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A queuing system resulting from a signalized intersection regulated
by pre-timed control in a network urban traffic is considered. Modeling
the queue length and the delay of vehicles is crucial to evaluate the per-
formance of intersections equipped with traffic signals. Air quality and
rational use of energy also depend on an efficient management of the
intersection. These traffic systems have the specificity that the server
(green signal) is deactivated (red signal) during a fixed period of time.
In the present work, an M/D/1 queue with a server that occasionally
takes vacations is analysed. The mean delays of vehicles and the mean
queue length are computed and compared with those obtained by using
a detailed simulation model in a case study. We found that, in general,
the mean delays of vehicles given by the proposed queuing model pro-
vide a good approximation, but it can provide slightly smaller values
than those obtained in the simulation model for large traffic flows. This
result is of interest for traffic engineers, as the approaches one can find
in the literature for large signalised urban traffic flows are subject to
criticism.

Queues with server vacations, Markov regenerative processes, sig-
nalised urban traffic, traffic models
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1 Introduction

Over the last decades, the theory of traffic signals gave a lot of atten-
tion to the estimation of delays and queue lengths that result from the
adoption of a signal control strategy at individual intersections. Model-
ing the queue length and the delay (sojourn time in system) of vehicles
is fundamental if one wants to study the performance of signalized
intersections. The difficulty in estimating vehicle delay at pre-timed
signalised intersections is demonstrated by the variety of delay models
that have been proposed over many years. Delay models rely, in some
cases, on the nature of the way traffic systems are modelled, according
to the desired level of detail. Delay estimation may use, in particular,
microscopic, mesoscopic, and macroscopic models, which can be either
deterministic or stochastic. Microscopic models include mostly car-
following models, while queuing systems are of mesoscopic type, and
popular models like HCM and Webster’s delay model are macroscopic.
As will be seen further in this paper, we will be particularly interested
in stochastic mesoscopic models based on some queuing theory model.

The main difficulties involved in the analysis by means of queuing
theory come from the need of a good characterization of the circulating
vehicles and drivers and from the fact that the deactivation of the
server for fixed periods of time (red signal) has to be incorporated in
the behavior of the queue. This is essentially the reason why M/M/1,
M/G/1 and G/M/1 models do not satisfactorily fit the waiting behavior
in pre-timed signalised intersections. As far as we know, no theory is
available for the development of a single analytical model to be used
for an arbitrary saturation level in such type of intersections.

A detailed study of signalized intersections with fixed size green sig-
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nal period can be found in Webster (1958), where the widely accepted
Webster’s delay model is proposed:
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where d = average delay per vehicle on a given particular approach
(s); C = cycle length (s), the length of time for which a traffic signal
displays a green light added of the the length of time for which the
traffic signal displays a red light; q = flow rate [vehicles per second
(veh/s)]; g = effective green time duration (s); and X = saturation
degree. This formula, which was derived as a semi-empiric expression
based upon computer simulation, is only applicable under unsaturated
conditions, that is, when demand is smaller than capacity. The first
term in the expression can be interpreted as representing the delay
of drivers in a scenario of deterministic equally spaced arrivals; the
second term intends to take into account randomness in vehicle arrivals,
corresponding to the delay in a M/D/1 queue with service time equal

to
C

s.g
; the third term results from applying a regression model to fit

d. The negative sign of the third term is due to the fact that the first
two terms in the expression overestimate the delay.

The Highway Capacity Manual 2010 (HCM2010; see Transportation
Research Board 2010) presents another model to calculate the average
control delay per vehicle for isolated intersections operating with a
pre-timed signal in conditions of random arrivals. If no initial queue is
assumed the model resumes to:
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C
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2
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√
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, (2)

where T is the duration of the time interval under study (h) and c is the
lane group capacity (veh/h). According to the definition in HCM2010,
control delay includes initial deceleration delay, queue move up time,
stopped delay and final acceleration delay. Note that the first term is
the same in both models (1) and (2).

Early models like those of McNeil and McNeil and Weiss (see Gazis
1974) had major practical limitations. Other formulae like those of
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Miller (1968) and Newell (1965) have also been subject to investiga-
tion in the past (see also the comparisons by Ohno 1978). Akçelik’s
model (Akçelik 1980) and his extension to non-empty initial queues
(Akçelik 2002) are, still in our days, very popular among traffic en-
gineers, particularly for dealing with oversaturated intersections. A
good summary of the pletoria of early findings on steady state queuing
models can be found in Rouphail, Tarko and Li (1996, Sec. 9.3).

