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Centro de Matemática, Faculdade de Ciências, Universidade do
Porto,

R. Campo Alegre 687, 4169-007 Porto, Portugal

E. VENTURA

Dept. Mat. Apl. III, Universitat Politècnica de Catalunya,
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1. Introduction

The goal of this paper is to study automorphisms of groups, specif-
ically to introduce a new technique to measure how easy or difficult is
it to invert them. With this in mind, we associate two new functions,
αG(n) and βG(n), to the group G and propose to study its asymptotic
behavior.

In the present introduction we define these functions in general,
and show they are independent from the set of generators, up to mul-
tiplicative constants. Then, for the rest of the paper, we restrict our
attention to finitely generated free groups and give several results con-
cerning the asymptotic growth of their corresponding functions. A
similar project can be carried out in any other families of groups G;
we hope the study of these new functions motivates new interesting
results in the near future.

Let G be a finitely generated group, and let us fix a finite set of
generators A = {a1, . . . , ar}.

This naturally gives a metric on G: every element g ∈ G can be
written as a product of the ai’s and their inverses, and one defines |g|A
to be the length of the shortest such expression i.e., |g|A 6 n if and only
if g = aε1i1 · · · a

εm
im

for some m 6 n, some indices i1, . . . , im ∈ {1, . . . , r}
and some signs εi = ±1. Of course, |1|A = 0, |gn|A 6 |n||g|A, and
|gg′|A 6 |g|A + |g′|A hold for all g, g′ ∈ G and all integer n.

The same can be done with an infinite set of generators. However,
|A| <∞ gives us finiteness of balls, |{g ∈ G | |g|A 6 n}| <∞, which
is a crucial property in many respects; for example, in our definitions
below.

Let us consider the group of automorphisms of G, AutG. We let
automorphisms act on the right, so we write ϕ : G → G, g 7→ gϕ.
For every g ∈ G, we denote by λg the right conjugation by g, namely
xλg = g−1xg. Since λgϕ = ϕλgϕ, it follows easily that Λ = {λg | g ∈
G} is a normal subgroup of AutG. Each of the cosets [ϕ] = ϕΛ is said
to be an outer automorphism of G. We write OutG = (AutG)/Λ.

Of course, every automorphism ϕ ∈ AutG is determined by the
images of the generators a1, . . . , ar. And the sum of its lengths is a
good measure of the complexity of ϕ (understood as a rule moving
elements of G around). Let us define then the norm of ϕ as

‖ϕ‖A = |a1ϕ|A + · · ·+ |arϕ|A.
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Note that there is no ϕ ∈ AutG with ‖ϕ‖A 6 r − 1, because
aiϕ 6= 1 for all i; the shortest automorphism (among possibly others)
is the identity, ‖IdG‖A = r. Note also that, for increasing values of
n > r, there is a non-decreasing number of automorphisms ϕ ∈ AutG
with ‖ϕ‖A 6 n, but only finitely many for every fixed n. Observe also
that ‖gϕ‖A 6 |g|A · ‖ϕ‖A for all g ∈ G and all ϕ ∈ AutG.

This measure induces a similar measure on OutG, defined as follows.
Given Φ ∈ OutG, we define the norm of Φ as

‖Φ‖A = min {‖ϕ‖A | ϕ ∈ Φ}.
Once again, for every fixed n, there exists a finite number of outer
automorphisms Φ ∈ OutG with ‖Φ‖A 6 n.

A natural question is to ask about the relation between ‖ϕ‖A and
‖ϕ−1‖A (resp. between ‖Φ‖A and ‖Φ−1‖A). If one happens to be signif-
icantly bigger than the other, then it intuitively means that inverting
such an automorphism is hard (just writing down the expression of
ϕ−1 as images of the generators will take much longer than doing the
same for ϕ). With the purpose of measuring the (worst case) differ-
ence between the complexity of an automorphism ϕ and that of ϕ−1,
we define the following complexity functions αA, βA : N→ N:

αA(n) = max {‖ϕ−1‖A | ϕ ∈ AutG, ‖ϕ‖A 6 n},

βA(n) = max {‖Φ−1‖A | Φ ∈ OutG, ‖Φ‖A 6 n},
where, by convention, we take max ∅ = 0 (i.e. αA(n) = βA(n) = 0 for
n = 0, 1, . . . , r − 1).

Clearly, αA(n) 6 αA(n+ 1) and βA(n) 6 βA(n+ 1) that is, αA and
βA are non-decreasing functions. Furthermore, it is immediate that
βA(n) = max {‖[ϕ−1]‖A | ϕ ∈ AutG, ‖ϕ‖A 6 n}, hence βA(n) 6
αA(n) for every n > 0.

As we have emphasized in the notation, the values of |g|A, ‖ϕ‖A and
‖[ϕ]‖A, as well as the functions αA and βA, do depend on the prese-
lected generating set A. However, the asymptotic behaviour of these
last two functions do not depend on A and so, they will constitute two
invariants of the group G. More precisely, changing to another finite
generating system these two functions change only up to multiplica-
tive constants both at the domain and at the range, as proved in the
following proposition.

Lemma 1.1. Let G be a group, and let A = {a1, . . . , ar} and B =
{b1, . . . , bs} be two finite generating sets. Then, there exists a constant
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C > 1 such that, for all ϕ ∈ AutG and Φ ∈ OutG, the following
inequalities hold:

(i) 1
C
‖ϕ‖B 6 ‖ϕ‖A 6 C‖ϕ‖B,

(ii) 1
C
‖Φ‖B 6 ‖Φ‖A 6 C‖Φ‖B.

Proof. Take M = max{|bi|A | i = 1, . . . , s}, N = max{|ai|B | i =
1, . . . , r}, and let C = MNrs > 1. For every ϕ ∈ AutG we have

‖ϕ‖B = |b1ϕ|B + · · ·+ |bsϕ|B
6 |b1ϕ|AN + · · ·+ |bsϕ|AN
6 N

(
|b1|A‖ϕ‖A + · · ·+ |bs|A‖ϕ‖A

)
= N

(
|b1|A + · · ·+ |bs|A

)
‖ϕ‖A

6 NMs‖ϕ‖A
6 C‖ϕ‖A.

By symmetry, ‖ϕ‖A 6 C‖ϕ‖B and (i) is proved.
To see (ii), given Φ ∈ OutG, choose ϕ ∈ Φ such that ‖ϕ‖A = ‖Φ‖A

and then

‖Φ‖B = min{‖θ‖B | θ ∈ Φ} 6 ‖ϕ‖B 6 C‖ϕ‖A = C‖Φ‖A.
A symmetric argument completes the proof. �

Proposition 1.2. Let G be a group, and let A = {a1, . . . , ar} and
B = {b1, . . . , bs} be two finite generating sets. Then, there exists a
constant C > 1 such that, for all n > 1, the following inequalities
hold:

(i) 1
C
· αB(

⌊
n
C

⌋
) 6 αA(n) 6 C · αB(Cn),

(ii) 1
C
· βB(

⌊
n
C

⌋
) 6 βA(n) 6 C · βB(Cn).

