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We investigate the sedimentation properties of quasi-neutrally buoyant inertial particles 
carried by incompressible zero-mean fluid flows. We obtain generic formulae for the 
terminal velocity in generic space-and-time periodic (or steady) flows, along with further 
information for flows endowed with some degree of spatial symmetry such as odd parity 
in the vertical direction. These expressions consist in space-time integrals of auxiliary 
quantities that satisfy partial differential equations of the advection–diffusion–reaction 
type, which can be solved at least numerically, since our scheme implies a huge reduction 
of the problem dimensionality from the full phase space to the classical physical space.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions les propriétés de sédimentation de particules inertielles dotées de flottabilité 
quasi neutre et transportées par un écoulement incompressible à moyenne nulle. Nous 
obtenons des formules génériques pour la vitesse terminale dans des écoulements en 
général périodiques en espace et en temps (ou statiques), avec d’ultérieures informations 
disponibles pour les écoulements dotés de symétries spatiales spécifiques, telles qu’une 
parité négative dans la direction verticale. Ces expressions consistent en des intégrales 
spatio-temporelles de quantités auxiliaires qui obéissent à des équations aux dérivées 
partielles du type advection–diffusion–réaction. Ces dernières peuvent être résolues 
au moins numériquement, car notre procédure implique une forte réduction de la 
dimensionnalité du problème, de l’espace des phases complet à l’espace physique classique.
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1. Introduction

Particles advected by a fluid are called “inertial” if, when studying their motion, one cannot neglect the particle rel-
ative inertia with respect to the surrounding fluid. This is usually due to their (small but) not negligible size, and/or to 
a mismatch between the two mass densities. Common examples are represented by small bubbles in liquids, droplets in 
gases, and aerosols in a generic fluid. The comprehension of the dynamics of these impurities is still an open issue from the 
theoretical, experimental, and numerical points of view [1–9]. Implications are relevant in many applied domains: plankton 
dynamics in biology [10], chemical reactors, spray combustion and emulsions in industrial engineering [11], planet for-
mation in astrophysics [12], transport of pollutants or floaters, rain initiation and sedimentation processes in geophysics 
[13].

Our focus is precisely on sedimentation, with a special attention to those situations where the mass–density ratio is 
(different from but) very close to unity. This is for instance the case for most living beings suspended in an aquatic medium. 
The intuitive picture is the following: inertia causes a deviation of the particles from the underlying fluid trajectory, which 
leads to inhomogeneities for the particle concentration in regions of the flow with different dynamical properties, due to 
the presence of symmetry-breaking forces and preferential directions—in our case, gravity along the vertical one. Moreover, 
we will also consider the effect of Brownian diffusivity. The latter is usually neglected in most investigations on inertial 
particles, assuming that Brownian noise is very small for finite-size particles. However, this is not true for tiny particles, and 
especially in biophysical applications, where a limited capacity of autonomous movement could be considered in this simple 
fashion. This work therefore represents a complementary study with respect to similar ones that focused on the limits of 
small inertia or of large Brownian diffusivity.

Our principal objective is to obtain an Eulerian description of the settling (i.e. falling or rising) in steady or periodic flows 
starting from the well-known Lagrangian viewpoint for particle motion. Despite this, our theory provides the whole detailed 
statistical information of particle motion. Indeed, the probability density function of having a particle in a given position at 
a certain time is available from our approach, at least in a perturbative way. However, this implies the resolution of partial 
differential equations, which in general can be accomplished only numerically.

The paper is organized as follows. In section 2, we define the problem under investigation, we specify our assumptions 
and we sketch our analytical procedure. We enounce the final result for generic flows in section 3, and we specialize it for 
vertically-antisymmetric ones in section 4. Conclusions and perspectives follow in section 5. The Appendix A is devoted to 
showing the details of the calculation and to recalling the mathematical tools employed.

2. Equations

We consider a very dilute suspension of point-like inertial particles subject to the gravitational acceleration g and to 
Brownian diffusion, carried by a fluid flow. We suppose that our d-dimensional incompressible velocity field is steady or 
periodic in time (with period T ), and periodic in space with unit cell P of linear size �. It is not a restriction to focus on 
velocity fields whose average vanishes over P:∫

P

dx u(x, t) = 0 (1)

In this way, any deviation of the settling velocity with respect to the value found in still fluids will represent a genuine 
interplay between gravity and the other properties of particle and flow, and not a mere streaming or sweeping effect. The 
same technique can be extended to handle the case of a random, homogeneous, and stationary velocity field [14] with some 
non-trivial modifications in the rigorous proofs of convergence [15]. For an interesting investigation of the role played by 
mean currents on the eddy diffusivity of tracers, see, e.g., [16–21].

Neglecting any possible interaction with other particles or with physical boundaries, and taking into account the feedback 
on the transporting fluid in an effective way by means of a simplified added-mass effect, the Lagrangian dynamics reduces 
to the following set of stochastic differential equations for the particle position X (t) and covelocity V(t) [22,23]:⎧⎪⎨

⎪⎩
Ẋ (t) = V(t) + βu(X (t), t) + √

2Dμ(t)

V̇(t) = −V(t) − (1 − β)u(X (t), t)

τ
+ (1 − β)g +

√
2κ

τ
ν(t)

(2)

The independent vectorial white noises μ(t) and ν(t) influence the particle dynamics by means of the coupling constants 
D and κ , which can be identified as Brownian diffusivities [24]. The presence of two different parameters in the equations 
for the position and the velocity will become clear shortly. The pure number β ≡ 3ρf/(ρf + 2ρp) ∈ [0, 3], built from the 
constant fluid (ρf) and particle (ρp) mass densities, is dubbed “added-mass factor”, because it takes into account the fact 
that any particle motion necessarily implies some fluid motion around it, thus increasing the intrinsic inertia—with the sole 
exception of very heavy particles such as aerosols or droplets in a gas (β � 0). It also induces a macroscopic discrepancy 
between the particle velocity Ẋ (t) and covelocity V(t), which is maximum for very light particles such as bubbles in 
a liquid (β � 3). Alternatively, in terms of slip velocity—defined as the difference between the particle velocity and the 
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local instantaneous fluid velocity sampled by the particle: Y(t) ≡ Ẋ (t) − u(X (t), t)—the covelocity turns out to be V(t) =
Y(t) + (1 − β)u(X (t), t) − √

