is a formal equality u = v, with
u, v ∈ ΩAV. We say that a pseudoidentity u = v holds in a pseudovariety W ⊆ V if the interpretations of u
and v coincide in every semigroup of W. If that is the case, then we may say that u and v are equal modulo110

W, and we write u =W v.

2.3. The κ-word problem

The canonical implicit signature, denoted κ, consists of two implicit operations: the multiplication ( · ),
and the (ω − 1)-power ( )ω−1. Each of these operations has a natural interpretation over a given profinite
semigroup S: the multiplication sends each pair (s1, s2) to its product s1s2, and the (ω − 1)-power sends115

each element s to the limit limn≥1 s
n!−1. We define κ-terms over an alphabet A inductively as follows:

• the empty word ε and each letter a ∈ A are κ-terms;
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• if u and v are κ-terms, then (u · v) and (uω−1) are also κ-terms.

Of course, each nonempty κ-term may naturally be seen as representing an element of the free κ-semigroup
ΩκAS, and conversely, for each element of ΩκAS there is a (usually non-unique) κ-term representing it. We120

call κ-words the elements of (ΩκAS)I .
Let ` be an integer. We may generalize the (ω − 1)-power by letting xω+` = limn≥1 x

n!+`. Then, for
every q ≥ 1, the expressions (xω−1)q and xω−1xq represent κ-words (by uq we mean q times the product
of u), and the equalities (xω−1)q = xω−q and xω−1xq = xω+q−1 hold in ΩκAS. It is usual to consider the
extended implicit signature κ that contains the multiplication and all (ω+ q)-powers (for an integer q). We125

define both κ-term and κ-word in the same fashion as we defined κ-term and κ-word, respectively. Clearly,
κ-words are κ-words and conversely, but a κ-term may not be a κ-term.

Saying that the κ-word problem over a pseudovariety V is decidable amounts to saying that there exists
an algorithm determining whether the interpretation of two given κ-terms coincides in every semigroup of V,
that is, whether they define the same element of ΩκAV. Although our goal is to solve the κ-word problem over130

DRH (under certain reasonable conditions on H), it shall be useful to consider κ-terms instead of κ-terms in
the intermediate steps.

The implicit signature κ enjoys a nice property that we state here for later reference.

Lemma 2.1 ([28, Lemma 2.2]). Let u be a κ-term and let u = u`aur be a factorization of u such that
c(u) = c(u`) ] {a}. Then, u` and ur are κ-terms.135

2.4. Structure of free pro-DRH semigroups

We start with a uniqueness result on factorization of pseudowords.

Proposition 2.2 ([28, Proposition 2.1]). Let x, y, z, t ∈ ΩAS and a, b ∈ A be such that xay = zbt. Suppose
that a /∈ c(x) and b /∈ c(z). If either c(x) = c(z) or c(xa) = c(zb), then x = z, a = b, and y = t.

This motivates the definition of left basic factorization of a pseudoword u ∈ ΩAS: it is the unique triple140

lbf(u) = (u`, a, ur) of (ΩAS)I × A × (ΩAS)I such that u = u`aur, a /∈ c(u`), and c(u) = c(u`a). The left
basic factorization is also well defined over each pseudovariety DRH.

Proposition 2.3 ([18, Proposition 2.3.1]). Every element u ∈ ΩADRH admits a unique factorization of the
form u = u`aur such that a /∈ c(u`) and c(u`a) = c(u).

Then, whenever u ∈ ΩADRH, we also say that the triple lbf(u) = (u`, a, ur) described in Proposition 2.3145

is the left basic factorization of u.
We may iterate the left basic factorization of a pseudoword u (or of a pseudoword u over DRH) as

follows. Set u′0 = u. For k ≥ 0, if u′k 6= I, then we let (uk+1, ak+1, u
′
k+1) be the left basic factorization

of u′k. Since the contents (c(ukak))k≥1 form a decreasing sequence for inclusion, there exists an index k
such that either u′k = I (in which case we set due = k) or, for all m ≥ k, c(ukak) = c(umam) (setting150

then due = +∞). The cumulative content of u is ~c(u) = ∅ in the former case, and it is ~c(u) = c(ukak) in
the latter. In particular, Proposition 2.3 yields that the cumulative content of a pseudoword is completely
determined by its projection onto ΩAR. We denote the factor ukak by lbfk(u), whenever it is defined and we
write lbf∞(u) = (u1a1, . . . , ukak, I, I, . . .) if u′k = I, and lbf∞(u) = (ukak)k≥1 otherwise. We further define
the irregular and regular parts of u, respectively denoted irr(u) and reg(u): if ~c(u) = ∅, then irr(u) = u155

and reg(u) = I; if ~c(u) = c(u′k) and k is minimal for this equality, then irr(u) = lbf1(u) · · · lbfk(u) and
reg(u) = u′k. This terminology is explained by the following result.

Proposition 2.4 ([18, Corollary 6.1.5]). Let u ∈ ΩADRH. Then, u is regular if and only if c(u) = ~c(u)
(and, hence, reg(u) = u).

Suppose that ~c(u) 6= ∅. Since ΩAS is a compact monoid, the infinite product (lbf1(u) · · · lbfk(u))k≥1 has160

an accumulation point, and it is not hard to see that any two of its accumulation points are R-equivalent.
Furthermore, if all the factors lbfk(u) have the same content, then the R-class in which the accumulation
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points lie is regular [18, Proposition 2.1.4]. On the other hand, the regular R-classes of ΩADRH are groups.
Hence, in this case, we may define the idempotent designated by the infinite product (lbf1(u) · · · lbfk(u))k≥1
to be the identity of the group to which its accumulation points belong.165

Together with Lemma 2.1, the next result is behind the properties of ΩADRH that we use most often in
the sequel. It consists of a particular case of [18, Proposition 5.1.2].

Proposition 2.5. Let H be a pseudovariety of groups. If e is an idempotent of ΩADRH and if He is its
H-class, then letting ψe(a) = eae for each a ∈ c(e) defines a unique homeomorphism ψe : Ωc(e)H → He

whose inverse is the restriction of ρDRH,H to He.170

The following consequence is not hard to derive.

Corollary 2.6. Let u be a pseudoword and v, w ∈ (ΩAS)I be such that c(v) ∪ c(w) ⊆ ~c(u) and v =H w.
Then, the pseudovariety DRH satisfies uv = uw.

We proceed with the statement of two known facts about DRH. We include the proofs for the sake of
completeness.175

Lemma 2.7. Let u, v be pseudowords. Then, ρDRH(u) and ρDRH(v) lie in the same R-class if and only if
the pseudovariety DRH satisfies lbf∞(u) = lbf∞(v).

Proof. Suppose that u R v modulo DRH and let u0 and v0 be possibly empty pseudowords such that DRH
satisfies uu0 = v and u = vv0. This implies that DRH also satisfies u = uu0v0, and thus, by uniqueness of
left basic factorization in ΩADRH, the equalities

lbf∞(u) = lbf∞(uu0v0) = lbf∞(vv0) = lbf∞(v)

hold modulo DRH.
Conversely, let us assume that lbf∞(u) =DRH lbf∞(v). Then, we may choose accumulation points of

(lbf1(u) · · · lbfk(u))k≥1 and of (lbf1(v) · · · lbfk(v))k≥1, say u′ and v′, respectively, having the same value in
DRH. Since the accumulation points of these sequences are R-above u and v, respectively, there exist possibly
empty pseudowords u0 and v0 such that u = u′u0 and v = v′v0. Clearly, we have lbf∞(v) = lbf∞(v′) and
so, the inclusion c(v0) ⊆ ~c(v′) holds. Therefore, the following equalities are valid in DRH

u = u′u0 = v′u0
Corollary 2.6

= v′(v0v
ω−1
0 )u0 = v(vω−10 u0).

Hence, u is R-below v modulo DRH. By symmetry, we also get that DRH satisfies v ≤R u.

Lemma 2.8. Let u, v ∈ ΩAS and u0, v0 ∈ (ΩAS)I be such that c(u0) ⊆ ~c(u) and c(v0) ⊆ ~c(v). Then, the180

pseudovariety DRH satisfies uu0 = vv0 if and only if it satisfies u R v and if, in addition, the pseudovariety
H satisfies uu0 = vv0. In particular, by taking u0 = I = v0, we get that u =DRH v if and only if u R v
modulo DRH and u =H v.

Proof. Suppose that uu0 = vv0 modulo DRH. Since c(u0) ⊆ ~c(u) and c(v0) ⊆ ~c(v), it follows that lbf∞(u) R
lbf∞(v). By Lemma 2.7, u and v are R-equivalent modulo DRH.185

Conversely, suppose that u and v are in the same R-class modulo DRH and that H satisfies uu0 = vv0.
From the fact that u R v modulo DRH it follows the existence of a possibly empty pseudoword v′0 such
that DRH satisfies u = vv′0 R v, and so c(v′0) ⊆ ~c(v). On the other hand, since the pseudoidentities
{u = vv′0, uu0 = vv0} are valid in H, it follows that H satisfies v′0u0 = v0. Therefore, Corollary 2.20 may be
used to conclude that DRH satisfies uu0 = v(v′0u0) = vv0 as desired.190

3. DRH-automata

The goal of this section is to characterize equality of pseudowords over DRH using certain kinds of
automata—the so-called DRH-automata—and equalities over H. We define an equivalence relation ∼ on
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the class of DRH-automata in such a way that the equivalence classes of DRH-automata are in one-to-one
correspondence with the R-classes of pseudowords over DRH (see Theorem 3.8).195

We start by introducing the notion of a DRH-automaton.
An A-labeled DRH-automaton is a tuple A = 〈V,→, v0, F, λH, λ〉, where 〈V,→, v0, F 〉 is a nonempty

deterministic trim automaton over Σ, and λH : V → (ΩAH)I and λ : V → A]{ε} are functions. We further
require that A satisfies the following conditions (A.1)–(A.6).

(A.1) the set of final states is F = λ−1(ε) and λH(F ) = {I};200

(A.2) there is no outgoing transition from F ;

(A.3) for every v ∈ V \ F , both v.0 and v.1 are defined;

(A.4) for every v ∈ V \ F , the equality λ(v.Σ∗) = λ(v.0Σ∗) ] {λ(v)} holds.

