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We report the first mountain hare (Lepus timidus) transcriptome, produced by de novo assembly of RNA-
sequencing reads. Data were obtained from eight specimens sampled in two localities, Alps and Ireland.
The mountain hare tends to be replaced by the invading European hare (Lepus europaeus) in their numerous
contact zones where the species hybridize, which affects their gene pool to a yet unquantified degree. We
characterize and annotate the mountain hare transcriptome, detect polymorphism in the two analysed
populations and use previously published data on the European hare (three specimens, representing the
European lineage of the species) to identify 4 672 putative diagnostic sites between the species. A subset of
85 random independent SNPs was successfully validated using PCR and Sanger sequencing. These valuable
genomic resources can be used to design tools to assess population status and monitor hybridization
between species.
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Background & Summary
The mountain hare (Lepus timidus) is an Arcto-alpine species that was the most common and widely
distributed hare species across Europe during the last glacial periods1. Nowadays, the mountain hare is
distributed from Fennoscandia to Eastern Siberia, but also occurs in isolated/refuge populations
(e.g., Ireland, Scotland, the Alps, Poland, the Baltics and Japan), and in places where it has been
introduced (Iceland, England, Faroe Islands and New Zealand) (see Fig. 1). Even though they are a
popular game species and abundant within its range, mountain hares have sharply declined in some
regions, particularly in areas of contact with the European hare (Lepus europaeus), where the latter tends
to invade and replace the range of the former1–4. Mountain and European hares share extensive natural
and human-induced contact zones in Western Europe, from the British Isles to Scandinavia and Central
Europe (Fig. 1). Climate change is predicted to affect lagomorphs extensively5,6 and, in particular, to
accelerate the replacement of mountain hares by European hares in the contact zones, such as the Alps,
Sweden or Ireland7,8. The two species may hybridize when in contact, resulting in some genetic
introgression9–13, with potential effects on local adaptation14.

Even though the mountain hare and other hare species have been the subject of several population
genetics studies, these have been mostly based on a few markers10,15–17. Therefore, permanent genomic
resources provide fundamental information to develop monitoring tools to evaluate population status
and implement protective policies. In this work, we use high-throughput RNA sequencing to: i) generate
genomic resources for the mountain hare; and, ii) use published data on the European hare18 to pinpoint
candidate fixed differences between the species that can be used to build genotyping tools to monitor gene
exchange in the contact zones. We here present the first mountain hare transcriptome, and the most
complete among the currently available European Lepus transcriptomes.

Methods
A summary of the methodological workflow is shown in the flowchart of Fig. 2.

Sampling procedure and locations
Specimens from the Alps (see Fig. 1) were sampled during regular permit hunting in Grisons,
Switzerland. Specimens from Ireland (see Fig. 1) were captured from the wild in Borris-in-Ossory, by the
Irish Coursing Club (ICC) for scientific research purposes under National Parks & Wildlife (NPWS)
licence No. C 337/2012 issued by the Department of Arts, Heritage and the Gaeltacht (dated 31/10/2012).

Figure 1. Approximate mountain and European hare distribution. Approximate distributions of the

mountain hare, Lepus timidus, and the European hare, L. europaeus, in Eurasia with indication of the areas of

contact and of broad geographic overlap between the species (distribution ranges were adapted from IUCN

Spatial Data Resources; IUCN 201651). Circles indicate the mountain hare sampling locations for this work

(open circle—Ireland; closed circle—Alps).
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Irish hares were dispatched humanely and in accordance with the licence conditions by means of lethal
injection administered by Mr William Fitzgerald, Veterinary Laboratory Service Follow (MVB MVM
CertCSM), from the Department of Agriculture, Food and the Marine, Regional Veterinary Laboratory,
Hebron Road, Kilkenny, R95 TX39. Total RNA was isolated from 8 individuals.

RNA extraction
Liver tissue was freshly collected, immediately preserved in RNAlater and then stored at −80 °C until
RNA extraction. Prior to extraction, frozen samples were ground in liquid nitrogen with a ceramic mortar
and pestle. Mortar and pestle were washed prior to extraction using a 6-step wash that includes the
following washing reagents in order: 70% ethanol, tap water, 10% bleach, milli-Q water, RNase away
(Thermo Fisher Scientific) and finishing with molecular grade H2O. RNA extraction was performed using
RNeasy Mini Kit according to manufacturer instructions.