Models for the dynamic propagation of queues in time and space,
extending the Lighthill-Whitham-Richards (LWR) model to signalized
intersections, have also been proposed, in early stages as determinis-
tic models (see e.g. Rorbech 1968, Stephanopoulos and Michalopou-
los 1979, Daganzo 1995) and more recently for their stochastic in-
stances, either supported by space-discretization of the LWR model
(see Sumalee et al. 2011 for the basic stochastic cell transmission model
and Zhong et al. 2013 for its extension to signalized intersections) or
by vehicle-discretization of the LWR model (see e.g. Osorio et al. 2011,
Osorio and Flotterod 2015). These models intend to capture the evolu-
tion of link state distributions through the discretization of differential
equations. They have wide application opportunities, since they can
cope with uncertain supply functions associated with any arrival distri-
bution, which can be non-stationary. They allow for the study of the
transient behaviour of the queue.

Although computationally time consuming and demanding a consid-
erable amount of calibration, car-following models have been, for many
years, the focus of a vast investigation (see for instance Pandwai and
Dia 2005, Brockfeld and Wagner 2006 for considerations on the use
of the car-following microsocpic simulators and Sun et al. 2016 and
references therein for recent developments on car-following models).

Van Woensel and Vandaele (2007, Sec. 2.3) include an overview of the
different efforts made in the use of queuing models for traffic flow, and
Viti (2006) and Cheng et al. (2015) provide historical reviews of delay
estimation models. The goal of comparing models for vehicle delay also
conducted the investigation of Dion et al. (2004), who covered a large
variety of analytical delay models of various kinds in their work. They
argue that most of the delay models in the literature produce similar
results for signalized intersections with low traffic demand (i.e. q/c <
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0.6) but increasing differences occur as the traffic demand approaches
saturation. Last decade investigation has also been directed to finding
formulae for the delay variability, like the approximate expressions of
Fu and Hellinga (2000) or the queue length probability computations
and delay variance obtained in Olszewski (1994).

It is worth to remark that models like the M/D/1 or the M/DX/1 do
not describe well the regular deactivation of the server, even when the
traffic flow that reaches the intersection is assumed to follow a Poisson
distribution. Indeed, as the signal controlling the traffic in a street
alternates between red and green, modeling a signalized intersection
is a problem belonging to the class of queuing systems with server
vacations (Doshi 1986), with the particularity that the server remains
inactive for a pre-timed duration.

Heidemann (1994) proposed an analytic model that includes server
vacations, starting from the assumption that the arrival process is a
Poisson process, the intersection has a fixed cycle regulation, the inter-
val between departure of vehicles is constant and the traffic capacity
is one. With these assumptionss, probability generating functions for
performance measures as queue length and the average delay of a ve-
hicle can be derived from specific associated Markov chains. Later, Hu
et al. (1997) considered an M/DX/1 vacation model with pre-timed
server vacations for a signalized intersection to address the extension
of Heidemann’s model to the multi-lane case, using the M/G/1 formal-
ism of Neuts (1989) to derive Laplace-Stieltjes transforms of the queue
length and vehicle delay, but present neither numerical results nor an-
alytical formulae for the queue length and vehicle delay distributions.
More recently, van Leeuwaarden (2006) extended the computation of
the probability generating functions of the queue length and delay of a
vehicle, as well as the evaluation of performance characteristics as per-
centiles, to a class of discrete arrival processes which includes Poisson
arrivals. Van den Broek et al. (2006) compared the fixed cycle traffic
light queue with the bulk service queue and derived new bounds for
the mean overflow and mean delay of vehicles.

Alfa and Neuts (1995) suggested the use of discrete time Markov
arrival processes to describe the nature of platoons in the traffic flow.
Viti and Zuylen (2010) established a formulation for the length of the
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queue along time, within a cycle, which is based on Markov chain
renewal theory. They provide formulae for the evolution along time of
the expected overflow queue and its standard deviation, as well as the
expected queue length and the control delay within a signal cycle. The
need for transient measures is justified as they are particularly useful
if interventions are planned regarding the traffic control.

In the paper, we are concerned with pre-timed intersections in the
context of urban traffic, which means that a plan of server vacation
times is fixed a priori, setting times of green and red for each traffic
light, and the control is executed according exactly to such plan. More
precisely, we consider an M/D/1 queueing model with pre-timed server
vacations. Clients (vehicles) are served in a FIFO regime and the server
starts a vacation as soon as a red time r initiates. If the queue is empty
when the server returns from a vacation it will remain idle until a
new arrival occurs and serves the arriving vehicle(s) until the green
time expires. Once the green time expires a new vacation starts. We
will explore the specific nature of the M/D/1 queue with pre-timed
server vacations considered, and in particular its Markov regenerative
structure, in order to characterize the distributions of queue length and
vehicle delays, for both transient and long-run regimes, and compare
the results obtained for the long-run mean delay of a vehicle with those
obtained by applying the HCM model and the microscopic simulation
model. We used the simulator presented in Simões at al. 2010, in the
particular case of pre-timed signalized intersections for the microscopic
simulation. An expression for the variability of the length of the queue
is also investigated.