Recall that, by Lemma 2.7, an infinite tuple (v1, v2, v3, . . .) of (ΩADRH)I satisfying c(v1) ⊇ c(v2) ⊇ · · · ,
with each vi either of the form uiai (where ui is a pseudoword over DRH and ai a letter) with ai /∈ c(ui) or
the empty word I determines exactly one R-class of (ΩADRH)I . The intuitive idea behind conditions (A.1)–
(A.4) is that the label λ of the vertices v0, v0.1, v0.11, . . . represents the letters a1, a2, a3, . . . appearing in
such a tuple. Then, at each non-final vertex v0.1i, we find the information about ui by following the edge
labeled by 0, and we find the information about the tuple (vi+1, vi+2, . . .) by following the edge labeled by 1.
This explains requirement (A.4). Since with this we can only access information concerning the R-classes,
an automaton A satisfying conditions (A.1)–(A.4) shall determine a unique pseudoword over R. In fact, if
conditions (A.1)–(A.4) hold for A, then the reduct AR = 〈V,→, v0, F, λ〉 is an A-labeled R-automaton (see
[28, Definition 3.11]), which is the structure used to solve the κ-word problem over R. Since the cumulative
content of a pseudoword over DRH depends only on its projection onto ΩAR, and hence, also its regularity,
we may use the known results for the word problem in R (namely, [28, Theorem 3.21]) as guidance for
defining the length ‖A‖, the regularity index r.ind(A) and the cumulative content ~c(A) of a DRH-automaton
A from the knowledge of its reduct AR. In particular, the parameter ‖A‖ corresponds to the smallest index
k such that vk+1 = I, while the parameter r.ind(A) is the index in which the content of vi stabilizes in case
the above tuple is representing a pseudoword whose cumulative content is nonempty. We set:

‖A‖ = sup{k ≥ 0: v0.1k is defined};

r.ind(A) =

{
∞, if ‖A‖ <∞;

min{m ≥ 0: ∀k ≥ m λ(v0.1kΣ∗) = λ(v0.1mΣ∗)}, otherwise;

~c(A) =

{
∅, if ‖A‖ <∞;

λ(v0.1r.ind(A)Σ∗), otherwise.

We are now able to state the further required properties for A:

(A.5) if v ∈ V \ F , then ‖Av.0‖ <∞ if and only if λH(v) = I;205

(A.6) if v ∈ V \ F and ‖Av.0‖ =∞, then λH(v) ∈ Ω~c(Av.0)H.

We say that A is a DRH-tree if it is a DRH-automaton such that for every v ∈ V there exists a unique α ∈ Σ∗

such that v0.α = v.

Example 3.1. In Figure 1 we represent an example of a DRH-automaton, call it A. The first label in each
state corresponds to its image under λH and the second to its image under λ. Let v0 be the initial state.210

We have ‖A‖ = ∞, and so, the regularity index of A is finite, and its cumulative content is nonempty.
Observing that λ(v0.Σ∗) = {a, b, c} and λ(v0.1kΣ∗) = {a, b} for every k ≥ 1, we conclude that r.ind(A) = 1
and ~c(A) = {a, b}.

Definition 3.2. We say that two DRH-automata Ai = 〈Vi,→i, v
0
i , Fi, λi,H, λi〉, i = 1, 2, are isomorphic if

there exists a bijection f : V1 → V2 such that215
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Figure 1: Example of an {a, b, c}-labeled DRH-automaton.

• f(v01) = v02;

• for every v ∈ V1 and α ∈ Σ, f(v) · α = f(v · α);

• for every v ∈ V1, the equalities λ1,H(v) = λ2,H(f(v)) and λ1(v) = λ2(f(v)) hold.

Isomorphic DRH-automata are essentially the same, up to the name of the states. Therefore, we consider
DRH-automata only up to isomorphism.220

We denote the set of all A-labeled DRH-automata by AA.
Next, we shall assign a pseudoword over DRH to each DRH-automaton. For that, the important data

about the DRH-automaton concerns the labels we can read along each path starting at the initial state.
This leads to the next definition.

Definition 3.3. Let Aj = 〈Vj ,→j , v
0
j , Fj , λj,H, λj〉, j = 1, 2, be two DRH-automata. We say that A1 and

A2 are equivalent if

∀α ∈ Σ∗, λ1(v01.α) = λ2(v02.α) and λ1,H(v01.α) = λ2,H(v02.α). (1)

We agree that (1) means that either both equalities hold or both v01.α and v02.α are undefined. We write225

A1 ∼ A2 when A1 and A2 are equivalent.

Observe that equivalent DRH-trees are necessarily isomorphic. The following lemma is useful when
defining a bijective correspondence between the equivalence classes of AA and the R-classes of ΩADRH.
Although its proof is analogous to the proof of [28, Lemma 3.16], we include it for the sake of completeness.

Lemma 3.4. Every DRH-automaton has a unique equivalent DRH-tree.230

Proof. Take a DRH-automaton A = 〈V,→, v0, F, λH, λ〉 and let T = 〈VT,→T, v
0
T, FT, λT,H, λT〉 be the DRH-

tree defined as follows. We set VT = {α ∈ Σ∗ : v0.α is defined} and put v0T = ε. The labels of each state
α ∈ VT are given by λT,H(α) = λT,H(v0.α) and by λT(α) = λ(v0.α). We also take FT = λ−1T (ε). Finally,
the transitions in T are given by α.0 = α0 and by α.1 = α1, whenever λT(α) 6= ε. It is a routine matter to
check that T is a DRH-tree equivalent to A.235

Given a DRH-automaton A, we denote by ~A = 〈~V ,→,~v 0, ~F ,~λH, ~λ〉 the unique DRH-tree which is equiv-

alent to A. Denoting both transition functions of A and of ~A by → is an abuse of notation justified by the
construction made in the proof of Lemma 3.4. Given a DRH-tree T with root v0 and 0 ≤ i ≤ ‖T‖ − 1, we

denote by T[i] the DRH-subtree rooted at v0.1i0. In particular, ~A[i] denotes the DRH-subtree of ~A rooted at
~v 0.1i0. Figure 2 provides the intuition for this definition.240

Before defining the pseudoword over DRH given by a certain DRH-tree, we introduce the following
notation.

Notation 3.5. Let u ∈ ΩADRH and v ∈ ΩAH be such that c(v) ⊆ ~c(u). By Corollary 2.6, the set uρ−1DRH,H(v)

is a singleton. It is convenient to denote by uv the unique element of uρ−1DRH,H(v). In this case, the notation

ρH(uv) refers to the element ρH(uv) = ρH(u) v of ΩAH.245
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v0

T[0] v0.1

T[1] v0.12

T[2] · · ·

10

10

10

Figure 2: Representation of the DRH-subtrees of the form T[i] of a tree T.

Definition 3.6. Let T = 〈V,→, v0, F, λH, λ〉 be an A-labeled DRH-tree. The value of π(T) is the element of
(ΩADRH)I with content λ(v0.Σ∗) that is recursively defined as follows:

• if T is the trivial DRH-tree, then π(T) = I;

• otherwise, we consider two different cases according to whether or not ‖T‖ <∞.

– If ‖T‖ <∞, then we set

π(T) =

‖T‖−1∏
i=0

π(T[i])λH(v0.1i)λ(v0.1i).

We remark that Properties (A.4)–(A.6) imply that c(π(T)) = λ(v0.Σ∗).250

– If ‖T‖ = ∞, then we first define the idempotent associated to T, denoted id(T). Observe that,
again by Properties (A.4)–(A.6), we have c(π(T[k])λH(v0.1k)λ(v0.1k)) = λ(v0.1kΣ∗). Therefore,

by definition of r.ind( ), for k ≥ r.ind(T), all the elements π(T[k])λH(v0.1k)λ(v0.1k) have the same
content. We let id(T) be the idempotent designated by the infinite product

(π(T[r.ind(T)])λH(v0.1r.ind(T))λ(v0.1r.ind(T)) · · ·π(T[k])λH(v0.1k)λ(v0.1k))k≥r.ind(T). (2)

Then, we take

π(T) =

r.ind(T)−1∏
i=0

π(T[i])λH(v0.1i)λ(v0.1i)

 · id(T).

Observe that the value π(T) is well-defined since, by Properties (A.1) and (A.4), every infinite path in T

contains only a finite number of edges labeled by 0 (recall that, by definition, T[i] = Tv.1i0).
We also define the value of the irregular part of T:

πirr(T) =

min{‖T‖,r.ind(T)}−1∏
i=0

π(T[i])λH(v0.1i)λ(v0.1i).

If ‖T‖ <∞, then we set id(T) = I. Using this notation, we have the equality

π(T) = πirr(T) · id(T).
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Finally, the value of an A-labeled DRH-automaton A, denoted π(A), is the value π( ~A) of the unique

A-labeled DRH-tree equivalent to A. Similarly, the elements πirr(A) and id(A) are defined to be πirr( ~A) and

id( ~A), respectively.255

An an example, the reader may check that the value of the DRH-automaton represented in Figure 1
is the pseudoword bω−1ac(ab)ω over DRH. The next result is a simple observation that we state for later
reference, and that helps to understand the meaning of Definition 3.6.

Lemma 3.7. Given a DRH-automaton A = 〈V,→, v0, F, λH, λ〉, the following equalities hold:

lbfi+1(π(A)) = π(A[i])λH(v0.1i)λ(v0.1i), for 0 ≤ i ≤ ‖A‖ − 1;

lbfi+1(π(A)) = I, for i ≥ ‖A‖;
irr(π(A)) = πirr(A);

~c(A) = ~c(π(A)).

In particular, for a certain u ∈ ΩADRH, the elements π(A) and u are R-equivalent if and only if πirr(A) =
irr(u) and id(A) R reg(u).260

Since the value of a DRH-automaton A depends only on the unique DRH-tree ~A lying in the ∼-class of
A, there is a well defined map π : AA/∼ → (ΩADRH)I/R which sends a class A/∼ to the R-class of the

value of ~A. This map is, in effect, a bijection.

Theorem 3.8. The map π is bijective.