2Dμ(t). Finally, the Stokes time τ in the drag term expresses the typical response delay of 
particles to flow variations, and is defined as τ ≡ Q 2/(3γ β) for spherical inertial particles of radius Q immersed in a 
fluid with kinematic viscosity γ . Note, however, that, as customary in inertial-particle studies, β and τ are assumed as 
independent parameters, since the latter can be varied even when the former is kept fixed by suitably changing Q and γ . 
The dynamical system (2) neglects the classical contributions due to Basset (time integration for memory/history/wake 
effects), Oseen (nonlinear finite-Reynolds-number correction to the basic Stokes flow), Faxén (spatial expansion of the fluid 
flow for finite particle size) and Saffman (lateral lift in case of rotation).

After statistical averaging of (2) on μ(t) and ν(t) [25–28], the generalized Fokker–Planck (or Kramers, or forward Kol-
mogorov) equation for the phase-space density p(x, v, t) is obtained:{

∂t + ∂x · [v + βu(x, t)] + ∂ v ·
[

(1 − β)u(x, t) − v

τ
+ (1 − β)g

]
−D∂2

x − κ

τ 2
∂2

v

}
p = 0 (3)

Let us denote by L(x, v, t) the linear operator in curly braces on the left-hand side of (3), so that Lp = 0. For future use, 
let us also introduce the corresponding physical-space concentration, obtained by integrating on the covelocity variable:

q(x, t) ≡
∫
Rd

dv p(x, v, t) (4)

The particle terminal velocity [29–35] is defined as a weighted average of the particle velocity, from the first equation 
in (2):

w ≡ 〈V(t) + βu(X (t), t) + √
2Dμ(t)〉p =

T∫
0

dt

T

∫
P

dx
∫
Rd

dv [v + βu(x, t)]p(x, v, t) (5)

(here and in what follows, the average on the temporal period T is skipped for steady flows). Notice that in general such 
quantity corresponds to a mean behavior and not to an asymptotic value—except for the case of still fluids if Brownian 
diffusion is negligible. Indeed, inside a flow, each particle can wander in any direction and follow more or less closely the 
underlying fluid trajectory, but the overall evolution of a bunch of non-interacting particles will consist in a falling/rising 
described by w . On the contrary, in our model, the well-known “bare” asymptotic value of sedimentation in still fluids is:

W ≡ (1 − β)τ g (6)

As proven in A.1, the deviation of the terminal velocity from its bare value can be rewritten using (4) as:

Z ≡ w −W =
T∫

0

dt

T

∫
P

dx
∫
Rd

dv u(x, t)p(x, v, t) =
T∫

0

dt

T

∫
P

dx u(x, t)q(x, t) (7)

Now, let us focus on particles whose mass density differs only slightly (either in excess or in shortfall) from the fluid one 
[36–38]. Since β � 1, then 1 −β is small but with an undefined sign, so we introduce a second small parameter in the form 
of α ≡ |1 − β| 	 1. We also define J ≡ sgn(1 − β), thus β = 1 −Jα. It can be shown that, in this situation, it is possible 
to proceed analytically only if one makes the further assumption that the Brownian-diffusion coefficient κ appearing in 
the equation for the particle acceleration is small as well, namely with the same asymptotic behavior as the mass–density 
mismatch: κ ∼ α 	 1; or, in other words, one can define a finite constant K ≡ κ/|1 −β| = α−1κ with dimensions of square 
length over time. Notice that no assumption is made on the Brownian diffusivity D driving the particle velocity, which 
can then be thought of as a regularizing parameter. As is well known, the diffusivity of a tracer particle—obeying (2) with 
τ = 0—would turn out to be simply D + κ , but for inertial particles the situation is more subtle and, indeed, our analytical 
procedure works only if κ is small and D is non-zero. It is also worth mentioning that, had one proceeded on a Lagrangian 
route before turning to the (Eulerian) phase-space description, the zeroth-order situation β = 1 would correspond to a 
Markovian process driven by a colored noise (Ornstein–Uhlenbeck) in the Langevin equation, as already described in [39]. 
The Lagrangian approach has also been followed in [40] to find exact expressions for the particle eddy diffusivity in shear 
or Gaussian flows.

Upon rescaling the covelocity variable according to v �→ y ≡ v/
√|1 − β| = α−1/2 v , the generalized Fokker–Planck oper-

ator splits into:

L = L(0) + α1/2L(1) + αL(2)

with
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L(0) = ∂t + u(x, t) · ∂x −D∂2
x − τ−1∂ y · y −Kτ−2∂2

y (8a)

L(1) = y · ∂x +J [τ−1u(x, t) + g] · ∂ y (8b)

L(2) = −J u(x, t) · ∂x (8c)

For the sake of notational simplicity, we define a “gravitational velocity field” z(x, t) ≡ u(x, t) +τ g (with ∂x ·u = 0 ⇒ ∂x · z =
0) and two linear operators,

M(x, t) ≡ ∂t + u(x, t) · ∂x −D∂2
x (9)

(advection–diffusion in physical space) and

N (y) ≡ ∂ y · y +Kτ−1∂2
y (10)

(related to the Ornstein–Uhlenbeck formalism). In terms of them,

L(0) = M(x, t) − τ−1N (y) , L(1) = y · ∂x +J τ−1z(x, t) · ∂ y

Our rescaling is dictated by the close analogy with the situation described in [35,41,42], where the small-inertia limit was 
performed. In that case, the small quantity in the denominator was the square root of τ , while here it is that of |1 − β|. As 
shown in the appendix, the advantage of such rescaling lies in the fact that it allows for a full decoupling of the rescaled 
covelocity from the physical-space dynamics, and for the resolution of equations based on the operator (10) in terms of a 
basic Gaussian state. Note that in the present framework we have to request the smallness of κ explicitly, a condition that, 
on the contrary, was somehow implicit in those works, as explained in [41] by introducing the non-dimensional Stokes and 
Péclet numbers (whose product was required to be O (1)).

