
The semaphore codes attached to a Turing machine via resets and

their various limits

John Rhodes
Department of Mathematics, University of California, Berkeley,

CA 94720, U.S.A.
email: rhodes@math.berkeley.edu, BlvdBastille@aol.com

Anne Schilling
Department of Mathematics, University of California, Davis,

One Shields Ave., Davis, CA 95616-8633, U.S.A.
email: anne@math.ucdavis.edu

Pedro V. Silva
Centro de Matemática, Faculdade de Ciências, Universidade do Porto,

R. Campo Alegre 687, 4169-007 Porto, Portugal
email: pvsilva@fc.up.pt

March 24, 2016

ABSTRACT

We introduce semaphore codes associated to a Turing machine via resets. Semaphore
codes provide an approximation theory for resets. In this paper we generalize the
set-up of our previous paper “Random walks on semaphore codes and delay de
Bruijn semigroups” to the infinite case by taking the profinite limit of k-resets to
obtain (−ω)-resets. We mention how this opens new avenues to attack the P versus
NP problem.

1 Introduction

In our previous paper [9], we developed algebraic foundations centered around the prime decompo-
sition theory for finite semigroups and finite automata (see [5], [6] and [8, Chapter 4]). This analysis
focused on the right zero component action, when the corresponding pseudovariety contains all finite
transformation semigroups (X,S) (or automata) with the property that there exists some k ≥ 1 such
that every product s1 · · · sk (with si ∈ S) is a constant map (or reset) on X. Such finite automata
were called k-reset graphs in [9, Section 3] and their elementary properties were studied, using the
lattice of right congruences on the finite free objects (De Bruijn semigroups), in [9, Sections 5 and 6].

Semaphore codes, which are well known in the literature (see [2]), were proved [9, Sections 4 and
7] to be in bijection with special right congruences and provide a lower approximation to any right
congruence with the same hitting time to constant. Thus in many applications right congruences

1

can be replaced by semaphore codes. Except for Section 4 on semaphore codes, all the material in [9]
up to and including Section 7 is restricted to finite codes and automata. Finally, in [9, Section 8], a
natural random walk on any (finite or infinite) semaphore code was constructed and its stationary
distribution plus hitting time to constant were computed.

In this paper we do the following: first we reveal a main application we have in mind [7] by
introducing the infinite and finite semaphore codes associated to a Turing machine via resets (see
Section 2). Then Sections 3 and 4 take the profinite limits of k-reset graphs yielding (−ω)-reset
graphs.

We consider the pseudovariety D and left infinite words, but by duality we have analogous results
for the pseudovariety K and right infinite words. We need both versions for studying Turing machines.
Generalizing the finite case from [9], we study right congruences and special right congruences in
bijection with infinite semaphore codes and the natural action in Sections 5 and 6 and obtain an
approximation theory as in the finite case of k-resets, but for (−ω)-resets. In the final Section 7, we
make some more remarks on relating Section 2 to Sections 3-6, and the next paper on attacking P
versus NP.

Acknowledgements

We are indebted to Jean-Camille Birget for good advice and patient reading. We thank also Benjamin
Steinberg and Nicolas M. Thiéry for discussions.

The first author thanks the Simons Foundation–Collaboration Grants for Mathematicians for
travel grant #313548. The second author was partially supported by NSF grants OCI–1147247 and
DMS–1500050. The third author was partially supported by CMUP (UID/MAT/00144/2013), which
is funded by FCT (Portugal) with national (MEC) and European structural funds (FEDER), under
the partnership agreement PT2020.

2 Resets and Turing machines

In this section we present a new viewpoint on Turing machines centered in the concept of resets and
their associated semaphore codes.

2.1 Turing machines

For details on Turing machines, the reader is referred to [4].
Let us assume that T = (Q,A,Γ, q0, F, δ) is a (deterministic) Turing machine, where:

• Q is the (finite) state set;

• A is the (finite) input alphabet;

• Γ is the (finite) tape alphabet (containing A and the blank symbol B);

• q0 ∈ Q is the initial state;

• F ⊆ Q is the set of final states;

• δ : Q× Γ→ Q× (Γ \ {B})× {L,R} is the (partial) transition function.

