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Abstract. We investigate a queuing model for a signalized intersection
regulated by semi-actuated control in a urban traffic network. Modelling
the queue length and the delay of vehicles for this type of traffic, charac-
terized by variable durations of the green signal, is crucial to evaluate the
performance of traffic intersections. Additionally, determining the size of
the extensions of the green signal is also relevant. The traffic systems ad-
dressed in the paper have the particularity that the server remains active
(green signal) for a period of time that depends on the number of vehicles
waiting at the intersection. This gives rise to an M/D/1 queuing system
with a server that occasionally takes vacations (red signal), for which
we compute the long-run mean delay of vehicles, mean queue length and
mean duration of the green signal. We consider a case study and com-
pare the results obtained from the proposed queueing model with those
obtained by using a microsimulation model. The formulas derived for
the performance measures are of interest for traffic engineers, since the
existing alternative formulas are subject to strong criticism.

1 Introduction

The last decades of research on the theory of signalized traffic intersections put
a lot of emphasis on estimation methods of delays and queue lengths at individ-
ual intersections regulated by actuated control and on the strategies that can
be designed upon the results of such estimation and on the analysis of traf-
fic characteristics. The performance of signalized intersections is indeed usually
measured by the mean queue length and the mean delay (sojourn time in system)
of vehicles.

Different approaches to the estimation problem can be found in the literature.
The approach based on microscopic simulation models, essentially car-following
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models (see, e.g., [2,15,19]), presents some important disadvantages since, in
spite of the fact that they mimic quite well the behaviour of traffic in real world,
they need to be fed with a lot of parameters, not easily known or measured in
practice, and require a considerable computational effort. Popular models like
the HCM model [17] and Webster’s model [24] are known to have also some
drawbacks.

As an alternative, this paper explores the use of queueing theory in order
to obtain the performance measures just mentioned above. The main difficulties
involved in such an approach come from the need of a good characterization of
the circulating vehicles and drivers, and from the fact that the cyclic deactiva-
tion of the server (the red signal) has to be incorporated in the behaviour of the
queueing system. In the work published in [14] we have addressed pre-timed con-
trol intersections. However actuated or semi-actuated traffic signals are generally
more efficient, since they better accommodate fluctuation of vehicle arrivals as
they are able to adapt the green time given to a traffic stream according to
demand, by incorporating the possibility of extending the green signal (see e.g.
[22]).

The paper by Lin et al. [13] explores simple probabilistic arguments to obtain
the mean duration of the green signal in semi-actuated controlled intersections,
but their approach is restricted to small volumes of traffic in the secondary
street, smaller than 500 vehicles per hour. Even in the case of Poisson vehicle
arrivals, models like M/D/1 and M/D* /1 do not correctly describe the deac-
tivation of the server, taking place when the signal changes from green to red.
In fact, queueing systems with server vacations (see [3] for a survey) are a more
convenient way of modelling the stochastic behaviour of the traffic system (see
also previous work in [7, 8, 23] for the case of pre-timed control).

Signalized traffic intersections have similarities with polling systems (see e.g.
[20] or [21] for an overview on polling systems), where a single server is handling
two queues and switches between them according to some control rule. In the
case of semi-actuated signalized intersections, queues are attended by the server
during given periods of time, which may have random duration — at least for one
of the queues. However, as far as we know, the diversity of polling systems found
in the literature do not encompass the specificity of the semi-actuated signalized
traffic addressed in the paper. Several authors (see e.g. [5,6,11] or [1]) stress
the fact that systems characterized by time limited service disciplines, as it is
the case for semi-actuated signal intersections, should not be expected to have
closed formulas for the expected customer waiting time. The papers just cited
focus on cases of exponential or phase-type service times, which do not apply
to signalized traffic. However, time limited server systems are often used when
in presence of heavy loaded queues that tend to monopolize the server, leaving
lightly loaded queues with a negligible part of the service time.

