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ABSTRACT

The Stallings construction for f.g. subgroups of free groups is generalized by in-
troducing the concept of Stallings section, which allows an efficient computation of
the core of a Schreier graph based on edge folding. It is proved that those groups
admitting Stallings sections are precisely f.g. virtually free groups, through a con-
structive approach based on Basse-Serre theory. Complexity issues and applications
are also discussed.

1 Introduction

Finite automata became over the years the standard representation of finitely generated
subgroups H of a free group FA. The Stallings construction constitutes a simple and efficient
algorithm for building an automaton S(H) which can be used for solving the membership
problem of H in FA and many other applications. This automaton S(H) is nothing more
than the core automaton of the Schreier graph (automaton) of H in FA, whose structure can
be described as S(H) with finitely many infinite trees adjoined. Many features of S(H) were
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(re)discovered over the years and were known to Reidemeister, Schreier, and particularly
Serre [17]. One of the greatest contributions of Stallings [19] is certainly the algorithm to
construct S(H): taking a finite set of generators h1, . . . , hm of H in reduced form, we start
with the so-called flower automaton, where petals labelled by the words hi (and their inverse
edges) are glued to a basepoint q0:

•
h1

00

h2

��

hm

PP

Then we proceed by successively folding pairs of edges of the form q
a←−p a−→r until no more

folding is possible (so we get an inverse automaton). And we will have just built S(H). For
details and applications of the Stallings construction, see [1, 6, 13].

Since S(H) turns out to be the core of the Schreier graph of H ≤ FA, this construction
is independent of the finite set of generators of H chosen at the beginning, and of the
particular sequence of foldings followed. And the membership problem follows from the
fact that S(H) recognizes all the reduced words representing elements of H, . . . and the
reduced words constitute a section for any free group.

Such an approach invites naturally generalizations for further classes of groups. For
instance, an elegant geometric construction of Stallings type automata was achieved for
amalgams of finite groups by Markus-Epstein [12]. On the other hand, the most general
results were obtained by Kapovich, Weidmann and Miasnikov [7] for finite graphs of groups
where each vertex group is either polycyclic-by-finite or word-hyperbolic and locally quasi-
convex, and where all edge groups are virtually polycyclic. However, the complex algorithms
were designed essentially to solve the generalized word problem, and it seems very hard to
extend other features of the free group case, either geometric or algorithmic. Our goal in the
present paper is precisely to develop a Stallings type approach with some generality which
is robust enough to exhibit several prized algorithmic and geometric features, namely in
connection with Schreier graphs. Moreover, we succeed on identifying those groups G for
which it can be carried on: (finitely generated) virtually free groups.

Which ingredients shall we need to get a Stallings type algorithm? First of all, we need
a section S with good properties that may emulate the role played by the reduced words
in the free group. In particular, we need a rational language (i.e. recognizable by a finite
automaton). We may of course need to be more restrictive than taking all reduced words,
if we want our finite automaton to recognize all the representatives of H ≤f.g. G in S. To
get inverse automata, it is also convenient to have S = S−1

Second, the set Sg of words of S representing a certain g ∈ G must be at least rational, so
we can get a finite automaton to represent each of the generalized petals. Third, the folding
process to be performed in the (generalized) flower automaton (complemented possibly by
other identification operations) must ensure in the end that all representatives of elements of
H in S are recognized by the automaton. And folding is the automata-theoretic translation
of the reduction process w → w taking place in the free group. So we need the condition
Sg1g2 ⊆ Sg1Sg2 , to make sure that the petals (corresponding to the generators of H) carry
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enough information to produce, after the subsequent folding, all the representatives of
elements of H. And this is how we were led to our definition of Stallings section.

It is somewhat surprising how much we can get from this concept, that turned out to be
more robust than one would expect. Among other features, we can mention independence
from the generating set (so we can have Stallings automata for free groups when we consider
a non canonical generating set!), or closure of rational sets with respect to computation of
normal forms. We present some applications of the whole theory, believing that many others
should follow in due time, as it happened in the free group case.

The paper is structured as follows. In Section 2 we present the required basic concepts.
The theory of Stallings sections is presented in Section 3. In Section 4, we discuss the
complexity of the generalized Stallings construction in its most favourable version. In
Section 5 we use Muller and Schupp’s Theorem and Basse-Serre theory to prove that those
groups admitting a Stallings section are precisely the finitely generated virtually free groups.
In Section 6, we show that we can assume stronger properties for Stallings sections with an
eye to applications, namely the characterization of finite index subgroups.

2 Preliminaries

Given a finite alphabet A, we denote by A∗ the free monoid on A, with 1 denoting the
empty word. A subset of a free monoid is called a language.

We say that A = (Q, q0, T, E) is a (finite) A-automaton if:

• Q is a (finite) set;

• q0 ∈ Q and T ⊆ Q;

• E ⊆ Q×A×Q.

A nontrivial path in A is a sequence

p0
a1−→p1

a2−→ · · · an−→pn

with (pi−1, ai, pi) ∈ E for i = 1, . . . , n. Its label is the word a1 · · · an ∈ A+ = A∗ \ {1}. It is
said to be a successful path if p0 = q0 and pn ∈ T . We consider also the trivial path p

1−→p
for p ∈ Q. It is successful if p = q0 ∈ T . The language L(A) recognized by A is the set of all
labels of successful paths in A. A path of minimal length between two vertices is called a
geodesic, and so does its label by extension.

The automaton A = (Q, q0, T, E) is said to be deterministic if, for all p ∈ Q and a ∈ A,
there is at most one edge of the form (p, a, q). We say that A is trim if every q ∈ Q lies in
some successful path.

Given deterministic A-automata A = (Q, q0, T, E) and A′ = (Q′, q′0, T
′, E′), a morphism

ϕ : A → A′ is a mapping ϕ : Q→ Q′ such that

• q0ϕ = q′0 and Tϕ ⊆ T ′;

• (pϕ, a, qϕ) ∈ E′ for every (p, a, q) ∈ E.

It follows that L(A) ⊆ L(A′) if there is a morphism ϕ : A → A′. The morphism ϕ : A → A′
is:
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• injective if it is injective as a mapping ϕ : Q→ Q′;

• an isomorphism if it is injective, T ′ = Tϕ and every edge of E′ is of the form (pϕ, a, qϕ)
for some (p, a, q) ∈ E.

The star operator on A-languages is defined by

L∗ =
⋃
n≥0

Ln,

where L0 = {1}. A language L ⊆ A∗ is said to be rational if L can be obtained from finite
languages using finitely many times the operators union, product and star (i.e. admits
a rational expression). Alternatively, L is rational if and only if it is recognized by a
finite (deterministic) A-automaton A = (Q, q0, T, E), see [3, Section III]. The definition
generalizes to subsets of an arbitrary monoid M in the obvious way.

We denote the set of all rational languages L ⊆ A∗ by RatA∗. Note that RatA∗,
endowed with the product of languages, constitutes a monoid.

In the statement of a result, we shall say that a rational language L is effectively con-
structible if there exists an algorithm to produce from the data implicit in the statement a
finite A-automaton A recognizing L.

It is convenient to summarize some closure and decidability properties of rational lan-
guages in the following proposition (see, e.g., [3]). The prefix set of a language L ⊆ A∗ is
defined as

Pref(L) = {u ∈ A∗ | uA∗ ∩ L 6= ∅}.

A rational substitution is a morphism ϕ : A∗ → RatB∗ (where RatB∗ is endowed with the
product of languages). Given L ⊆ A∗, we denote by Lϕ the language ∪u∈Luϕ ⊆ B∗. Since
singletons are rational languages, monoid homomorphisms constitute particular cases of
rational substitutions.