It is now natural to expand the phase-space density into a power series in 
√

α and to replace into (3):

p(x, y, t) =
∞∑
I=0

αI/2 p(I)(x, y, t)

implying that

L(0)p(0) = 0 (11a)

L(0)p(1) = −L(1)p(0) (11b)

L(0)p(I) = −L(1)p(I−1) −L(2)p(I−2) (I ≥ 2) (11c)

3. Results for periodic incompressible flows

The terminal velocity is accordingly expanded as:

w =
∞∑
I=0

αI/2 w(I) Z =
∞∑
I=0

αI/2Z(I) (12)

Since W = αJ τ g , then w(I) = Z(I) + δI2J τ g . It can be shown (see appendix for details) that actually all the half-integer 
orders of these expressions (corresponding to odd I) identically vanish, so that in practice such expansions reduce to 
common analytical ones. Moreover, one also sees that w(0) = 0 = Z(0) , i.e. particles with exactly-neutral buoyancy—which 
would macroscopically stand still in fluids at rest—on average do not settle either in the presence of our class of flows. 
In what follows, we are going to provide the expressions for the terminal velocity up to the second order, that is, w(2)

and w(4) . Formula (5) can be manipulated in order to succeed in performing the covelocity integrals, and what is left are 
space–time integrals of a set of fields satisfying the equations of the advection–diffusion–reaction type in the configuration 
space. At working order, such fields of our interest are denoted by q(0) , r(1)

i , q(2) , s(2)
i j , r(3)

i , and q(4) . Apart from imposing 
the constancy of q(0) = �−d , their other partial differential equations are solvable analytically only for specific flows such 
as parallel ones. However, such a class of flow is not relevant for our scope, since no contribution to the terminal velocity 
arises from them. Nevertheless, our procedure allows for at least a numerical resolution in generic flows, because of the 
drastic reduction in the dimensionality of the problem from 2d + 1 to d + 1.

Postponing all details to Appendix A, and defining ∇i ≡ ∂xi , we assert first of all that:

w(2)
i = J τ gi +Z(2)

i , Z(2)
i =

T∫
dt

T

∫
dx ui(x, t)q(2)(x, t) (13)
0 P
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with q(2) introduced in (26); and

w(4)
i = Z(4)

i =
T∫

0

dt

T

∫
P

dx ui(x, t)q(4)(x, t) (14)

with q(4) introduced in (30).
To determine the order α1, the set of relevant equations consists of:

(M+ τ−1)r(1)
i = �−dJK−1zi (15a)

Mq(2) = −Kτ−1∇ir
(1)
i (15b)

with r(1)
i introduced in (24).

To analyze O (α2) too, the system also comprises:

(M+ 2τ−1)s(2)
i j = −∇ir

(1)
j +JK−1zir

(1)
j (16a)

(M+ τ−1)r(3)
i = −∇iq

(2) +JK−1ziq
(2) +J u · ∇r(1)

i −Kτ−1∇ j(s(2)
ji + s(2)

i j ) (16b)

Mq(4) = J u · ∇q(2) −Kτ−1∇ir
(3)
i (16c)

with s(2)
i j and r(3)

i introduced in (26) and (28) respectively.
The conclusions that can be drawn analytically at this stage are the following. The terminal velocity is given by

w = αw(2) + α2 w(4) + O(α3) (17)

with the leading order from (13) represented by:

αw(2) = |1 − β|J
⎡
⎣τ g +

T∫
0

dt

T

∫
P

dx u(x, t)J −1q(2)(x, t)

⎤
⎦

= W + (1 − β)

∫
u f (u, τ , g,D) (18)

Here we exploited the relation 1 − β = Jα and the fact that—due to (15a)—the field r(1)/(JK−1) is independent of both 
J and K (i.e. of both β and κ ), so the same independence also holds for the field q(2)/J because of (15b). Therefore, in 
the limit of quasi-neutrally-buoyant particles (and of κ with the same order of smallness as |1 − β|), the main contribution 
to the terminal velocity is represented by its bare value plus a same-order deviation only dependent on the other finite 
quantities into play, and which can be computed numerically via (18) and (15a)–(15b). This leading order is independent of 
κ and overall odd in 1 −β: with all the other parameters fixed, particles slightly heavier than the fluid settle with a velocity 
opposite to the one of slightly lighter particles; at this stage, no immediate conclusion can be drawn on the sign of such 
a deviation. Note that expression (17) does not exclude the possible presence of further terms linear in |1 − β|, but with a 
“prefactor” proportional to a positive power of κ , because in our asymptotics these would be higher-order contributions. No 
immediate simplification can be performed on the term α2 w(4) from (14) for the time being.