Proof. To prove that π is injective we shall consider two DRH-trees T1 and T2 whose values belong to the265

same R-class of ΩADRH and show that they are necessarily equal. We argue inductively on the content of
π(Tj) (which is the same for j = 1, 2 by hypothesis) by combining two facts: (a) the R-class to which π(Tj)
belongs is completely characterized by the sequence lbf∞(π(Tj)) (see Lemma 2.7); and (b) the sequence
lbf∞(π(Tj)) is determined by the values of the DRH-subtrees of Tj of the form Tj,[i] together with the labels
of the states v0j .1

i (for i ≥ 0), where v0j is the initial state of Tj (see Lemma 3.7). Note that, the content of270

the value of each subtree Tj,[i] is strictly contained in the content of the value of Tj , by Property (A.4).
We write Tj = 〈Vj ,→j , v

0
j , Fj , λj,H, λj〉, for j = 1, 2. If π(Tj) has empty content, then T1 and T2 are both

the trivial DRH-tree. Let us assume that |c(π(Tj))| > 0. By the observations above, the equality ‖T1‖ = ‖T2‖
holds. Therefore, in order to prove that T1 = T2 it is enough to prove that for every 0 ≤ i ≤ ‖Tj‖ − 1,
both the subtrees T1,[i] and T2,[i], and the labels of the states v01.1

i and v02.1
i are equal. Fix an index

0 ≤ i ≤ ‖Tj‖ − 1. By Lemma 3.7, we have

π(T1,[i])λ1,H(v01.1
i) = π(T2,[i])λ2,H(v02.1

i), (3)

λ1(v01.1
i) = λ2(v02.1

i),

and therefore, using Properties (A.5) and (A.6), it follows that π(T1,[i]) and π(T2,[i]) are R-equivalent, which
by induction hypothesis implies that T1,[i] = T2,[i]. It remains to show the equality λ1,H(v01.1

i) = λ2,H(v02.1
i).

In the case where ~c(Tj,[i]) = ∅, the equality follows immediately from (A.5). Otherwise, we may compute

πirr(T1,[i])id(T1,[i])λ1,H(v01.1
i) = π(T1,[i])λ1,H(v01.1

i)
(3)
= π(T2,[i])λ2,H(v02.1

i)

= πirr(T2,[i])id(T2,[i])λ2,H(v02.1
i),

which in turn implies that id(T1,[i])λ1,H(v01.1
i) = id(T2,[i])λ2,H(v02.1

i). Since ρH(id(T1,[i])) and ρH(id(T2,[i]))

are both the identity of ΩAH we obtain the equality λ1,H(v01.1
i) = λ2,H(v02.1

i) as intended.
The proof of surjectivity follows the same general idea. Take some arbitrary w ∈ (ΩADRH)I . We have

to show the existence of a DRH-tree T whose value is R-equivalent to w. In order to do so, we proceed275

by induction on the content of w, by considering the iteration of the left basic factorization of w to the
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right, say w = w0a0 · · ·wkakw′k. Then, the tree whose value lies in the same R-class of the factor wi shall
correspond to the subtree T[i] of T. The factor wiai determines the labels of the state v0.1i, being v0 the
initial state of T. Let us see the details.

If c(w) = ∅, then we have [w]R = {I}, which is the R-class of the value of the trivial DRH-tree. Otherwise,
we let w = w0a0 · · ·wkakw′k be the k-th iteration of the left basic factorization of w (whenever it is defined).
For each 0 ≤ i ≤ dwe − 1, we have c(wi) $ c(w) and so, by induction hypothesis, there exists a DRH-tree
Ti = 〈Vi,→i, v

0
i , Fi, λi,H, λi〉 such that π(Ti) R wi. In particular, the equality πirr(Ti) = irr(wi) holds and

consequently, H satisfies

π(Ti) · reg(wi) = πirr(Ti) · id(Ti) · reg(wi) = irr(wi) · 1 · reg(wi) = wi. (4)

On the other hand, since c(reg(wi)) = ~c(id(Ti)), we deduce that id(Ti) · reg(wi) is R-equivalent to id(Ti).280

Consequently, the pseudowords wi and π(Ti)·reg(wi) are R-equivalent as well. This relation together with (4)
imply, by Lemma 2.8, that the equality π(Ti) · reg(wi) = wi holds.

Now, we construct a DRH-tree T = 〈V,→, v0, F, λH, λ〉 as follows:

• V =

{
{v ∈ Vi : i ≥ 0} ] {vi}i≥0, if dwe =∞;

{v ∈ Vi : i = 0, . . . , dwe − 1} ] {vi}dwe−1i=0 ] {vε}, if dwe <∞;

• v0 = v0;285

• F =

{
{v ∈ Fi : i ≥ 0}, if dwe =∞;

{v ∈ Fi : i = 0, . . . , dwe − 1} ] {vε}, if dwe <∞;

• λH(vi) = ρH(reg(wi)) and λ(vi) = ai for i = 0, . . . , dwe − 1;

• λ(vε) = ε, if dwe is finite;

• vi.0 = v0i and vi.1 =

{
vi+1, if i < dwe − 1;

vε, if i = dwe − 1;

• transitions and labelings on Vi are given by those of Ti.290

Then it is easy to check that T is a DRH-tree and that π(T/∼) = [w]R.

The construction we just made to prove surjectivity of π may be abstracted as follows. Suppose that
we are given two DRH-automata Ai = 〈Vi,→i, v

0
i , Fi, λi,H, λi〉, i = 0, 1, a letter a ∈ A such that λ1(V1) ⊆

λ0(V0) ] {a} and a pseudoword u such that c(u) ⊆ ~c(A0). Then, we denote by (A0, u | a,A1) the DRH-
automaton A = 〈V,→, v0, F, λH, λ〉, where295

• V = V0 ] V1 ] {v0};

• v0.0 = v00 and v0.1 = v01;

• F = F0 ] F1;

• λH(v0) = ρH(u) and λ(v0) = a;

• all the other transitions and labels are given by those of A0 and A1.300

Given an element w of (ΩAS)I , we denote by T(w) the DRH-tree representing the ∼-class π −1([ρDRH(w)]R).
With a little abuse of notation, when w ∈ (ΩADRH)I , we use T(w) to denote the unique DRH-tree in the
∼-class π −1([w]R). Later, we shall see that, for every κ-word w, there exists a finite DRH-automaton A in
the ∼-class of T(w) (Corollary 4.7).

Lemma 3.9. Let w be a pseudoword and write lbf(w) = (w`, a, wr). Then, we have the equality

T(w) = (T(w`), reg(w`) | a,T(wr)).
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Proof. The claim follows immediately from the fact that if lbf∞(w) = (v1, v2, v3 . . .), then v1 = w`a and305

lbf∞(wr) = (v2, v3, . . .); together with the construction of a DRH-tree representing the R-class of a given
pseudoword made in the proof of Theorem 3.8. In order to clarify the ideas, we depict such construction in
Figure 3. As before, the first label in each state corresponds to its image under λH and the second to its

ρH(reg(w0)), a0

T(w0) ρH(reg(w1)), a1

T(w1) ρH(reg(w2)), a2

T(w2) · · ·

10

10

10

Figure 3: The DRH-tree T(w) when w is such that lbf∞(w) = (w0a0, w1a1, w2a2, . . .).

image under λ. Note that the tree contains an infinite path starting at the root with all the edges labeled
by 1 if and only if w has nonempty cumulative content.310

The value of a path v0
α0−→ v1

α1−→ · · · αn−−→ vn+1 in a DRH-automaton A is given by

n∏
i=0

(αi, λH,αi(vi), λ(vi)) ∈
(
Σ× (ΩAH)I ×A

)+
,

where λH,αi
(vi) = λH(vi) if αi = 0, and λH,αi

(vi) = I otherwise. Given a state v of A, the language associated
to v is the set L(v) of all values of successful paths in Av. The language associated to A, denoted L(A), is
the language associated to its root. Finally, the language associated to the pseudoword w is L(w) = L(T(w)).

Lemma 3.10. Let A1, A2 be DRH-automata. Then, the languages L(A1) and L(A2) coincide if and only

if the DRH-trees ~A1 and ~A2 are the same.315

Proof. Recall that, by Lemma 3.4, if ~A1 = ~A2, then A1 and A2 are equivalent DRH-automata. Hence,
Definition 3.3 makes clear the reverse implication. Conversely, let Aj = 〈Vj ,→j , v

0
j , Fj , λj,H, λj〉 (j = 1, 2)

be two DRH-automata such that L(A1) = L(A2). We first observe that, for j = 1, 2 and α ∈ Σ∗, the
state v0j .α is defined if and only if there exists an element in L(Aj) of the form (αβ, , ), for a certain

β ∈ Σ∗ (we are using the fact that DRH-automata are trim). Hence, the state v01.α is defined if and
only if so is the state v02.α. Choose α = α0α1 · · ·αn ∈ Σ∗, with each αi ∈ Σ and such that v01.α is

defined. If v01.α ∈ F1, then we have a successful path v01
α0−→ v11

α1−→ · · · αn−−→ vn+1
1 , and so, the element∏n

i=0(αi, λ1,H,αi
(vi1), λ1(vi1)) belongs to L(A1) and hence, to L(A2). But that implies that, in A2, there is a

successful path v02
α0−→ v12

α1−→ · · · αn−−→ vn+1
2 , which in turn yields that both v01.α and v02.α are terminal states.

In particular the equalities in (1) hold. On the other hand, if v01.α is not a terminal state, then condition (A.3)
implies that v01.α0 is defined. Since any DRH-automaton is trim, there exists β = αn+2 · · ·αm ∈ Σ∗ such
that

v01
α0−→ v11

α1−→ · · · αn−−→ vn+1
1

0−→ vn+2
1

αn+2−−−→ · · · αm−−→ vm+1
1 (5)

is a successful path in A1. Again, since L(A1) = L(A2), this determines a successful path in A2 given by

v02
α0−→ v12

α1−→ · · · αn−−→ vn+1
2

0−→ vn+2
2

αn+2−−−→ · · · αm−−→ vm+1
2 , with the same value as the path (5). In particular,

the (n+ 2)-nd letter (of the alphabet Σ× (ΩAH)I ×A) of that value is

(0, λ1,H,0(vn+1
1 ), λ1(vn+1

1 )) = (0, λ2,H,0(vn+1
2 ), λ2(vn+1

2 )).
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But that means precisely that the desired equalities in (1) hold. Therefore, A1 and A2 are equivalent and

so, ~A1 = ~A2.

The next result provides a characterization of equalities of pseudowords over DRH.

Proposition 3.11. Let u, v ∈ ΩAS. Then the equality ρDRH(u) = ρDRH(v) holds if and only if L(u) = L(v)
and H satisfies u = v.320

Proof. Let u and v be two equal pseudowords modulo DRH. In particular, the R-classes [ρDRH(u)]R and
[ρDRH(v)]R coincide and so, the DRH-trees T(u) and T(v) are the same, by Theorem 3.8. Therefore, we have
L(u) = L(T(u)) = L(T(v)) = L(v). As H is a subpseudovariety of DRH, we also have u =H v. Conversely,
suppose that L(u) = L(v) and u =H v. By Lemma 3.10, it follows that T(u) = T(v). Thus, by Theorem 3.8,
the pseudovariety DRH satisfies u R v. As, in addition, the pseudowords u and v are equal modulo H, we325

conclude by Lemma 2.8 that DRH satisfies u = v.