More generally, a mapping τ : A∗ → 2B
∗

is called a transduction. Its graph is defined by

∆τ = {(u, v) ∈ A∗ ×B∗ | v ∈ uτ}.

The transduction τ is rational if ∆τ is a rational subset of the monoid A∗ × B∗. Rational
substitutions constitute a particular case of rational transductions. Rational transductions
are most commonly defined through rational transducers, i.e. finite automata with edges
labelled by elements of A× RatB∗.

The inverse transduction τ−1 : B∗ → 2A
∗

is defined by

vτ−1 = {u ∈ A∗ | v ∈ uτ}.

It is well known (see [3, Section III.4]) that rational transductions are closed under inversion.

Proposition 2.1 Let A be a finite alphabet and let K,L ⊆ A∗ be rational. Then:

(i) K ∪ L,K ∩ L,A∗ \ L,Pref(L) are rational;

(ii) if τ : A∗ → 2B
∗

is a rational transduction, then Lτ is rational;

(iii) if ϕ : A∗ →M is a monoid homomorphism and M is finite, then Xϕ−1 is rational for
every X ⊆M .
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Moreover, all the constructions are effective, and the inclusion K ⊆ L is decidable.

The class of context-free languages (see [3, Chapter II] for details) constitutes the next
level in the classical Chomsky’s hierarchy above rational languages. We have also the
following closure property (see [3, Corollary III.4.2]):

Proposition 2.2 Let τ : A∗ → 2B
∗

be a rational transduction and let L ⊆ A∗ be context-
free. Then Lτ is context-free.

Given an A-automaton A and L ⊆ A∗, we denote by A u L the A-automaton obtained
by removing from A all the vertices and edges which do not lie in some successful path
labelled by a word in L.

Proposition 2.3 Let A be a finite A-automaton and let L ⊆ A∗ be a rational language.
Then A u L is effectively constructible.

Proof. Write A = (Q, q0, T, E) and let A′ = (Q′, q′0, T
′, E′) be a finite A-automaton recog-

nizing L. The direct product

A′′ = (Q×Q′, (q0, q
′
0), T × T ′, E′′)

is defined by
E′′ = {((p, p′), a, (q, q′)) | (p, a, q) ∈ E, (p′, a, q′) ∈ E′}.

Let B denote the trim part of A′′ (by removing all vertices/edges which are not part of
successful paths in A′′; this can be done effectively). Then, A u L can be obtained by
projecting into the first component the various constituents of B. �

Given an alphabet A, we denote by A−1 the set of formal inverses of A, and write
Ã = A ∪A−1. We say that Ã is an involutive alphabet. We extend −1 : A→ A−1, a 7→ a−1,
to an involution on Ã∗ through

(a−1)−1 = a, (uv)−1 = v−1u−1 (a ∈ A, u, v ∈ Ã∗) .

An automaton A over an involutive alphabet Ã is involutive if, whenever (p, a, q) is an
edge of A, so is (q, a−1, p). Therefore it suffices to depict just the positively labelled edges
(having label in A) in their graphical representation.

An involutive automaton is inverse if it is deterministic, trim and has a single final
state (note that for involutive automata, being trim is equivalent to being connected). If
the latter happens to be the initial state, it is called the basepoint.

The next result is folklore. For a proof, see [1, Proposition 2.2].

Proposition 2.4 Given inverse automata A and A′, then L(A) ⊆ L(A′) if and only if
there exists a morphism ϕ : A → A′. Moreover, such a morphism is unique.

Given an alphabet A, let ∼ denote the congruence on Ã∗ generated by the relation

{(aa−1, 1) | a ∈ Ã} . (1)

The quotient FA = Ã∗/∼ is the free group on A. We denote by θ : Ã∗ → FA the canonical
morphism u 7→ [u]∼.
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Alternatively, we can view (1) as a confluent length-reducing rewriting system on Ã∗,
where each word w ∈ Ã∗ can be transformed into a unique reduced word w with no factor
of the form aa−1. As a consequence, the equivalence

u ∼ v ⇔ u = v (u, v ∈ Ã∗)

solves the word problem for FA. We shall use the notation RA = Ã∗.
We close this section with the following equivalent version of Benois Theorem, relating

rational languages with free group reduction:

Theorem 2.5 (Benois [2]) If L ⊆ Ã∗ is rational, then L is an effectively constructible
rational language.

3 Stallings sections

Let G be a (finitely generated) group generated by the finite set A. More precisely, we
consider an epimorphism π : Ã∗ → G satisfying

a−1π = (aπ)−1 (2)

for every a ∈ A. A homomorphism satisfying condition (2) is said to be matched. Note
that in this case (2) holds for arbitrary words. For short, we shall refer to a matched
epimorphism π : Ã∗ → G (with A finite) as an m-epi.

We shall call a language S ⊆ Ã∗ a section (for π) if Sπ = G and S−1 = S. For every
X ⊆ G, we write

SX = Xπ−1 ∩ S.

We say that an effectively constructible rational section S ⊆ RA is a Stallings section
for π if, for all g, h ∈ G:

(S1) Sg is an effectively constructible rational language;

(S2) Sgh ⊆ SgSh.

Note that (S2) yields immediately

Sg1···gn ⊆ Sg1 · · ·Sgn (3)

for all g1, . . . , gn ∈ G. Moreover, in (S1) it suffices to consider Saπ for a ∈ A. Indeed, by
(3), and since S−1 = S and Sgπ = g for every g ∈ G, we may write

S(a1···an)π = Sa1π · · ·Sanπ ∩ S (4)

and Sa−1
i π = S−1

aiπ for all ai ∈ Ã. Then, by Proposition 2.1 and Theorem 2.5, Sg is a rational

language for every g ∈ G; furthermore, it is effectively constructible from Sa1π, . . . , Sanπ.
Note that if S is a Stallings section, then S ∪ {1} is also a Stallings section. Indeed,

it is easy to see that conditions (S1) and (S2) are still verified: namely, if gh = 1, then

1 ∈ SgS−1
g = SgSh and so Sgh ∪ {1} ⊆ SgSh as required.

The next result shows that the existence of a Stallings section is independent from the
finite set A and the m-epi π : Ã∗ → G considered:
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Proposition 3.1 Let π : Ã∗ → G and π′ : Ã′
∗
→ G be m-epis. Then, G has a Stallings

section for π if and only if G has a Stallings section for π′.

Proof. Let S ⊆ RA be a Stallings section for π. There exists an m-epi ϕ : Ã∗ → Ã′
∗

such
that ϕπ′ = π. Write S′ = Sϕ. By Proposition 2.1(ii) and Theorem 2.5, S′ is an effectively
constructible rational subset of RA′ . We claim that

S′g = Sgϕ (5)

holds for every g ∈ G.
Indeed, let u ∈ S′g. Then u = vϕ for some v ∈ S and vπ = vϕπ′ = vϕπ′ = uπ′ = g.

Hence v ∈ Sg and so S′g ⊆ Sgϕ.

Conversely, let v ∈ Sg. Then vϕ ∈ Sϕ = S′ and vϕπ′ = vϕπ′ = vπ = g, hence vϕ ∈ S′g
and so (5) holds.

Since
(S′)−1 = (Sϕ)−1 = (Sϕ)−1 = S−1ϕ = Sϕ = S′,

it follows from (5) that S′ is a section for π′. Moreover, (S1) is inherited by S′ from S by
Proposition 2.1(ii) and Theorem 2.5. Finally, for all g, h ∈ G, we get

S′gh = Sghϕ ⊆ (SgSh)ϕ = (SgSh)ϕ

= (Sgϕ)(Shϕ) = (Sgϕ)(Shϕ) = S′gS
′
h,

hence (S2) holds for S′ and so S′ is a Stallings section for π′. By symmetry, we get the
required equivalence. �

Proposition 3.2 Free groups of finite rank and finite groups have Stallings sections.