The paper is organized as follows. Assumptions and modelling as-
pects of the system are presented in Section 2, introducing the traffic
state at phase transitions as an embedded chain that is characterized
in Section 3. Section 4 explores the long-run properties of the traffic
process, and Section 5 characterizes the distribution of the delay (i.e.,
the sojourn time in system) of a vehicle. An application to a particular
intersection is studied in Section 6. The paper ends with some brief
conclusions drawn in Section 7.
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2 Assumptions and modelling of the traffic system

A signalized intersection regulated by pre-timed control is assumed to
be a traffic server system for which each vehicle arriving at the inter-
section during a green (light) period has to wait if there are vehicles
in front of it, or if arriving during a red (light) period. In a detailed
way, we consider a traffic system with the following specifications, with
time in seconds:

1. Vehicles arrive at the intersection according to an homogeneous
Poisson process with rate λ;

2. The system has infinite vehicle waiting capacity;

3. The vehicles are served one by one, in order of arrival to the inter-
section;

4. The service time of a vehicle is constant and equal to Ta;

5. The service of vehicles only starts or ends at time instants 0, Ta, 2Ta, . . .;

6. Signal cycles have duration (M + N)Ta and are divided in a server
working period of length MTa, a green period, followed by a server
vacation period of length NTa, a red period;

7. Green periods consist of M equal sub-periods (phases 1, 2, . . . ,M)
) of duration Ta, and red periods consist of a single period (phase
M + 1) of duration NTa;

8. When returning from a vacation an initial time of duration Ta is
needed for the first stopped vehicle, if there is one, to move across
the traffic light.

We should stress that the approach followed in the paper to investi-
gate the traffic system described could be adapted to incorporate the
following relaxations of assumptions 1–3: vehicles arriving at the inter-
section according to a non-homegeneous compound-Poisson process;
the system having finite vehicle waiting capacity; and group service of
vehicles, with a maximum group size, being allowed (as considered in
Hu et al. 1997). Thus, the approach followed in the paper relies essen-
tially on assumptions 4–8 and the Poissonian (i.e., memoryless) nature
of vehicle arrivals.
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From the point of view of the reasonableness of the above assump-
tions to deal with real-life circumstances, we should stress that the
Poisson process is currently used as a model for isolated intersections,
although this approximation may be ineffective when traffic networks
are concerned. The time discretization, with time step Ta, that is im-
plicit in the Markov chain we will use, represents a reasonable approx-
imation of the real world traffic; and the use of a constant service time
to represent the time spent by a vehicle driving across the intersection
is also a fair approximation of the real world behaviour of drivers.

Note that the factor Ta represents the time that a vehicle spends
to move through the intersection, i.e., its service time, and that the
traffic system has a server (traffic signal) that is available for periods of
duration MTa (seconds), the green periods, and unavailable for periods
of duration NTa (seconds), the red periods. To simplify the exposition,
we assume that we start to observe the system at the beginning of a
green period (i.e., the signal changes from red to green at time 0) and
that there are no vehicles waiting at the signal at time zero.

For t ≥ 0, we let (L(t), ξ(t)) denote the state of the system at time
instant t, with L(t) denoting the number of vehicles in the system (in
brief, the queue size) at time t and ξ(t) the state of the signal (in brief,
the phase) at time t. In the following, we call {(L(t), ξ(t))} the traffic
process (at the signalized intersection).

We note that the phase process {ξ(t)} is a deterministic process with
state space {1, 2, . . . ,M + 1}, where phases 1, 2, . . . ,M correspond to the
sucessive intervals of duration Ta in green light periods, and phase
M + 1 corresponds to the red light periods of duration NTa. In order
to characterize the evolution of the phase process, we let τn denote the
instant (of time) of occurrence of the n-th change of state in the process,
with τ0 = 0. From the description of the traffic model, it readily follows
that, for n > 0:

τn =

{
τn−1 + Ta , nmod(M + 1) 6= 0
τn−1 +NTa , nmod(M + 1) = 0

.

As a result,

τn = [ndiv(M + 1)](M +N)Ta + [nmod(M + 1)]Ta,
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and
ξ(t) = (n− 1) mod(M + 1) + 1, τn−1 ≤ t < τn.

The previous equation expresses the fact that the phase at time t,
ξ(t), is equal to: one plus the number of intervals of duration Ta elapsed
since the latest light switch to green taking place before time t, if the
traffic light is green at time t; and ξ(t) = M + 1 if the traffic light is
red at time t. Moreover, the traffic light changes from red to green
at times τj(M+1) = j(M + N)Ta, j ∈ N, and from green to red at times
τj(M+1)+M = j(M +N)Ta +MTa, j ∈ N.

A careful analysis of the traffic process {(L(t), ξ(t))} leads to the
conclusion that it is a Markov regenerative process with state space
N×{1, 2, . . . ,M + 1}; see, e.g., Kulkarni (1995) for details on Markov re-
generative processes. Moreover, by observing the process {(L(t), ξ(t))}
at times τn, n ∈ N, we obtain the embedded Markov chain {Xn}, with
Xn = (L(τn), ξ(τn)), n ∈ N, denoting the state of the system immediately
after the n-th phase change.