4. A canonical form for κ-words over DRH

As observed in Subsection 2.3, every element of ΩκAS, may be represented by some κ-term. In turn,
given a pseudovariety V, there is a natural projection ρV : ΩAS → ΩAV whose restriction to κ-words maps
to ΩκAV. We say that a canonical form for the elements of ΩκAV is a map cfV that assigns to each element330

w of ΩκAV a κ-term cfV(w) such that the κ-word it represents projects to w under ρV. In the case the map
cfV is computable, we obtain decidability of the κ-word problem over V.

In this section, we exhibit a canonical form for κ-words over DRH starting from a canonical form for
κ-words over H. The key ingredient is the fact that each R-class of ΩκADRH admits a representation by a
finite DRH-automaton (see Corollary 4.7). In turn, to each finite DRH-automaton we may uniquely assign a335

κ-term (see Definition 4.1). By standardizing the choice of a finite DRH-automaton representing the R-class
of an element w ∈ ΩκADRH, we obtain the desired canonical form. In particular, it is a consequence of the
results of Section 6 that if cfH is computable, then so is cfDRH.

Throughout this section, we fix a pseudovariety of groups H and a canonical form cfH for the elements
of ΩκAH.340

Definition 4.1. Given a finite DRH-automaton A = 〈V,→ v0, F, λH, λ〉 such that λH(V ) ⊆ (ΩκAH)I , let us
define the expression πcf(A) inductively on the number |V | of states as follows.

• If |V | = 1, then A is the trivial DRH-automaton and we take πcf(A) = I.

• If |V | > 1 and ‖A‖ <∞, then we put

πcf(A) =

‖A‖−1∏
i=0

πcf(Av0.1i0)cfH(λH(v0.1i))λ(v0.1i).

• Finally, we suppose that |V | > 1 and ‖A‖ =∞. Since A is a finite automaton, we necessarily have a

cycle of the form v0.1`
1−→ v0.1`+1 1−→ · · · 1−→ v0.1`+n

1−→ v0.1`, where ` is a certain integer greater than
or equal to r.ind(A). Choose ` to be the least possible. Then, we make πcf(A) be given by

r.ind(A)−1∏
i=0

πcf(Av0.1i0)cfH(λH(v0.1i))λ(v0.1i)

·

(
`−1∏

i=r.ind(A)

πcf(Av0.1i0)cfH(λH(v0.1i))λ(v0.1i) ·
( n∏
i=0

πcf(Av0.1`+i0)cfH(λH(v0.1`+i))λ(v0.1`+i)
)ω)ω

.
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We point out that, by definition, the value of the κ-word over DRH naturally induced by πcf(A) is
precisely π(A). On the other hand, it is easy to check that, for every w ∈ ΩADRH, if w R π(A), then the345

identity w = π(A)reg(w) holds. Thus, in view of Theorem 3.8, we wish to standardize a choice of a finite
DRH-automaton, say A(w), equivalent to T(w), for each w ∈ ΩκADRH. After that, we may let the canonical
form of w be given by πcf(A(w))cfH(reg(w)).

Fix a DRH-automaton A = 〈V,→, v0, F, λH, λ〉. We say that two states v1, v2 ∈ V are equivalent if π(Av1)
and π(Av2) lie in the same R-class. Clearly, this defines an equivalence relation on V , say ∼ (it should be350

clear from the context when we are referring to this equivalence relation or to the equivalence relation on
AA introduced in Definition 3.3). We write [v] for the equivalence class of v ∈ V .

Lemma 4.2. Let A = 〈V,→, v0, F, λH, λ〉 be a DRH-automaton and consider the equivalent class on V
defined above. Then, for every v1, v2 ∈ V \ F , we have

[v1] = [v2] ⇐⇒

{
[v1.0] = [v2.0] and [v1.1] = [v2.1];

λH(v1) = λH(v2) and λ(v1) = λ(v2).

Proof. Let v1, v2 ∈ V \F be non-terminal states of A. We first observe that since each DRH-automaton has
a unique equivalent DRH-tree and represents a unique R-class of ΩADRH (see, respectively, Lemma 3.4 and

Theorem 3.8), having [v1] = [v2] amounts to having ~Av1 = ~Av2 . In turn, the latter condition means that the355

labels λ and λH of the states v1, v2 are the same, and ~Av1.β = ~Av2.β for β ∈ {0, 1}. Finally, invoking again

Lemma 3.4 and Theorem 3.8, the equalities ~Av1.β = ~Av2.β , for β ∈ {0, 1}, are equivalent to the equalities
[v1.0] = [v2.0] and [v1.1] = [v2.1]. This concludes the proof.

We define the wrapping of a DRH-automaton A = 〈V,→, v0, F, λH, λ〉 to be the DRH-automaton [A] =
〈V/∼,→, [v0], F/∼, λH, λ〉, where360

• [v].0 = [v.0] and [v].1 = [v.1], for v ∈ V \ F ;

• λH([v]) = λH(v) and λ([v]) = λ(v), for v ∈ V .

By Lemma 4.2, this automaton is well defined. Furthermore, its definition ensures that A ∼ [A]. The
wrapped DRH-automaton of w ∈ ΩADRH is A(w) = [T(w)]. Observe that, by Lemmas 2.1 and 3.9, the label
λH of T(w) takes values in ΩκAH when w is a κ-word. Our next goal is to prove that A(w) is finite, provided365

w is a κ-word.
Let us associate to a pseudoword w ∈ (ΩADRH)I a certain set of its factors. For α ∈ Σ∗, we define fα(w)

inductively on |α|:

fε(w) = w;

(fα0(w), a, fα1(w)) = lbf(fα(w)), for a certain a ∈ A, whenever fα(w) 6= I.

Then, the set of DRH-factors of w is given by

F(w) = {fα(w) : α ∈ Σ∗ and fα(w) is defined}.

The relevance of the definition of the set F(w) is explained by the following result.

Lemma 4.3. Let w ∈ ΩADRH and T(w) = 〈V,→, v0, F, λH, λ〉. Then, for every α ∈ Σ∗ such that fα(w) is
defined, the relation fα(w) R π(T(w)v0.α) holds.

Proof. We prove the statement by induction on |α|. When α = ε, the result follows from Theorem 3.8. Let370

α ∈ Σ∗ and invoke the induction hypothesis to assume that fα(w) and π(T(w)v0.α) are R-equivalent. Writing
lbf(π(T(w)v0.α)) = (w`, a, wr), Lemma 3.7 yields the relations w` R π(T(w)v0.α0) and wr R π(T(w)v0.α1).
On the other hand, since lbf(fα(w)) = (fα0(w), b, fα1(w)), using Lemma 2.7 we deduce that fα0(w) = w`,
a = b, and fα1(w) R wr, leading to the desired conclusion.
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Hence, in order to prove that A(w) is finite for every κ-word w, it suffices to prove that so is F(w)/R.375

The next two lemmas are useful to achieve that target.

Lemma 4.4. Let w be a regular κ-word over DRH. Then, there exist κ-words x, y and z over DRH (with
x and z possibly empty) such that w = xyω−1z, c(y) = c(w), ~c(x) $ c(w), and y is not regular.

Proof. By definition of κ-word, we may write w = w1 · · ·wn, where each wi is either a letter in A or an
(ω−1)-power of another κ-word. Since any letter of the cumulative content of w occurs in lbf∞(w) infinitely380

many times, there must be an (ω − 1)-power under which they all appear. Hence, since w is regular (and
so, c(w) = ~c(w)), there exists an index i ∈ {1, . . . , n} such that wi = vω−1 and c(v) = c(w). Let j be the
minimum such i. We have w = u0v

ω−1
0 z0, where u0 = w1 · · ·wj−1, vω−10 = wj , and z0 = wj+1 · · ·wn. Also,

minimality of j yields that ~c(u0) $ ~c(w) = c(w). So, if v0 is not regular, then we just take x = u0, y = v0,
and z = z0. Suppose that v0 is regular. Using the same reasoning, we may write v0 = u1v

ω−1
1 z1, with385

~c(u1) $ c(w) and c(v1) = c(v0) = c(w). Again, if v1 is not regular, then we may choose x = u0u1, y = v1
and z = z1v

ω−2
0 z0. Otherwise, we repeat the process with v1. Since w is a κ-word, there is only a finite

number of occurrences of (ω− 1)-powers, so that this iteration cannot run forever. Therefore, we eventually
get κ-words x, y and z satisfying the desired properties.

Lemma 4.5. Let w ∈ ΩκADRH be regular. For each m ≥ 1, let w′m be the unique κ-word over DRH satisfying390

the equality w = lbf1(w) · · · lbfm(w)w′m. Then, both sets {lbfm(w) : m ≥ 1} and {[w′m]R : m ≥ 1} are finite.

Proof. Write lbfm(w) = wmam, for every m ≥ 1, and w = xyω−1z, with x, y and z satisfying the properties
stated in Lemma 4.4. We define a sequence of pairs of possibly empty κ-words {(ui, vi)}i≥0 and a strictly
increasing sequence of non-negative integers {ki}i≥0 inductively as follows. We start with (u0, v0) = (I, x)
and we let k0 be the maximum index such that lbf1(w) · · · lbfk0(w) is a prefix of x. If x has no prefix of
this form, then we set k0 = 0. We also write v0 = v′0v

′′
0 , with v′0 = lbf1(w) · · · lbfk0(w) (by Proposition 2.3,

given v′0 there is only one possible value for v′′0 ). For each i ≥ 0, we let ui+1 be such that wki+1 = v′′i ui+1

and vi+1 is such that y = ui+1aki+1vi+1. Observe that, by uniqueness of first-occurrences factorizations,
there is only one pair (ui+1, vi+1) satisfying these conditions. The integer ki+1 is the maximum such that
lbfki+2(w) · · · lbfki+1(w) is a prefix of vi+1 (or ki+1 = ki + 1 if there is no such prefix) and we factorize
vi+1 = v′i+1v

′′
i+1, with v′i+1 = lbfki+2(w) · · · lbfki+1(w). By construction, for all i ≥ 0, the pseudoidentity

w′ki+1 = vi+1y
ω−(i+2)z holds. In particular, for every m ≥ 1, there exist i ≥ 0 and ` ∈ {2, . . . , ki+1 − ki}

such that
w′m = lbfki+`(w)lbfki+`+1(w) · · · lbfki+1(w)v′′i+1y

ω−(i+2)z. (6)

On the other hand, for all i ≥ 0, the factorization y = ui+1aki+1vi+1 is such that aki+1 /∈ c(ui+1) (recall
that aki+1 /∈ c(wki+1) and ui+1 is a factor of wki+1). By uniqueness of first-occurrences factorization over
DRH, it follows that the set {(ui, vi)}i≥0 is finite. Consequently, the set

{lbfki+`(w)lbfki+`+1(w) · · · lbfki+1(w)v′′i+1 : i ≥ 0, ` ∈ {2, . . . , ki+1 − ki}}

is also finite. In particular, there is only a finite number of κ-words lbfm(w). Finally, taking into account
that c(z) ⊆ c(y) and (6) we may conclude that there are only finitely many R-classes of the form [w′m]R
(m ≥ 1).