RNA sequencing library preparation
The SureSelect Strand-Specific RNA Library Prep for Illumina Multiplexed Sequencing (Agilent
Technologies) kit was used to prepare cDNA libraries for all samples. Library sizes were estimated using a
Bioanalyzer 2,100 and quantified using KAPA Library quantification kit (KAPA BIOSYSTEMS). Equal
molar concentrations of each library were pooled together for sequencing.

Sequence data processing and de novo transcriptome assembly
A detailed description of tools and commands used in the data analysis is shown in Table 1 (available
online only). A first quality evaluation of obtained sequence reads (Data Citation 1) was performed with
FastQC v0.11.519. After read quality inspection, adapters were removed and quality trimming performed
using TRIMMOMATIC v0.3620, with instructions to remove the first ten bases, Illumina adapters, reads
below 25 bp long and bases in the ends of reads with quality below 10, and to perform a 4-base sliding
window trimming and cutting fragments with an average quality below 10. Trimmed-read quality was
rechecked with FastQC (Data Citation 2). A de novo transcriptome assembly was then performed using
all properly paired reads from the eight individuals in the dataset using TRINITY v2.2.021, establishing
RF as read orientation for a strand-specific assembly. In addition, as a complementary resource, de novo
transcriptome assemblies for each of the two sampling localities were also performed. Transrate v1.0.322

was used to evaluate assembly quality and completeness and to remove possible chimeras and poorly
supported contigs. Cleaned reads were mapped back to the produced assembly and only the well-
supported contigs were retained (Transrate optimal cut-off >0.024). In order to remove redundancy
produced by using multi-sample data to perform the assembly, all contigs were clustered using CD-HIT-
EST v4.6.423 with a 95% similarity threshold. Open reading frames were predicted with TransDecoder
v3.0.024 to remove possible contaminants such as non-coding RNA and DNA contamination. The final
filtered transcriptome comprised contigs with predicted open reading frame and/or rabbit (Oryctolagus
cuniculus) or pfam annotation. Filtered transcriptome as well as raw assemblies are available in Figshare
(Data Citation 2).

Figure 2. Methodological workflow. Flowchart of the RNA-sequencing setup and data analysis steps.

Commands used in the analytical steps shown in bold are detailed in Table 1 (available online only).
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Transcriptome annotation
Transcriptome annotation was performed adapting the protocol of Trinotate v3.0.124, using
i) Conditional Reciprocal Best BLAST (crb-blast) v0.6.625 against the rabbit transcriptome reference
(release 86) and Swiss-Prot database26; ii) protein domain identification by HMMER v3.1b227 onto the
PFAM database28; iii) protein signal peptide through signal v 4.129; iv) transmembrane domain
prediction using tmHMM v2.030; and v) eggNOG31, GO32and Kegg33 databases annotation. Annotation
information was incorporated into an xlsx database (Data Citation 2).

SNP inference
SNP calling was performed separately for mountain hares (Data Citation 1) and European hares (Data
Citation 3, from Amoutzias et al.18). The three European hare specimens represent the European lineage
of the species18. First, reads from all the individuals were mapped to the filtered mountain hare de novo
transcriptome with bwa-mem v0.7.1534 with default parameters and read group information added to
each sequencing lane-sample pair. The resulting alignments were converted to a binary file (bam format),
sorted and submitted to fixmate step using SAMtools v1.3.135. Duplicate reads were removed using
Picard v1.140 (http://broadinstitute.github.io/picard) with the option MarkDuplicates. Realignment and
recalibration was performed with Genome Analysis Toolkit v3.6-036. Finally, SNP call was carried out
using Reads2snp v2.0.6437 using a threshold of 20 for site and mapping qualities, the paralog filter, a
minimum coverage of 10X and a genotype probability >0.95. The resulting VCF file was deposited in
Figshare (Data Citation 2). Only SNPs represented in all sampled specimens were retained.

Differentiation, admixture and Gene Ontology enrichment analysis
A set of random 5 502 SNPs, selected from independent contigs in order to reduce the linkage
probability, was identified with VCFtools v0.1.1438. PGDSpyder v2.1.1.039 was used to convert this file to
the required file formats. Partitions of genetic diversity in the dataset were investigated with a Principal
Components Analysis, using PLINK v1.90b3.4540 and ggplot2 R package41 to plot the results.
Additionally, the data were analysed using the admixture model implemented in STRUCTURE 2.3.442,
with three replicate runs with 1 million steps after a burn-in period of 200 000, and K= 2. Results were
plotted using CLUMPACK43. Gene Ontology enrichment analyses were performed for the collection of
contigs/genes with fixed differences between mountain and European hare samples, and between
mountain hare sampling localities. The analysis was based on the rabbit proteome annotations and
performed with g:Profiler34, applying the g:SCS multiple test correction and the ‘best per parent group’
hierarchical filter. The background set of genes was reduced to contigs with SNP information.