4. Simplifications for flows endowed with vertical parity

If a vertical-parity symmetry is imposed on the flow, further simplifications come along (at least for those situations 
where gravity is aligned with one side of the periodicity cell). Namely, if at a point x∗ defined as the vertical reflection of 
the point x with respect to a reference horizontal plane (x∗ · g = −x · g and x∗ × g = x × g), the vertical and horizontal 
components of the flow satisfy

u(x∗, t) · g = −u(x, t) · g and u(x∗, t) × g = u(x, t) × g (19)

then it is possible to split all the relevant physical-space fields into their even and odd parts. For instance, ue/o(x, t) ≡
[u(x, t) ± u(x∗, t)]/2, with a purely odd vertical component u · g = uo · g and (a) purely even horizontal component(s) 
u × g = ue × g . The consequent equations derived from the sets (15) and (16) are simpler to deal with, first of all from 
a numerical point of view as defined on a halved domain. Analytically, it can be shown that the function f in (18) is 
actually linear in g , so that w(2) is overall proportional to gravity; since the same can be stated also for w (4) in (17), such 
a conclusion holds for the whole terminal velocity at working order.

Notice that this category also comprises cellular flows often adopted in analytical and numerical investigations to mimic 
Langmuir circulation on the ocean surface or lateral convective rolls in Rayleigh–Bénard cells [29,31,43–45,35].



126 M. Martins Afonso, S.M.A. Gama / C. R. Mecanique 346 (2018) 121–131
5. Conclusions and perspectives

We investigated the sedimentation process of quasi-neutrally buoyant inertial particles in zero-mean incompressible 
flows. Such particles are especially relevant in biophysical applications, where most of the aquatic microorganisms [46] have 
a mass density very similar to the one of water. General formulae have been found for their terminal velocity in generic 
space-and-time periodic (or steady) flows, with some additional information available for flows endowed with some degree 
of spatial symmetry such as negative parity in the vertical direction. These expressions consist in space-time integrals of 
auxiliary quantities that satisfy partial differential equations of the advection–diffusion–reaction type, which can be solved 
at least numerically, since our procedure allowed for a drastic reduction of the problem dimensionality from the full phase 
space to the classical physical space. Moreover, our expressions extend the range of validity of this approach to any value of 
the Stokes’ time—away from previous perturbative limits—or at least to those situations where the basic dynamical system 
(2) makes sense and the (Basset, Oseen, Faxén, Saffman) corrections can be neglected. As a byproduct, our analysis also 
provides the physical-space particle probability density function once these differential equations are solved.

Among the possible perspectives, first of all we mention the study of the particle effective—or “eddy”—diffusivity [47–51,
42]. This can be performed by means of the multiple-scale method [52–54], and represents the following step in the 
investigation of higher-order effects in particle advection, including also the possibility of anomalous transport [55,56]. 
When analyzing the possibility of a net displacement also in the horizontal direction, a clear connection with the problem 
of Stokes’ drift arises [57–59]. Finally, we would like to attack the problem of particle dispersion following a point-source 
emission, an issue that has already been tackled for tracers [25,60] or slightly-inertial particles [41], and that should be 
recast in the present framework of quasi-neutral buoyancy.
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Appendix A. Calculation details

The first equation to attack is (11a). Thanks to the full decoupling in the operator (8a), we can solve it through variable 
separation:

p(0)(x, v, t) = σ(y)q(0)(x, t) (20)

=⇒ 1

q(0)(x, t)
M(x, t)q(0)(x, t) = c = τ−1

σ(y)
N (y)σ (y) (21)

Looking at the right-hand-side equality in (21) integrated on the covelocity space, we get:∫
d y cσ(y) = τ−1

∫
d y ∂ y · [yσ(y) +Kτ−1∂ yσ(y)] = 0 =⇒ c = 0

=⇒ σ(y) = (2πK/τ )−d/2e−y2τ/2K (chosen with unit normalization) (22)

From the corresponding left-hand-side equality, we deduce an advection–diffusion equation in physical space:

∂tq
(0)(x, t) + u(x, t) · ∂xq(0)(x, t) −D∂2

x q(0)(x, t) = 0 (23)

For future use, we introduce the fully-symmetric polynomials (equivalent to multivariate d-dimensional Hermite polynomi-
als, and with +S denoting the symmetrization process of any tensor on its free indices):

Ci j ≡ yi y j −Kτ−1δi j , Ai jk ≡ yi y j yk −Kτ−1(yiδ jk + S)

Bi jkl ≡ yi y j yk yl −Kτ−1(yi y jδkl + S) +K2τ−2(δi jδkl + S)

together with the Gaussian weight σ(y), they enjoy the relations:

N (y)σ (y) = 0 , N (y)[yiσ(y)] = −yiσ(y) , N (y)[Ci jσ(y)] = −2Ci jσ(y)

N (y)[Ai jkσ(y)] = −3Ai jkσ(y) , N (y)[Bi jklσ(y)] = −4Bi jklσ(y)∫
d y yiσ(y) =

∫
d y Ci jσ(y) =

∫
d y Ai jkσ(y) =

∫
d y Bi jklσ(y) = 0

along with
∫

d y σ(y) = 1 , and
∫

d y y ⊗ yσ(y) = Kτ−1I
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By making use of lower-order results, we can now proceed to solve the system (11) recursively, starting from (11b):

[M(x, t) − τ−1N (y)]p(1)(x, y, t) = −[y · ∂x +J τ−1z(x, t) · ∂ y]p(0)(x, y, t)

= σ(y)yi[−∂xi +JK−1zi(x, t)]q(0)(x, t)

The resolution passes through a process of Hermitianization (very closely related to the second-quantization algorithm [35]). 
It consists in rewriting the unknown as the product between the Gaussian weight and an expansion in a power series in y
up to the order in question, in this case the first, with space–time-dependent prefactors (notice that in (20) an expansion 
up to order 0, i.e. no expansion at all, appeared):

p(1)(x, y, t) = σ(y)[q(1)(x, t) + yir
(1)
i (x, t)] (24)

=⇒
{ [∂t + u · ∇ −D∇2]q(1) = 0

[∂t + u · ∇ −D∇2 + τ−1]r(1)
i = −∇iq(0) +JK−1ziq(0)

(25)

Resolution of (11c) (for I = 2):