Proof. Let A be a finite set and consider the canonical m-epi θ : Ã∗ → FA. Let S = RA =

Ã∗, which is rational by Theorem 2.5. Since Sg = {g} for every g ∈ FA, it is immediate
that S is a Stallings section for θ.

Assume now that G is finite and π : Ã∗ → G is an m-epi. We show that S = RA is a
Stallings section for π. For every g ∈ G, we have Sg = gπ−1 ∩ RA = gπ−1. Since both
gπ−1 and RA are effectively constructible rational languages, so is their intersection and
so (S1) holds. Finally, let u ∈ Sgh and take v ∈ Sh. Then (uv−1)π = ghh−1 = g and so

uv−1 ∈ gπ−1 = Sg. Hence u = uv−1v = uv−1v ∈ SgSh and (S2) holds as well. Therefore
RA is a Stallings section for π. �

Given an m-epi π : Ã∗ → G and H 6 G, we define the Schreier automaton Γ(G,H, π)
to be the Ã-automaton having:

• the right cosets Hg (g ∈ G) as vertices;

• H as the basepoint;

• edges Hg
a−→Hg(aπ) for all g ∈ G and a ∈ Ã.
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It is immediate that Γ(G,H, π) is always an inverse Ã-automaton, but it is infinite unless
H has finite index in G. Moreover, L(Γ(G,H, π)) = Hπ−1.

We will prove that Γ(G,H, π)uS is an effectively constructible finite inverse automaton
when S is a Stallings section for π. The following lemmas pave the way for the construction
of Γ(G,H, π) u S:

Lemma 3.3 Let π : Ã∗ → G be an m-epi. Let A be a trim Ã-automaton and let p
a−→q be

an edge of A for some a ∈ Ã. Let B be obtained by adding the edge q
a−1

−→p to A. Then
(L(B))π ⊆ 〈(L(A))π〉.

Proof. Write A = (Q, q0, T, E). We can factor any u ∈ L(B) as u = u0a
−1u1 · · · a−1un,

where a−1 labels each visit to the new edge. We show that uπ ∈ 〈(L(A))π〉 by induction on
n. The case n = 0 being trivial, assume that n ≥ 1 and the claim holds for n− 1. Writing
v = u0a

−1u1 · · · a−1un−1, we have a path in B of the form

q0
v−→q a

−1

−→p un−→t ∈ T.

Since A is trim, we also have a path

q0
w−→p a−→q z−→t′ ∈ T

in A. By the induction hypothesis, we get (vz)π ∈ 〈(L(A))π〉 and so

uπ = (va−1un)π = ((vz)(z−1a−1w−1)(wun))π ∈ 〈(L(A))π〉

as claimed. �

Lemma 3.4 Let π : Ã∗ → G be an m-epi. Let A = (Q, q0, T, E) be a trim Ã-automaton
and let B be obtained by identifying q0 with some t ∈ T . Then (L(B))π ⊆ 〈(L(A))π〉.

Proof. Let u ∈ L(B). We can factor it as u = u1 · · ·un, where pi
ui−→qi is a path in A with

pi, qi ∈ {q0, t} (i = 1, . . . , n). In any case, there exist paths

q0
vi−→pi, qi

wi−→t ∈ T

in A with vi, wi ∈ L(A) ∪ {1}. Since viuiwi ∈ L(A), we get uiπ = (v−1
i (viuiwi)w

−1
i )π ∈

〈(L(A))π〉 for every i and so uπ ∈ 〈(L(A))π〉 as well. �

Lemma 3.5 Let π : Ã∗ → G be an m-epi. Let A be an involutive Ã-automaton and let
p

w−→q be a path in A with wπ = 1. Let B be obtained by identifying the vertices p and q.
Then L(A) ⊆ L(B) and (L(B))π = (L(A))π.

Proof. The first inclusion is clear. Since A is involutive, we have also a path q
w−1

−→p in A
and w−1π = 1. Clearly, every u ∈ L(B) can be lifted to some v ∈ L(A) by inserting finitely
many occurrences of the words w,w−1, that is, we can get factorizations

u = u0u1 · · ·un ∈ L(B), v = u0w
ε1u1 · · ·wεnun ∈ L(A)

with ε1, . . . , εn ∈ {−1, 1}. Since uπ = vπ, it follows that (L(B))π ⊆ (L(A))π. The opposite
inclusion holds trivially. �
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Since (aa−1)π = 1 for every a ∈ Ã, this same argument proves that:

Lemma 3.6 Let π : Ã∗ → G be an m-epi. Let A be a finite involutive Ã-automaton and
let B be obtained by successively folding pairs of edges in A. Then, L(A) ⊆ L(B) and
(L(B))π = (L(A))π.

The next lemma reveals how the automaton Γ(G,H, π) u S can be recognized.

Lemma 3.7 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G, and let H 6f.g. G.

Let A be a finite inverse Ã-automaton with a basepoint such that

SH ⊆ L(A) ⊆ Hπ−1, (6)

there is no path p
w−→q in A with p 6= q and wπ = 1. (7)

Then Γ(G,H, π) u S ∼= A u S.

Proof. Since A and Γ = Γ(G,H, π) are both inverse automata with a basepoint, and
L(A) ⊆ Hπ−1 = L(Γ), it follows from Proposition 2.4 that there exists a morphism ϕ : A →
Γ. Suppose that pϕ = qϕ for some vertices p, q in A. Take geodesics

q0
u−→p, q0

v−→q

in A, where q0 denotes the basepoint. Since pϕ = qϕ, we have uv−1 ∈ L(Γ) = Hπ−1. Let
s0 ∈ S(uv−1)π ⊆ SH . Then s0 ∈ L(A) by (6) and so there is a path p

u−1s0v−−−→q in A. Since
(u−1s0v)π = (u−1uv−1v)π = 1, it follows from (7) that p = q. Thus ϕ is injective.

It is immediate that ϕ restricts to an injective morphism ϕ′ : AuS → ΓuS. It remains
to show that every edge of Γ u S is induced by some edge of A u S. Assume that H

s−→H
is a (successful) path in Γ with s ∈ S. By (6), we have s ∈ L(A) and the path q0

s−→q0

is mapped by ϕ′ onto H
s−→H. Since every edge of Γ u S occurs in some path H

s−→H, it
follows that ϕ′ is an isomorphism. �

Lemma 3.8 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G, and let H 6f.g. G.

Let A be a finite inverse Ã-automaton with a basepoint such that SH ⊆ L(A) ⊆ Hπ−1. It
is decidable, given two distinct vertices p, q of A, whether or not there is some path p

w−→q
in A with wπ = 1.

Proof. Let p, q be distinct vertices of A and let q0 denote its basepoint. Take geodesics
q0

u−→p and q0
v−→q, and let s ∈ S(uv−1)π. We claim that there is a path p

w−→q in A with
wπ = 1 if and only if s ∈ L(A).

Indeed, assume that p
w−→q is such a path. Then uwv−1 ∈ L(A) and so sπ = (uv−1)π =

(uwv−1)π ∈ H. Thus s ∈ SH ⊆ L(A).
Conversely, assume that s ∈ L(A). Then there is a path p

u−1sv−−−→q in A. Since
(u−1sv)π = (u−1uv−1v)π = 1, the lemma is proved. �

Theorem 3.9 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let H 6f.g.
G. Then Γ(G,H, π) u S is an effectively constructible finite inverse Ã-automaton with a
basepoint such that

SH ⊆ L(Γ(G,H, π) u S) ⊆ Hπ−1. (8)
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Proof. Assume that H = 〈h1, . . . , hm〉. For i = 1, . . . ,m, let Ai = (Qi, qi, ti, Ei) be a finite
trim Ã-automaton with a single initial and a single terminal vertex satisfying

Shi ⊆ L(Ai) ⊆ hiπ−1 (9)

(in the next section we shall discuss how to define such an automaton with the lowest
possible complexity). Let B0 be the Ã-automaton obtained by taking the disjoint union of
the Ai and then identifying all the qi into a single initial vertex q0.