As a starting point for the study of the traffic process {(L(t), ξ(t))}, we
will characterize in the next section the embedded chain {Xn}, taking
profit of the fact that it is an M/G/1 type Markov chain, a type of chain
that was investigated in detail in Neuts (1989).

3 The embedded chain {Xn}

The Markov chain {Xn} has state space N×{1, 2, . . . ,M + 1} and transi-
tion probability matrix

Q =


B0 B1 B2 · · ·
A0 A1 A2 · · ·
0 A0 A1 · · ·
...

...
... . . .

 , (3)
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where the Ak and Bk are (M + 1)× (M + 1) nonnegative matrices whose
(i, j)th element is given by

(Ak)ij =


e−λTa

(λTa)
k

k!
, i = 1, 2, . . .M, j = i+ 1

e−λNTa
(λNTa)

k−1

(k − 1)!
, i = M + 1, j = 1, k ≥ 1

0, otherwise

,

and (Bk)M+11 = (Ak+1)M+11 , (Bk)ij = (Ak)ij, for (i, j) 6= (M + 1, 1), in view
of the structure of the phase transitions, implying in particular that
(Ak)ij is zero unless j = 1 + i(M + 1), and the fact that vehicles arrive
to the system according to a Poisson process of rate λ. Note that, for
1 ≤ i ≤ M , (Ak)i i+1 denotes the probability that k vehicles arrive in a
time interval, of duration Ta, elapsing from a transition to phase i to
the next subsequent phase transition, to phase i + 1. Conversely, for
k ≥ 1, (Ak)M+11 denotes the probability that k − 1 vehicles arrive in a
time interval elapsing from a transition to phase M + 1, starting a red
period, to the subsequent phase transition, to phase 1 and starting a
green period, and (A0)M+11 = 0.

From the structure of the matrix Q in (3), it follows that the Markov
chain {Xn} is of M/G/1 type. A characteristic of such type of Markov
chains is the block Hessenberg form of Q and Toeplitz block structure
of the sub-matrix that results from removing the first block of lines of
Q.

We will next characterize the long run properties of the Markov chain
{Xn}, but we first draw our attention to the phase chain {ξ(τn)}, which
is itself a Markov chain with transition probability matrix

A =
∞∑
k=0

Ak =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
1 0 0 · · · 0

 .
As a result, the computation of the stationary probability vector r =
[r1 r2 . . . rM+1] of {ξ(τn)}, solution of rA = r with r1 = 1, where 1 denotes
a vector of ones (of appropriate dimension, in this case M+1), is simple
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and leads to the (discrete) uniform distribution on the set {1, 2, . . . ,M +
1}, i.e.,

ri =
1

M + 1
, i = 1, 2, . . . ,M + 1.

Defining β =
∑∞

k=1 kAk1 and ρ? = rβ, elementary algebra gives us:

β =


λTa
...
λTa

λNTa + 1

 and ρ? =
λTa(M +N) + 1

M + 1
.

According to Neuts (1989, Theorem 2.3.1), the process {Xn} is positive
recurrent if and only if ρ? < 1 or, equivalently,

ρ =
λTa(M +N)

M
< 1, (4)

where the parameter ρ may be regarded as the traffic intensity of the
system under study. Note that, as expected, we conclude that {Xn}
is positive recurrent if and only if the expected number of vehicles
arriving during a traffic cycle (a period of green traffic light followed by
the subsequent period of red traffic light), whose duration is Ta(M+N),
is strictly smaller than the maximum number of vehicles that can be
served during a traffic cycle, M .

Under condition (4), the procedure described in this section can be
used to numerically obtain the invariant probability vector associated
with the stochastic matrix Q (cf. Neuts 1989), further denoted by u.
For that purpose let G be the minimal nonnegative solution of the non-

linear matrix equation G =
∞∑
i=0

AiG
i. Then, G is a irreducible stochastic

matrix (see Latouche 1994 for details) that can be obtained by applying
the following recursive procedure presented in Neuts (1989) and briefly
described as:

G = lim
n→∞

Gn,

where

Gn =


A0, n = 0
n∑
j=0

AjG
j
n−j, n > 0 , (5)
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truncated at some appropriate n. After computing the matrix G one
can obtain the invariant probability vector of the irreducible Markov
chain {Xn} under study.

For this purpose, let u = [u(0) u(1) u(2) . . .] be an infinite row vector such
that u(k) = [uk1 uk2 . . . ukM+1], k ≥ 0, is an (M + 1)-row vector and uQ = u,
u1 = 1. The element uki denotes the stationary probability that at the
beginning of a period in a phase there are k vehicles in the system
and the system is in phase i. As such, the stationary probability of
the number of vehicles in the system at the beginning of a phase being
equal to k is given by uk• =

∑M+1
i=1 uki, for k ≥ 0.