In this paper, we consider a semi-actuated isolated signalized intersection,
meaning that the mechanism that triggers red times relies on the evolution of
the traffic demand, leading to green times of random duration. Specifically, the
green time is extended, from a fixed minimum duration, in case there are vehicles
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waiting at the intersection at the end of a minimum green time period. Additional
individual extensions of the green time by T seconds are performed if the time
interval between arriving vehicles remains smaller than 7' seconds, up to the
green time reaching a maximum pre-fixed total duration. For implementing the
green time extension mechanism, a sensor located a couple of meters before the
stop line is responsible for the detection of vehicle at the intersection.

We model the semi-actuated signalized intersection as an M/D/1 queueing
model with server vacations, in which clients (vehicles) are served in a first-in
first-out (FIFO) regime. The server starts a vacation of fixed duration as soon
as a red time initiates. As described in the previous paragraph, server working
periods, corresponding to green times, have random duration. We explore in the
paper the specific nature of the resulting M/D/1 server vacation queue, and in
particular its Markov regenerative structure, to characterize the distributions
of queue length, vehicle delay, and duration of the green signal in the long-
run regime. Our approach is different from that of [12], which relies on the
derivation of a functional equation for the system behavior and its solution by
means of a numerical technique based on Laguerre-function approximations.
We compare the results obtained for the derived long-run measures with those
obtained by applying a microscopic simulation model (see Simoes et al. [18]).
Our main contribution lies in providing expressions for the means of waiting
time of drivers, length of queue at the intersection, and total duration of the
green signal, which are of interest for traffic engineers.

The paper is organized as follows. The assumptions made and the Markov
chain model that is used in the paper for investigating semi-actuated signalized
traffic intersections are introduced in Section 2. The main results on long-run per-
formance measures for semi-actuated signalized traffic intersections are included
in Section 3, and a case study that is used to validate the results obtained from
the proposed model is presented in Section 4. The paper ends with some brief
conclusions drawn in Section 5.

2 The signalized intersection traffic model

A signalized intersection regulated by semi-actuated control is assumed to be a
traffic server system for which each vehicle arriving at the intersection during a
green (light) period has to wait if there are vehicles in front of it, or if arriving
during a red (light) period. In a detailed way, we consider a model for a signalized
intersection having the following specifications, with time in seconds:

e Vehicles arrive at the intersection according to an homogeneous Poisson pro-
cess with rate A\, and are served one by one in order of arrival.

e The intersection possesses infinite vehicle waiting capacity, and the light
alternates between green and red periods.

e The service time of a vehicle is constant and equal to T, and services are
initiated during green periods at instants that are integer multiples of T'.
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e Red periods have constant duration of value RT, and green periods have
random durations, taking values on the set

{MT,(M +1)T, ..., GT}

such that: starting from an initial interval of duration M T for a green period,
sucessive extensions of length T of the green period occur if there are vehicles
to be served at the intersection at the end of the interval, with extensions
being allowed only up to the point when the length of the green period
reaches the corresponding maximum duration of GT'.

Note that T is an arbitrary positive constant that denotes the time that a
vehicle spends to move through the intersection, i.e., its service time, R and M
are positive integers, and G — M is a nonnegative integer number denoting the
maximum number of extensions of T" seconds that are allowed to be performed in
green periods. Our assumptions imply that signal cycles have maximum duration
(G + R)T, and are divided in a server working period of minimum length MT
and maximum length GT, corresponding to a green period, followed by a server
vacation period of fixed length RT', corresponding to a red period.

‘We should stress that the approach that will be followed in the paper could be
adapted with small effort to accommodate: vehicles arriving at the intersection
according to a non-homogeneous compound-Poisson process; the intersection
having finite vehicle waiting capacity, and group service of vehicles — with a
maximum size group being allowed, as considered in [8]. The time discretization,
with time step T', which is implicit in the Markov chain that we will use to analyze
the system, represents a reasonable approximation of the real world traffic; and
the use of a constant service time to represent the time spent by a vehicle driving
across the intersection is also a fair approximation of the real world behaviour
of drivers.