Proof. For n = 0, 1, . . . , r − 1, the left and middle terms in both in-
equalities are zeros and the result is trivial. For n > r, and using the
contant C from the previous lemma, we have

αA(n) = max{‖θ−1‖A | θ ∈ Aut(G), ‖θ‖A 6 n}
6 max{‖θ−1‖A | θ ∈ Aut(G), ‖θ‖B 6 Cn}
6 max{C‖θ−1‖B | θ ∈ Aut(G), ‖θ‖B 6 Cn}
= C ·max{‖θ−1‖B | θ ∈ Aut(G), ‖θ‖B 6 Cn}
= C · αB(Cn).

By symmetry, αB(n) 6 C · αA(Cn). Hence, for every n > r,

αB(
⌊ n
C

⌋
) 6 C · αA

(
C ·
⌊ n
C

⌋)
6 C · αA(n),

completing the proof of (i).
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The exact same argument changing α to β proves (ii). �

Straightforward computations show that the following is an equiv-
alence relation on the set of non-decreasing functions from N to N:
f ∼ g if and only if there exists a constant C > 0 such that for all
n ≥ 0, 1

C
· g(
⌊
n
C

⌋
) 6 f(n) 6 C · g(Cn). Then, Proposition 1.2 is

precisely saying that the equivalence classes of the functions αA and
βA do not depend on the set of generators A chosen, that is, they
are invariants of the group G. We shall denote them by αG and βG,
respectively.

The relevant information about these (equivalence classes of) func-
tions is their asymptotic growth. One says that the equivalence class
of f grows at least polynomially with degree d if there is a constant
L > 0 such that Lnd 6 f(n) for all n � 0 (i.e. for all n > n0 and
certain n0 > 0); it is usually said at least linearly, quadratically, or
cubically when d = 1, d = 2, or d = 3, respectively. It is also said
that f grows super-polynomially if it grows at least polynomially with
degree d for every d > 0. And f grows exponentially if there exists
constants L > 0 and λ > 1 such that Lλn 6 f(n) for all n � 0.
One can also define exact growth: f grows exactly polynomially with
degree d if there are constants L and M such that Lnd 6 f(n) 6Mnd

for all n � 0 (which is equivalent to saying f(n) ∼ nd). Clearly, all
these notions are well defined not just for functions but for equivalence
classes of functions.

Accordingly, we shall use the asymptotic behaviour of the functions
αG(n) and βG(n) of a given finitely generated group G to define the
gap of G for (outer) automorphism inversion:

Definition 1.3. Let G be a finitely generated group and consider
the (equivalence classes of) functions αG(n) and βG(n). We say that
G has linear (resp. quadratic, cubic, polynomial of degree d, super-
polynomial, exponential) gap for [resp. outer ] automorphism inversion
if the function αG(n) [resp. βG(n)] grows linearly (resp. quadrati-
cally, cubically, polynomially of degree d, super-polynomially, expo-
nentially).

This notion opens a new direction of research investigating the gap
of groups for (outer) automorphism inversion, by means of analyzing
the asymptotic growth of the corresponding functions. It is easy to see
that αG(n) is equivalent to a constant function if and only if |AutG| <
∞; similarly, βG(n) is equivalent to a constant function if and only if
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|OutG| < ∞. So, in this sense, interesting groups are those with
infinitely many (outer) automorphisms.

Immediately after giving these notions, one can ask many interesting
questions which, as far as we know, are open:

Question 1.4. Is there a finitely generated group G with super-poly-
nomial gap for (outer) automorphism inversion? And with exponential
gap ?

Question 1.5. Is there a global upper bound to the gap for (outer)
automorphism inversion in the class of finitely generated groups ? In
other words, is it true that given a non-decreasing function f : N→ N
there exists a finitely generated group G whose gap for (outer) auto-
morphism inversion grows at least like f ?

Question 1.6. Is there a finitely generated group G with |OutG| =∞
and whose gap for automorphism inversion is strictly bigger than its
gap for outer automorphism inversion ?

The goal of this paper is to investigate the gap for (outer) automor-
phism inversion in the family of finitely generated free groups. For
the free group of rank r, denoted Fr, we shall write αr = αFr and
βr = βFr .

We can complete this project for the rank two case, which is quite
special compared with higher ranks. On one hand we shall see that,
for every free basis A and every Φ ∈ OutF2, ‖Φ−1‖A = ‖Φ‖A; hence,
β2(n) = n, while the same equality in higher rank is far from true.
On the other hand, we prove that α2(n) is bounded above and below
by quadratic functions, i.e. F2 has an exact quadratic gap for auto-
morphism inversion. Collecting Theorems 3.5, 3.6 and 3.7 below, we
have

Theorem 1.7.

(i) For n > 4, α2(n) 6 (n−1)2

2
,

(ii) for n > 10, n2

4
− 6n+ 42 6 α2(n),

(iii) for n > 0, β2(n) = n.

For higher rank, the problem is much more complicated and our re-
sults are less precise. We show that αr(n) grows at least polynomially
with degree r, and βr(n) grows between polynomially with degree r−1,
and polynomially with a big enough degree. Collecting Theorem 4.4
and Corollary 4.6, we have
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Theorem 1.8. For every r > 3, there exist constants Kr, K
′
r, K

′′
r ,Mr >

0 such that, for every n > 0,

(i) Krn
r 6 αr(n),

(ii) K ′rn
r−1 6 βr(n) 6 K ′′r n

Mr .

To our knowledge, nothing else is know about the gap for (outer)
automorphism inversion in free groups of rank bigger than two. In
particular, we highlight the following interesting open questions:

Question 1.9. What is the exact gap for (outer) automorphism in-
version in free groups Fr, with r > 3?

Question 1.10. Is there a polynomial upper bound for the gap for
automorphism inversion in free groups Fr, with r > 3?

2. Free groups

2.1. Notation. Let Ar = {a1, . . . , ar, a
−1
1 , . . . , a−1

r } be an alphabet
of r symbols together with their formal inverses (a total of 2r symbols
different from each other). All along the paper we assume r > 2 to
avoid trivial cases.

The set of all words on Ar, including the empty one denoted 1,
together with the operation of concatenation of words, forms a free
monoid denoted A∗r. For any subset S ⊆ A∗r, the symbol S∗ denotes
the submonoid generated by S, namely the set of all (arbitrarily long)
finite formal products of elements in S. For example, {a1, . . . , ar}∗ is
precisely the set of all positive words on the alphabet Ar.

Let Fr = 〈a1, . . . , ar〉 be the free group (of rank r) on the alphabet
Ar, i.e. A∗r/ ∼ where ∼ is the congruence generated by the elementary
reductions aia

−1
i ∼ a−1

i ai ∼ 1. A word of A∗r is said to be (cyclically)
reduced if it contains no (cyclic) factor of the form aεia

−ε
i , ε = ±1.

Given a word w ∈ A∗r, we shall denote by w its reduction, namely
the unique reduced word representing the same element of Fr as w.
We shall do the standard abuse of notation consisting on using words,
specially reduced ones, to refer to elements of Fr.

Note that the length |w|A of an element w ∈ Fr is precisely the
number of letters in w; we shall simplify notation and just denoted it
by |w| (there will be no risk of confusion because, since now on, we
shall always work with respect to the preselected generating set A).