Independent SNP genotyping
A random set of 110 SNPs, inferred as potentially diagnostic between L. timidus and L. europaeus, was
selected for independent validation using Sanger sequencing. DNA was extracted from two of the
previously analysed mountain hare samples (one Alpine, Sample_3112, and one Irish, Sample_3103) and
two other European hare specimens (sampled in Clermont-Ferrand—Sample—1569—Font-Romeu,
Pyrenees—Sample—1550—in France during the regular hunting season). DNA extraction was performed
using JETQUICK Tissue DNA Purification kit (Genomed). PCR primers were designed to be anchored in
a single exon (taking into account intron-exon boundaries from the European rabbit reference genome)
and to amplify a portion of 110 independent contigs containing at least one putative diagnostic SNP. The
Primer sets were designed using the Scrimer pipeline44, which depends on Primer345 to design and set the
primer conditions. A third internal sequencing primer was designed. PCRs were performed using
QIAGEN Multiplex PCR Master Mix (Qiagen) and the following thermal cycling profile: initial
denaturation at 95 °C for 15', 35 cycles of denaturation at 95 °C for 30'', annealing at 60–67 °C for 20'' and
elongation at 72 °C for 30'', and a final extension step at 72 °C for 5'. PCR products were visually inspected
under UV-light after electrophoresis in agarose gels stained with GelRed (Biotium), purified with
Exonuclease I (New England Biolabs) and FastAP Thermosensitive Alkaline Phosphatase (Thermo
Scientific), and sequenced using internal or, in a few cases, PCR primers in a ABI 3130xl genetic analyzer.

Code availability
Analyses in this work were performed with freely available open access tools mainly using command line
versions (Table 1 (available online only)). Parameters are described in the methods section and software
versions and commands used are detailed in Table 1 (available online only).

Data Records
Forty-eight raw FASTQ files were submitted to NCBI Sequence Read Archive, with accession number
SRP095715 (Data Citation 1 and Tables 2 and 3). FASTQ files were divided in two sets, corresponding to
the sampling localities (Ltim_Ireland and Ltim_Alps), and by biosample-specimen (SAMN06186748-
3101, SAMN06186761-3102, SAMN06186762-3103 and SAMN06186763-3105; SAMN06186727-3112,
SAMN06186728-3113, SAMN06186729-3114 and SAMN06186738-3116). In each biosample, six files
were submitted, corresponding to three different Illumina HiSeq sequencing lanes and two read
directions. Pre/post-cleaning FASTQC base quality pdf report (FASTQC.pdf) can be accessed in Figshare
(Data Citation 2). This dataset is the core of this work and has not been released or analysed previously.
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Trinity raw assemblies (Ltimidus_Trinity.fasta, LtimidusIreland_Trinity.fasta and LtimidusAlps_Tri-
nity.fasta) were deposited on Figshare (Data Citation 2 and Table 4). The curated transcriptome assembly
fasta files (LtimidusTranscriptome.cds.fasta and LtimidusTranscriptome.pep.fasta) and the annotated
database file (LtimidusTranscriptome.xlsx) can also be found in Figshare (Data Citation 2).

The European hare data used here (Data Citation 3) was previously published by Amoutzias et al.18

(NCBI Sequence Read Archive, accession number SRP055741, samples SRR1823098, SRR1863103 and
SRR1863605).

Mapping statistics (Table 5), SNP call VCF file (LtimVsLeur.vcf) and population/species diagnostic
SNPs tables (Supplementary Tables 1) were deposited in Figshare (Data Citation 2).

Technical Validation
RNA integrity
The quality and quantity of each RNA sample was assessed using the 260/280 and 260/230 absorbance
ratios estimated by an IMPLEN P330 NanoPhotometer and RNA Integrity Number (RIN) and
concentration (μg μl−1) with a Bioanalyzer 2,100 (Agilent Technologies). All samples had RIN values
above 8.

RNA-Seq data quality
The Illumina HiSeq run produced a total raw output of 103 941 215 100 bp paired-end reads (207 882
430 total reads). Adapter removal and quality trimming decreased this number to 201 569 448 reads
(97%) (Table 4). Final analysed reads passed the minimum quality parameters as established by FastQC.