Fort > 0, let (L(t),&(t)) denote the state of the system at instant ¢, with L(t)
representing the number of vehicles in the system (in brief, the queue length) at
instant ¢ and £(t) the state of the signal (in brief, the phase) at the same instant,
with the set of phases being {1,2,...,G + 1}, such that: phases 1,2,..., M
correspond to the initial M time intervals of duration T" of a green period, phases
M+ 1,M+2,...,G correspond to the successive time intervals of duration T
associated with extensions of a green period, and phase GG+ 1 corresponds to the
red periods of duration RT. In addition, let 7,, denote the instant (of time) of
occurrence of the n-th change of state in the phase process (£(t)), with 79 = 0.

A careful analysis of the traffic process {(L(t),£(t))} leads to the conclusion
that it is a Markov regenerative process with state space N x {1,2,...,G + 1};
see, e.g., [9] for details on Markov regenerative processes. Moreover, by observ-
ing the process {(L(t),£(t))} at times 7,,, we obtain the embedded Markov chain
{X,}, with X,, = (L(7,),&(mn)), n € N, denoting the state of the system imme-
diately after the n-th phase change, being an M/G/1 type Markov chain, a type
of chain that was investigated in detail in Neuts (1989).
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The Markov chain {X,} has state space Nx {1,2,...,G + 1} and transition
probability matrix
By Ay Ay -+
Al Ay Ay -
Q=10 Ay Ay - |- (1)

where the Ay, Aj, and By are (G+1) x (G+1) nonnegative matrices. The entries
of the matrices Ay are given by

AT)"
,AT(k') ’ i=1,2,....Gj=i+1
A ART)F
( k)u —/\RT((lg_)l)',i:G+17j:17k>1
0, otherwise,

The two matrices A, and B{ have similar forms but must be treated separately;
in detail,

e M i=1,2,... . M—1,j=i+1
(Bl — e, i=MM+1,...,G,j=G+1
0/4j e Ml i=G+1,j=
0

, otherwise,

and (AE))i’iJrl = (B{))i,i+1 for i = 1,2,...,M - 1, (A6)i,G+1 = (B(/))i,GJrl for
i=M,M+1,...,G+1, and all remaining entries of Aj, are 0.

Note that, for k¥ > 1: (Ag)ii+1, 1 < i < G, denotes the probability that
k vehicles arrive in a time interval, of duration T, elapsing from a transition
to phase ¢ to the next subsequent phase transition, to phase ¢ 4+ 1; conversely,
(Ar)c+11 denotes the probability that k& — 1 vehicles arrive in a time interval
elapsing from a transition to phase G + 1, starting a red signal, to the subse-
quent phase transition, to phase 1 and starting a green signal. The particular
shape of () is intuitive; in particular, the need for the introduction of the blocks
Aj and Bj in the first column of @ arises from the fact that the decision on
whether an extension of the green signal will occur is exclusively determined by
having vehicles waiting in line or not at the moment at which a decision on such
extension needs to be made.

From the structure of the matrix @ in (1), it follows that the Markov chain
{X,} is of M/G/1 type, and the invariant probability vector associated with
the stochastic matrix () can be computed using a procedure similar to the one
described in [14] in case the stationarity condition A(G + R) < G is satisfied, as
assumed in the rest of the paper.

To end the section, we let u = [u(® u™) ) .. ] denote the invariant proba-
bility vector associated with the stochastic matrix (), an infinite row vector such
that u®) = [ugr k2 - - - upGg41], k£ >0, is an (G + 1)-dimension row vector and
u@ = u, ul = 1, with 1 denoting a column vector of ones. Solving this equation
for u involves using a recursive matrix formula that is nicely described in [16].
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The element uy; denotes the stationary probability that, at the beginning of a
period in a phase, there are k vehicles in the system and the system is in phase
1. As such, the stationary probability of the number of vehicles in the system at
the beginning of a phase being equal to k is given by

G+1
Uke = Z Ugi, k>0,
i=1

Then, if we let r = [rq 7y ... rg41] denote the stationary probability vector of
the embedded phase process {{(7,)}, we have r; = 3 72 uj; since we may also
view ug; as the long-run fraction of phase transitions that lead to phase ¢ with
k vehicles staying in the system immediately after the phase transition, and r;
as the long-run fraction of phase transitions that lead to phase i.