Let us consider now automorphisms. Since every ϕ ∈ AutFr is
determined by the images of a1, . . . , ar, say a1ϕ = u1, . . . , arϕ = ur,
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we shall adopt the notation ϕ = ηu1, ..., ur , on occasion. When all of the
ui’s are positive words, we say that ηu1, ..., ur is a positive automorphism
(also known in the literature as invertible substitution, see e.g. [7]).
The submonoid of AutFr consisting of all positive automorphisms is
denoted by Aut+ Fr. An automorphism ηu1, ..., ur is said to be cyclically
reduced when u1, . . . , ur are all cyclically reduced.

As above, we shall also omit the reference to A from the notation
for the norm of an automorphism ϕ ∈ AutFr, the norm of an outer
automorphism Φ ∈ OutFr, and also from the gap functions:

‖ϕ‖ = |a1ϕ|+ · · ·+ |arϕ|,
‖Φ‖ = min {‖ϕ‖ | ϕ ∈ Φ},

αr(n) = max {‖ϕ−1‖ | ϕ ∈ AutFr, ‖ϕ‖ 6 n},
βr(n) = max {‖Φ−1‖ | Φ ∈ OutFr, ‖Φ‖ 6 n}.

Note that there are exactly r!2r automorphisms with ‖ϕ‖ = r, namely
those of the form a1 7→ aε11π, . . . , ar 7→ aεrrπ, where π ∈ Sr is a permu-
tation of {a1, . . . , ar} and εi = ±1. These automorphisms are the
simplest ones and are called letter permutation automorphisms of Fr.
They will be useful to reduce the number of cases in our arguments
below.

Observe also that the natural inclusion AutFr ↪→ AutFr+1 defined
by fixing the last generator, gives the inequality αr+1(n + 1) > 1 +
αr(n).

The following proposition is another reason for omitting the refer-
ence to A from the notation. It presents a stronger form of Proposi-
tion 1.2 when restricting our attention to free generating sets: given
two bases A and B of Fr, the functions αA and αB are not only equiv-
alent but exactly equal i.e., αA(n) = αB(n) for all n > 0. The same is
true for the β functions.

Proposition 2.1. Let A and B be two bases of Fr. Then, αA(n) =
αB(n) and βA(n) = βB(n), for all n > 0.

Proof. Let ψ : Fr → Fr be the automorphism defined by biψ = ai,
i = 1, . . . , r. It is clear that, for every w ∈ Fr, |w|B = |wψ|A. Now,
for every ϕ ∈ AutFr, we have

‖ϕ‖B = |b1ϕ|B + · · ·+ |brϕ|B
= |a1ψ

−1ϕ|B + · · ·+ |arψ−1ϕ|B
= |a1ψ

−1ϕψ|A + · · ·+ |arψ−1ϕψ|A
= ‖ψ−1ϕψ‖A.
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Furthermore, for every Φ ∈ OutFr, we also have

‖Φ‖B = min{‖ϕ‖B | ϕ ∈ Φ}
= min{‖ψ−1ϕψ‖A | ϕ ∈ Φ}
= min{‖ν‖A | ν ∈ Ψ−1ΦΨ}
= ‖Ψ−1ΦΨ‖A,

where Ψ = [ψ] ∈ OutFr. And from these equalities we deduce that,
for every n > 0,

αB(n) = max{‖ϕ−1‖B | ϕ ∈ AutFr, ‖ϕ‖B 6 n}
= max{‖ψ−1ϕ−1ψ‖A | ϕ ∈ AutFr, ‖ψ−1ϕψ‖A 6 n}
= max{‖ν−1‖A | ν ∈ AutFr, ‖ν‖A 6 n}
= αA(n).

A similar argument shows that βB(n) = βA(n). �

2.2. The p-norm of an automorphism. To prove the main results
in the paper, we need to introduce a technical generalization of the
notion of norm for an (outer) automorphism (and its corresponding
gap functions). We shall use standard facts about norms on real (or
complex) vectors and matrices. Recall that the maps ‖·‖p : Rk → R,
‖(x1, . . . , xk)‖p = (|x1|p + · · ·+ |xk|p)1/p (for p ∈ R+) and ‖·‖∞ : Rk →
R, ‖(x1, . . . , xk)‖∞ = max {|x1|, . . . , |xk|} are vector norms, i.e. they
satisfy the following axioms: (1) ‖x‖p > 0 with equality if and only if
x = 0; (2) ‖µx‖p = |µ|‖x‖p; and (3) ‖x + y‖p 6 ‖x‖p + ‖y‖p.

Let us extend these notions to the non-abelian context, via the

length function. For p ∈ R+
= R+∪{∞} and w = (w1, . . . , wk) ∈ F k

r ,
we define

‖w‖p = ‖(w1, . . . , wk)‖p = (|w1|p + · · ·+ |wk|p)1/p

for p ∈ R+, and

‖w‖∞ = ‖(w1, . . . , wk)‖∞ = max {|w1|, . . . , |wk|}
for p =∞. Note that the notation is coherent with the fact ‖w‖∞ =
limp→∞ ‖w‖p.

Observe that this map F k
r → R can be expressed in terms of the cor-

responding vector norm, ‖(w1, . . . , wk)‖p = ‖(|w1|, . . . , |wk|)‖p. Hence,
it satisfies the following properties:

1) (positivity) ‖w‖p > 0 with equality if and only if w = (1, . . . , 1);
2) (powers) ‖(wn1 , . . . , wnk )‖p 6 |n|‖(w1, . . . , wk)‖p;
3) (triangular inequality) ‖(v1w1, . . . , vkwk)‖p 6 ‖(v1, . . . , vk)‖p+
‖(w1, . . . , wk)‖p.
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By analogy, we shall refer to these three properties by naming ‖·‖p as
the p-norm in F k

r .
Let us move now to morphisms. Thinking of endomorphisms of

Fr (and, in particular, automorphisms) as r-tuples of elements, ϕ ↔
(a1ϕ, . . . , arϕ), we define the p-norm of an endomorphism ϕ ∈ EndFr,

p ∈ R+
, as

‖ϕ‖p = ‖(a1ϕ, . . . , arϕ)‖p.
Given Φ ∈ OutFr, define also

‖Φ‖p = min {‖ϕ‖p | ϕ ∈ Φ}.

Of course, ‖ϕ‖1 and ‖Φ‖1 equal, respectively, the values ‖ϕ‖ and ‖Φ‖
defined in the previous section.

Further, we define the corresponding gap functions αpr and βpr in the
natural way:

αpr(n) = max {‖ϕ−1‖p | ϕ ∈ AutFr, ‖ϕ‖p 6 n},

βpr (n) = max {‖Φ−1‖p | Φ ∈ OutFr, ‖Φ‖p 6 n}.

Clearly, these are non-decreasing functions from N to R. Again, αr
and βr from the previous section are just α1

r and β1
r , respectively.

Furthermore, the following proposition states that the functions αpr
belong to the same equivalence class for all different values of p ∈
R+

; the same happens for the functions βpr (note that the equivalence
relation defined above for functions from N to N can naturally be
extended to functions from N to R). For this reason, we shall restrict
our attention to the case p = 1 (with occasional references to the
∞-norm for some technical arguments).