Suppose that qi
u−→qi is a path in Ai. Take v ∈ L(Ai). Then uv ∈ L(Ai) ⊆ hiπ

−1 and
so uπ = (uvv−1)π = hih

−1
i = 1. It follows easily that (L(B0))π ⊆ (Sh1 ∪ · · · ∪ Shm)π ⊆ H.

Let B1 be the finite, trim, involutive Ã-automaton obtained from B0 by adjoining edges
(q, a−1, p) for all edges (p, a, q) in B0 (a ∈ Ã). It follows from Lemma 3.3 that (L(B1))π ⊆
〈(L(B0))π〉 ⊆ H.

Next, let B2 be the Ã-automaton obtained from B1 by identifying all terminal vertices
with the initial vertex q0. By Lemma 3.4, we get (L(B2))π ⊆ 〈(L(B1))π〉 ⊆ H.

Finally, let B3 be the finite, inverse Ã-automaton with a basepoint obtained by complete
folding of B2. By Lemma 3.6, we have (L(B3))π = (L(B2))π ⊆ H and so L(B3) ⊆ Hπ−1.
Moreover,

Sh1 ∪ · · · ∪ Shm ⊆ L(A1) ∪ · · · ∪ L(Am) ⊆ L(B0) ⊆ L(B3)

and S−1 = S yield

(Sh1 ∪ · · · ∪ Shm ∪ Sh−1
1
∪ · · · ∪ Sh−1

m
)∗ ⊆ L(B3)

since B3 is involutive and has a basepoint, and therefore

(Sh1 ∪ · · · ∪ Shm ∪ Sh−1
1
∪ · · · ∪ Sh−1

m
)∗ ⊆ L(B3)

since B3 is inverse (the language of an inverse automaton is closed under reduction since
a word aa−1 must label only loops). In view of (3), it follows that Sh ⊆ L(B3) for every
h ∈ H and so SH ⊆ L(B3). Therefore, (6) holds for B3.

However, (7) may not hold. Assume that the vertex set Q′ of B3 is totally ordered. By
Lemma 3.8, we can decide if that happens, and find all concrete instances

J = {(p, q) ∈ Q′ ×Q′ | p < q and there is some path p
w−→q in B3 with wπ = 1}.

Let B4 be the finite inverse Ã-automaton with a basepoint obtained by identifying all pairs
of vertices in J followed by complete folding. Since the existence of a path with label in
1π−1 is preserved through the identification process, it follows from Lemmas 3.5 and 3.6
that B4 still satisfies (6).

Suppose that there exists a path p′
w′−→q′ in B4 with p′ 6= q′ and w′π = 1. We can lift p′

and q′ to vertices p and q in B3, respectively. It is straightforward to check that the path
p′

w′−→q′ can be lifted to a path p
w−→q in B3 by successively inserting in w′ factors of the

form:

• aa−1 (a ∈ Ã) (undoing the folding operations);

• z ∈ 1π−1 (undoing the identification arising from r
z−→s ).

Since w′π = wπ, it follows that either (p, q) ∈ J or (q, p) ∈ J , and so p′ = q′, a contradiction.
Therefore B4 satisfies (7). Now the theorem follows from Proposition 2.3 and Lemma 3.7.
�
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We call Γ(G,H, π) u S the Stallings automaton of H (for a given Stallings section S).
Note that Γ(FA, H, θ)uRA is the classical Stallings automaton of H ≤f.g. FA when we take
RA as Stallings section (for the canonical m-epi θ).

Stallings automata provide a natural decision procedure for the generalized word prob-
lem:

Corollary 3.10 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let
H 6f.g. G. Then the following conditions are equivalent for every g ∈ G:

(a) g ∈ H;

(b) Sg ⊆ L(Γ(G,H, π) u S);

(c) Sg ∩ L(Γ(G,H, π) u S) 6= ∅.

Furthermore, the generalized word problem is decidable for G.

Proof. For (a) ⇒ (b), observe that if g ∈ H then Sg ⊆ SH ⊆ L(Γ(G,H, π) u S) by
Theorem 3.9. (b) ⇒ (c) is immediate since Sg 6= ∅ due to S being a section. And (c) ⇒ (a)
is true because Sg ∩ L(Γ(G,H, π) u S) ⊆ gπ−1 ∩Hπ−1. Finally, decidability follows from
(S1) and Theorem 3.9. �

We can also prove the following generalization of Theorem 2.5:

Theorem 3.11 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let L ⊆ Ã∗
be rational. Then SLπ is an effectively constructible rational language.

Proof. Let ϕ : Ã∗ → Rat Ã∗ be the rational substitution defined by aϕ = Saπ, for a ∈ Ã
(note that 1ϕ = {1} and, for u = a1 · · · an (ai ∈ Ã), uϕ is not Suπ but just Sa1π · · ·Sanπ).
We claim that

Suπ = S ∩ uϕ (10)

holds for every u ∈ L \ {1}. Let u = a1 · · · an ∈ L (ai ∈ Ã). Then by (3) we get

Suπ = S(a1π)···(anπ) ⊆ Sa1π · · ·Sanπ = (a1ϕ) · · · (anϕ) = uϕ

and so Suπ ⊆ S ∩ uϕ.
Since aϕπ = Saππ = aπ holds for every a ∈ Ã, the inclusion S ∩ uϕ ⊆ Suπ follows from

uϕπ = uϕπ = uπ. Therefore (10) holds.
Now it becomes clear that

SLπ = S ∩ (∪u∈Luϕ) = S ∩ Lϕ

if 1 /∈ L and
SLπ = (S ∩ Lϕ) ∪ S1

if 1 ∈ L. And Lϕ is an effectively constructible rational language by (S1) and Proposi-
tion 2.1(ii), and so is Lϕ by Theorem 2.5. Since S and S1 are rational, it follows from
Proposition 2.1(i) that SLπ is rational and effectively constructible. �
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A natural question to ask at this stage is if we can identify a Stallings automaton for a
given Stallings section S. In the classical case of a free group FA with S = RA this is an
elementary thing to do: in this case, an Ã-automatonA is of the form Γ(FA, H, π)uRA = SH
for some H 6f.g. FA if and only if A is inverse, has a basepoint, and has no vertex of
outdegree one except possibly the basepoint.

Proposition 3.12 Let S ⊆ RA be a Stallings section for an m-epi π : Ã∗ → G. It is
decidable, given a finite Ã-automaton A, whether or not A ∼= Γ(G,H, π) u S for some
H 6f.g. G.

Proof. We may assume that A is inverse and has a basepoint. Write A = (Q, q0, q0, E).
The equality A = A u S is an obvious necessary condition, decidable by Lemma 2.3. Thus
we may assume that A = A u S (in particular, A is trim).

Since S ⊆ RA and A is trim, it follows that only the basepoint may have outdegree 1,
and so A ∼= S(K) ∼= Γ(FA,K, θ) u RA for some K 6f.g. FA, see [1, Proposition 2.12]: the
standard algorithm [1, Proposition 2.6] actually computes a finite subset X ⊆ RA projecting
onto a basis Xθ of K. Let K ′ = 〈Xπ〉 6f.g. G. We claim that A ∼= Γ(G,H, π)u S for some
H 6f.g. G if and only if A ∼= Γ(G,K ′, π)uS, a decidable condition in view of Theorem 3.9.