2

Then we write Ω = Γ ∪ (Γ × Q). To make notation lighter, we shall denote (X, q) ∈ Γ × Q by Xq.
To avoid confusion with powers of X, we stipulate that from now on symbols such as q, q′, qi will be
reserved to denote states and never integers.

We define two homomorphisms tape : Ω∗ → Γ∗ and heads : Ω∗ → (N,+) by

tape(X) = tape(Xq) = X, heads(X) = 0, heads(Xq) = 1

for all X ∈ Γ and q ∈ Q. Now we define the set of all legal words by

Leg(T) = B∗{w ∈ Ω∗ | tape(w) ∈ B(Γ \ {B})∗B, heads(w) ≤ 1}B∗.

The illegal words are the elements of the complement Ω∗ \ Leg(T), which is the ideal having as
minimum generating set all the words of the form

• Xq
1uX

q′

2

• Y BnY ′

• Y BmBqBkY ′

• Y qBnY ′

• Y ′BnY q

• BqBnY

• Y BnBq

where X1, X2 ∈ Γ; Y, Y ′ ∈ Γ \ {B}; u ∈ Γ∗; n ≥ 1; m, k ≥ 0.
Note that legal words do not correspond necessarily to the possible content of the tape during a

computation (or a factor of that content), but they contain such words as particular cases.
We define the one-move mapping β : Leg(T)→ Leg(T) as follows. Given w ∈ Leg(T), then β(w)

is intended to be obtained from w by performing one single move of T on a tape with content w; if
T admits no such move from w (in particular, if heads(w) = 0), we set β(w) = w. In all cases except
(A) and (B) below, the interpretation of β(w) is clear and |β(w)| = |w|. The following two cases
deserve extra clarification:

(A) if w = Xqw′ and δ(q,X) = (. . . , . . . , L);

(B) if w = w′Xq and δ(q,X) = (. . . , . . . , R).

In these cases, we interpret β(w) as β(Bw) (respectively β(wB)), falling into the general case. We
say that legal words of types (A) and (B) are β-singular. Note that |β(w)| = |w|+1 in the β-singular
case. Note that, by padding the input sequences with sufficiently many B’s before and after, cases
(A) and (B) never occur.

For every n ≥ 0, we denote by βn the n-fold composition if β. We define also a partial mapping

β(n) : Ω∗ × Ω× Ω∗ → Ω

as follows.

3

Let u, v ∈ Ω∗ and X ∈ Ω. If uXv ∈ Leg(T), then β(n)(u,X, v) is the symbol replacing X at
the designated position in the tape after applying β n times. If uXv /∈ Leg(T), then β(n)(u,X, v) is
undefined.

We say that T is legal-halting if, for every u ∈ Leg(T), the sequence (βn(u))n is eventually
constant. This implies that the sequence (β(n)(u,X, v))n is also eventually constant for all u, v ∈ Ω∗

and X ∈ Ω such that uXv ∈ Leg(T). We write

βω(u) = lim
n→∞

βn(u), β(ω)(u,X, v) = lim
n→∞

β(n)(u,X, v).

Note that, from a formal viewpoint, a Turing machine which halts for every input is not necessarily
legal-halting (since not every legal word arises from an input configuration), but it can be made
legal-halting with minimum adaptations.

2.2 Resets

We say that r ∈ Ω∗ is a right reset if

β(n)(t1rt2, X, t3) = β(n)(t′1rt2, X, t3)

for all t1, t
′
1, t2, t3 ∈ Ω∗, X ∈ Ω and n ≥ 0 such that both t1rt2Xt3, t

′
1rt2Xt3 ∈ Leg(T). Let RRes(T)

denote the set of all right resets of T .
Dually, r ∈ Ω∗ is a left reset if

β(n)(t1, X, t2rt3) = β(n)(t1, X, t2rt
′
3)

for all t1, t2, t3, t
′
3 ∈ Ω∗, X ∈ Ω and n ≥ 0 such that both t1Xt2rt3, t1Xt2rt

′
3 ∈ Leg(T). Let LRes(T)

denote the set of all left resets of T .

Lemma 2.1 RRes(T) and LRes(T) are ideals of Ω∗ containing all the illegal words.