[M(x, t) − τ−1N (y)]p(2)(x, y, t) = −[y · ∂x +J τ−1z(x, t) · ∂ y]p(1)(x, y, t) +J u(x, t) · ∂x p(0)(x, y, t)

=⇒ p(2)(x, y, t) = σ(y)[q(2)(x, t) + yir
(2)
i (x, t) + Ci j s

(2)
i j (x, t)] (26)

=⇒

⎧⎪⎪⎨
⎪⎪⎩

[∂t + u · ∇ −D∇2]q(2) = J u · ∇q(0) −Kτ−1∇ir
(1)
i

[∂t + u · ∇ −D∇2 + τ−1]r(2)
i = −∇iq(1) +JK−1ziq(1)

[∂t + u · ∇ −D∇2 + 2τ−1]s(2)
i j = −∇ir

(1)
j +JK−1zir

(1)
j

(27)

Resolution of (11c) (for I = 3):

[M(x, t) − τ−1N (y)]p(3)(x, y, t) = −[y · ∂x +J τ−1z(x, t) · ∂ y]p(2)(x, y, t) +J u(x, t) · ∂x p(1)(x, y, t)

=⇒ p(3)(x, y, t) = σ(y)[q(3)(x, t) + yir
(3)
i (x, t) + Ci j s

(3)
i j (x, t) +Ai jka(3)

i jk (x, t)] (28)

=⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[∂t + u · ∇ −D∇2]q(3) = J u · ∇q(1) −Kτ−1∇ir
(2)
i

[∂t + u · ∇ −D∇2 + τ−1]r(3)
i = −∇iq(2) +JK−1ziq(2) +J u · ∇r(1)

i −Kτ−1∇ j(s(2)
ji + s(2)

i j )

[∂t + u · ∇ −D∇2 + 2τ−1]s(3)
i j = . . .

[∂t + u · ∇ −D∇2 + 3τ−1]a(3)

i jk = . . .

(29)

Resolution of (11c) (for I = 4):

[M(x, t) − τ−1N (y)]p(4)(x, y, t) = −[y · ∂x +J τ−1z(x, t) · ∂ y]p(3)(x, y, t) +J u(x, t) · ∂x p(2)(x, y, t)

=⇒ p(4)(x, y, t) = σ(y)[q(4)(x, t) + yir
(4)
i (x, t) + Ci j s

(4)
i j (x, t) +Ai jla

(4)

i jl (x, t) + Bi jklb
(4)

i jkl(x, t)] (30)

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∂t + u · ∇ −D∇2]q(4) = J u · ∇q(2) −Kτ−1∇ir
(3)
i

[∂t + u · ∇ −D∇2 + τ−1]r(4)
i = . . .

[∂t + u · ∇ −D∇2 + 2τ−1]s(4)
i j = . . .

[∂t + u · ∇ −D∇2 + 3τ−1]a(4)

i jk = . . .

[∂t + u · ∇ −D∇2 + 4τ−1]b(4)

i jkl = . . .

(31)

Note that, for our purpose, in (29) we only need to investigate q(3) and r(3) , and in (31) only q(4) . It is also worth underlining 
that q(x, t) = ∑∞

I=0 q(I)(x, t), but the equations for the q(I) ’s necessarily imply the parallel resolution of the ones for the 
r(•) ’s and s(•) ’s to form a closed system and thus to compute the terminal velocity.

The overall normalization of the phase-space density p corresponds to an integration on the whole covelocity space 
(either in the original coordinate v or in the rescaled one y, which is indifferent because of the appearance of a Jacobian) 
and on the spatial periodicity cell, for any time:∫

P

dx
∫
Rd

dv p(x, v, t) = 1 =
∫
P

dx q(x, t) (32)

=⇒
∫

dx
∫

d

d y p(I)(x, y, t) = δI0 =
∫

dx q(I)(x, t)
P R P
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For what concerns the initial conditions of p, they are more difficult to implement, nevertheless it is possible to impose 
them on q(0) and q(1) . Indeed, these two scalar fields satisfy the unforced advection–diffusion equations (23) and (25a), 
whose unique periodic solutions (the one we are interested in) are the constants. The two exact values of the constants—the 
inverse of the physical volume and zero, respectively—are dictated by the spatial normalization (32) and by the covelocity 
one (22):

q(0)(x,0) = �−d = q(0)(x, t) , q(1)(x,0) = 0 = q(1)(x, t) (33)

Note that a transport property such as w cannot depend on the initial conditions, which are actually forgotten due to the 
diffusive term in the operator M. In other frameworks where this independence is a priori not met, they must be taken as 
uniform or otherwise averaged upon. This point is strictly related to the fact that we neglect any possible transient decay in 
the phase-space density, and we only focus on its long-term behavior which influences the terminal velocity. This steady or 
periodic behavior of p(x, v, t) is due to the steady/periodic character of the fluid flow u(x, t), which is the only non-constant 
driving agent in the evolution equation (3).

Keeping into account the expansions of the terms making up p starting from (20), definition (5) translates into:

w(0) =
T∫

0

dt

T

∫
P

dx
∫
Rd

d y u(x, t)p(0)(x, y, t) =
T∫

0

dt

T

∫
P

dx u(x, t)q(0)(x, t) = 0 (34)

w(1) =
T∫

0

dt

T

∫
P

dx
∫
Rd

d y [u(x, t)p(1)(x, y, t) + yp(0)(x, y, t)]

=
T∫

0

dt

T

∫
P

dx u(x, t)q(1)(x, t) = 0 (35)

w(I) =
T∫

0

dt

T

∫
P

dx
∫
Rd

d y {u(x, t)[p(I) −J p(I−2)](x, y, t) + yp(I)(x, y, t)}

=
T∫

0

dt

T

∫
P

dx {u(x, t)[q(I) −J q(I−2)](x, t) +Kτ−1r(I−1)(x, t)} (36)

(for I ≥ 2). The vanishing of expressions (34) and (35) is due to (33), in the former case coupled with (1). Because of (29a) 
and (27b) (i.e. q(3)(x, t) = 0), one sees that also w(3) = 0, and similarly for all odd I ’s in (36) by induction.