Now, we are able to prove that F(w)/R is finite for every κ-word w over DRH.395

Proposition 4.6. Let w be a possibly empty κ-word over DRH. Then, the quotient F(w)/R is finite.

Proof. We prove the result by induction on |c(w)|. If |c(w)| = 0, then it is trivial. Suppose that |c(w)| ≥ 1.
We distinguish two possible scenarios.

Case 1. The κ-word w is not regular, that is, ~c(w) $ c(w).

Then, there exists k ≥ 1 such that w = w1a1 · · ·wmamw′m, with lbfk(w) = wkak, for k = 1, . . . ,m and400

c(w′m) $ c(w). By definition of fα(w), we have the identities f1k−10(w) = wk (for k = 1, . . . ,m) and
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f1m(w) = w′m. Hence, we may deduce that F(w) is the union of the sets F(wk) (for k = 1, . . . ,m)
together with F(w′m). Using the induction hypothesis on each one of the intervening sets, we conclude
that F(w)/R is finite.

Case 2. The κ-word w is regular.405

Again, write lbfk(w) = wkak and w = lbf1(w) · · · lbfk(w)w′k, for k ≥ 1. Since f1k−10(w) = wk and
f1k(w) = w′k, for every k ≥ 1, by Lemma 4.5, we know that the sets {f1k−10(w) : k ≥ 1} and
{[f1k(w)]R : k ≥ 1} are both finite. Applying the induction hypothesis to each factor wk, we derive
that {[f1k−10α(w)]R : α ∈ Σ∗, k ≥ 1} is also a finite set. Therefore, since any element of F(w)/R is of
one of the forms [f1k−10α(w)]R and [f1k(w)]R, we conclude that F(w)/R is finite as well.410

As an immediate consequence (recall Lemma 4.3), we obtain:

Corollary 4.7. Let w be a possibly empty κ-word. Then, the wrapped DRH-automaton A(w) is finite.

Unlike the aperiodic case R, the converse of Corollary 4.7 does not hold in general. For instance, taking
H = G, it is not hard to see that A(ap

ω

b) (with p a prime number) is finite, although ap
ω

b is not a κ-word
over DRG (see Figure 4). A converse is achieved when we further require that the labels λH are valued by415

κ-words over H and that ρH(reg(w)) is itself a κ-word.

ap
ω
, b

I, a I, ε

0 1

0

1

Figure 4: The DRH-automaton A(ap
ω
b).

For a given w ∈ (ΩκADRH)I , the expression

cf(w) = πcf(A(w))cfH(ρH(reg(w)))

is said the canonical form of w. We write cf(u) ≡ cf(v) (with u, v ∈ (ΩκADRH)I) when both sides coincide.
We have just proved the claimed existence of a canonical form for elements of ΩκADRH.

Theorem 4.8. Let H be a pseudovariety of groups such that the elements of ΩκAH have a canonical form cfH.
Then, for all κ-words u and v over DRH, the equality u = v holds if and only if cf(u) ≡ cf(v).420

5. κ-terms seen as well-parenthesized words

In Section 3, we characterized R-classes over DRH by means of certain equivalence classes of automata.
In order to solve the κ-word problem over DRH, the next goal is to find an algorithm to construct such
automata, which we do in Section 6. This section serves the purpose of preparing this construction.

5.1. General definitions425

Let B be a possibly infinite alphabet and consider the associated alphabet B[ ] = B ]{[q, ]q : q ∈ Z}. We
say that a word in B∗[ ] is well-parenthesized over B if it does not contain [q ]q as a factor and if it can be

reduced to the empty word ε by applying the rewriting rules [q ]q → ε and a → ε, for q ∈ Z and a ∈ B.
We denote the set of all well-parenthesized words over B by Dyck(B). The content of a well-parenthesized
word x is the set of letters in B that occur in x and it is denoted c(x).430
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To each κ-term over A we may associate a well-parenthesized word over A inductively as follows:

word(I) = ε;

word(a) = a, if a ∈ A;

word(u · v) = word(u)word(v), if u and v are κ-terms;

word(uω+q) = [qword(u)]q, if u is a κ-term.

Conversely, we associate a κ-word to each well-parenthesized word over A as follows:

om(ε) = I;

om(a) = a, if a ∈ A;

om(xy) = om(x) · om(y), if x, y ∈ Dyck(A);

om([qx]q) = om(x)ω+q, if x ∈ Dyck(A).

Note that, due to the associative property in both Dyck(A) and ΩκAS, om( ) is well-defined. With the aim of
distinguishing the occurrences of each letter in A in a well-parenthesized word x over A, we assign to each
x ∈ Dyck(A) a well-parenthesized word xN over A × N containing all the information about the position
of the letters. With that in mind we define recursively the following family of functions {pk : Dyck(A) →
Dyck(A× N)}k≥0:

pk(a) = (a, k + 1), if a ∈ A;

pk([q) = [
q

and pk(]q) = ]
q
, if q ∈ Z;

pk(ay) = pk(a)pk+1(y), if a ∈ A[ ] and y ∈ A∗[ ].

We define xN = p0(x). For instance, if x = a[qb[rc]
r
]
q
, then xN is the word (a, 1)[q(b, 2)[r(c, 3)]r]q. It is

often convenient to denote the pair (a, i) by ai. Let x ∈ Dyck(A × N). Then, we may associate to x
two well-parenthesized words πA(x) and πN(x) corresponding to the projection of x onto A∗[ ] and onto N∗[ ],
respectively. We denote cA(x) = c(πA(x)) and cN(x) = c(πN(x)). Given a κ-term w, we denote by w the well-
parenthesized word ($, 0)word(w#)N over the alphabet (A ] {$,#})× N. For instance, if w = a(bcω+r)ω+q,435

then word(w) is x = a[qb[rc]
r
]
q

as given above, and we have x = ($, 0)(a, 1)[q(b, 2)[r(c, 3)]r]q(#, 4), or
alternatively, x = $0[

q
b2[

r
c3]

r
]
q
#4. The map η : Dyck(A × N) → ΩκAS assigns to each well-parenthesized

word x ∈ Dyck(A× N) the κ-word η(x) = om(πA(x)).
Let x be a well-parenthesized word over A× N. We define its tail ti(x) from position i ∈ N inductively

as follows

ti(ε) = ε;

ti(yz) = ti(z), if y, z ∈ Dyck(A× N) and i /∈ cN(y);

ti(aiy) = y, if y ∈ Dyck(A× N);

ti([
qy]qz) = ti(y)[q−1y]q−1z, if y, z ∈ Dyck(A× N) and i ∈ cN(y).

The prefix of x ∈ Dyck(A× N) until a ∈ A is defined by

pa(ε) = ε;

pa(yz) = ypa(z), if y, z ∈ Dyck(A× N) and a /∈ cA(y);

pa(aiy) = ε, if y ∈ Dyck(A× N);

pa([qy]qz) = pa(y), if y, z ∈ Dyck(A× N) and a ∈ cA(y).

The factor of a well-parenthesized word x ∈ Dyck(A× N) from i ∈ N until a ∈ A is given by

x(i, a) = pa(ti(x)).
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If instead, we are given a κ-term w, then we write w(i, a) to mean the κ-word η(w(i, a)). If a is a letter
occurring in πA(x), for a well-parenthesized word x over A × N, then it is possible to write x = yaiz with440

y and z possibly empty not necessarily well-parenthesized words over A × N such that a /∈ cA(y). In this
case we say that ai is a marker of x. If ai is the last first occurrence of a letter, that is, if the inclusion
cA(z) ⊆ cA(yai) holds, then we say that ai is the principal marker of x.

5.2. Properties of tails and prefixes of well-parenthesized words

The next results state some properties concerning tails and prefixes of well-parenthesized words. Some445

of the proofs are omitted since they are rather technical and entirely similar to the proofs of the analogous
results in [28]. When that is the case, we refer the reader to the corresponding result.

Lemma 5.1 (cf. [28, Lemma 5.3]). Let x ∈ Dyck(A× N) and let a, b ∈ A. If b ∈ cA(pa(x)), then

pb(pa(x)) = pb(x).

Lemma 5.2 (cf. [28, Lemma 5.4]). Let x ∈ Dyck(A×N) be such that a belongs to cA(x). If k ∈ cN(pa(x)),
then a ∈ cA(tk(x)).

Lemma 5.3 (cf. [28, Lemma 5.5]). Let x ∈ Dyck(A× N) and let k ∈ cN(pa(x)). Then, we have

tk(pa(x)) = pa(tk(x)).

In the next result we explicitly describe the outcome of computing a tail of a well-parenthesized word450

with nested parentheses. The element µn(~x, ~y, ~q) defined in the statement describes the general form of a
word with n pairs of nested parentheses.

Lemma 5.4. Let ~x = (xj)j≥0 and ~y = (yj)j≥0 be two sequences of possibly empty well-parenthesized words
over A × N such that x0y0 6= ε, and for every i, j ≥ 0, the index i occurs in πN(x0y0x1y1 · · ·xjyj) at most
once. Let ~q = (qj)j≥0 be a sequence of integers. For each n ≥ 0, we define the well-parenthesized words
µn(~x, ~y, ~q) and ξn(~x, ~y, ~q) as follows:

µ0(~x, ~y, ~q) = x0y0

µn+1(~x, ~y, ~q) = xn+1[qnµn(~x, ~y, ~q)]qnyn+1, if n ≥ 0

ξn(~x, ~y, ~q) = [qn−1µn(~x, ~y, ~q)]qn−1yn+1, if n ≥ 0.