Proposition 2.2. For all p, q ∈ R+
there exists a natural number

C = Cp,q,r > 0 such that

1

C
‖ϕ‖q 6 ‖ϕ‖p 6 C‖ϕ‖q and

1

C
‖Φ‖q 6 ‖Φ‖p 6 C‖Φ‖q

hold for all ϕ ∈ EndFr and Φ ∈ OutFr. Furthermore, for all n > 0,

1

C
αpr

(⌊ n
C

⌋)
6 αqr(n) 6 Cαpr(Cn),

1

C
βpr

(⌊ n
C

⌋)
6 βqr (n) 6 Cβpr (Cn).
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Proof. It is well-known (see [4, Corollary 5.4.5]) that the exact similar
fact holds for the corresponding vector norms: there exists a positive
constant, and so a natural number C = Cp,q,r such that

1

C
‖x‖q 6 ‖x‖p 6 C‖x‖q

for every x ∈ Rr. Now 1
C
‖ϕ‖q 6 ‖ϕ‖p 6 C‖ϕ‖q follows immediately

from the equality

‖ϕ‖p = ‖(a1ϕ, . . . , arϕ)‖p = ‖(|a1ϕ|, . . . , |arϕ|)‖p.

On the other hand, since ‖Φ‖q = ‖θ‖q for some θ ∈ Φ, we get

‖Φ‖p = min {‖ϕ‖p | ϕ ∈ Φ} 6 ‖θ‖p 6 C‖θ‖q = C‖Φ‖q

and 1
C
‖Φ‖q 6 ‖Φ‖p 6 C‖Φ‖q follows by symmetry.

For the second part of the statement, we have

αqr(n) = max {‖ϕ−1‖q | ϕ ∈ AutFr, ‖ϕ‖q 6 n}
6 max {‖ϕ−1‖q | ϕ ∈ AutFr, ‖ϕ‖p 6 Cn}
6 C max {‖ϕ−1‖p | ϕ ∈ AutFr, ‖ϕ‖p 6 Cn}
= Cαpr(Cn)

for all n. Symmetrically, αpr(n) 6 Cαqr(Cn). Now, for every natural
number n, write Cb n

C
c 6 n and we have αpr

(
b n
C
c
)
6 Cαqr

(
Cb n

C
c
)
6

Cαqr(n) and so, 1
C
αpr
(
b n
C
c
)
6 αqr(n).

The same argument gives the corresponding inequalities for the β
functions. �

The following lemmas state some basic properties of norms of au-
tomorphisms and outer automorphisms of free groups, that will be
useful later.

Lemma 2.3. Let ϕ, θ, ψ1, ψ2 ∈ AutFr with ψ1 and ψ2 letter permut-
ing, and let w ∈ Fr \ {1}. Then:

(i) ‖ϕ‖1
r
6 ‖ϕ‖∞ < ‖ϕ‖1,

(ii) ‖ψ1ϕψ2‖p = ‖ϕ‖p for all p ∈ R+
,

(iii) ||ϕθ||1 6 ||ϕ||1 · ||θ||∞ < ||ϕ||1 · ||θ||1,
(iv) ||λwϕ||1 6 (2r|w|+ r − 2)||ϕ||∞ < (2r|w|+ r − 2)||ϕ||1.

Proof. (i) and (ii) are clear from the definitions.
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(iii) For every a ∈ Ar, we have |aϕθ| 6 |aϕ| · ||θ||∞ and so

||ϕθ||1 =
r∑
i=1

|aiϕθ| 6
r∑
i=1

|aiϕ| · ||θ||∞ = ||ϕ||1 · ||θ||∞ < ||ϕ||1 · ||θ||1.

(iv) Since w 6= 1, exactly one of the words w−1aiw is non reduced,
and so

||λwϕ||1 =
r∑
i=1

|(w−1aiw)ϕ| 6 (r − 1)(2|w|+ 1)||ϕ||∞ + (2|w| − 1)||ϕ||∞

= (2r|w|+ r − 2)||ϕ||∞ < (2r|w|+ r − 2)||ϕ||1. �

Lemma 2.4. Let Φ, Θ ∈ OutFr and let ψ1, ψ2 ∈ AutFr be letter
permuting. Then:

(i) ‖[ψ1]Φ[ψ2]‖1 = ‖Φ‖1,
(ii) ‖ΦΘ‖1 6 ‖Φ‖1‖Θ‖1.

Proof. We have [ψ1]Φ[ψ2] = ψ1ΛrΦψ2Λr = ψ1ΛrΦΛrψ2 = ψ1Φψ2.
Now Lemma 2.3(ii) yields

‖[ψ1]Φ[ψ2]‖1 = min {‖ψ1ϕψ2‖1 | ϕ ∈ Φ} = min {‖ϕ‖1 | ϕ ∈ Φ} = ‖Φ‖1

and so (i) holds.
For (ii), we use Lemma 2.3(iii) to get

‖ΦΘ‖1 = min {‖ψ‖1 | ψ ∈ ΦΘ} = min {‖ϕθ‖1 | ϕ ∈ Φ, θ ∈ Θ}
6 min {‖ϕ‖1‖θ‖1 | ϕ ∈ Φ, θ ∈ Θ}
= (min {‖ϕ‖1 | ϕ ∈ Φ})(min {‖θ‖1 | θ ∈ Θ}) = ‖Φ‖1‖Θ‖1 .�

Lemma 2.5. Let ϕ ∈ AutFr be cyclically reduced. Then ‖[ϕ]‖1 =
‖ϕ‖1.

2.3. Abelianization. Abelianization will be a valuable tool to derive
lower bounds for ‖ϕ‖1 and ‖Φ‖1.

The 1-norm for vectors ‖(x1, . . . , xr)‖1 = |x1|+ · · ·+ |xr| gives rise
to the 1-norm for matrices, namely

‖M‖1 =
∑
i,j

|mi,j|,

where M = (mi,j) ∈ GLr(Z). It is straightforward to verify that, for
all x, y ∈ Zr and M,N ∈ GLr(Z), we have the inequalities ‖x+y‖1 6
‖x‖1 + ‖y‖1, ‖xM‖1 6 ‖x‖1 · ‖M‖1, ‖M +N‖1 6 ‖M‖1 + ‖N‖1, and
‖MN‖1 6 ‖M‖1‖N‖1.
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Let us denote the abelianization map by (·)ab : Fr � Zr, w 7→
wab = ([w]a1 , . . . , [w]ar). Here, [w]ai is the total exponent of ai in
w, i.e. the total number of times the letter ai occurs in w, taking
into account the exponents’ signs (for example, [a1a2a

−2
1 ]a1 = −1 and

[a1a
−1
1 a2]a1 = [a2]a1 = 0).

Every automorphism ϕ ∈ AutFr abelianizes to an automorphism
ϕab of Zr which we shall represent by its r × r (invertible) matrix
over Z. We want automorphisms to act on the right, and so we write
matrices by rows, i.e. with the i-th row describing the image of the
i-th generator:

ϕab =

[a1ϕ]a1 · · · [a1ϕ]ar
· · · · · · · · ·

[arϕ]a1 · · · [arϕ]ar

 ∈ GLr(Z).