3 Long-run properties of the traffic process

In this section we characterize the long-run properties of the Markov regenerative
traffic process {(L(¢),&(t))}. We first derive the long-run distribution of the
number of vehicles in the system, in Theorem 1, and obtain an expression for
the long-run mean number of vehicles in the system, in Theorem 2. After that, we
give an expression for the long-run mean sojourn time of vehicles in the system.
Finally, we present the long-run distribution of the number of extensions of the
green period, along with its mean.

We first note that the long-run fraction of phase i intervals that are initiated
with k vehicles in the system, denoted by my;, satisfies

Ui Ul

Thi = —mpr— = 1 2
Y ewi T )

Of particular relevance are the long-run (and stationary) distributions of the
number of vehicles in the system at the beginning of green light periods, {71 }x>0,
and at the beginning of red light periods {7, g+1}r>0- For later use, we let E[L;]
denote the long-run mean number of vehicles in the system immediately after a
transition to phase i, i.e.,

E[Li] = k. (3)
k=0

We now address the long-run properties of the phase process {£(¢)}. This is
a semi-Markov process with embedded Markov chain at phase transition epochs
{&n}, such that the amount of time the process remains in phase 4 in each visit
to the phase is the constant

T i#G+1
"T\RT,i=G+1.



Semi-actuated signalized intersections 7

Resorting to the theory of semi-Markov processes (see, e.g., [4], Theorem 4.6) we
conclude that the long-run fraction of time the traffic process spends in phase i,

[t
Dei = tli)rgo L/o lieo)=iy ds} ;

can be written as pe; = 1,13/ ZJG:Jrll r;T;, which reduces to

Ti -
Z_?zl ritRrg41’ ! 7{ G+1

Rrg41 .
=t i =G+ 1.
S ritRrG’ *

We next address the computation of the long-run distribution of the number
of vehicles in the system, L. For that, we let py; denote the long-run fraction of
time there are k vehicles in the system with the system being in phase i, i.e.,

1t
Pri = lim L/o Lir(s)=ke(s)=i} dS|

t—o0

implying that pe; = Y oo Pki, for i = 1,2,...,G + 1. The following theorem
expresses how the {pg;} may be computed from the {uy;}.

Theorem 1. For ke N andi€ {1,2,...,G+ 1},

k .
Ej:o Wi pre—; (%)

Pki = G 3

(Zj:l rj + Rrg)T

where (i), I €N, is given by

1 {1 ey (Aﬂm} . i#AG+1
(i) = . : (6)
- e BTyl M i =G

Proof. From the theory of Markov regenerative processes (see, e.g., [4], Theorem
4.7), the definition of py; and the structure of the traffic process {L(¢),£(t)}, it
follows that
k
) > j—o0 Uji 05 (k)
ki = —=ari

l:tl il
with 6;;(k) denoting the expected amount of time there are k vehicles in the sys-
tem during an interval of time in phase ¢ initiated with j vehicles in the system.
From (2) and since ZlG:ll rT, = (ZJ-Gzl r; + Rrg41)T, in order to prove the
theorem it remains to show that the quantities 6;;(k) are equal to the quantities
pi—; () defined in (6). This follows, for i € {1,2,...,G + 1} and 0 < j < k, from
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the following set of equalities:
T
0;i(k) = E /0 LiL(t)=k|L(0)=j,(0)=i} d

:/0 " PL(t) = KL(0) = 4,£(0) = i) dt

T k—j
“ae (M) ,
1
/Oe (k—j)!dt’ i1# G+

RT k—j
/ e—Atggt) .)'dt,i: G+1
0 _

%{ ATy D) } i£G+1

H e ART Yk (ART)’"} i=G+1

where the last equality may be obtained using induction on k — j (see [10]).
O

Let pre denote the long-run fraction of time there are k vehicles in the system,

[t
Pre = lim [/ Lires)= }ds} :

Then, as pre = ZZG:Il Pri, we conclude from Theorem 1 that for k£ € N,

SRS i (i)

Pke =
(ZJ LG+ 73+ RTG‘H) r

: (7)

with p—;(7) given in (6).