The relevant equations from the systems (25)–(31) have already been reported in (15) and (16). It is particularly useful 
to write down the temporal evolution of the following spatial integrals, arising from (25b) and (29b) respectively:

(∂t + τ−1)

∫
P

dx r(1)
i (x, t) = JK−1τ gi (37)

(∂t + τ−1)

∫
P

dx r(3)
i (x, t) = JK−1

∫
P

dx ui(x, t)q(2)(x, t) (38)

A temporal integration of (37) allows us to recast (36) for I = 2 into the form (13); a similar manipulation of (38) for I = 4
leads to (14).

It is easy to show that parallel flows, i.e. fluid motions in which the velocity points always and everywhere in the 
same direction (say x1), do not affect sedimentation if they are steady/periodic and incompressible—implying that u does 
not depend on x1 itself—at least at working order. Indeed, for such a class of flows, all the advective terms of the type 
u(x, t) · ∇p(x, v, t) vanish (also when acting on other statistical quantities based on p), because no long-term dependence 
on the spatial coordinate x1 aligned with u can arise—except for possible transient behaviors that can be neglected for our 
scope. As a consequence, one can easily prove that all the following quantities derived from (15) and (16) vanish:

∇ · r(1)(x, t) = q(2)(x, t) = ∇∇ : s(2)(x, t) = ∇ · r(3)(x, t) = q(4)(x, t) = 0

Accordingly, w =W + O (α3), i.e. Z = 0 at working order.
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A.1. Proof of the expression for the terminal-velocity correction

Let us firstly prove the rewriting (5) of the full terminal velocity, by exploiting the definition of the phase-space density 
as an average of Dirac delta’s on every random factor:

p(x, v, t) ≡ 〈δ(x −X (t))δ(v −V(t))〉μ,ν (39)

Let us remind that both μ(t) and ν(t) are white noises, meaning that the values assumed at a certain time instant are 
completely uncorrelated from the ones assumed at a time instant immediately following. Moreover, by invoking causality, 
one infers that the instantaneous values of the noises at time t can influence the particle dynamics only at future times, 
but not computed at t itself. This means that

〈μ(t)δ(x −X (t))δ(v −V(t))〉μ,ν = 0 = 〈ν(t)δ(x −X (t))δ(v −V(t))〉μ,ν (40)

since the averages split thanks to the uncorrelation, and both noises have zero mean.
For the sake of notational simplicity, let

∫
t,x,v

• ≡
T∫

0

dt

T

∫
P

dx
∫
Rd

dv •

As a consequence, using (40) and (39),

〈V(t) + βu(X (t), t) + √
2Dμ(t)〉p

=
∫

t,x,v

〈[V(t) + βu(X (t), t) + √
2Dμ(t)]δ(x −X (t))δ(v −V(t))〉μ,ν

=
∫

t,x,v

〈[v + βu(x, t)]δ(x −X (t))δ(v −V(t))〉μ,ν + 0

=
∫

t,x,v

[v + βu(x, t)]p(x, v, t)

thanks to the property of the delta that allows for the substitution (X (t), V(t)) �→ (x, v), and to the fact that these latter 
coordinates are independent of the noises.

Let us now compute the deviation (7) of the terminal velocity (5) from its bare value (6):

Z =
∫

t,x,v

[v + βu(x, t)]p(x, v, t) − (1 − β)τ g

=
∫

t,x,v

[v + βu(x, t) − (1 − β)τ g]〈δ(x −X (t))δ(v −V(t))〉μ,ν

= 〈
∫

t,x,v

[V(t) + βu(X (t), t) − (1 − β)τ g]δ(x −X (t))δ(v −V(t))〉μ,ν

having used (32). Exploiting the second equation of (2), this rewrites as:

Z = 〈
∫

t,x,v

[u(X (t), t) + √
2κν(t) − τ V̇(t)]δ(x −X (t))δ(v −V(t))〉μ,ν

=
∫

t,x,v

u(x, t)p(x, v, t) + 0 − τ 〈
∫

t,x,v

V̇(t)δ(x −X (t))δ(v −V(t))〉μ,ν

after making use of (40). Keeping (4) in mind, the demonstration is complete if we prove that the addend involving V̇
does not give any contribution. This is achieved through integrations by parts (with vanishing of the integrals of deriva-
tives, because of periodicity and rapid decay at infinity) and chain-rule derivation, and the exploitation of the material and 
functional derivatives—d and D, respectively—and of the translational invariance of the delta’s:



130 M. Martins Afonso, S.M.A. Gama / C. R. Mecanique 346 (2018) 121–131
〈
∫

t,x,v

V̇(t)δ(x −X (t))δ(v −V(t))〉μ,ν

=
〈 ∫
t,x,v

{
d

dt
[V(t)δ(x −X (t))δ(v −V(t))] −V(t)

d

dt
[δ(x −X (t))δ(v −V(t))]

}〉
μ,ν

=
∫

t,x,v

∂

∂t
〈V(t)δ(x −X (t))δ(v −V(t))〉μ,ν −

〈 ∫
t,x,v

V(t)

[
δ(v −V(t))Ẋ (t)·

· D

DX (t)
δ(x −X (t)) + δ(x −X (t))V̇(t) · D

DV(t)
δ(v −V(t))

]〉
μ,ν

= 0 +
〈 ∫
t,x,v

V(t)

[
δ(v −V(t))Ẋ (t) · ∂

∂x
δ(x −X (t))

+δ(x −X (t))V̇(t) · ∂

∂ v
δ(v −V(t))