Transcriptome assembly curation, annotation and quality
Cleaned reads were assembled into 272 183 contigs with a mean length of 594 bp and a N50 length of
839 bp (Table 4). After assembly curation with Transrate optimal cut-off >0.024, clustering with a 95%
similarity threshold and open reading frame prediction, were retained 25 868 transcripts with a mean
length of 842 bp and a N50 length of 1 182 (Table 4).

Annotation using a conditional reciprocal best blast hit approach results in 16 772 (65%) annotated
transcripts, of which 13 641 were annotated to the rabbit transcriptome and 15 955 to the Swiss-Prot
database (Fig. 3). In order to reduce the number of non-annotated transcripts, the less stringent
unidirectional blast hit was added to the database. Hits were recovered for 25 549 transcripts (99%) (Fig. 3).

The mountain hare transcriptome produced in this study represents an important improvement
compared to the currently available transcriptomic resources for European Lepus—L. granatensis46 and
L. europaeus18 transcriptomes—as it performs better on several assembly statistics, such as reference
coverage (42 versus 32% in L. granatensis and 40% in L. europaeus; using the rabbit transcriptome as
reference).

Genetic variation, differentiation and gene ontology enrichment
In total, 218 057 526 reads (63%) were mapped to the filtered transcriptome—136 511 846 mountain hare
reads (68%) and 81 545 680 European hare reads (57%) (see statistics in Table 5). After filtering, 159 629
high-quality SNPs were inferred, of which 41 182 (26%) were sequenced in all eleven specimens. A
summary of polymorphic, shared and fixed SNPs is shown in Fig. 3. 4 672 putative species-diagnostic
SNPs (considered when species presented alternative fixed alleles) were inferred (Data Citation 2,
Supplementary Tables 1, also deposited in Figshare). The diagnostic power of our SNP set could be
strongly reduced if any of the sequenced specimens was admixed (namely from the Alps, where the
species overlap). We therefore conducted a Principal Component Analysis and a Bayesian Assignment
analysis to assess our ability to separate the species. The results suggest that the analysed mountain and
European hares are well differentiated with our SNP set, and only possible limited levels of admixture
were found for Sample—3116 (Fig. 4). An extra table of putative species-diagnostic SNPs excluding that
individual was therefore produced (Data Citation 2, Supplementary Table 4, also deposited in Figshare).
25 269 SNPs were inferred in the mountain hare, of which 12 548 and 18 591 were polymorphic in the

Sample ID Species (population) Tissue Method NCBI BioSample ID

Sample_3101 Lepus timidus (Ireland) liver RNA-seq SAMN06186748

Sample_3102 Lepus timidus (Ireland) liver RNA-seq SAMN06186761

Sample_3103 Lepus timidus (Ireland) liver RNA-seq SAMN06186762

Sample_3105 Lepus timidus (Ireland) liver RNA-seq SAMN06186763

Sample_3112 Lepus timidus (Alps) liver RNA-seq SAMN06186727

Sample_3113 Lepus timidus (Alps) liver RNA-seq SAMN06186728

Sample_3114 Lepus timidus (Alps) liver RNA-seq SAMN06186729

Sample_3116 Lepus timidus (Alps) liver RNA-seq SAMN06186738

Table 2. Summary of sample data information deposited in the NCBI database.
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Irish and Alpine samples respectively, and 126 were fixed between sampling localities (Data Citation 2,
Supplementary Tables 5, deposited in Figshare). The ‘membrane part’ gene ontology term was found
enriched in the collection of genes with fixed differences between the Irish and Alpine mountain hare
samples, while terms ‘lipid metabolic process’, ‘small molecule catabolic process’, ‘extracellular space and
acyl-CoA dehydrogenase activity’ were found enriched in genes with fixed differences between samples of
the two species. Note however that even though the background gene set was controlled for, RNA-
sequencing data does not provide an unbiased sample of information across different genes and these
results may represent tissue-related functions.

Sample ID NCBI SRA runs accession Raw reads Mbytes

Sample_3101 SRR5133282 26,598,712 2,525

Sample_3102 SRR5133280 26,128,525 2,532

Sample_3103 SRR5133285 24,469,456 2,414

Sample_3105 SRR5133283 26,662,182 2,582

Sample_3112 SRR5133287 22,444,667 2,263

Sample_3113 SRR5133281 20,825,930 2,100

Sample_3114 SRR5133286 32,749,011 3,294

Sample_3116 SRR5133284 21,690,965 2,189

Table 3. Illumina RNA-seq data deposited in the NCBI database.