In view of (3), one thus gets that

u(k) = u(0)Bk +
k+1∑
j=1

u(j)Ak+1−j , for k ≥ 1. (6)

We note that, instead of using (6), we can resort to a more efficient way
to compute the vectors u(k), k ≥ 1 , by applying the following recurrence
formula due to Ramaswami (1988):

u(k) =

[
u(0)B̄k +

k−1∑
j=1

u(j)Āk+1−j

] (
I − Ā1

)−1
, k ≥ 1, (7)

where
Ān = An + Ān+1G and B̄n = Bn + B̄n+1G , n ≥ 1 . (8)

From Schellhaas (1990), one gets a fast way to compute u(0), since
u(0) = κ

d , with κ denoting the invariant probability vector associated with
K = B0+B̄1(I−Ā1)

−1A0 (κ = κK, with κ1 = 1) and d = 1+ k
1−ρ∗ [

∑∞
j=1 jBj1+

(
∑∞

j=0Bj − I)(I − A + 1r)−1β]. d = 1 + κ[
∑∞

j=1 jBj1 + (
∑∞

j=0Bj − I)(I − A +
1r)−1β]/(1−ρ∗) This is a suggestion of improvement in computation that
we introduce to the previous method of Neuts (1989).

Note that if the vehicle waiting capacity was finite, then {Xn} would
be a Markov chain with finite state space and, as such, its invariant
probability vector could be computed directly by solving a finite sys-
tem of linear equations. Conversely, if the vehicle arrival process was a
non-homogeneous Poisson process instead of an homogenous one, then
{Xn} would be a non-homogeneous Markov chain instead of an homo-
geneous one. Moreover, vehicle group service could be dealt with by
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partitioning the transition probability matrix Q in a block-matrix form
as done by Hu et al. (1997).

4 Long-run properties of the traffic process

Having described in the previous section a method to compute the
long-run fraction of time the embedded chain {Xn} spends in its states,
we proceed in this section to characterize the long-run properties of
the Markov regenerative traffic process {(L(t), ξ(t))}.

We first note that the quantities uki, derived in the previous section,
correspond to the long run fraction of phase transitions that lead to
phase i with k vehicles staying in the system immediately after the
phase transition. This, in turn, implies that the long run fraction
of phase i intervals that are initiated with k vehicles in the system,
denoted by πki, is such that

πki =
uki∑∞
j=0 uji

= (M + 1)uki, (9)

in view of the fact that
∑∞

j=0 uji = ri = 1/(M + 1).
Of particular relevance are the long run (and stationary) distributions

of the number of vehicles in the system at the beginning of green light
periods, {πk1}k≥0, and at the beginning of red light periods {πkM+1}k≥0.
For later use, we let E[Lmi ] denote the m-th stationary moment of the
number of vehicles in the system immediately after a transitition to
phase i, corresponding to the m-th moment of the distribution {πki}k≥0,
i.e.,

E[Lmi ] =
∞∑
k=0

kmπki. (10)

We proceed with the charaterization of the long-run properties of
the phase process {ξ(t)}. This is a semi-Markov process with embedded
Markov chain at phase transition epochs {ξn}, such that the amount of
time the process remains in phase i in each visit to the phase is the
constant

Ti =

{
Ta, i < M + 1
NTa, i = M + 1

. (11)
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We may then use the theory of semi-Markov processes (see, e.g., El-
Taha and Stidham, Jr 1999, Theorem 4.6) to conclude that the long-run
fraction of time the traffic process spends in phase i,

p•i = lim
t→∞

[
1

t

∫ t

0

1{ξ(s)=i} ds

]
,

is such that p•i = riTi∑M+1
j=1 rjTj

. In view of the fact that rj = 1
M+1, for j =

1, 2, . . . ,M + 1, this leads to

p•i =


1

M +N
, i = 1, 2, . . . ,M

N

M +N
, i = M + 1

. (12)

We next address the computation of the long-run distribution of the
number of vehicles in the system, for which we let pki denote the long
run fraction of time there are k vehicles in the system with the system
being in phase i, i.e.,

pki = lim
t→∞

[
1

t

∫ t

0

1{L(s)=k,ξ(s)=i} ds

]
,

implying, in particular, that p•i =
∞∑
k=0

pki, for i = 1, 2, . . . ,M + 1. The

following theorem expresses how the {pki} may be computed from the
{πki}.

For k ∈ N and i ∈ {1, 2, . . . ,M + 1},

pki =

∑k
j=0 πji µk−j(i)

(M +N)Ta
(13)

with µl(i), l ∈ N, being given by:

µl(i) =


1

λ

[
1− e−λTa

l∑
m=0

(λTa)
m

m!

]
, i < M + 1

1

λ

[
1− e−λNTa

l∑
m=0

(λNTa)
m

m!