]〉
μ,ν

=
∫

t,x,v

[
∂

∂x
· 〈Ẋ (t)δ(x −X (t))δ(v −V(t))V(t)〉μ,ν

+ ∂

∂ v
· 〈V̇(t)δ(x −X (t))δ(v −V(t))V(t)〉μ,ν

]
= 0 + 0 �

References

[1] M.W. Reeks, On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A 3 (3) (1991) 446–456.
[2] M.W. Reeks, On the continuum equations for dispersed particles in nonuniform flows, Phys. Fluids A 4 (6) (1992) 1290–1303.
[3] E. Balkovsky, G. Falkovich, A. Fouxon, Intermittent distribution of inertial particles in turbulent flows, Phys. Rev. Lett. 86 (2001) 2790–2793.
[4] J. Bec, Fractal clustering of inertial particles in random flows, Phys. Fluids 15 (2003) L81–L84.
[5] M. Wilkinson, B. Mehlig, Path coalescence transition and its applications, Phys. Rev. E 68 (2003) 040101.
[6] G. Falkovich, A. Pumir, Intermittent distribution of heavy particles in a turbulent flow, Phys. Fluids 16 (2004) L47–L50.
[7] I.M. Mazzitelli, D. Lohse, Lagrangian statistics for fluid particles and bubbles in turbulence, New J. Phys. 6 (2004) 1–28.
[8] M. Cencini, J. Bec, L. Biferale, G. Boffetta, A. Celani, A.S. Lanotte, S. Musacchio, F. Toschi, Dynamics and statistics of heavy particles in turbulent flows, 

J. Turbul. 7 (36) (2006) 1–36.
[9] R. Volk, E. Calzavarini, G. Verhille, D. Lohse, N. Mordant, J.-F. Pinton, F. Toschi, Acceleration of heavy and light particles in turbulence: comparison 

between experiments and direct numerical simulations, Physica D 237 (2008) 2084–2089.
[10] G. Károlyi, Á. Péntek, I. Scheuring, T. Tél, Z. Toroczkai, Chaotic flow: the physics of species coexistence, Proc. Natl. Acad. Sci. 97 (2000) 13661–13665.
[11] C. Habchi, N. Dumont, O. Simonin, Multidimensional simulation of cavitating flows in diesel injectors by a homogeneous mixture modeling approach, 

Atomiz. Spr. 18 (2) (2008) 129–162.
[12] S. Matarrese, R. Mohayee, The growth of structure in the intergalactic medium, Mon. Not. R. Astron. Soc. 329 (2002) 37–60.
[13] G. Falkovich, A. Fouxon, M. Stepanov, Acceleration of rain initiation by cloud turbulence, Nature 419 (2002) 151–154.
[14] A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, MIT Press, Cambridge, 1975.
[15] M. Avellaneda, A. Majda, An integral representation and bounds on the effective diffusivity in passive advection and turbulent flows, Commun. Math. 

Phys. 138 (1991) 339–391.
[16] D.J. Horntrop, A. Majda, Subtle statistical behavior in simple models for random advection–diffusion, J. Math. Sci. Univ. Tokyo 1 (1994) 23–70.
[17] A. Mazzino, M. Vergassola, Interference between turbulent and molecular diffusion, Europhys. Lett. 37 (8) (1997) 535–540.
[18] A. Mazzino, S. Musacchio, A. Vulpiani, Multiple-scale analysis and renormalization for preasymptotic scalar transport, Phys. Rev. E 71 (2005) 011113.
[19] M. Cencini, A. Mazzino, S. Musacchio, A. Vulpiani, Large-scale effects on meso-scale modeling for scalar transport, Physica D 220 (2006) 146–156.
[20] R. Ferrari, M. Nikurashin, Suppression of eddy diffusivity across jets in the Southern ocean, J. Phys. Oceanogr. 40 (2010) 1501–1519.
[21] M. Martins Afonso, A. Mazzino, S. Gama, Combined role of molecular diffusion, mean streaming and helicity in the eddy diffusivity of short-correlated 

random flows, J. Stat. Mech. 2016 (10) (2016) 103205.
[22] M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (4) (1983) 883–889.
[23] R. Gatignol, The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow, J. Méc. Théor. Appl. 1 (1983) 143–160.
[24] M.W. Reeks, The relationship between Brownian motion and the random motion of small particles in a turbulent flow, Phys. Fluids 31 (1988) 

1314–1316.
[25] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943) 1–89.
[26] C.W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, Springer, Berlin, 1985.
[27] H. Risken, The Fokker–Planck Equation: Methods of Solutions and Applications, Springer, Berlin, 1989.
[28] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, 2007.
[29] M.R. Maxey, S. Corrsin, Gravitational settling of aerosol particles in randomly oriented cellular flow fields, J. Atmos. Sci. 43 (11) (1986) 1112–1134.
[30] M.R. Maxey, The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech. 174 (1987) 441–465.
[31] M.R. Maxey, The motion of small spherical particles in a cellular flow field, Phys. Fluids 30 (1987) 1915–1928.
[32] L.P. Wang, M.R. Maxey, Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech. 256 

(1993) 27–68.

http://refhub.elsevier.com/S1631-0721(17)30223-1/bib523930s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib523932s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4246463031s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib423033s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib574D3033s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib46503034s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D4C3034s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib43424242434C4D543036s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib43424242434C4D543036s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib5643564C4D50543038s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib5643564C4D50543038s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4B505354543030s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4844533038s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4844533038s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D4D3032s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4646533032s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D593735s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib414D3931s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib414D3931s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib484D3934s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D563937s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D4D563035s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib434D4D563036s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib464E3130s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D414D473136s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D414D473136s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D523833s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib473833s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib523838s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib523838s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib433433s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib473835s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib523839s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib563037s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D433836s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D383761s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D383762s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib574D3933s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib574D3933s1