The converse implication being trivial, assume that A = Γ(G,H, π)uS for some H 6f.g.
G. Since words of 1π−1 can only label loops in Γ(G,H, π), it follows from Lemma 3.7 that
we only need to show that

SK′ ⊆ L(A) ⊆ K ′π−1. (11)

Since A ∼= Γ(FA,K, θ) uRA, it follows from Theorem 3.9 that

X ⊆ RA ∩Kθ−1 ⊆ L(A) ⊆ Kθ−1.

Since Kθ−1 ⊆ K ′π−1, we get L(A) ⊆ K ′π−1. Finally, X ⊆ L(A) ⊆ Hπ−1 yields Xπ ⊆ H
and so K ′ 6 H. Hence,

SK′ ⊆ SH ⊆ L(A)

by (8) and so (11) holds. Thus A ∼= Γ(G,K ′, π) u S and we are done. �

4 Complexity

In this section we discuss, for a given Stallings section, an efficient way (from the viewpoint
of complexity) of constructing the automata Ai in the proof of Theorem 3.9 and compute an
upper bound for the complexity of the construction of the Stallings automata Γ(G,H, π)uS.

We say that an Ã-automaton is uniterminal if it has a single terminal vertex. It is easy
to see that there exist rational languages which fail to be recognized by any uniterminal
automaton (e.g. RA, since regular languages recognizable by uniterminal automata and
containing the empty word must have a basepoint and so they are submonoids). However,
we can prove the following:

Lemma 4.1 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let g ∈ G.
Then there exists a finite trim uniterminal Ã-automaton Cg satisfying

Sg ⊆ L(Cg) ⊆ gπ−1.
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Proof. Let C = (Q, i, T,E) be the minimum automaton of Sg (or any other finite trim
automaton with a single initial vertex recognizing Sg) and let Cg be obtained by identifying
all the terminal vertices of C. Clearly, Cg is a finite trim uniterminal automaton and Sg =

L(C) ⊆ L(Cg) yields Sg = Sg ⊆ L(Cg). It remains to prove that (L(Cg))π = g.
Let u ∈ L(Cg). Then there exists a factorization u = u0u1 · · ·uk such that

i
u0−→t0, s1

u1−→t1, . . . , sk
uk−→tk

are paths in C with sj , tj ∈ T . Take a path i
vj−→sj in C, for j = 1, . . . , k. Then vj , vjuj ∈

L(C) and so vjπ = (vjuj)π = g. Hence, ujπ = (v−1
j vjuj)π = g−1g = 1 and so uπ =

(u0u1 · · ·uk)π = u0π = g since u0 ∈ L(C) = Sg. Thus, (L(Cg))π = g and so L(Cg) ⊆ gπ−1

as required. �

We introduce next a multiplication of (finite trim) uniterminal automata: given (fi-
nite trim) uniterminal Ã-automata A = (Q, i, t, E) and A′ = (Q′, i′, t′, E′), let A ∗ A′ =
(Q′′, i, t′, E′′) be the (finite trim) uniterminal Ã-automaton obtained by taking the disjoint
union of the underlying graphs of A and A′ and identifying t with i′.

Lemma 4.2 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G, and let g, g′ ∈ G.
Let A and A′ be finite trim uniterminal Ã-automata satisfying

Sg ⊆ L(A) ⊆ gπ−1, Sg′ ⊆ L(A′) ⊆ g′π−1.

Then
Sgg′ ⊆ L(A ∗ A′) ⊆ (gg′)π−1.

Proof. Since L(A)L(A′) ⊆ L(A ∗ A′), we get in view of (S2)

Sgg′ ⊆ SgSg′ ⊆ L(A)L(A′) ⊆ L(A ∗ A′).

Now let u ∈ L(A ∗ A′). Then u labels a path in A ∗ A′ of the form

i
u0−→p u1−→p u2−→ · · · uk−1−→p uk−→t′,

where we emphasize all the occurrences of the vertex p obtained through the identification of
t and i′. Now it is easy to see that there exist paths i

u0−→t in A and i′
uk−→t′ in A′. Moreover,

for each j = 1, . . . , k− 1, there exists either a path t
uj−→t in A or a path i′

uj−→i′ in A′. Now,
in view of (L(A))π = g and (L(A′))π = g′, we can use the same argument as in the proof
of Lemma 4.1 to show that ujπ = 1 for j = 1, . . . , k − 1. Hence uπ = (u0u1 · · ·uk)π =

(u0uk)π = gg′ and so L(A ∗ A′) ⊆ (gg′)π−1 as required. �

In view of the preceding two lemmas, we can now set an algorithm to construct the
automata Ai in the proof of Theorem 3.9. All we need for a start are the minimum automata
of Saπ for each a ∈ A (or any other finite trim automaton with a single initial vertex
recognizing Saπ; this can be effectively constructed by (S1)). Following the argument in the
proof of Lemma 4.1, we may identify all the terminal vertices to get finite trim uniterminal
Ã-automata Caπ satisfying

Saπ ⊆ L(Caπ) ⊆ aππ−1.
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Note that, since S−1 = S, we get finite trim uniterminal Ã-automata Ca−1π satisfying

Sa−1π ⊆ L(Ca−1π) ⊆ a−1ππ−1

by exchanging the initial and the terminal vertices in Caπ and replacing each edge p
b−→q by

an edge q
b−1

−→p.
Now, given hi ∈ G, we may represent it by some reduced word a1 · · · an (ai ∈ Ã), and

may compute
Ai = ((· · · (Ca1π ∗ Ca2π) ∗ Ca3π) ∗ · · · ) ∗ Canπ.

By Lemma 4.2, Ai is a finite trim uniterminal Ã-automaton satisfying

Shi ⊆ L(Ai) ⊆ hiπ−1.

What is the maximum size of Ai relatively to |hi|? What is the time complexity of
the algorithm for its construction? Note that we start with only finitely many “atomic”
automata Caπ (a ∈ A). Hence the number of vertices (edges) in Ai is a bounded multiple
of |hi|, therefore is O(|hi|), and the time complexity of the construction (disjoint union
followed by identification of two vertices, |hi| − 1 times) is also clearly O(|hi|). This is why
we gave ourselves (and the reader) the trouble of constructing the Ai this way instead of
just taking the minimum automaton of Shi , whatever that may be!

But what is the time complexity of the full algorithm leading to the Stallings automaton
Γ(G,H, π)uS? It is also useful to discuss the complexity of the important intermediate B3

in the proof of Theorem 3.9 since B3 suffices for such applications as the generalized word
problem: indeed, since B3 satisfies (6), we may replace Γ(G,H, π)uS by B3 in Corollary 3.10.

Let n = |h1|+ · · ·+ |hm|. It follows easily from our previous discussion of the time com-
plexity of the construction of the Ai that B0 (and therefore B1 and B2) can be constructed
in time O(n). Since we get to B3 through complete folding, the complexity of constructing
B3 is that of the classical Stallings construction in the free group.

The Ackermann hierarchy is a sequence (Ak)k of transformations of N defined byA1(n) =
n and Ak(n) = Ank−1(1) for k > 1 (where Ank−1 denotes the n-fold composition of Ak−1).
Following Nivatsch [15], we can define the Ackermann function A : N→ N by A(n) = An(3).
The inverse Ackermann function α : [0,+∞[→ N is then defined by

α(x) = min{n ∈ N | A(n) ≥ x}.

The inverse Ackermann function grows extremely slowly.
Using a famous result of Tarjan on Union-Find [20] (see also [4]) Touikan proved in [21]

that such complexity is O(nα(n)), i.e. very close to linear. Therefore B3 can be constructed
in time O(nα(n)).