When the triple (~x, ~y, ~q) is clear from the context we simply write µn and ξn.
Let i be a natural number and suppose that i ∈ cN(x`y`) for a certain ` ≥ 0. Then, for every n ≥ `, the

following equality holds:

ti(µn) = ti(µ`) · ξ` · ξ`+1 · · · ξn−1. (7)

Proof. We argue by induction on n. If n = `, then the result holds clearly, since the factor ξ` · ξ`+1 · · · ξn−1
vanishes in (7). Suppose that n > ` and that the result holds for any smaller n. We may compute

ti(µn) = ti(xn[qn−1µn−1]qn−1yn)

= ti(µn−1) · [qn−1−1µn−1]qn−1−1yn since i /∈ cN(xn) and i ∈ cN(µn−1)

= ti(µn−1) · ξn−1
= ti(µ`) · ξ` · · · ξn−2 · ξn−1 by induction hypothesis

obtaining the desired equality (7).

By successively applying Lemma 5.4, we obtain the following:455

Corollary 5.5. Using the same notation and assuming the same hypothesis as in the previous lemma,
suppose that k ∈ cN(y0). Then,
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(a) if i ∈ cN(x`) for a certain ` ≥ 0, then the equality

tk(ti(µn)) = tk(y0) · ξ0 · ξ1 · · · ξn−2 · ξn−1

holds for every n ≥ `;

(b) if i ∈ cN(y`) for a certain ` ≥ 1, then the equality

tk(ti(µn)) = tk(y0) · ξ0 · ξ1 · · · ξ`−1 · [q`−2µ`]q`−2y`+1 · ξ`+1 · · · ξn−1

holds for every n ≥ `.

The reader may wish to compare the next result with [28, Lemma 5.8]. While in (a) we obtain a similar460

result, in (b) we do not obtain in general an equality, but only an R-equivalence. In the case where H is the
trivial pseudovariety, and so DRH = R, we get an equality on (b) thus recovering [28, Lemma 5.8].

Lemma 5.6. Let w be a κ-term, i ≥ 0, and a ∈ c(w) ] {#}. Assume that bk is the principal marker of
w(i, a). Then, the following properties hold:

(a) pb(w(i, a)) = w(i, b);465

(b) DRH satisfies η(tk(w(i, a))) R w(k, a).

Moreover, if the projection of w(i, a) onto ΩADRH is not regular, then the relation in (b) becomes an equality
in ΩAS.

Proof. By definition, we have w(i, a) = pa(ti(w)). Since b ∈ cA(w(i, a)), it follows from Lemma 5.1 that
pb(w(i, a)) = pb(pa(ti(w))) = pb(ti(w)) = w(i, b).470

Let us prove the second assertion. By definition of w, we know that bk appears exactly once in w
and the same happens with the index i. Let w = x · bk · y. We distinguish the cases where x and y
are both possibly empty well-parenthesized words and where neither of x nor y is a well-parenthesized
word. In the first case, since bk ∈ c(w(i, a)) ⊆ c(ti(w)), the index i must belong to cN(x). So, we get
tk(w(i, a)) = tk(pa(ti(w))) = tk(pa(ti(x)bky)). Should a occur in ti(x)bk, then bk would not appear in
w(i, a). So, it follows that

tk(pa(ti(x)bky)) = tk(ti(x)bkpa(y)) = pa(y). (8)

On the other hand, we have the equalities w(k, a) = pa(tk(w)) = pa(y)
(8)
= tk(w(i, a)), and so the desired

relation (b) follows.
Now, we suppose that

x = xn[qn−1xn−1 · · · [q1x1[q0x0,

bky = y0]q0y1]q1 · · · yn−1]qn−1yn,

where all the xj ’s and yj ’s are possibly empty well-parenthesized words, for j = 0, . . . , n. We note that,
since k ∈ cN(w(i, a)) = cN(pa(ti(w))), Lemma 5.3 yields the equalities

tk(w(i, a)) = tk(pa(ti(w))) = pa(tk(ti(w))). (9)

With that in mind, we start by computing the elements tk(w) and tk(ti(w)). Let

~x = (x0, x1, . . . , xn, ε, ε, . . .);

~y = (y0, y1, . . . , yn, ε, ε, . . .);

~q = (q0, q1, . . . , qn−1, 0, 0, . . .).
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and let ` ∈ {0, 1, . . . , n} be such that i ∈ cN(x`y`). Observe that, since w = µn = µn(~x, ~y, ~q) is a well-
parenthesized word, the sequences ~x and ~y satisfy the hypothesis of Lemma 5.4. Noticing that k belongs to
cN(y0), we may apply Lemma 5.4 and obtain

tk(w) = tk(µ0) · ξ0 · ξ1 · · · ξn−1 = tk(y0) · ξ0 · ξ1 · · · ξn−1 (10)

Now, we have two possible situations.

(i) i ∈ cN(x`), for a certain ` ∈ {0, . . . , n};

(ii) i ∈ cN(y`), for a certain ` ∈ {n, . . . , 1}.475

If we are in Case (i), then we may use Corollary 5.5(a) and get

tk(ti(w)) = tk(y0) · ξ0 · ξ1 · · · ξn−2 · ξn−1.

Hence, we have an equality between tk(w(i, a)) = pa(tk(ti(w))) and w(k, a) = pa(tk(w)), thereby proving (b).
On the other hand, when the situation occurring is (ii), Corollary 5.5(b) yields

tk(ti(w)) = tk(y0) · ξ0 · ξ1 · · · ξ`−1 · [q`−2µ`]q`−2y`+1 · ξ`+1 · · · ξn−1.

If the first occurrence of a in tk(ti(w)) is in tk(y0) · ξ0 · ξ1 · · · ξ`−1 or in µ`, then the first occurrence of a in
tk(w) is also in one of these factors and we easily conclude that

pa(tk(ti(w))) = pa(tk(y0) · ξ0 · ξ1 · · · ξ`−1 · µ`) = pa(tk(w)),

thereby proving again an equality in (b).
Otherwise, the first occurrence of a in tk(ti(w)) is in y`+1 · ξ`+1 · · · ξn−1. Analyzing the equality (10), we

deduce that a occurs for the first time in tk(w) also in the factor y`+1 · ξ`+1 · · · ξn−1. Then, we may compute

pa(tk(ti(w))) = tk(y0) · ξ0 · ξ1 · · · ξ`−1 · [q`−2µ`]q`−2 · pa(y`+1 · ξ`+1 · · · ξn−1) (11)

pa(tk(w)) = tk(y0) · ξ0 · ξ1 · · · ξ`−1 · [q`−1µ`]q`−1 · pa(y`+1 · ξ`+1 · · · ξn−1). (12)

Moreover, using again Lemma 5.4, we obtain

w(i, a) = pa(ti(w)) = pa(ti(µn)) = pa(ti(y`) · ξ` · ξ`+1 · · · ξn−1) = ti(y`)[
q`−1µ`]

q`−1 · pa(y`+1ξ`+1 · · · ξn−1)

= ti(y`)[
q`−1x`[

q`−1x`−1[q`−2 · · · [q0x0y0]q0 · · · ]q`−2y`−1]q`−1y`]
q`−1 · pa(y`+1ξ`+1 · · · ξn−1) (13)

Since bk is the principal marker of w(i, a), we know that the following inclusion holds:

cA(y0y1 · · · y` · pa(y`+1 · ξ`+1 · · · ξn−1)) ⊆ cA(ti(y`)x` · · ·x0bk).

Also, by definition of µ`, we have an inclusion cA(ti(y`)x` · · ·x0bk) ⊆ cA(µ`). Consequently, we obtain
cA(pa(y`+1 · ξ`+1 · · · ξn−1)) ⊆ cA(µ`). Observing that

~c(η([q`−2µ`]
q`−2)) = c(η(pa(y`+1 · ξ`+1 · · · ξn−1))), (14)

we end up with the desired relations, which are valid in DRH:

η(tk(w(i, a)))
(9),(11)

= η(tk(y0) · ξ0 · ξ1 · · · ξ`−1) · η([q`−2µ`]
q`−2) · η(pa(y`+1 · ξ`+1 · · · ξn−1))

(14)

R η(tk(y0) · ξ0 · ξ1 · · · ξ`−1) · η(µ`)
ω+q`−1 · η(pa(y`+1 · ξ`+1 · · · ξn−1))

(12)
= η(w(k, a)) = w(k, a).

We finally observe that we actually proved an equality in ΩAS rather than a relation modulo DRH, except in
the last situation. But that scenario only occurs when w(i, a) is regular modulo DRH. Indeed, since bk ∈ c(y0)
is the principal marker of w(i, a), from the equality (13), we may deduce that ~c(w(i, a)) = c(w(i, a)), which480

by Proposition 2.4 implies that ρDRH(w(i, a)) is regular.
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The well-parenthesized words we are interested in are those of the form w(i, a) for some κ-term w. Such
words have the property that whenever ai, bi are letters of w, a and b are necessarily the same letter. That
is easily seen as follows: clearly that is the case for w(0,#) by definition, and computing tails and prefixes
preserves that property. Based on that, for a well-parenthesized word x over A×N, we consider the following
property:

∀a, b ∈ A, ∀i ∈ N, ai, bi ∈ c(x) =⇒ a = b (H(x))

The proof of the next result may be easily adapted from the proof of [28, Lemma 5.9]. The main difference
is that, since in the aperiodic case R the identity zω = zω+1 is valid for every pseudoword z we do not need
to distinguish the brackets [q ]

q
for different values of q. That is not the case for pseudovarieties of the

form DRH in general, and so that should be taken into account when computing elements of the form ti(x).485

Lemma 5.7. Let x ∈ Dyck(A × N) \ {ε} satisfy (H(x)) and suppose that ai is a marker of x. Then the
equality η(x) = η(pa(x) · ai · ti(x)) holds.

Corollary 5.8. Let w be a κ-term. Let i ∈ N and a ∈ A]{#}, and let bk be the principal marker of w(i, a).
Suppose that lbf(w(i, a)) = (w`,m,wr). Then, m = b and DRH satisfies w` = w(i, b), and wr R w(k, a).
Moreover, if ρDRH(w(i, a)) is not regular, then lbf(w(i, a)) = (w(i, b), b, w(k, a)).490

Proof. As bk is the principal marker of w(i, a), we can write w(i, a) = xbky, where cA(y) ⊆ cA(xbk) and
b /∈ cA(x). Since (H(w(i, a))) holds, Lemma 5.7 yields

η(w(i, a)) = η(pb(w(i, a)) · bk · tk(w(i, a))) = η(pb(w(i, a))) · b · η(tk(w(i, a))).

Furthermore, since b /∈ cA(x), we also have cA(pb(w(i, a))) = cA(x) and consequently, the left basic factor-
ization of w(i, a) is precisely

(η(pb(w(i, a))), b, η(tk(w(i, a)))).

In particular, we have m = b and, by Lemma 5.6, the pseudovariety DRH satisfies w` = w(i, b) and wr R

w(k, a), with an equality in S in the latter relation when w(i, a) is not regular modulo DRH.