The following theorem provides a formula for the long-run mean number of
vehicles in the system.

Theorem 2. The long-run mean number of vehicles in the system is given by

G+1 G
Z riE[L;]|T; Z 7 + R*rgi
i= AT =1
E[L] = —— ! +7—]G : (8)
> ri+Brga | T > rj+ Rron
j=1 J=1

Proof. From the structure of the traffic process {L(¢),£(¢)} and the fact that

e
E[L] = lim l/o D kL= k}d5‘|7

k=0
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it follows from the theory of Markov regenerative processes (see, e.g., [4], Theo-
rem 4.7) that

z‘G:+11 D ko Wi Ok
E[L] = G+1
Zl:l 1

9)

with

T;
opi =E / > B+ D)= (i) L (0)=ke(0)=i) A | -
0

=0

This equality can also be written as

T; ©°
Opi = (k+1)P(L(t) = (k+1)|L(0) = k,£(0) = i) dt
0 =0
_/ (k_‘_l)ef)\t ()\t) dt
0 =0 !

From (9), taking into account (2) and the fact that S04 T2 = <ZjG:1 rj +
R?rgy1)T?, we have

G 0o G . 2 2
E[L] = i i e ke T 4 A (23:1 TR TGH) r _
(S ri+ Brap)T 2 (X5, + Rra)T
The expression (8) for E[L] now follows since Y ;- kmy; = E[L;]. O

When assessing traffic systems, delay of vehicles is a major concern. The
long-run distribution of the sojourn time of a vehicle in the system is complex,
but can be derived following a procedure similar to the one used in Section 4 of
[14], with the necessary adaptations. One immediate contribution can be put in
terms of the computation of the long-run mean sojourn time of a vehicle in the
system, E[W]. According to our model, it can be derived from Little’s formula
(cf. for instance [9]) applied to expression (8), giving:

G+1 G
Z riE[L;]T; Z rj + R*rgia
E[L] im1 j=1
B[] = = z = (10)
T Z r; + Rrg4 Z i+ Rraqa
j=1 J=1

The setting considered in this paper allows extensions of the green signal,
which occur when there are cars waiting to be served at the end of the minimum
duration of a green period. An important measure is the long-run mean number
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of extensions (or equivalently the time of extension) of a green period, which is
clearly not constant as it is the case in a non-actuated signalized intersection.

Let us consider a random variable Ng whose distribution is the long-run
distribution of the number of extensions of the green period. By establishing
that P(Ng > k—1) = ri‘f—;’“, for k=1,2,...,G— M, one can conclude that the
long run fraction of green periods with k extensions is

IMok — TMAktl = p —01,...,G— M —1
P(NG:k'): ro M ’ y b 3 (11)

— k=G—-M

’I“M’

and the long-run mean number of extensions of the green period is

G—-M
TM+k
E[Ng] = Y =, (12)
=1 M

4 Case study

In order to illustrate the applicability of the formulation that we propose, we
consider an intersection with 3 traffic streams having a primary phase and a
secondary phase as illustrated in Figure 1. The primary phase, associated to the
two main traffic streams, is not actuated. A sensor is placed two meters before
the stop line on the secondary street and the control of the secondary phase,
associated to this street, is actuated by means of the information provided by
the sensor (inter-arrival times). The time plan is the following: M =4, G = 15,
R = 15. We consider T' = 2 s. With this time plan, the maximum duration of

(S

Fig. 1. Scheme of the intersection, indicating the two phases.

extended green is T(G — M) = 22 s. The vehicle arrival rate on the main street
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is assumed to be 800 veh/hour for each stream. The performance measures that
we present correspond only to the actuated stream. Note that, in this situation,
the vehicle arrival rates on the main street do not influence the measures on the
secondary street.

Regarding the microsimulator, the following set up was used (see [18] for
details):

— vehicle’s characteristics: desired speed - Gaussian (13.9m/s,0.2m/s); maxi-
mum acceleration - Gaussian (1.7m/s%,0.3m/s?); length of a vehicle - Gaus-
sian (4.0m,0.3m);

— number of replications: between 100 and 1000, depending on arrival rate,
controlling for the standard deviation of the Monte-Carlo error to be smaller
than 1;

— warm up time: 600 s;

— run time: 2 hours/replica.