This way, for every w ∈ Fr, (wϕ)ab = wabϕab. Furthermore, (ϕθ)ab =
ϕabθab, and (ϕ−1)ab = (ϕab)−1.

Observe that, for every w ∈ Fr, |w| > ‖wab‖1 = |[w]a1|+ · · ·+ |[w]ar |
with equality if and only if no letter occurs in w with the two opposite
signs. This can be expressed in the following useful way:

Lemma 2.6. For every ϕ ∈ AutFr, ‖ϕ‖1 > ‖[ϕ]‖1 > ‖ϕab‖1, with
equalities if and only if, for every i = 1, . . . , r, no letter occurs in aiϕ
with the two opposite signs. In particular, ‖ϕ‖1 = ‖ϕab‖1 for positive
automorphisms.

Proof. Clearly, ‖ϕ‖1 > ‖[ϕ]‖1. We may write ‖[ϕ]‖1 = ‖ϕλw‖1 for
some w ∈ Fr. Then

‖ϕ‖1 > ‖[ϕ]‖1 = ‖ϕλw‖1 =
r∑
i=1

|aiϕλw| >
r∑
i=1

‖(aiϕ)ab‖1

=
r∑
i=1

‖aab
i ϕ

ab‖1 =
r∑
i=1

r∑
j=1

|[aiϕ]aj | = ‖ϕab‖1,

where aab
i is the i-th canonical vector and so, aab

i ϕ
ab is the i-th row in

ϕab. It is immediate that the inequality ‖ϕ‖1 > ‖ϕab‖1 becomes an
equality if and only if, for every i = 1, . . . , r, no letter occurs in aiϕ
with the two opposite signs. This is the case when ϕ ∈ Aut+ Fr. �

3. The rank two case

In this section we shall deal with the rank 2 case. For the duration
of this section, we simplify our notation to A = A2 = {a, b, a−1, b−1}.
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We start by proving that inversion preserves the norm in the case
of positive automorphisms. It is known that positive automorphisms
of F2 are generated as a monoid by ∆ = {ηb,a, ηa,ab, ηa,ba}, that is,
they all can be obtained as a composition of these elementary ones,
i.e. Aut+ F2 = ∆∗ (see [7]).

Lemma 3.1. Let ϕ ∈ Aut+ F2 and write ϕ−1 = ηu,v. Then either
u ∈ {a, b−1}∗ and v ∈ {a−1, b}∗, or u ∈ {a−1, b}∗ and v ∈ {a, b−1}∗.
In particular, ϕ−1 is cyclically reduced.

Proof. The result is clear for the three elementary positive automor-
phisms, η−1

b,a = ηb,a, η
−1
a,ab = ηa,a−1b, η

−1
a,ba = ηa,ba−1 . Since all positive

automorphisms are compositions of elements from ∆, it is sufficient
to show that, given a positive automorphism ϕ and θ ∈ ∆, the lemma
holds for ϕθ whenever it holds for ϕ. To see this, write ϕ−1 = ηu,v and
assume u and v are as in the statement. Then we get

(ϕηb,a)
−1 = ηb,aηu,v = ηv,u,

(ϕηa,ab)
−1 = ηa,a−1bηu,v = ηu,u−1v,

(ϕηa,ba)
−1 = ηa,ba−1ηu,v = ηu,vu−1 ,

completing the proof. �

Proposition 3.2. Let ϕ ∈ Aut+ F2. Then ‖ϕ−1‖1 = ‖ϕ‖1.

Proof. Abelianizing, we have

ϕab =

(
[aϕ]a [aϕ]b
[bϕ]a [bϕ]b

)
and (ϕ−1)ab = ±

(
[bϕ]b −[aϕ]b
−[bϕ]a [aϕ]a

)
;

hence, ‖(ϕ−1)ab‖1 = ‖ϕab‖1. Also, ‖ϕab‖1 = ‖ϕ‖1 since ϕ is positive
(see Lemma 2.6). Now, write ϕ−1 = ηu,v. By Lemma 3.1 no letter
occurs with both signs in neither u nor v so, again by Lemma 2.6,
‖(ϕ−1)ab‖1 = ‖ϕ−1‖1, concluding the proof. �

From positive automorphisms we can gain control of all cyclically
reduced ones.

Lemma 3.3. For every cyclically reduced ϕ ∈ AutF2, there exist two
letter permuting automorphisms ψ1, ψ2 ∈ AutF2 and θ ∈ Aut+ F2

such that ϕ = ψ1θψ2.

Proof. Write ϕ = ηu,v. Since both u and v are cyclically reduced, the
main result in [2] tells us that at most two letters of A occur in u,
and at most two of them (not necessarily the same ones) occur in v.
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Without loss of generality, we may assume that two different letters
occur in either u or v, say in u. Inverting all possibly negative letters
in u, we can write ηu,v = ηu′,v′ηaε,bδ with ε, δ = ±1, u′ ∈ {a, b}∗ and
|u′| = |u| and |v′| = |v|.

If v′ ∈ {a, b}∗, i.e. is a positive word, then ηu′,v′ ∈ Aut+ F2 and
we are done. If v′ ∈ {a−1, b−1}∗, take ηu,v = ηa,b−1ηu′,v′−1ηaε,bδ and we
are also done. The remaining cases to consider are v′ ∈ {a−1, b}∗ or
v′ ∈ {a, b−1}∗ with exactly two letters occurring in v′; they will lead
us to contradiction. Indeed, abelianizing we get u′ab = ([u]a, [u]b) =
(p, q) with p, q > 0, and v′ab = ([v]a, [v]b) = (r, s) with rs < 0.
This contradicts ps − qr = ±1 coming from the fact that ηu′,v′ is an
automorphism of F2. �

And from those, we can reach the general case:

Lemma 3.4. For every ϕ ∈ AutF2, there exist two letter permuting
automorphisms ψ1, ψ2 ∈ AutF2, θ ∈ Aut+ F2, and an element g ∈ F2

such that ϕ = ψ1θψ2λg and ‖θ‖1 + 2|g| 6 ‖ϕ‖1.

Proof. Note that, by Lemmas 2.3(ii) and 3.3, it suffices to show that
there exists a cyclically reduced ϕ′ ∈ AutF2 and g ∈ F2, such that
ϕ = ϕ′λg and ‖ϕ′‖1+2|g| 6 ‖ϕ‖1. Let us prove this claim by induction
on ‖ϕ‖1.

If ‖ϕ‖1 = 2 the claim is trivial since ϕ is already cyclically reduced.
So, suppose ϕ = ηu,v ∈ AutF2 is given with ‖ηu,v‖1 > 2, and let
us assume the claim holds for all automorphisms of smaller 1-norm.
Again, if u and v are cyclically reduced the claim is trivial so, by
symmetry, we can assume that u is not cyclically reduced, say u =
c−1u′c for some c ∈ A and u′ ∈ F2. If v neither begins with c−1

nor ends with c then it could be easily seen that c would not be
contained in 〈u, v〉 contradicting the fact that {u, v} generates F2.