]
, i = M + 1

. (14)

Proof. From the theory of Markov regenerative processes (see, e.g.,
El-Taha and Stidham, Jr 1999, Theorem 4.7), the definition of pki, and
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the structure of the traffic process {L(t), ξ(t)}, it follows that

pki =

∑k
j=0 uji θji(k)∑M+1
l=1 rlTl

,

with θji(k) denoting the expected amount of time there are k vehicles in
the system during an interval of time in phase i initiated with j vehicles
in the system.

As πji = (M + 1)uji and
∑M+1

l=1 rlTl = (M+N)Ta
M+1 , in order to prove the

theorem it remains to show that the quantities θji(k) are equal to the
quantities µk−j(i) defined in (14). This follows, for i ∈ {1, 2, . . . ,M + 1}
and 0 ≤ j ≤ k, from the following set of equalities:

θji(k) = E

[∫ Tj

0

1{L(t)=k|L(0)=j,ξ(0)=i} dt

]
=

∫ Tj

0

P (L(t) = k|L(0) = j, ξ(0) = i) dt

=


∫ Ta

0

e−λt
(λt)k−j

(k − j)!
dt , i 6= M + 1∫ NTa

0

e−λt
(λt)k−j

(k − j)!
dt , i = M + 1

=


1

λ

[
1− e−λTa

k−j∑
m=0

(λTa)
m

m!

]
, i 6= M + 1

1

λ

[
1− e−λNTa

k−j∑
m=0

(λNTa)
m

m!

]
, i = M + 1

,

where the last equality may be obtained using induction on k − j (cf.
Kwiatkowska et al. 2006). �

Let pk• denote the long run fraction of time there are k vehicles in the

system, i.e., pk• = limt→∞

[
1
t

∫ t
0 1{L(s)=k}ds

]
. Then, since pk• =

∑M+1
i=1 pki,

we have the following corollary of the previous theorem.
For k ∈ N,

pk• =

∑M+1
i=1

∑k
j=0 πji µk−j(i)

(M +N)Ta
, (15)

with µk−j(i) given in (14).
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The probability distribution {pk•} may be used to compute perfor-
mance measures of the long run number of vehicles in the system, such
as quantiles and moments, including in particular its mean,

E[L] = lim
t→∞

[
1

t

∫ t

0

∞∑
k=0

k 1{L(s)=k} ds

]
, (16)

second moment,

E[L2] = lim
t→∞

[
1

t

∫ t

0

∞∑
k=0

k2 1{L(s)=k} ds

]
, (17)

and variance, V ar(L) = E[L2]− (E[L])2, simply using the fact that

E[L] =
∞∑
k=0

k pk• and E[L2] =
∞∑
k=0

k2 pk•. (18)

However, the theory of Markov regenerative processes provides a more
direct way to compute E[L] and V ar(L), as shown in the next theorem.

The long run mean and variance of the number of vehicles in the
system are given, respectively, by

E[L] =

M+1∑
i=1

E[Li]Ti

(M +N)Ta
+
λTa
2

M +N 2

M +N
(19)

and

Var(L) =

M+1∑
i=1

[
E[L2

i ]Ti + λE[Li]T
2
i

]
(M +N)Ta

+
λ(M +N 2)Ta

2(M +N)
+
λ2(M +N 3)T 2

a

3(M +N)
−(E[L])2 .

(20)
Proof. From the theory of Markov regenerative processes (see, e.g.,

El-Taha and Stidham, Jr 1999, Theorem 4.7), the relation (16) for E[L],
and the structure of the traffic process {L(t), ξ(t)}, it follows that

E[L] =

M+1∑
i=1

∞∑
k=0

uki δki

M+1∑
l=1

rlTl

(21)
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with

δki = E

[∫ Ti

0

∞∑
l=0

(k + l)1{L(t)=(k+l)|L(0)=k,ξ(0)=i} dt

]
.

Thus, as the previous expression implies that δki =
∫ Ti
0

∑∞
l=0(k+l)P (L(t) =

(k + l)|L(0) = k, ξ(0) = i) dt

=
∫ Ti
0

∑∞
l=0(k + l)e−λt (λt)

l

l! dt

= kTi + λT 2
i

2 , taking into account (21), we have

E[L] =

M+1∑
i=1

∞∑
k=0

kπkiTi

(M +N)Ta
+
λ

2

M+1∑
i=1

T 2
i

(M +N)Ta
,

in view of the fact that πki = (M + 1)uki,
∑M+1

l=1 rlTl = (M+N)Ta
M+1 , and∑∞

k=0 uki = ri = 1
M+1. The equation (19) for E[L] now follows since∑∞

k=0 kπki = E[Li] and
∑M+1

i=1 T 2
i = (M +N 2)T 2

a .
If we proceed to compute E[L2] in a similar way to what we have

just used to compute E[L], we conclude from the theory of Markov re-
generative processes (see, e.g., El-Taha and Stidham, Jr 1999, Theorem
4.7), the relation (17) for E[L2], and the structure of the traffic process
{L(t), ξ(t)}, that