We shall now discuss the complexity of the construction of the Stallings automata:

Theorem 4.3 Let S ⊆ RA be a Stallings section for the m-epi π : Ã∗ → G and let H =
〈h1, . . . , hm〉 6f.g. G. Then Γ(G,H, π) u S can be constructed in time O(n3α(n)), where
n = |h1|+ · · ·+ |hm|.

Proof. We go back to the proof of Theorem 3.9, starting at B3.
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The number of vertices of B3 is O(n) and therefore we have O(n2) candidate pairs to J .
For each one of these pairs, we must decide whether or not they belong to J . This involves
bounding the complexity of the algorithm described in the proof of Lemma 3.8.

Let p, q be distinct vertices of B3 and let q0 denote its basepoint. Take geodesics q0
u−→p

and q0
v−→q. Clearly, g = (uv−1)π can be represented by a word of length O(n). It follows

from the previous discussion on the complexity of the construction of Ai that we may
construct a finite trim uniterminal Ã-automaton Cg satisfying

Sg ⊆ L(Cg) ⊆ gπ−1

in time O(n). Performing a complete folding on Cg (in time O(nα(n))), we get a finite

inverse Ã-automaton Dg satisfying

Sg ⊆ L(Dg) ⊆ gπ−1.

Since S is a constant for our problem, we can compute an element s ∈ S ∩ L(Dg) = Sg in
time O(n) and check if s ∈ L(B3) in time O(n). Therefore, by the proof of Lemma 3.8, we
can decide whether or not (p, q) ∈ J in time O(nα(n)). Since we had O(n2) candidates to
consider, we may compute J in time O(n3α(n)). It is very likely that this upper bound can
be improved.

Since B4 is obtained from B3 by identifying the pairs in J followed by complete folding,
and B3 has O(n) vertices, then B4 can be constructed in time O(n3α(n)) in view of Touikan’s
bound.

For the last step, we must discuss the time complexity of the algorithm in the proof of
Proposition 2.3. Note that B4 has O(n) vertices and therefore (since the alphabet is fixed)
O(n) edges. Since S is a constant for our problem, we can build the direct product of B4

by some deterministic automaton recognizing S in time O(n) and compute its trim part
in time O(n) (we have O(n) vertices and O(n) edges), and the final projection can also be
performed in linear time. Therefore Γ(G,H, π) u S can be constructed in time O(n3α(n)),
which means very close to cubic complexity. �

We should stress that the above discussion of time complexity was performed for a fixed
Stallings section of a fixed group. But the computation of a Stallings section for a (virtually
free) group can be in itself a costly procedure, particularly if it is supported by Bass-Serre
theory as in the present case. This will become more evident throughout the next section.

5 Virtually free groups

A group is virtually free if it has a free subgroup of finite index. Some recent papers involving
virtually free groups include [5, 9, 10, 18].

Next we recall the concept of graph of groups, central in Bass-Serre theory [17]. In
Serre’s viewpoint, a graph is a structure of the form Γ = (V,E, τ, )̄, where:

• V is a nonempty set (vertices);

• E is a set (edges);
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• τ : E → V is a mapping (target mapping);

• :̄ E → E is an involution without fixed points.

Concepts such as cycle, connectedness, tree or subgraph are defined in the obvious way. If
Γ is connected and T ⊆ E defines a subtree of Γ connecting all the vertices, we say that T
is a spanning tree of Γ.

We write v
e−→w if eτ = w and ēτ = v. This allows us to view Γ as an E-automaton

whenever convenient. Note that v
e−→w if and only if w

ē−→v.
A (finite) graph of groups over a (finite) connected graph Γ is a structure of the form

G = ((Gv)v∈V , (Ge)e∈E , (τe)e∈E), (12)

where:

• Gv is a group for every v ∈ V (vertex groups);

• Ge is a group for every e ∈ E satisfying Gē = Ge (edge groups);

• τe : Ge → Geτ is a monomorphism for every e ∈ E (boundary monomorphisms).

Let P (G) denote the quotient of the free product (∗v∈VGv)∗FE by the normal subgroup
generated by the elements of the form

e(gτe)ē(gτē)
−1 (e ∈ E, g ∈ Ge = Gē).

Note that eē arises from the particular case g = 1.
Serre presents two alternative constructions for the fundamental group of G:

The cycle construction. Fix v0 ∈ V . Let C(G, v0) denote the set of all closed paths of
the form

vn = v0
e1 // v1

e2

  
vn−1

en
99

en−1

oo v2e3
oo

in Γ (including the trivial path).
The fundamental group π1(G, v0) of the graph of groups (12) with respect to v0 ∈ V

is the subgroup of P (G) consisting of the following elements: for every closed path of the
above form, π1(G, v0) contains all the elements of the form

g0e1g1 . . . engn, with gi ∈ Gvi for i = 0, . . . , n. (13)

We shall use the notation (g0e1g1 · · · engn)ξ = e1 · · · en.

The spanning tree construction. Let T be a spanning tree of the graph Γ. The
fundamental group π1(G, T ) is the quotient of P (G) by the normal subgroup generated by
the edges in T .

Serre shows that the canonical projection P (G)→ π1(G, T ) induces an isomorphism from
π1(G, v0) to π1(G, T ), which implies in particular that both constructions are independent
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from the choice of v0 and T . Therefore, we can benefit from the best of both worlds:
π1(G,T ) provides a nice canonical generating set, while π1(G, v0) provides the concept of
reduced word (S-reduced in this text (S from Serre), to avoid confusion with free group
reduced), which will make us prefer most of the time the cycle construction.

A word of the form (13) is said to be S-reduced if the following two conditions hold:

• if n = 0, then g0 6= 1;

• if 1 ≤ i < n and ei+1 = ēi, then gi /∈ Geiτei .

S-reduced words play a major role in the theory of graphs of groups due to the following
two well-known properties:

• every element of π1(G, v0) \ {1} can be represented by some S-reduced word;

• no S-reduced word represents the identity in P (G) (nor π1(G, v0)).

It follows that Gv0 (and therefore all vertex groups) are naturally embedded into π1(G, v0).
HNN extensions and amalgamated free products arise as important particular cases of

graphs of groups, by taking graphs with two edges, respectively of the form

•e 99 ē
yy

•
e

** •
ē

jj

Moreover, whenever Γ is finite, the fundamental group π1(G, v0) can be built from the vertex
groups using a finite number of HNN extensions and amalgamated free products, where the
associated/amalgamated subgroups are of the form Geτe.

The nature of π1(G, v0) is conditioned by the nature of the vertex and edge groups. By
a well-known theorem of Karrass, Pietrowski and Solitar [8] (see also [16, Theorem 7.3]), a
finitely generated group is virtually free if and only if it is the fundamental group of a finite
graph of finite groups. This important result provides the key to our main theorem:

Theorem 5.1 A finitely generated group admits a Stallings section if and only if it is
virtually free.

Proof. Let G be a finitely generated group. Assume that S is a Stallings section for the
m-epi π : Ã∗ → G. We will show that the word problem submonoid 1π−1 is context-free. By
Muller and Schupp’s Theorem [14], this is equivalent to G being virtually free.

By the remark following the definition of Stallings section in Section 3, we can assume
that 1 ∈ S1. Let θ : Ã∗ → FA denote the canonical morphism, as usual. We show that

a1 · · · an ∈ 1π−1 ⇔ Sa1 · · ·San ∩ (1θ−1) 6= ∅ (14)

holds for all a1, . . . , an ∈ Ã. Indeed, since 1 ∈ Sg if and only if g = 1, we have a1 · · · an ∈
1π−1 if and only if 1 ∈ S(a1···an)π. By (4), this is equivalent to 1 ∈ Sa1 · · ·San , i.e.,
Sa1 · · ·San ∩ (1θ−1) 6= ∅. Therefore (14) holds.