Vehicle’s characteristics have been set on the basis of information collected
concerning the real operations of traffic in urban areas (see [18]). In the simulator,
vehicles move according to a car-following model, that is, essentially drivers
adapt the speed of their vehicles to that of the vehicle in front of them, so that
their heading is kept above a minimum value which corresponds to the drivers
perception of safety (see, e.g. [15] for a review of car-following models). This
level of detail in the description of the behaviour of vehicles, which is typical of
micro-simulation models, is not possible in the Markov model that we propose.

Figure 2 shows estimates of the long-run mean waiting time of drivers and the
long-run mean duration of the green signal obtained by the model presented in
the previous sections together with the results obtained by using the simulation
model described in [18], considering different vehicle arrival rates on the sec-
ondary street. We use the word “Markov” in the figures to refer to the proposed
model.

The long-run mean queue length in depicted in Figure 3, along with the long-
run mean queue length at two different time points that are of interest in the
signal cycle, namely at the start of the green signal and at the start of the red
signal.

We can see the exponential increase of the mean waiting time when the vehi-
cle arrival rate increases, as expected. The results suggest that, from moderate
values of the vehicle arrival rate to considerable higher values (but away from
the saturation level) the estimates of the mean delay of drivers given by the
Markov based model through expressions (8)—(10) are quite close to the simula-
tion results. Unfortunately the approximation is not so good when we consider
very large vehicle arrival rates (i.e. close to the saturation level). This fact may
be explained by the diversity of reactions that are typical of drivers’ behaviour
and of interactions between vehicles which is mimicked in the simulation model
quite closely (cf. [18]) but is hardly taken into account in a Markov or renewal
type process modelling. For instance, drivers may decelerate promptly when ap-
proaching a slowing vehicle or queue. Interactions between vehicles have a major
impact when system parameters are close to the boundary of the stationarity
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Fig. 2. Comparison between estimates provided by the Markov chain based model and
by the microsimulation model: long-run mean delay of drivers (top); and long-run mean
queue length (bottom).
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Start of the green signal

--------- Start of the red signal

Mean of queue lenght

Mumber of vehicles per hour

Fig. 3. Estimates of the long-run mean queue length provided by the Markov chain
based model: long-run mean queue length; long-run mean queue length at the start of
the green signal; long-run mean queue length at the start of the red signal (overflow
queue).

region of the traffic system. We can also observe the exponential increase of the
queues when the vehicle arrival rate increases, as expected, and an increasing
mean duration of the green period due to the occurrence of several extensions
of the green period becoming common.

5 Conclusions and future work

A detailed probabilistic description of the delay of vehicles in semi-actuated
signalized traffic intersections, as well as of the length of queues and the duration
of the green signal can be obtained by considering an M/D/1 queue with server
vacations and using, for its investigation, a Markov-regenerative process that
keeps track of the number of vehicles at the intersection along the phase of the
signal cycle over time.

When compared to simulation results, the expressions that we give in the
paper provide realistic estimates of the relevant performance measures investi-
gated. However, for large traffic flows (congestion scenarios) the queue length
and delay measures obtained from the proposed model tend to be larger than
the estimates returned by the numerical simulator.

Future work will address the extension of the analysis for the case of semi-
actuated control in which extensions are also allowed for the red signal.