6. DRH-graphs and their computation

We begin this section with the definition of a DRH-graph. Through these structures, we are able to
decide whether two κ-words are R-equivalent over DRH. If we further assume that the word problem is495

decidable in ΩκAH, then the word problem is decidable in ΩκADRH as well.

Definition 6.1. Let w be a κ-term. The DRH-graph of w is the finite DRH-automaton

G(w) = 〈V (w),→, v(0,#), {ε}, λH, λ〉,

defined as follows. The set of states is

V (w) = {v(i, a) : 0 ≤ i < |w| , a ∈ cA(w) and w(i, a) 6= I} ] {ε}.

Let v(i, a) ∈ V (w) \ {ε} and bk be the principal marker of w(i, a). The transitions of v(i, a) are v(i, a).0 =
v(i, b) and v(i, a).1 = v(k, a). The labels are λH(v(i, a)) = ρH(reg(w(i, b))) and λ(v(i, a)) = b. If a state
v(i, a) is not reached from the root v(0,#), then we discard it from V (w).

The following result suggests that the construction of G(w) might be a starting point to solve the κ-word500

problem over DRH algorithmically.

Proposition 6.2. For every κ-term w, G(w) is a DRH-automaton equivalent to T(w(0,#)).
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Proof. Let T(w(0,#)) = 〈V,→T, v
0, F, λT,H, λT〉 and G(w) = 〈V (w),→G, v(0,#), {ε}, λG,H, λG〉. We first

claim that, for every α ∈ Σ∗, we have

v(0,#).α = v(i, a) =⇒ T(w(0,#))v0.α = T(w(i, a)). (15)

To prove this, we argue by induction on |α|. If |α| = 0, then the result holds trivially. Let α ∈ Σ∗

be such that |α| ≥ 1 and suppose that the result holds for every other shorter word α. We can write
α = βγ, with γ ∈ {0, 1}. Let v(0,#).β = v(i, a). By induction hypothesis, it follows that T(w(0,#))v0.β =
T(w(i, a)). Let bk be the principal marker of w(i, a). By definition of G(w), we have v(0,#).β0 = v(i, b)
and v(0,#).β1 = v(k, a). On the other hand, Lemma 3.9 gives that if lbf(w(i, a)) = (w`, b, wr), then
T(w(i, a)) = (T(w`), reg(w`) | b,T(wr)), which in turn, by Corollary 5.8, is equivalent to

T(w(i, a)) = (T(w(i, b)), reg(w(i, b)) | b,T(w(k, a))). (16)

In particular, we conclude that T(w(0,#))v0.β0 = T(w(i, b)) and T(w)v0.β1 = T(w(k, a)). It is now enough
to notice that, for each pair (i, a) ∈ [0, |w| [ × cA(w), the labels of the node v(i, a) of G(w) and the labels
of the root of T(w(i, a)) coincide. In fact, if bk is the principal marker of w(i, a), then the construction of505

G(w) yields the equalities λG(v(i, a)) = b and λG,H(v(i, a)) = ρH(reg(w(i, b))), which, by (16), are precisely
the labels of the root of T(w(i, a)).

Consider a κ-term w. We may assume that w is given by a labeled tree. For instance, if

w = ((((bω−2) · a) · c) · (((a · b) · (aω+1))ω−1)),

then the tree representing w is depicted in Figure 5. Since from such a tree representation we may compute

•
( · )

•( · )

•( · )

•( )ω−2

b

a

c

• ( )ω−1

• ( · )

• ( · )

a b

• ( )ω+1

a

Figure 5: The tree representing ((((bω−2) · a) · c) · (((a · b) · (aω+1))ω−1)).

w in linear time, we assume that we are already given w. We say that the length of a given κ-term w, denoted
|w|, is the number of nodes of its tree representation. It is clear that O(|w|) = O(|w|). To actually compute510

the DRH-graph G(w) we essentially need to compute the principal marker of the words w(i, a) as well as the
regular parts of w(i, a). Almeida and Zeitoun [28] exhibited an algorithm to compute the first occurrences of
each letter of a well-parenthesized word x. Given a word x, first(x) consists of a list of the first occurrences of
each letter in x. In particular, this computes the principal marker of x: it is the last entry of the outputted
list. Moreover, if bk is the principal marker of x, then the penultimate entry of the list is the principal515

marker of pb(x), and so on. Hence, this is enough to almost compute G(w). More precisely, the knowledge
of first(w(i, a)), for every pair (i, a), allows us to compute the reduct GR(w) = 〈V (w),→, v(0,#), {ε}, λ〉 in
time O(|w| |c(w)|).

Lemma 6.3 ([28, Lemma 5.15]). Let w be a κ-term. Then, one may compute in time O(|w| |c(w)|) a table
giving, for each i such there exists ai ∈ c(w) ∩A× N, the word first(w(i,#)).520

It remains to find the labels of the states under λH. For that purpose, we observe that the regular
part of a pseudoword u depends deeply on the content of the factors of the form lbfk(u), which we may
compute using Lemma 5.7; and of the cumulative content of u. Also, it follows from Lemma 3.7 and from
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Proposition 6.2 that the cumulative content of any pseudoword of the form w(i, a) is completely determined
by the reduct GR(w). Thus, we may start by computing the cumulative content of w(i, a) and then compare525

it with the content of lbfk(w(i, a)), for increasing values of k. When we achieve an equality, we know what is
the regular part of w(i, a). Algorithm 1 does that job. We assume that we already have the table described
in Lemma 6.3, so that, computing c(w(i, a)) and the principal marker of w(i, a) takes O(1)-time. Further, we
may assume that we are given GR(w), since we already explained how to get it from the table of Lemma 6.3
in O(|w| |c(w)|)-time.530

Algorithm 1

Input: A κ-term w and (i, a) ∈ [0, |w| [× cA(w) (with w(i, a) 6= ε)
Output: reg(w(i, a)) = I, if ~c(w(i, a)) = ∅ or k such that reg(w(i, a)) = w(k, a), otherwise

1: L← {}, j ← i
2: while j /∈ L and w(j, a) 6= ε do
3: L← L ∪ {j}
4: j ← πN(principal marker of w(j, a)) . So that, if v(j, a).1 6= ε, then v(j, a)← v(j, a).1
5: end while
6: if w(j, a) = ε then
7: return I
8: else
9: C ← c(w(j, a)) . The set C is the cumulative content of w(i, a)

10: k ← i
11: while cA(w(k, a)) 6= C do
12: k ← πN(principal marker of w(k, a))
13: end while
14: return k
15: end if

Lemma 6.4. Algorithm 1 returns I if and only if ~c(w(i, a)) = ∅. Otherwise, the value k outputted is such
that reg(w(i, a)) = w(k, a). Moreover, the algorithm runs in linear time, provided we have the knowledge of
first(w(i, a)).

Proof. By Property (A.3) of a DRH-automaton, and since there is only a finite number of possible states
in GR(w)v(i,a), either there exists k ≥ 0 such that v(i, a).1k = ε, or there exists ` > k ≥ 0 such that535

v(i, a).1k = v(i, a).1`. Therefore, the while loop in line 2 does not run forever. If the occurring situation is
the former, then ~c(G(w)v(i,a)) = ∅. On the other hand, by Proposition 6.2, we have G(w)v(i,a) ∼ T(w(i, a))
which in turn, by Theorem 3.8, implies π(G(w)v(i,a)) R w(i, a) modulo DRH. Also, Lemma 3.7 yields
~c(w(i, a)) = ~c(G(w)v(i,a)) = ∅, and therefore, reg(w(i, a)) = I. This is the case where the symbol I is
returned in line 7.540

Now, suppose that ` > k ≥ 0 are such that v(i, a).1k = v(i, a).1`. Observe that, at the n-th running of
the while loop in line 2, the value assigned to j in line 4 is the unique such that v(i, a).1n = v(j, a). Thus,
in this case the while loop is exited after the `-th iteration because j takes a value that is already in L. By
Property (A.4), we have a chain of inclusions: λ(G(w)v(i,a).1k) ⊇ λ(G(w)v(i,a).1k+1) ⊇ · · · ⊇ λ(G(w)v(i,a).1`).

As v(i, a).1k = v(i, a).1`, these inclusions are actually equalities, implying that k is greater than or equal545

to r.ind(G(w)v(i,a)). Combining again Proposition 6.2, Theorem 3.8 and Lemma 3.7, we may deduce that
~c(w(i, a)) = ~c(G(w)v(i,a)) = λ(G(w)v(i,a).1k), where the last member is precisely c(w(j, a)) provided that

v(i, a).1k = v(j, a). Therefore, in line 9 we assign to C the cumulative content of w(i, a). Until now, since
we are assuming that we are given all the information about GR(w), we only spend time O(|w|), because
that is the number of possible values of j that may appear in line 2.550

Let us prove that, if we get to line 9, then the value k outputted in line 14 is such that reg(w(i, a)) =
w(k, a). We write

w(i, a) = lbf1(w(i, a)) · · · lbfm(w(i, a))w′m,
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for every m ≥ 1 (notice that lbfm(w(i, a)) is defined for all m ≥ 1 because we are assuming that ~c(w(i, a)) 6=
∅). Then, the regular part of w(i, a) is given by w′`, where ` = min{m : c(w′m) = ~c(w(i, a))}. In particular,
the projection of w′m onto ΩADRH is not regular, for every m < `. Set (c0, k0) = (a, i) and, for m ≥ 0, let
(cm+1, km+1) be the principal marker of w(km, a). By Corollary 5.8, if w(km, a) is not regular modulo DRH,
then we have lbf(w(km, a)) = (w(km, cm+1), cm+1, w(km+1, a)). Therefore, the equality w′m = w(km, a)555

holds, for every m ≤ `. Thus, the value k returned in line 14 is precisely k`, implying that reg(w(i, a)) =
w(k, a) as intended.

Since there are only O(|w|) possible values for k and we are assuming that we already know first(w(i,#))
for all i ∈ [0, |w| [, it follows that lines 8–15 run in time O(|w|).

Therefore, the overall time complexity of Algorithm 1 is O(|w|).560

So far, we possess all the needed information for computing G(w). Putting all the steps together, we
obtain the following.

Theorem 6.5. Given a κ-term w, it is possible to compute the DRH-graph of w in time O(|w|2 |c(w)|).