E[L2] =

M+1∑
i=1

∞∑
k=0

uki δ
′
ki

M+1∑
l=1

ulTl

=

M+1∑
i=1

∞∑
k=0

πki δ
′
ki

(M +N)Ta
, (22)

with

δ′ki = E

[∫ Ti

0

∞∑
l=0

(k + l)21{L(t)=(k+l)|L(0)=k,ξ(0)=i} dt

]
,

and the previous expression implies that δ′ki =
∫ Ti
0

∑∞
l=0(k + l)2P (L(t) =

(k + l)|L(0) = k, ξ(0) = i) dt

=
∫ Ti
0

∑∞
l=0(k

2 + 2kl + l2) e−λt (λt)
l

(l)! dt

=
∫ Ti
0 [k2 + (2k + 1)λt+ (λt)2)] dt

= k2Ti +
(
k + 1

2

)
λT 2

i + λ2

3 T
3
i , where the third equality above follows tak-

ing into account that a Poisson random variable with parameter λt has
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mean λt and second moment λt + (λt)2. Thus, in view of (22), we have

E[L2] =

M+1∑
i=1

∞∑
k=0

πki

[
k2Ti +

(
k +

1

2

)
λT 2

i +
λ2

3
T 3
i

]
(M+N)Ta

=

M+1∑
i=1

{
E[L2

i ]Ti + λE[Li]T
2
i +

λ

2
T 2
i +

λ2

3
T 3
i

}
(M+N)Ta

=

M+1∑
i=1

{
E[L2

i ]Ti + λE[Li]T
2
i

}
(M +N)Ta

+
λ(M +N 2)Ta

2(M +N)
+
λ2(M +N 3)T 2

a

3(M +N)
, since

∑∞
k=0 k

mπki =

E[Lmi ],
∑M+1

i=1 T 2
i = (M + N 2)T 2

a , and
∑M+1

i=1 T 3
i = (M + N 3)T 3

a . This leads
directly to (20), since V ar(L) = E[L2]− (E[L])2. �

5 Vehicle sojourn time in system

Delay at signalized intersections is a primary concern in the assess-
ment of traffic systems. The mean delay in particular is modeled in
HCM2010 as a function of many operational parameters, and control
delay is used at operational level to define the level of service. This
delay is a complex variable that is sensitive to a variety of local and en-
vironmental conditions such as driver’s behavior, traffic characteristics,
signal setting, etc.

For the model considered in the paper, the mean long run sojourn
time of a vehicle (client) in system, E[W ], is simply obtained by applying
Little’s formula (cf. for instance Kulkarni 1995),

E[W ] =
E[L]

λ
, (23)

to the expression (19) for E[L]. However, we are able to characterize
the limit distribution function of the long run sojourn time in system
of a vehicle as a function of the distribution of arrival times of vehicles
to the intersection with respect to the signal cycle.

One relevant component of the sojourn time in system of a vehicle
is the waiting time in red of the same vehicle. We start by noting that
if we let βi(k) denote the red time elapsed since the finishing of phase
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i until the accumulated green time attains k Ta, then

βi(k) =


⌈
k −M + i

M

⌉
NTa , i < M + 1⌊

k − 1

M

⌋
NTa , i = M + 1

, (24)

where for a real number y, byc and dye denote the floor and ceiling of
y, respectively. We then have the following result.

The probability that the sojourn time of a vehicle in the system does
not exceed x units of time given that at its arrival to the system the
vehicle finds l vehicles waiting for start of service and its arrival takes
place in phase i at exactly s units of time before the end of the phase,
is given by:

αl,i(x; s) =

{
0, x < s+ Ta
1{(l + 1)Ta + βi(l + 1) ≤ x− s} , x ≥ s+ Ta

, (25)

with βi(l + 1) given by (24).
For x ≥ 0, let FW (x) denote the long-run fraction of vehicles whose

sojourn time in system is no larger than x, i.e.,

FW (x) = lim
n→∞

1

n

n∑
m=1

1{Wm≤x},

with Wm denoting the sojourn time in system of the m-th vehicle en-
tering the system. We then have the following result.

For x ≥ Ta,

FW (x) =

∞∑
k=0

M+1∑
i=1

πkiqki(x)

(M +N)Ta
(26)

with qki(x) being given by:

qki(x) =


∞∑
n=1

∫ Ta

0

e−λs
(λs)n−1

(n− 1)!
α(k−1)++n−1,i(x;Ti − s)ds , 1 ≤ i ≤M

∞∑
n=1

∫ NTa

0

e−λs
(λs)n−1

(n− 1)!
αk+n−1,M+1(x;NTa − s)ds , i = M + 1

, (27)

with m+ = max(m, 0). Proof. From the theory of Markov regenerative
processes (see, e.g., El-Taha and Stidham, Jr 1999, Theorem 4.7), the
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definition of FW (x), and the structure of the traffic process {L(t), ξ(t)},
it follows that

FW (x) =

∞∑
k=0

M+1∑
i=1

ukiq
?
ki(x)

M+1∑
l=1

rlλTl

,

with q?ki(x) denoting the expected number of vehicles arriving during
a phase i time interval initialized with k vehicles that remain in the
system for no more than x units of time.