Hence, v ∈ c−1A∗ ∪ A∗c, and so |cvc−1| 6 |v|. Now, factoring ηu,v as
ηu,v = ηu′,cvc−1λc, we have

‖ηu′,cvc−1‖1 = |u′|+ |cvc−1| 6 |u| − 2 + |v| = ‖ηu,v‖1 − 2,

and we can apply the induction hypothesis to get a factorization
ηu′,cvc−1 = ϕ′λh with ϕ′ cyclically reduced and ‖ϕ′‖1+2|h| 6 ‖ηu′,cvc−1‖1.

Thus, we have ηu,v = ηu′,cvc−1λc = ϕ′λhλc = ϕ′λhc with

‖ϕ′‖1 + 2|hc| 6 ‖ϕ′‖1 + 2|h|+ 2 6 ‖ηu′,cvc−1‖1 + 2 6 ‖ηu,v‖1 = ‖ϕ‖1.

This completes the proof of the claim and so, of the lemma. �
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Theorem 3.5. For every n > 4, we have α2(n) 6 (n−1)2

2
.

Proof. Let ϕ ∈ AutF2 with ‖ϕ‖1 6 n, and let us prove that ‖ϕ−1‖1 6
(n−1)2

2
. Consider the decomposition given in Lemma 3.4, ϕ = ψ1θψ2λg

for some letter permuting ψ1, ψ2 ∈ AutF2, some θ ∈ Aut+ F2, and
some g ∈ F2 such that ‖θ‖1 + 2|g| 6 ‖ϕ‖1.

If g = 1 then

‖ϕ−1‖1 = ‖ψ−1
2 θ−1ψ−1

1 ‖1 = ‖θ−1‖1 = ‖θ‖1 = ‖ϕ‖1 6 n 6
(n− 1)2

2
,

by Lemma 2.3(ii) and Proposition 3.2 (and using in the last step that
n > 4).

So, let us assume g 6= 1 in which case we have ϕ−1 = λg−1ψ−1
2 θ−1ψ−1

1 .
By Lemma 2.3 and Proposition 3.2,

‖ϕ−1‖1 6 4|g| · ‖ψ−1
2 θ−1ψ−1

1 ‖∞ = 4|g| · ‖θ−1‖∞ 6 4|g|(‖θ−1‖1 − 1)

= 4|g|(‖θ‖1 − 1).

Since we also have ‖θ‖1 + 2|g| 6 ‖ϕ‖1 6 n, we deduce |g| 6 n−‖θ‖1
2

and so,
‖ϕ−1‖1 6 2(n− ‖θ‖1)(‖θ‖1 − 1).

Finally, since the parabola f(x) = 2(n − x)(x − 1) has its absolute
maximum in the point x = n+1

2
, we conclude

‖ϕ−1‖1 6 2(n−‖θ‖1)(‖θ‖1−1) 6 2
(
n−n+ 1

2

)(n+ 1

2
−1
)

=
(n− 1)2

2
. �

In order to establish lower bounds for α2(n), we need to construct
explicit automorphisms of F2 having inverses with 1-norm much bigger
than that of themselves.

Theorem 3.6. For n > 10, we have α2(n) > n2

4
− 6n+ 42.

Proof. For k > 0 consider the automorphisms

ψk = ηab2k, ab2k+1λa−kb = ηb−1ak+1b2ka−kb, b−1ak+1b2k+1a−kb.

We have ‖ψk‖1 = 8k + 7. For the inverse, we have

ψ−1
k = λb−1akη

−1
ab2k, ab2k+1 = λb−1akηa(b−1a)2k, a−1b = ηu, v,

where u and v are the two words

u = ((a−1b)2ka−1)ka−1ba(b−1a)2kb−1a(a(b−1a)2k)k,

v = ((a−1b)2ka−1)ka−1b(a(b−1a)2k)k.

Hence, ‖ψ−1
k ‖1 = 4(4k + 1)k + 4k + 7 = 16k2 + 8k + 7.
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Writing n = ‖ψk‖1 = 8k + 7, we have k = n−7
8

and then

‖ψ−1
k ‖1 = 16

(n− 7)2

64
+ n− 7 + 7 =

n2 − 10n+ 49

4
.

Thus, for n ≡ 7 mod 8, we have α2(n) > n2−10n+49
4

.
Finally, for every n > 7, let n′ be the unique integer congruent with

7 modulo 8 in the set {n− 7, . . . , n− 1, n}. We have

α2(n) > α2(n′) >
n′2 − 10n′ + 49

4
>

(n− 7)2 − 10(n− 7) + 49

4

=
n2

4
− 6n+ 42,

where the last inequality uses n > 10 since the parabola f(x) =
x2−10x+49

4
has its minimum at x = 5. �

The outer automorphism case turns out to be simpler:

Theorem 3.7. For every Φ ∈ OutF2, ‖Φ−1‖1 = ‖Φ‖1. Consequently,
β2(n) = n.

Proof. Take ϕ ∈ Φ. By Lemma 3.4, ϕ = ψ1θψ2λg for some letter
permuting automorphisms ψ1, ψ2 ∈ AutF2, some θ ∈ Aut+ F2 and
some element g ∈ F2. Then Lemmas 2.4(i) and 2.5 yield

‖Φ‖1 = ‖[ϕ]‖1 = ‖[ψ1θψ2λg]‖1 = ‖[ψ1θψ2]‖1 = ‖[θ]‖1 = ‖θ‖1.

Also by Lemma 2.4(i), we get

‖Φ−1‖1 = ‖[ϕ−1]‖1 = ‖[λg−1ψ−1
2 θ−1ψ−1

1 ]‖1 = ‖[ψ−1
2 θ−1ψ−1

1 ]‖1 = ‖[θ−1]‖1.

Since θ−1 is cyclically reduced by Lemma 3.1, we may use Lemma 2.5
to get ‖Φ−1‖1 = ‖[θ−1]‖1 = ‖θ−1‖1. Since ‖θ‖1 = ‖θ−1‖1 by Proposi-
tion 3.2, we get ‖Φ−1‖1 = ‖Φ‖1. Therefore β2(n) = n. �

4. Higher rank

In this section, we consider arbitrary rank r > 2, compute poly-
nomial lower bounds for both αr(n) and βr(n), and show that βr(n)
admits a polynomial upper bound.

The polynomial lower bounds for αr(n) and βr(n) have degrees r
and r − 1, respectively. In particular, this separates the asymptotic
behavior of the rank two case from all other ranks, with respect to
both complexity functions. That is, ξ2(n) grows more slowly than
ξr(n) for all r > 3 and ξ ∈ {α, β}, which agrees with the intuitive fact
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that AutFr is a much easier group to deal with for r = 2 than for
higher rank.

Finally, the polinomial upper bound for βr(n) is established with
the help of the theory of Outer space.

We assume the rank r fixed throughout the whole section.

4.1. Lower bounds. Our lower bound for βr(n) is obtained by abelian-
ization of positive automorphisms. The extra unit in the degree of the
lower bounds from βr(n) to αr(n) will be achieved by additionally com-
posing the positive automorphisms with a suitable conjugation that
increases in size when inverting. We thank Warren Dicks for suggest-
ing us to use the following automorphisms; this significantly simplified
our previous proof of the lower bounds for αr(n) and βr(n).

We start by defining, for every p ∈ Z, a matrix M (p) = (m
(p)
i,j ) ∈

GLr(Z) = AutZr given by

m
(p)
i,j =


1, if i = j;

p, if j = i+ 1;

0, otherwise.