Lepus timidus transcriptome Value

Raw Reads 207,882,430

Clean Reads 201,569,448

Mapped Reads 136,511,846

Raw de novo assembly (Trinity)

Number of contigs 272,183

Largest (bp) 14,048

Smallest (bp) 201

N50 (bp) 839

Mean (bp) 594

Post assembly curation (TransRate)

Number of contigs 113,694

Largest (bp) 14,048

Smallest (bp) 201

N50 (bp) 801

Mean (bp) 567

Post redundancy removal (CD-HIT-EST)

Number of contigs 109,239

Largest (bp) 14,048

Smallest (bp) 201

N50 (bp) 765

Mean (bp) 554

Post open reading frame prediction (TransDecoder)

Number of contigs 25,868

Largest (bp) 13,728

Smallest (bp) 297

N50 (bp) 1,182

Mean (bp) 842

Reference Coverage (%) 42

Table 4. Mountain hare transcriptome assembly and curation statistics.
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SNP validation
Independent SNP genotyping was performed for a random subset of 110 putative species-diagnostic
SNPs from different contigs. Technical validation was considered successful for SNPs showing the
expected alternative alleles, being one fixed in L. timidus (note that the sequenced L. europaeus specimens
differed from the RNA-sequencing). PCR amplification was successful for 96 of the 110 target contigs
(87%), 88 amplicons were successfully sequenced in both species (92%), and concordance between
sequences and expected SNPs was obtained for 85 of the sequenced fragments (97%). This represents an
overall validation success of 77%, which compares to studies using similar approaches47–49 (Data Citation
2; see Supplementary Table 8 for full genotyping results, and Supplementary Table 9 with the list of all
primers, both deposited in Figshare). The reported accuracy of technical validation is conservative, as it is
reduced by technical issues in PCR amplification and sequencing, and potential intraspecific
polymorphism in the European hare (given the use of two different samples for validation), in addition
to real false positives. From the validated SNPs, 73 confirmed alternate alleles in the species, but their
diagnostic utility should be tested with larger population sampling.

Sample ID Species (population) Raw reads # Mapped reads # Mapped reads %

Sample_3101 Lepus timidus (Ireland) 26,598,712 19,648,435 74

Sample_3102 Lepus timidus (Ireland) 26,128,525 18,781,893 72

Sample_3103 Lepus timidus (Ireland) 24,469,456 16,102,091 66

Sample_3105 Lepus timidus (Ireland) 26,662,182 18,429,333 69

Sample_3112 Lepus timidus (Alps) 22,444,667 13,913,982 62

Sample_3113 Lepus timidus (Alps) 20,825,930 13,935,177 67

Sample_3114 Lepus timidus (Alps) 32,749,011 21,360,771 65

Sample_3116 Lepus timidus (Alps) 21,690,965 14,340,164 66

Sample_H1 Lepus europaeus 20,825,930 14,100,961 62

Sample_H2 Lepus europaeus 32,749,011 28,922,352 57

Sample_H3 Lepus europaeus 21,690,965 38,522,367 55

Table 5. Mapping statistics.
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Usage Notes
These genomic resources (which greatly extend previously available marker sets; e.g.50) will be useful for a
variety of studies, particularly in the characterization of genetic diversity in mountain hare populations
and on the development of hybridization monitoring tools. Note that SNPs were here inferred from an
uneven and small species sample, and therefore any diagnostic genotyping assay built from this data

Figure 4. Characterization of inferred SNPs in the sampled populations and species. (a) Relative

proportion of the 41 182 SNPs mapped to the mountain hare transcriptome, summarized as polymorphic

within each species and fixed or shared between L. timidus (mountain hare) and L. europaeus (European hare).

The proportion is shown considering the complete L. timidus dataset (i) and only the Irish (ii) and Alpine (iii)

populations. (b) STRUCTURE analysis to evaluate cluster membership and admixture proportions. Individuals

are sorted by population and species. Mountain hare populations are shown in blue and European hare

individuals in orange. (c) Principal Component Analysis (PCA) plot using one SNP per contig. The first

principal component (PC1) splits species and the second (PC2) the sampled populations.
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should be first tested with adequate sample sizes from pure parental populations of the species, before
being applied to hybrid zones.
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