Proof. We prove the claim for right resets.
If r is illegal then t1rt2Xt3 is always illegal and so r ∈ RRes(T) trivially. In particular, RRes(T)

is nonempty.
Let r ∈ RRes(T) and let x, y ∈ Ω∗. Suppose that xry /∈ RRes(T). Then there exist t1, t

′
1, t2, t3 ∈

Ω∗, X ∈ Ω and n ≥ 0 such that both t1xryt2Xt3 and t′1xryt2Xt3 are legal and

β(n)(t1(xry)t2, X, t3) 6= β(n)(t′1(xry)t2, X, t3).

Rewriting this inequality as

β(n)((t1x)r(yt2), X, t3) 6= β(n)((t′1x)r(yt2), X, t3),

we deduce that r /∈ RRes(T), a contradiction. Thus xry ∈ RRes(T) and so RRes(T) is an ideal of
Ω∗. �

Lemma 2.2 If u ∈ Ω∗ \B∗, then Bu ∈ RRes(T) and uB ∈ LRes(T).

Proof. It is easy to see that Bu is a right reset since the only legal words of the form tBut′ must
arise from t ∈ B∗. Similarly, uB is a left reset. �

4

Lemma 2.3

(i) β(RRes(T)) ⊆ RRes(T).

(ii) β(LRes(T)) ⊆ LRes(T).

Proof. We prove the claim for right resets.
Let r ∈ RRes(T). We may assume that r is legal, Xq occurs in r and δ(X, q) is defined. Let

t1, t
′
1, t2, t3 ∈ Ω∗, X ∈ Ω and n ≥ 0 be such that both t1β(r)t2Xt3 and t′1β(r)t2Xt3 are legal.
Suppose first that r is not β-singular. Then t1rt2Xt3 and t′1rt2Xt3 are also legal, and

β(n)(t1β(r)t2, X, t3) = β(n+1)(t1rt2, X, t3) = β(n+1)(t′1rt2, X, t3) = β(n)(t′1β(r)t2, X, t3).

Thus we may assume that r is β-singular. Suppose first that r = Xqr′ and δ(q,X) = (p, Y, L).
Then β(r) = BpY r′. Since t1B

pY r′t2Xt3 and t′1B
pY r′t2Xt3 are legal, it is easy to check that

t1Brt2Xt3 and t′1Brt2Xt3 are legal as well. Hence

β(n)(t1β(r)t2, X, t3) = β(n+1)(t1Brt2, X, t3) = β(n+1)(t′1Brt2, X, t3) = β(n)(t′1β(r)t2, X, t3).

Finally, suppose that r = r′Xq and δ(q,X) = (p, Y,R). Then β(r) = r′Y Bp. Since t1r
′Y Bpt2Xt3

and t′1r
′Y Bpt2Xt3 are legal, it is easy to check that t1rBt2Xt3 and t′1rBt2Xt3 are legal as well.

Hence

β(n)(t1β(r)t2, X, t3) = β(n+1)(t1rBt2, X, t3) = β(n+1)(t′1rBt2, X, t3) = β(n)(t′1β(r)t2, X, t3).

Therefore β(r) is a right reset in any case. �

2.3 Semaphore codes and the output function

Given an alphabet X, we define the suffix order on X∗ by

u ≤s v if v ∈ X∗u.

Dually, we define the prefix order ≤p.
We say that S ⊆ X∗ is a (right) semaphore code if S is a suffix code (i.e. an antichain for the

suffix order) and SX ⊆ X∗S. By [9, Proposition 4.3], S is a semaphore code if and only if S is the
set of ≤s-minimal elements in some ideal I EX∗, denoted by Iβ`.

Dually, S ⊆ X∗ is a left semaphore code if S is a prefix code (i.e. an antichain for the prefix
order) and XS ⊆ SX∗. Then S is a left semaphore code if and only if S is the set of ≤p-minimal
elements in some ideal of X∗.

We describe now the semaphore code RSC(T) defined by the right resets. It consists of all
minimal right resets for the suffix order. If 1 /∈ RRes(T) (a trivial case), then RSC(T) consists of
all right resets Xz with X ∈ Ω and z ∈ Ω∗ such that z /∈ RRes(T). In particular, z must be a legal
word.