Note that detM (p) = 1 and so M (p) is indeed invertible.

Lemma 4.1. For all r > 2 and p ∈ Z, let N (p) = (n
(p)
i,j ) ∈ GLr(Z) be

defined by

n
(p)
i,j =


1, if i = j;

(−p)j−i, if i < j;

0, otherwise.

Then N (p) = (M (p))−1.

Proof. It suffices to show that M (p)N (p) is the identity matrix. In-

deed, the (i, j)-th entry of the product matrix is
∑r

k=1 m
(p)
i,kn

(p)
k,j =∑min{i+1,j}

k=i m
(p)
i,kn

(p)
k,j which is 0 if j < i and 1 if j = i. If j > i, we get

m
(p)
i,i n

(p)
i,j + m

(p)
i,i+1n

(p)
i+1,j = (−p)j−i + p(−p)j−i−1 = 0 and the lemma is

proved. �

We immediately obtain:

Lemma 4.2. For all r > 2 and p ∈ Z, we have ‖M (p)‖1 = r+(r−1)p
and ‖(M (p))−1‖1 ≥ pr−1. 2
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For every integer p > 2, define ϕp ∈ Aut+ Fr by

aiϕp =

{
aia

p
i+1, if 1 ≤ i < r;

ar, if i = r.

Note that ϕp is clearly onto and therefore an automorphism since free
groups of finite rank are hopfian [5].

Lemma 4.3. For all r > 2 and p > 2:

(i) ϕab
p = M (p),

(ii) arϕ
−1
p = ar and aiϕ

−1
p = ai(ai+1ϕ

−1
p )−p for i = 1, . . . , r − 1,

(iii) aiϕ−1
p ∈ aiA∗ra−1

i+1 for i = 1, . . . , r − 1,

(iv) ||ϕ−1
p ||1 < 2|a1ϕ

−1
p |.

Proof. (i) is clear.
To get (ii), it suffices to compute (ai(ai+1ϕ

−1
p )−p)ϕp = (aiϕp)a

−p
i+1 =

ai for i < r. Then (iii) follows from (ii) by reverse induction.
Finally, to see (iv) observe that by (iii) the product ai(ai+1ϕ

−1
p )−p is

reduced and so |aiϕ−1
p | > p|ai+1ϕ

−1
p | for every i < r. Hence |aiϕ−1

p | <
1

pi−1 |a1ϕ
−1
p | for i = 2, . . . , r and so

||ϕ−1
p ||1 =

r∑
i=1

|aiϕ−1
p | < (1 +

1

p
+ · · ·+ 1

pr−1
)|a1ϕ

−1
p | < 2|a1ϕ

−1
p |. �

Now we are ready to state and prove the lower bounds for our
complexity functions.

Theorem 4.4. For every r > 2, there exists constants Kr, K
′
r > 0

such that, for every n > 1:

(i) Krn
r 6 αr(n),

(ii) K ′rn
r−1 6 βr(n).

Proof. Let p > r. By Lemmas 2.6, 4.2 and 4.3(i), we have

‖ϕp‖1 = ‖[ϕp]‖1 = ‖ϕab
p ‖1 = ‖M (p)‖1 = r + (r − 1)p 6 rp. (1)

On the other hand, the same results yield

‖ϕ−1
p ‖1 > ‖[ϕ−1

p ]‖1 > ‖(ϕ−1
p )ab‖1 = ‖(ϕab

p )−1‖1 = ‖(M (p))−1‖1 > pr−1.
(2)

Let n0 = max

{
r2, (r−1)2

1
r−1

2
1
r−1−1

}
and consider n > n0. Take the integer

p = bn
r
c > r, which satisfies n−(r−1)

r
6 p 6 n

r
and so rp ∈ {n − (r −

1), . . . , n}. The outer automorphism [ϕp] ∈ Out(Fr) satisfies ‖[ϕp]‖1 6
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rp 6 n; and, on the other hand, ‖[ϕ−1
p ]‖1 > pr−1 > (n−(r−1)

r
)r−1 =

(n−(r−1))r−1

rr−1 . Now it is straightforward to check that

(n− a)s >
ns

2
⇐⇒ n >

a2
1
s

2
1
s − 1

holds for all positive integers s, a, n. Hence, we deduce that

‖[ϕ−1
p ]‖1 >

1

2rr−1
nr−1

(using that n > (r−1)2
1
r−1

2
1
r−1−1

). We conclude that βr(n) > 1
2rr−1n

r−1 for

n > n0. Adjusting the value of the constant 1
2rr−1 to cover the finitely

many missing values of n, (ii) holds.
To prove (i) let us restrict ourselves to the case r > 3 (Theorem 3.6

already deals with the case r = 2). Fix p > r and let ψp = ϕpλap1 .
Then (1) yields

‖ψp‖1 =
r∑
i=1

|a−p1 (aiϕp)a
p
1| 6 2rp+ ‖ϕp‖1 6 3rp.

On the other hand,

‖ψ−1
p ‖1 = ‖λa−p1

ϕ−1
p ‖1 >

r∑
i=3

|(ap1aia
−p
1 )ϕ−1

p |.

Since the products (a1ϕ
−1
p )p(aiϕ

−1
p )(a−1

1 ϕ−1
p )p are reduced by Lemma

4.3(iii), it follows that ‖ψ−1
p ‖1 > 2(r− 2)p|a1ϕ

−1
p | > (r− 2)p||ϕ−1

p ||1 >
(r − 2)pr, by Lemma 4.3(iv) and (2).

This shows that, for n = 3rp and p > r, we have αr(n) > (r −
2)pr = r−2

(3r)r
nr i.e., (i) is proven for all such values of n. Finally, the

extension of this inequality to all values of n (after adjusting properly
the multiplicative constant) proceeds similarly to part (ii). �

As a final remark for this section, it seems clear that this exhausts
the potential of abelianization techniques to provide lower bounds. If
the growths of our complexity functions are strictly bigger than what
we have proven here, this will have to be obtained by more intricate
counting techniques working above the abelian level.
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4.2. Upper bounds. We can present a polynomial upper bound for
βr(n) using Outer space techniques. We thank M. Bestvina for sug-
gesting a simplification of our initial arguments, which leads to a very
easy and elegant proof of such a polynomial upper bound, now es-
sentially a corollary of a recent result about the asymmetry of the
Lipschitz metric in Outer space.

Let us briefly recall what Outer space Xr is, r > 2, following the
notation from [1] (see [6] for more details).

By the term graph we mean a finite graph Γ of rank r, all whose ver-
tices have degree at least three. A metric on Γ is a function ` : EΓ→
[0, 1] defined on the set of edges of Γ such that

∑
e∈EΓ `(e) = 1 and the

set of length zero edges forms a forest. Let us denote by ΣΓ the space
of all such metrics ` on Γ, viewed as a “simplex with missing faces”
(corresponding to degenerate metrics that vanish on a subgraph which
is not a forest). If Γ′ is obtained from Γ by collapsing a forest, then
we will naturally consider ΣΓ′ as a subset of ΣΓ along the inclusion
given by assigning length zero to the collapsed edges.