We define now a transduction τ : Ã∗ → 2Ã
∗

by

(a1 · · · an)τ = Sa1 · · ·San
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for a1, . . . , an ∈ Ã and 1τ = 1. Since

∆τ = {{a} × Sa | a ∈ Ã}∗

is clearly a rational subset of A∗ × A∗, then τ is a rational transduction, and so must be
τ−1.

Let L = 1θ−1. By Muller and Schupp’s Theorem [14], L is context-free and so Lτ−1 is
also context-free by Proposition 2.2.

By (14), we have

a1 · · · an ∈ 1π−1 ⇔ (a1 · · · an)τ ∩ L 6= ∅ ⇔ a1 · · · an ∈ Lτ−1

for all a1, . . . , an ∈ Ã. Since 1 ∈ 1π−1 ∩ Lτ−1, it follows that 1π−1 = Lτ−1 and is therefore
context-free. By Muller and Schupp’s Theorem, G is virtually free.

Conversely, assume that G is virtually free. By the theorem of Karrass, Pietrowski and
Solitar, we may assume that G = π1(G, v0), where

G = ((Gv)v∈V , (Ge)e∈E , (τe)e∈E)

is a graph of groups over a finite connected graph Γ = (V,E, τ, )̄, with finite vertex and
edge groups.

For every v ∈ V , consider an alphabet Av = Gv \{1} and take A to be the disjoint union

A = E ∪ (∪v∈VAv).

We shall consider the involutive alphabet Ã, hence it is convenient to set e−1τ = ēτ for

every e ∈ E. For every v ∈ V , let ϕv : Ãv
∗
→ Gv be the canonical m-epi. Fix a spanning

tree T of Γ and v0 ∈ V . We have a canonical m-epi ϕ : Ã∗ → π1(G, T ). Composing with the
canonical isomorphism π1(G, T )→ π1(G, v0), we obtain an m-epi Ã∗ → π1(G, v0) which, by
abuse of notation, shall also be denoted by ϕ.

We define S ⊆ RA to be the union of RAv0 with the languages of the form

(g0ϕ
−1
v0 )eε11 (g1ϕ

−1
v1 ) · · · eεnn (gnϕ

−1
vn ) ∩RA,

where εi = ±1 and eεii τ = vi for i = 1, . . . , n, and g0e
ε1
1 g1 · · · eεnn gn is an S-reduced word of

the form (13). We shall prove that S is a Stallings section for the m-epi ϕ : Ã∗ → π1(G, v0).
Since every element of π1(G, v0) can be represented by an S-reduced word, it follows

easily that Sϕ = π1(G, v0). Since S-reduced words are well known to be closed under
inversion, then S−1 = S. Thus S is a section for ϕ.

We may view Γ as an E-automaton (V, v0, v0, E
′) by taking

E′ = {(ēτ, e, eτ) | e ∈ E}.

The language of this automaton is precisely the set of closed paths with basepoint v0, i.e.,
C(G, v0). We define now a rational transducer (V, v0, v0, E

′′) by replacing each label e in
the edges of E′ by {e} × {e, ē−1}A∗eτ (note that we must admit the double representation
of edges when we go from E to Ẽ). This defines a rational transduction η : E∗ → 2A

∗
. By

Proposition 2.1(ii), (C(G, v0))η is a rational language. Now it is easy to check that

S = (A∗v0(C(G, v0))η \ L) ∩RA,
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where L denotes the language of all words in A∗ having some factor of the form

eue−1 or euē, with u ∈ (Geτe)ϕ
−1
eτ

for some e ∈ E. Note that the languages (Geτe)ϕ
−1
eτ are rational by Proposition 2.1(iii).

Since RA is also rational, it follows easily from Proposition 2.1(i) that S is a rational section
for ϕ. Moreover, the construction of S is effective.

Let g ∈ π1(G, v0). We must show that Sg is an effectively constructible rational language.
If g 6= 1, then it is well known that all the S-reduced words representing g arise from the
same closed path

v0
e1−→v1

e2−→ · · · en−→vn = v0.

Since vertex groups are finite, it follows that there exist only finitely many S-reduced words
representing g. Adapting in the obvious way the transduction built to prove the rationality
of S, we deduce that Sg is a finite union of rational languages, hence rational. If g = 1, we
get S1 = 1ϕ−1

v0 ∩ RAv0 , also rational in view of Proposition 2.1. All the constructions are
effective, so Sg is an effectively constructible rational language for every g.

Finally, let g, h ∈ π1(G, v0). We must show that Sgh ⊆ SgSh. Note that the mapping ξ
defined above for S-reduced words extends naturally to S, taking values on the free monoid
on E (identifying e−1 with ē).

Fix u ∈ Sg and w ∈ Sh. We can compute some word (uw)ψ ∈ Sgh by successively lifting
the substitutions

e(gτe)ē−→gτē (e ∈ E, g ∈ Ge = Gē).

Note that (uw)ψ is not unique, so we fix one of the possible choices. We may write uξ = u′p,
wξ = p−1w′ and (uw)ψξ = u′w′ for some u′, w′, p. Indeed, we may assume that ψ : S×S → S
is a mapping defined in the above terms.

Without loss of generality, we shall assume that u′, w′ 6= 1. The remaining cases consti-
tute mere simplifications of this general case.

Let z ∈ Sgh. Then zξ = u′w′. If we compute (zw−1)ψ, this implies that we must remove
precisely |w′ξ| edges from each of the words z and w−1, hence the prefixes of z and (zw−1)ψ
ending at edge number |u′| must coincide. Denote it by z1 and write (zw−1)ψ = z1s1.
Similarly, the suffixes of z and (u−1z)ψ starting at edge number |w′ξ| (counting in reverse
order) must also coincide. Denote it by z2 and write (u−1z)ψ = s2z2. Now (zw−1)ψξ = u′p
and (u−1z)ψξ = p−1w′, hence on computing x = ((zw−1)ψ(u−1z)ψ)ψ ∈ Sgh we must cancel
p edges from each word. It follows that s2ξ = (s1ξ)

−1 and the words x and z differ at most
in the factor between the occurrence of edge number |u′| and the next edge.

Write z = z1qz2. Note that, since every element of a vertex group has finite order and
we have at our disposal an involutive alphabet, we can always, if necessary, replace the last
vertex component of s1 by an equivalent word so that s−1

1 q is reduced.
Let y = s−1

1 qz2. We have

yϕ = (s−1
1 qz2)ϕ = (s−1

1 z−1
1 z)ϕ = (wz−1z)ϕ = wϕ = h.

Since w ∈ Sh arises from an S-reduced word, then |wξ| is minimum possible among {|tξ|
∣∣ t ∈

hϕ−1} and so

|yξ| ≥ |wξ| = |(u−1z)ψξ| = |s2ξ|+ |z2ξ| = |s−1
1 ξ|+ |z2ξ| = |yξ|,
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whence |yξ| = |wξ|. It follows from minimality that y must arise from an S-reduced word.
Since y ∈ RA by our preprocessing of s1 (recall also that the first letter of z2 is in Ẽ), it
follows that y ∈ S and so y ∈ Sh. Therefore

z = z1qz2 = z1s1s
−1
1 qz2 = ((zw−1)ψ)y ∈ SgSh

and so Sgh ⊆ SgSh. This completes the proof that S is a Stallings section for ϕ. �

6 Sections with good properties

Having established that finitely generated virtually free groups are precisely the groups
with a Stallings section, we discuss now the possibility of imposing stronger conditions on
their Stallings sections, with the purpose of allowing further applications of the Stallings
automata Γ(G,H, π) u S.