M. Martins Afonso, S.M.A. Gama / C. R. Mecanique 346 (2018) 121–131 131
[33] P.D. Friedman, J. Katz, Mean rise rate of droplets in isotropic turbulence, Phys. Fluids 14 (2002) 3059–3073.
[34] J. Ruiz, D. Macías, P. Peters, Turbulence increases the average settling velocity of phytoplankton cell, Proc. Natl. Acad. Sci. 101 (2004) 17720–17724.
[35] M. Martins Afonso, The terminal velocity of sedimenting particles in a flowing fluid, J. Phys. A 41 (38) (2008) 385501.
[36] A. Babiano, J.H.E. Cartwright, O. Piro, A. Provenzale, Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems, 

Phys. Rev. Lett. 84 (2000) 5764–5767.
[37] C. Marchioli, M. Fantoni, A. Soldati, Influence of added mass on anomalous high rise velocity of light particles in cellular flow field: a note on the 

paper by Maxey (1987), Phys. Fluids 19 (2007) 098101.
[38] T. Sapsis, G. Haller, Instabilities in the dynamics of neutrally buoyant particles, Phys. Fluids 20 (017102) (2008) 1–7.
[39] P. Castiglione, A. Crisanti, Dispersion of passive tracers in a velocity field with non-δ-correlated noise, Phys. Rev. E 59 (4) (1999) 3926–3934.
[40] S. Boi, A. Mazzino, P. Muratore-Ginanneschi, Eddy diffusivities of inertial particles in random Gaussian flows, Phys. Rev. Fluids 2 (2017) 014602.
[41] M. Martins Afonso, A. Mazzino, Point-source inertial particle dispersion, Geophys. Astrophys. Fluid Dyn. 105 (6) (2011) 553–565.
[42] M. Martins Afonso, A. Mazzino, P. Muratore-Ginanneschi, Eddy diffusivities for inertial particles under gravity, J. Fluid Mech. 694 (2012) 426–463.
[43] T.H. Solomon, J.P. Gollub, Chaotic particle transport in time-dependent Rayleigh–Bénard convection, Phys. Rev. A 38 (1988) 6280–6286.
[44] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, A. Vulpiani, On strong anomalous diffusion, Physica D 134 (1999) 75–93.
[45] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, Numerical study of strong anomalous diffusion, Physica A 280 (2000) 60–68.
[46] M. Linkès, M. Martins Afonso, P. Fede, J. Morchain, P. Schmitz, Numerical study of substrate assimilation by a microorganism exposed to fluctuating 

concentration, Chem. Eng. Sci. 81 (2012) 8–19.
[47] U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995.
[48] M. Avellaneda, M. Vergassola, Stieltjes integral representation of effective diffusivities in time-dependent flows, Phys. Rev. E 52 (3) (1995) 3249–3251.
[49] L. Biferale, A. Crisanti, M. Vergassola, A. Vulpiani, Eddy diffusivities in scalar transport, Phys. Fluids 7 (11) (1995) 2725–2734.
[50] K.H. Andersen, P. Castiglione, A. Mazzino, A. Vulpiani, Simple stochastic models showing strong anomalous diffusion, Eur. Phys. J. B 18 (2000) 447–452.
[51] G.A. Pavliotis, A.M. Stuart, Periodic homogenization for inertial particles, Physica D 204 (2005) 161–187.
[52] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw–Hill, New York, 1978.
[53] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978.
[54] G.A. Pavliotis, A.M. Stuart, Multiscale Methods: Averaging and Homogenization, Springer, Berlin, 2007.
[55] M. Martins Afonso, Anomalous diffusion for inertial particles under gravity in parallel flows, Phys. Rev. E 89 (6) (2014) 063021.
[56] S. Boi, M. Martins Afonso, A. Mazzino, Anomalous diffusion of inertial particles in random parallel flows: theory and numerics face to face, J. Stat. 

Mech. 2015 (10) (2015) P10023.
[57] G.G. Stokes, On the theory of oscillatory waves, Trans. Cambridge Philos. Soc. 8 (1847) 441–473.
[58] M.S. Longuet-Higgins, Eulerian and Lagrangian aspects of surface waves, J. Fluid Mech. 173 (1986) 683–707.
[59] F. Santamaria, G. Boffetta, M. Martins Afonso, A. Mazzino, M. Onorato, D. Pugliese, Stokes drift for inertial particles transported by water waves, 

Europhys. Lett. 102 (1) (2013) 14003.
[60] A. Celani, M. Martins Afonso, A. Mazzino, Point-source scalar turbulence, J. Fluid Mech. 583 (2007) 189–198.

http://refhub.elsevier.com/S1631-0721(17)30223-1/bib464B3032s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib524D503034s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D413038s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424350503030s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424350503030s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D46533037s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D46533037s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib53483038s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib43433939s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424D4D3137s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D414D3131s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D414D4D3132s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib53473838s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib434D4D563939s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib434D4D3030s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4C4D41464D533132s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4C4D41464D533132s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib463935s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib41563935s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424356563935s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib41434D563030s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib50533035s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424F3738s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424C503738s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib50533037s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4D413134s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424D414D3135s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib424D414D3135s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib533437s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib4C3836s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib53424D414D4F503133s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib53424D414D4F503133s1
http://refhub.elsevier.com/S1631-0721(17)30223-1/bib434D414D3037s1

	Settling velocity of quasi-neutrally-buoyant inertial particles
	1 Introduction
	2 Equations
	3 Results for periodic incompressible ﬂows
	4 Simpliﬁcations for ﬂows endowed with vertical parity
	5 Conclusions and perspectives
	Acknowledgements
	Appendix A Calculation details
	A.1 Proof of the expression for the terminal-velocity correction

	References