Similarly, the left semaphore code LSC(T) consists of all minimal left resets for the prefix order.
If 1 /∈ LRes(T), then LSC(T) consists of all left resets zX with z ∈ Ω∗ and X ∈ Ω such that
z /∈ LRes(T). In particular, z must be a legal word.

Note also that every right reset contains some s ∈ RSC(T) as a suffix. Dually, every left reset
contains some s ∈ LSC(T) as a prefix.

From now on, we assume that T is legal-halting. The output function ϕT is the restriction of the
partial function β(ω) : Ω∗ × Ω× Ω∗ to (RSC(T) ∪ {1})× Ω× (LSC(T) ∪ {1}).

5

Proposition 2.4 Let T be a legal-halting Turing machine. Then βω is fully determined by the output
function ϕT .

Proof. Clearly, βω is fully determined by β(ω). Let u, v ∈ Ω∗ and X ∈ Ω. If uXv is illegal,
then β(ω)(u,X, v) is undefined, hence we may assume that uXv ∈ Leg(T). It follows that also
BuXvB ∈ Leg(T) and β(ω)(Bu,X, vB) = β(ω)(u,X, v).

If u ∈ B∗, then β(ω)(Bu,X, vB) = β(ω)(1, X, vB). If u /∈ B∗, then Bu ∈ RRes(T) by Lemma 2.2
and so Bu = xr for some x ∈ Ω∗ and r ∈ RSC(T). It follows that β(ω)(Bu,X, vB) = β(ω)(r,X, vB),
so in any case we have

β(ω)(Bu,X, vB) = β(ω)(r,X, vB) (2.1)

for some r ∈ RSC(T) ∪ {1}.
Now if v ∈ B∗, then β(ω)(r,X, vB) = β(ω)(r,X, 1) = ϕT (r,X, 1), hence we may assume that

v /∈ B∗. Then vB ∈ LRes(T) by Lemma 2.2 and so vB = r′x′ for some r′ ∈ LSC(T) and x ∈
Ω∗. It follows that β(ω)(r,X, vB) = β(ω)(r,X, r′) = ϕT (r,X, r′), so in view of (2.1) we have that
β(ω)(u,X, v) = β(ω)(Bu,X, vB) is determined by ϕT . Therefore βω is determined by ϕT . �

2.4 Length restrictions

For every ` ≥ 0, we define the cofinite ideals

RRes`(T) = RRes(T) ∪ Ω`Ω∗,
LRes`(T) = LRes(T) ∪ Ω`Ω∗.

Note that
RRes(T) =

⋂
`≥0

RRes`(T), LRes(T) =
⋂
`≥0

LRes`(T). (2.2)

Since
β(Ω`) ⊆ Ω` ∪ Ω`+1,

it follows from Lemma 2.3 that:

Lemma 2.5

(i) β(RRes`(T)) ⊆ RRes`(T).

(ii) β(LRes`(T)) ⊆ LRes`(T).

The semaphore code RSC`(T) consists of all minimal elements of RRes`(T) for the suffix order.
Equivalently,

RSC`(T) = (RSC(T) ∩ Ω≤`) ∪ Ω(Ω`−1 \ RRes(T)). (2.3)

Dually, the left semaphore code LSC`(T) consists of all minimal elements of LRes`(T) for the prefix
order, or equivalently

LSC`(T) = (LSC(T) ∩ Ω≤`) ∪ (Ω`−1 \ LRes(T))Ω. (2.4)

Therefore RSC`(T) ∪ LSC`(T) ⊆ Ω≤`.

6

2.5 A context-free example

2.5.1 Description

Let A = {a, b} and L = {anbn | n ≥ 1}, one of the classical examples of a (deterministic) context-free
language which is not rational. The language L is accepted by the Turing machine T depicted by

q5

Y |Y R

��

B|ZL

��

q0
a|XR //Y |Y Roo q1

Y |Y R //

a|aR

��

b|Y L

��

q2

Y |Y R

��

b|Y L

~~
q6 q4

a|aL

ZZ

X|XR

OO

q3

Y |Y L

ZZa|aL
oo

X|XR

``

where q0 is the initial state and q6 the unique final state.
In state q0 we can only read a or Y . In the first case, a is replaced by X and we change to state

q1. Then we move right across other possible a’s until we reach the first b and replace it by Y to go
to state q3. If we have done this routine before, we may have to move across older Y ’s – taking us
into state q2. From state q3, we intend to move left until we reach X, which means going through
Y ’s and then a’s (if there are some left – state q4). So we are back at state q0 and we repeat the
procedure. If we have replaced all the a’s, we are supposed to read Y at state q0, then move to the
right end of the tape (state q5) reading only Y ’s. If we have succeeded on reaching the blank B, then
we accept the input moving to the final state q6.