Fix the rose graph Rr with one vertex (denoted o) and r edges, and
identify the free group Fr with the fundamental group π1(Rr, o) in such
a way that each generator ai corresponds to a single oriented edge of
Rr. Under this identification, each reduced word in Fr corresponds to
a reduced edge-path loop starting and ending at the basepoint o in
Rr.

A marked graph is a pair (Γ, f) where f is a marking, i.e. a ho-
motopy equivalence from the rose Rr to Γ. It is standard to consider
the set of marked graphs modulo the following equivalence relation:
(Γ, f) ∼ (Γ′, f ′) if and only if there is a homeomorphism µ : Γ → Γ′

such that fµ is homotopic to f ′. Denote it by MG/ ∼.
Noting that all representatives of a given class [(Γ, f)] ∈ MG/ ∼

share a common underlying graph, we can consider the space of metrics
on Γ and denote it Σ[(Γ,f)]. Now, the Outer Space Xr is obtained from
the disjoint union ⊔

[(Γ,f)]∈MG/∼

Σ[(Γ,f)]

by identifying the faces of the simplices along the above natural in-
clusions. Thus, a point in Xr is represented by a triple of the form
(Γ, f, `).

There is a natural action of AutFr on Xr. Given ϕ ∈ AutFr, realize
it on the rose, say ϕ : Rr → Rr, and for every point x = (Γ, f, `) ∈ Xr
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define ϕ·x to be (Γ, ϕf, `). It is easy to see that this is well defined and
gives an action of AutFr on Xr. Notice that, by construction, inner
automorphisms act trivially; so, what we have is in fact an action of
OutFr on Xr.

Recently, the Lipschitz metric for Xr has been introduced and ini-
tially studied in [3], followed by other authors (see, for example, [1]).
This metric can be defined as follows.

Let x, x′ ∈ Xr be two points in the Outer space; take representatives,
say (Γ, f, `) and (Γ′, f ′, `′), respectively. A difference of markings is a
map µ : Γ→ Γ′ which is linear on edges, and such that fµ is homotopic
to f ′. For such a difference of markings one can define σ(µ) to be the
largest slope of µ over all edges e ∈ EΓ. Then define the distance
from x to x′ as

d(x, x′) = min
µ
{log σ(µ)},

where the minimum is taken over all possible differences of markings
(and achieved by Arzela-Ascoli’s Theorem).

The basic properties of this “distance” are the following: (1) d(x, y) >
0, with equality if and only if x = y; (2) d(x, z) 6 d(x, y) + d(y, z) for
all x, y, z ∈ Xr; (3) OutFr acts by isometries, i.e. d([ϕ] · x, [ϕ] · y) =
d(ϕ · x, ϕ · y) = d(x, y) for all x, y ∈ Xr and ϕ ∈ AutFr; but (4)
d(x, y) 6= d(y, x) in general. See [3] and [1] for details.

For ε > 0, define the ε-thick part of Xr as

Xr(ε) = {(Γ, f, `) ∈ Xr | `(p) > ε ∀p nontrivial closed path in Γ}.
The following is an interesting result from Y. Algom-Kfir and M.

Bestvina (see [1, Theorem 23]):

Theorem 4.5 (Algom-Kfir, Bestvina). Let r > 2. For any ε > 0
there is a constant M = M(r, ε) > 0 such that, for all x, y ∈ Xr(ε),

d(x, y) 6M · d(y, x).

As an easy corollary, we obtain our polynomial upper bound for
βr(n):

Corollary 4.6. For every r > 2, there exist constants Kr,Mr > 0
such that βr(n) 6 Krn

Mr for every n > 1.

Proof. Fix an automorphism ϕ ∈ AutFr.
Consider the point of the Outer space x ∈ Xr represented by the

triple (Rr, id, `0), i.e. by the identity marking over the balanced rose
(here, `0 assigns constant length 1/r to each petal). Now consider the
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point [ϕ] · x = (Rr, ϕ, `0) ∈ Xr. From the definitions, µ : Rr → Rr is
a difference of markings if and only if µ is homotopic to ϕ; and it is
straightforward to see that this happens if and only if µ = ϕλwλp for
some w ∈ Fr and some path p travelling linearly from the basepoint
o to an internal point of a petal and with `(p) 6 1

2r
(if µ fixes the

basepoint then p can be taken to be trivial; otherwise, it can always
be taken to be the shortest path from o to oµ). Moreover, µ maps
each edge ai linearly to a path of length `(p) + |aiϕλw|1r + `(p) so,
σ(µ) = σ(ϕλwλp) = ‖ϕλw‖∞ + 2r`(p). It follows that

d(x, [ϕ] · x) = minw, p {log(σ(ϕλwλp))}
= log(minw, p (‖ϕλw‖∞ + 2r`(p)))
= log(‖[ϕ]‖∞).

Hence, by property (3) above,

d([ϕ] · x, x) = d(x, [ϕ−1] · x) = log(‖[ϕ−1]‖∞).

But, since all the involved points belong to the (1/r)-thick part Xr(1
r
),

we can take the constant Mr = M(r, 1
r
) from Theorem 4.5 to get

log(‖[ϕ−1]‖∞) 6 Mr log(‖[ϕ]‖∞) and so, ‖[ϕ−1]‖∞ 6 ‖[ϕ]‖Mr
∞ . Bring-

ing in the constant Cr = C∞,1,r from Proposition 2.2, we obtain

‖[ϕ]−1‖1 6 Cr‖[ϕ]−1‖∞ 6 Cr‖[ϕ]‖Mr
∞ 6 CMr+1

r ‖[ϕ]‖Mr
1 .

Hence βr(n) 6 Krn
Mr holds for Kr = CMr+1

r . �

Remark 4.7. Theorems 4.4(ii) and Corollary 4.6 bound the gap for
outer automorphism inversion in free groups Fr or rank r > 3 between
polynomial with degree r − 1 and polynomial with degree M for a
big enough M . This is all the information known at the moment
about Question 1.9. These two bounds are far from each other and,
intuitively, both of them far from sharp. The proof for the lower
bound uses only information coming from the abelianization so, it
seems plausible that, playing with more sophisticated automorphisms
of Fr than the ϕp’s constructed above, one could improve the degree
of the lower bound. On the other hand, the proof of Algom-Kfir-
Bestvina’s theorem is indirect and the actual constant provided there
is quite big, indicating that maybe the degree of the upper bound
provided for βr(n) is also improvable.

Remark 4.8. We also remark that getting a polynomial upper bound
for αr(n) seems to be more complicated (see Question 1.10). On the
one hand, the geometric techniques coming from Outer space do not



24 GAP BETWEEN A FREE GROUP AUTOMORPHISM AND ITS INVERSE

provide control on the length of possible conjugators showing up when
computing the pre-image of the generators ai by a (even cyclically re-
duced) given automorphism of Fr. A possibility here could be to try
translating the argument above from the Outer space to the Auter
space concerning real automorphisms (not just outer ones); unfortu-
nately, the theory for the Auter space is much less developed and,
for example, there is no known metric and so no analog to Algom-
Kfir-Bestvina’s theorem, yet. On the other hand, and oppositely to
the much easier case r = 2, these conjugators cannot be avoided in
general by just composing with an appropriate inner automorphism
because they can affect differently the various generators.
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