The next question we should answer is how can we decide whether two DRH-graphs G(u) and G(v)
represent the same R-class of ΩADRH, that is, whether G(u) ∼ G(v). A possible strategy consists in visiting565

states in both DRH-graphs, comparing their labels (in a certain order). When we find a pair of mismatching
labels, we stop, concluding that G(u) and G(v) are not equivalent. Otherwise, we conclude that they are
equivalent after visiting all the states. More precisely, starting in the roots of G(u) and G(v), we mark the
current states, say vu ∈ V (u) and vv ∈ V (v), as visited, and then repeat the process relatively to the pairs
of DRH-automata (G(u)vu.0,G(v)vv.0) and (G(u)vu.1,G(v)vv.1). For a better understanding of the procedure,570

we sketch it in Algorithm 2.

Algorithm 2

Input: two DRH-graphs Gi = 〈Vi,→i, v
0
i , λi,H, λi〉 (i = 1, 2)

Output: logical value of “G1 ∼ G2”
1: if v01 = ε then
2: return logical value of v02 = ε
3: else if v01 or v02 is unvisited then
4: mark v01 and v02 as visited
5: if λ1,H(v01) = λ2,H(v02) and λ1(v01) = λ2(v02) then
6: return logical value of “(G1)v01.0 ∼ (G2)v02.0 and (G1)v01.1 ∼ (G2)v02.1”
7: else
8: return False
9: end if

10: else
11: return True
12: end if

Lemma 6.6. Algorithm 2 returns the logical value of “G1 ∼ G2” for two input DRH-graphs G1 and G2.
Moreover, it runs in time O(pmax{|V1| , |V2|}), where p is a function of G1 and G2 (more precisely, of Vi
and λi,H, for i = 1, 2) such that the word problem modulo H for any pair of labels λ1,H(v1) and λ2,H(v2) (with
v1 ∈ V1 and v2 ∈ V2) may be solved in time O(p).575

Proof. The correctness follows straightforwardly from the definition of the relation ∼. On the other hand,
it runs in time O(pmax{|V1| , |V2|}), since each call of the algorithm takes time O(p) (line 5) and each pair
of states of the form (v01.α, v02.α) is visited exactly once.

Given κ-terms u and v, we use p(u, v) to denote a function depending on u and v such that the time for
solving the word problem over H for any pair of factors of the form u(i, a) and v(j, b) is in O(p(u, v)). Note580

that such a function p(u, v) is not unique, but the upcoming results are valid for any such function. Then,
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summing up the time complexities of all the intermediate steps considered above, we have just proved the
following.

Theorem 6.7. Let H be a pseudovariety of groups with decidable κ-word problem, and let u and v be
κ-terms. Then, the equality of the pseudowords represented by u and v over DRH can be tested in time585

O((p(u, v) +m)m |A|), where m = max{|u| , |v|}.

We remark that the real meaning of the time complexity exhibited in Theorem 6.7 is only well understood
when we fix a pseudovariety of groups H and estimate the parameter p(u, v). In the extreme situation in
which we take H to be the trivial pseudovariety, our algorithm solves the κ-word problem in time O(m2 |A|).
Of course, in this case, there exists an obvious algorithm that is more efficient, since we do not even need590

to run Algorithm 1 (this is the result of [28]). In general, the parameter p(u, v) is expected to depend on
the length of the intervening κ-terms, since we need at least to read u and v before deciding whether or
not two certain factors represent the same κ-word over H. Hence, m belongs to O(p(u, v)). Consequently,
the overall time complexity stated in Theorem 6.7 becomes O(p(u, v)m |A|). Since we are doing the same
approach as in [28], this result is somehow the expected one. Roughly speaking, this may be interpreted595

as the time complexity of solving the κ-word problem in R, together with a κ-word problem in H for each
state, that is, for each DRH-factor of the involved pseudowords (recall Lemmas 2.8 and 4.3).

Just as a complement, we mention that another possible approach would be to transform the DRH-graph
G(w) in an automaton in the classical sense, say G′(w), recognizing the language L(w) (recall Proposi-
tion 3.11). That is easily done (time linear on the number of states), by moving the labels of a state to
the arrows leaving it. More precisely, the automaton G′(w) shares the set of states with G(w) and each non
terminal state v(i, a) has two transitions:

v(i, a).(0, λH(v(i, a)), λ(v(i, a))) = v(i, 1).0

v(i, a).(1, I, λ(v(i, a))) = v(i, a).1.

Then, we could use the results in the literature in order to minimize the automaton, obtaining a unique
automaton representing each R-class of the semigroup (ΩADRH)I . The unique issue in that approach is that
the algorithms are usually prepared to deal with alphabets whose members may be compared in constant600

time. Hence, we should previously prepare the input automaton by renaming the subset of the alphabet
Σ× (ΩAH)I × A, in which the labels of transitions are being considered. Let p(u, v) and m have the same
meaning as in Theorem 6.7. Since, a priori, we do not possess any information about the possible values
for λH, that would take O(p(u, v)(m |A|)2)-time (each time we rename an element in (ΩAH)I we should first
verify whether we already encountered another element with the same value over H). Thereafter, we could605

use the linear time algorithm presented in [32], which works for this kind of automaton. Thus, a rough

upper bound for the complexity spent using this method is O(p(u, v)m2 |A|2), which although a bit worse,
is still polynomial.

The following result gives us a family of pseudovarieties of the form DRH with decidable κ-word problem.
It is a consequence of the fact that the free group is residually in Gp.610

Corollary 6.8. Let p be a prime number. If H ⊇ Gp is a pseudovariety of groups, then the pseudovariety
DRH has decidable κ-word problem.

7. An application: solving the word problem over DRG

Let us illustrate the previous results by considering the particular case of the pseudovariety DRG. By
Theorem 6.7, the time complexity of our procedure for testing identities of κ-terms modulo DRG depends615

on a certain parameter p( , ). Recalling that ΩκAG = FGA, we have that the most natural first step to solve
the κ-word problem over G is to represent the κ-terms whose equality we wish to check by words over the
alphabet A ∪ A−1. After that, solving the word problem in the free group is known to require only time
linear on the size of the input. It turns out that κ-terms provide a much more compact representation of
κ-words rather than κ-terms. For instance, for every n > 0, there is a κ-term of length 1, namely aω−n,620
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whose shortest representation as a κ-term has length 2n− 1. Although we are not able to prove that there
is not a more efficient algorithm than the one just suggested, it seems reasonable to require the input to be
given by κ-terms. We do that assumption from hereon.

In order to discover the parameter p( , ), we should first analyze the (length of the) projection onto
ΩκAG = FGA of the elements of the form w(i, a), where w is a κ-term.625

Consider the alphabets B1 = (A × N) ] {[−1, ]−1} and B2 = (A × N) ] {[−1, [−2, ]−1, ]−2}. Let x be
a well-parenthesized word over B2. The expansion of x is the well-parenthesized word exp(x) obtained by
successively applying the rewriting rule [−2y]−2 → [−1y]−1[−1y]−1, whenever y is a well-parenthesized word.
It is clear that om(x) and om(exp(x)) represent the same κ-word and that x is a well-parenthesized word
over B1. Further, we have the following.630

Lemma 7.1. Let x be a nonempty well-parenthesized word over B1 and i ∈ cN(x). Then, ti(x) is a well-

parenthesized word over B2 and |exp(ti(x))| ≤ 1
2 (|x|2 + 2 |x| − 3). Moreover, this upper bound is tight for all

odd values of |x|.

Proof. The fact that ti(x) is a well-parenthesized word over B2 follows immediately from the definition of
ti. To prove the inequality, we proceed by induction on |x|. If x = ai, then ti(x) is the empty word and
so, the result holds. Let x be a well-parenthesized word over B1 such that |x| > 1. The inequality holds

clearly, unless x is of the form x = [−1y]
−1
z, with y and z well-parenthesized words over B1, y nonempty

and i ∈ cN(y). In that case, we have ti(x) = ti(y)[−2y]
−2
z. Using induction hypothesis on y, one may

deduce that |exp(ti(x))| ≤ 1
2 (|x|2 + 2 |x| − 3). Finally, let ~x = (a1, ε, ε, . . .), ~y = (ε, ε, . . .), ~q = (−1,−1, . . .),

and u2n+1 = µn = µn(~x, ~y, ~q) (recall the notation used in Lemma 5.4). Then, u2n+1 is a well-parenthesized
word over B1 of length 2n+ 1. Moreover, using Lemma 5.4, we may compute

|exp(t1(u2n+1))| = |exp(t1(µ0) · ξ0 · ξ1 · · · ξn−1)|
=
∣∣exp

(
[−2µ0]−2 · · · [−2µn−1]−2

)∣∣
=

n−1∑
k=0

2(|µk|+ 2)

= 2n2 + 4n because |µk| = 2k + 1

=
1

2
(|u2n+1|2 + 2 |u2n+1| − 3)

and the result follows.

Also, as a straightforward consequence of the definition of pa, the following holds.635

Lemma 7.2. Let x be a nonempty well-parenthesized word over B1 and a ∈ A. Then, pa(x) is also a
well-parenthesized word over B1 and |exp(pa(x))| = |pa(x)| ≤ |x|.

Given a well-parenthesized word x over B2, we define the linearization over A of x to be the word
lin(x) over the alphabet A ] A−1 obtained by applying the rewriting rules [−1ai]

−1 → a−1, [−1yz]
−1 →

[−1z]−1[−1y]−1 and [−2y]−2 → [−1y]−1[−1y]−1 to x (with ai ∈ c(x) and y, z well-parenthesized words). It is640

easy to see that lin(x) = lin(exp(x)) and that if x is a well-parenthesized word over B1, then O(|lin(x)|) =
O(|x|). Consequently, we have the next result.

Corollary 7.3. Let w be an κ-term and (i, a) ∈ [0, |w| [×cA(w). Then, |lin(w(i, a))| belongs to O(|w|2).

Now, we wish to compute lin(x), for a given well-parenthesized word over B2. Recall the tree represen-
tation of κ-terms exemplified in Figure 5 (κ-terms are, in particular, κ-terms). We may recover, in linear645

time, such a tree representation for om(x), for a well-parenthesized word x over B1. Furthermore, if we
are given a well-parenthesized word over B2, we may compute, also in linear time, a tree representation
for om(exp(x)). That amounts to, whenever we have a factor of the form [−2y]−2 in x, to include twice a
subtree representing [−1y]−1.
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On the other hand, since solving the word problem in FGA (for words written over the alphabet A∪A−1)650

is a linear issue in the size of the input, by Corollary 7.3, we may take p(u, v) = max{|u|2 , |v|2}. Thus, we
have proved the following.

Proposition 7.4. The κ-word problem over DRG is decidable in O(m3 |A|)-time, where m is the maximum
length of the inputs.
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