We start with the concept of extendable Stallings section, which will turn out to be
useful to characterize finite index subgroups.

Let S be a Stallings section for the m-epi π : Ã∗ → G. We say that S is extendable if,
for every u ∈ S, there exists some w ∈ RA such that uw∗ ⊆ S and

u ∈ Pref(S(uwnu−1)π) (15)

for almost all n ∈ N.

Proposition 6.1 Every finitely generated virtually free group has an extendable Stallings
section.

Proof. Let G be a finitely generated virtually free group. Assume first that G is finite. Let
π : Ã∗ → G be an m-epi. By the proof of Proposition 3.2, we may take S = RA and w = 1
for every u ∈ S. Hence uw∗ ⊆ S. We have Sg = gπ−1 for every g ∈ G. Next we show that
Pref(Sg) = RA.

Let z ∈ RA and take a ∈ Ã such that za ∈ RA. Since G is finite, there exists some
m ∈ N such that every element of G can be represented by some word of length < m. In
particular, there exists some x ∈ RA such that ((a−mz−1)π)g = xπ and |x| < m. Hence
(zamx)π = g and so zamx ∈ gπ−1 = Sg. Since zam ∈ RA and |x| < m, we get z ∈ Pref(Sg)
and so Pref(Sg) = RA.

Therefore (15) holds and so RA is an extendable Stallings section for π : Ã∗ → G when
G is finite. Let us assume from now on that G is infinite.

By the theorem of Karrass, Pietrowski and Solitar, we have that G = π1(G, v0), where

G = ((Gv)v∈V , (Ge)e∈E , (τe)e∈E)

is a graph of groups over a finite connected graph Γ = (V,E, τ, )̄, with finite vertex and
edge groups. Moreover, we may assume that none of the boundary monomorphisms τe is
surjective. Indeed, if τe would be surjective, then Geτ ∼= Ge would embed in Gēτ and we
might replace our graph of groups by a graph of groups with isomorphic fundamental group
and one less vertex.
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We consider the same m-epi ϕ : Ã∗ → G of the proof of the opposite implication in
Theorem 5.1 and the same Stallings section S.

Let u ∈ S. If u /∈ RAv0 , write u = u′eεu′′ with u′′ ∈ RAv0 . Then there exists some

x ∈ RAv0 such that u′′x ∈ RAv0 \ Geτeεϕ
−1
v0 . This follows from our assumption on the

nonsurjectivity of the boundary maps, and also from the fact (remarked in the proof of
Theorem 5.1) that we can always change the first/last letter of a representative of an
element of a vertex group. On the other hand, let y ∈ RAe−ετ \ Geτe−εϕ

−1
e−ετ and write

w = xe−εyeεu′′. It is routine to check that uw∗ ⊆ S and (15) holds (only finitely many of
the edge letters can be affected by multiplying by u−1 on the right).

If u ∈ RAv0 , we proceed with a straightforward adaptation of the preceding case, using
any edge of the form v0

e−→v1 (Γ must have edges since we are assuming G to be infinite).
Therefore S is extendable as claimed. �

We can now derive the following application of the concept of extendable Stallings
section:

Theorem 6.2 Let S be an extendable Stallings section for the m-epi π : Ã∗ → G and let H
be a finitely generated subgroup of G. Then the following conditions are equivalent:

(a) H has finite index in G;

(b) S ⊆ Pref(SH);

(c) every word of S labels a path out of the basepoint of Γ(G,H, π) u S.

Proof. (a) ⇒ (b). Suppose that u ∈ S \Pref(SH). Since S is extendable, there exist some
v ∈ RA and m ∈ N such that uv∗ ⊆ S and u ∈ Pref(S(uvnu−1)π) for n ≥ m. We claim that

H(uvj)π 6= H(uvi)π if j ≥ i+m. (16)

Indeed, assume that j ≥ i+m. If H(uvj)π = H(uvi)π, then (uvj−iu−1)π ∈ H and so

u ∈ Pref(S(uvj−iu−1)π) ⊆ Pref(SH),

a contradiction. Therefore (16) holds and so H has infinite index in G.
(b) ⇒ (c). Since SH ⊆ L(Γ(G,H, π) u S) by Theorem 3.9.
(c) ⇒ (a). Assume now that every word of S labels a path out of the basepoint q0 of

A = Γ(G,H, π) u S. Let Q denote the (finite) vertex set of A. For every q ∈ Q, fix a path
q0

wq−→q. We claim that

G =
⋃
q∈Q

H(wqπ). (17)

Indeed, let g ∈ G, and take u ∈ Sg. Then there is a path in A of the form q0
u−→q for some

q ∈ Q. Hence uw−1
q ∈ L(A) ⊆ Hπ−1 by Theorem 3.9 and so g = uπ ∈ H(wqπ). Thus (17)

holds and so H has finite index in G. �
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A natural question to ask is whether or not one could replace condition (S2) in the
definition of Stallings section by the stronger condition

(S2’) Sgh = SgSh for all g, h ∈ G.

However, we can prove that this condition can only be assumed in the simplest cases:

Proposition 6.3 The following conditions are equivalent for a group G:

(a) there exist an m-epi π : Ã∗ → G and a Stallings section S for π satisfying (S2’);

(b) G is either finite or free of finite rank;

(c) RA is a Stallings section for some m-epi π : Ã∗ → G.

Proof. (a) ⇒ (b). Let S be a Stallings section S for π : Ã∗ → G satisfying (S2’). Then

S−1
1 = S1 = S2

1 and so we can view (S1, ◦) as a subgroup of (RA, ◦) ∼= FA, where u◦ v = uv.

The same holds for (S, ◦) since S−1 = S = S2, and (S1, ◦) is then a subgroup of (S, ◦). Now
(S, ◦) must be free by Nielsen’s Theorem. Since S, being a Stallings section, is rational,
so is (S, ◦) (a rational expression for S as a subset of Ã∗ translates through reduction to a
rational expression for S as a subset of (RA, ◦)). The same happens with S1, so it follows
from Anisimov and Seifert’s Theorem [1, Theorem 3.1] that both (S, ◦) and (S1, ◦) are
finitely generated groups. Hence (S, ◦) is a free group of finite rank.

For every u ∈ S, we have

uS1u−1 ⊆ SuπS1Su−1π = S1,

hence (S1, ◦) is a finitely generated normal subgroup of the free group (S, ◦). By [11,
Proposition 3.12], (S1, ◦) is either trivial or has finite index in (S, ◦). On the other hand,
we claim that

uS1 = vS1 ⇔ uπ = vπ (18)

holds for all u, v ∈ S. The direct implication follows from S1π = 1. Conversely, assume
that uπ = vπ. Then v−1u ∈ Sv−1πSuπ = S1 and so u ∈ vS1 and uS1 ⊆ vS1. By symmetry,
we get uS1 = vS1 and so (18) holds.

It is now straightforward to check that

(S, ◦)/(S1, ◦)→ G

uS1 7→ uπ

is a group isomorphism. Hence either G ∼= (S, ◦) is a free group of finite rank, or G ∼=
(S, ◦)/(S1, ◦) is a finite group.

(b) ⇒ (c). Immediate from the proof of Proposition 3.2.
(c) ⇒ (a). Assume that S = RA is a Stallings section for the m-epi π : Ã∗ → G. Let

u ∈ Sg and v ∈ Sh for some g, h ∈ G. Since uvπ = (uv)π = gh, we get uv ∈ Sgh and so
SgSh ⊆ Sgh. Therefore Sgh = SgSh and so RA satisfies (S2’). �
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