As πji = (M + 1)uji and
∑M+1

l=1 rlTl = (M+N)Ta
M+1 , the theorem follows from

the fact that the quantities q?ki(x) are equal to λqki(x) with the quantities
qki(x) defined in (27). �

6 Application

We consider an intersection with 4 traffic streams having 2 phases, as
illustrated in Figure 1. The following 3 timing plans with red time
r = C − g are considered:

Example 1: g = 20 s , r = 40 s.

Example 2: g = 30 s , r = 30 s.

Example 3: g = 40 s , r = 20 s.
The value Ta = 2s has been used as it is the most common in a one lane
approach. The delays per vehicle that we present correspond only to
stream S1.

The mean waiting times (mean delays) estimated by the model pre-
sented in the previous sections are shown in Figure 2 together with the
results obtained by applying the Webster model (1), the HCM model
(2) and the simulation model ran by using the package described in
Simões et al. (2010), considering different saturation degrees. The
proposed model is named “Markov” in the figures.

The following set up was used in the simulator by Simões et al.
(2010):
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Figure 1: Scheme of the intersection, indicating the two phases.

• vehicle’s characteristics: desired speed - Gaussian (13.9m/s, 0.2m/s);
maximum acceleration - Gaussian (1.7m/s2, 0.3m/s2); length of a ve-
hicle - Gaussian (4.0m, 0.3m);

• number of replications: between 100 and 1000, depending on satu-
ration degree x, controlling for the Monte Carlo error to be smaller
than 1;

• warm up time: 600s;

• run time: 2 hours/replica.

This simulator is based on a microscopic stochastic simulation model
that emulates the traffic movements at signalized isolated intersections
with a specified type of signal operations. The basic component of
the simulator is a car-following model. All parameters were set in the
simulator for the particular case of pre–timed control, according to the
above examples.

The results suggest that, for small to moderate values of the degree of
saturation (approximately X < 0.8), the estimates of the mean delay of
drivers given by the Markov model through expressions (19)–(23) are
quite close to the simulation results. For considerably large X (approx-
imately X > 0.8), however, the estimates given by the model that we
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(a) (b)

(c)

Figure 2: Comparison between the mean delay estimated by the Markov chain model and other models: (a)Example
1; (b)Example 2; (c)Example 3.

22



present in this paper remain smaller than those obtained by numerical
simulation but much closer to it than the HCM or Webster’s model,
except in Example 1. This fact may be explained by the diversity of re-
actions that is typical of drivers’ behavior and of interactions between
vehicles which is mimicked in the simulation model quite closely (cf.
Simões et al. 2010) but is hardly taken into account in a Markov or
renewal type process modelling.

Note that the number of vehicles in the system at any signal phase
can be computed using expression (10). Figure 3 presents the results
obtained, in the three examples, at the start of the green signal, at
the start of the red signal (that is the overflow queue) and at any time
instant, for different saturation degrees. We can see the exponential
increase of the queues when the saturation degree approaches 1, as
expected, and a reduction of all queues with the increasing of green
time. Variances can also be computed resorting to the expression (10).

7 Conclusions

A detailed probabilistic description of the delay of vehicles in pre-timed
control of traffic, as well as of the waiting time and the virtual waiting
time were achieved by applying the theory of queues with server va-
cations. This description includes formulae for the computation of the
stationary distributions, the means and variances of queue length and
waiting time.

When compared to other models existing in the literature the ex-
pressions that we give in this paper provide realistic estimates of the
mean delay of vehicles particularly when the saturation degree is below
70%. For large traffic flows (congestion scenarios) the estimates pro-
vided by the expressions that we propose tend to be smaller than those
returned by the numerical simulator and in one case overestimated it,
but still give better approximations than those provided by the HCM
or Webster’s formulae. We could also derive a formula that enables the
analysis of the variability of the queue length.

We are very grateful to the referees for their constructive criti-
cism when reviewing this paper. Research partially supported by
CMUP (UID/MAT/00144/2013) and UID/Multi/04621/2013, funded
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(a) (b)

(c)

Figure 3: Mean length estimated by the Markov chain model at the start of the green signal (LSgreen), at the
start of the red signal (LSred) and at any time instant (L): (a)Example 1; (b)Example 2; (c)Example 3.

24



by FCT (Portugal) with National (MEC) and European structural
funds through the programs FEDER, under partnership agreement
PT2020.
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