Acknowledgments. The first author was partially supported by CMUP under a
grant of the project UID/MAT/00144,/2013, financed by FCT/MEC (PIDDAC).
This research was partially supported by CMUP (UID/MAT/00144,/2013) and



14

F. Macedo and P. M.-Oliveira and M. Simoes and A. Pacheco

CEMAT (UID/Multi/04621/2013), funded by FCT (Portugal) with National
(MEC) and European structural funds through the programs FEDER, under
partnership agreement PT2020.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Al Hanbali, A., de Haan, R., Boucherie, R.J., van Ommeren, J..: Time-limited
polling systems with batch arrivals and phase-type service times. Annals of Oper-
ations Research 198(1), 57-82 (2012)

Brockfeld, E., Wagner, P.: Validating microscopic traffic flow models. In: Intelligent
Transportation Systems Conference, 2006. ITSC’06. IEEE. pp. 1604-1608. IEEE
(2006)

Doshi, B.T.: Queueing systems with vacations — a survey. Queueing Systems 1(1),
29-66 (1986)

El-Taha, M., Stidham Jr, S.: Sample-path analysis of queueing systems, vol. 11.
Springer Science & Business Media (2012)

Frigui, I., Alfa, A..: Analysis of a time-limited polling system. Computer Commu-
nications 21(6), 558-571 (1998)

de Haan, R., Boucherie, R.J., van Ommeren, J..: A polling model with an au-
tonomous server. Queueing Systems 62(3), 279-308 (2009)

Heidemann, D.: Queue length and delay distributions at traffic signals. Transporta-
tion Research Part B: Methodological 28(5), 377-389 (1994)

Hu, X., Tang, L., Ong, H.: A M/DX/l vacation queue model for a signalized
intersection. Computers & Industrial Engineering 33(3), 801-804 (1997)
Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall/CRC
Texts in Statistical Science, Taylor & Francis (1996), http://books.google.ch/
books?id=HOPxhUonodgC

Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and
expected reward formulae with random time bounds. Computers & Mathematics
with Applications 51(2), 305-316 (2006)

Leung, K.K.: Cyclic-service systems with nonpreemptive, time-limited service.
IEEE Transactions on Communications 42(8), 2521-2524 (1994)

Leung, K.K., Eisenberg, M.: A single-server queue with vacations and non-gated
time-limited service. Performance Evaluation 12(2), 115-125 (1991)

Lin, D., Wu, N., Zong, T., Mao, D.: Modeling the impact of side-street traffic
volume on major-street green time at isolated semi-actuated intersections for signal
coordination decisions. In: Transportation Research Board 95th Annual Meeting.
No. 16-1308 (2016)

Pacheco, A., Simoes, M.L., Milheiro-Oliveira, P.: Queues with server vacations
as a model for pretimed signalized urban traffic. Transportation Science 2017(0),
available on line (in press)

Panwai, S., Dia, H.: Comparative evaluation of microscopic car-following behavior.
IEEE Transactions on Intelligent Transportation Systems 6(3), 314-325 (2005)
Ramaswami, V.: A stable recursion for the steady state vector in markov chains
of M/G/1 type. Stochastic Models 4(1), 183-188 (1988)

Ryus, P., Vandehey, M., Elefteriadou, L., Dowling, R.G., Ostrom, B.K.: Highway
capacity manual 2010. Tr News (273) (2011)

Simoes, M.d.L., Milheiro-Oliveira, P., Pires da Costa, A.: Modeling and simulation
of traffic movements at semiactuated signalized intersections. Journal of Trans-
portation Engineering 136(6), 554-564 (2009)



19.

20.

21.

22.

23.

24.

Semi-actuated signalized intersections 15

Sun, B., Wu, N., Ge, Y.E., Kim, T., Zhang, H.M.: A new car-following model
considering acceleration of lead vehicle. Transport 31(1), 1-10 (2016)

Takagi, H.: Analysis and applications of polling models, performance evaluation.
Performance Evaluation LNCS 1769(0), 423442 (2000)

Vishnevskii, V., Semenova, O.: Mathematical methods to study the polling sys-
tems. Automation and Remote Control 67(2), 3-56 (2006)

Viti, F., Van Zuylen, H.J.: The dynamics and the uncertainty of queues at fixed and
actuated controls: A probabilistic approach. Journal of Intelligent Transportation
Systems 13(1), 39-51 (2009)

Viti, F., Van Zuylen, H.J.: Probabilistic models for queues at fixed control signals.
Transportation Research Part B: Methodological 44(1), 120-135 (2010)

Webster, F.V.: Traffic signal settings. Tech. rep., Road Research Laboratory, 39,
HMSO, London (1958)