It is easy to check that T is legal-halting. Indeed, B can be read at most once, and any long
enough sequence of transitions must necessarily involve replacing a by X or b by Y , which are both
irreversible changes.

We use the notation introduced in Section 2.1 for an arbitrary Turing machine.

2.5.2 Resets

We claim that

Ω∗ \ RRes(T) = a∗{b, Y }∗ ∪ (
⋃
i=1,3,4 a

∗aqia∗{b, Y }∗) ∪ (
⋃
i=1,2 a

∗Y ∗bqi{b, Y }∗)

∪ (
⋃
i=1,2,3 a

∗Y ∗Y qi{b, Y }∗).
(2.5)

Let m,n ≥ 0 and u ∈ {b, Y }∗ containing n b’s. Then

β(ω)(aq0an · amu, b, 1) = Y 6= b = β(ω)(amu, b, 1),

hence amu /∈ RRes(T).
Assume now that i ∈ {1, 3, 4}, m,n, k ≥ 0 and u ∈ {b, Y }∗ contains k b’s. Then

β(ω)(Xak+1 · amaqianu · b, b, 1) = Y 6= b = β(ω)(amaqianu · b, b, 1),

7

hence amaqianu /∈ RRes(T).
Assume next that i ∈ {1, 2}, m,n, k ≥ 0 and u ∈ {b, Y }∗ contains k b’s. Then

β(ω)(Xak+1 · amY nbqiu, b, 1) = Y 6= b = β(ω)(amY nbqiu, b, 1),

hence amY nbqiu /∈ RRes(T).
Finally, assume that i ∈ {1, 2, 3}, m,n, k ≥ 0 and u ∈ {b, Y }∗ contains k b’s. Then

β(ω)(Xak+2 · amY nY qiu · b, b, 1) = Y 6= b = β(ω)(amY nY qiu · b, b, 1),

hence amY nY qiu /∈ RRes(T).
To prove the converse, we must prove that any other word is necessarily a right reset. We make

extensive use from RRes(T) being an ideal of Ω∗.
Consider first

r ∈ {B,X,Z} ∪ {Bq, Xq, Zq | q ∈ Q}.

Suppose that t1, t
′
1, t2, t3 ∈ Ω∗, P ∈ Ω are such that both t1rt2Pt3, t

′
1rt2Pt3 ∈ Leg(T). Let n ≥ 0. If

β(n)(t1rt2, P, t3) 6= P , then it is easy to see that t1 ∈ Γ∗ and has no influence in the computation.
Thus β(n)(t1rt2, P, t3) = β(n)(t′1rt2, P, t3) and so r ∈ RRes(T).

Thus we only need to discuss words w ∈ Ω∗ such that tape(w) ∈ {a, b, Y }∗. We consider next
the word ba. Consider t1bat2Pt3 ∈ Leg(T). If t2Pt3 /∈ Γ∗, then t1 is irrelevant to the computation
of β(n)(t1bat2, P, t3). If t2Pt3 ∈ Γ∗, then β(n)(t1bat2, P, t3) = P necessarily. It follows that ba ∈
RRes(T).

Similarly, Y a, bqa, baq, Y qa, Y aq ∈ RRes(T) for every q ∈ Q. Hence we have reduced the problem
to words w ∈ Ω∗ such that tape(w) ∈ a∗{b, Y }∗.

Since the transition function is undefined for these pairs, we have

{aq2 , aq5 , aq6 , bq0 , bq3 , bq4 , bq5 , bq6 , Y q4 , Y q6} ⊆ RRes(T).

Also aq0 ∈ RRes(T) because T moves to the right and will never get to the left of the new X.
Similarly, Y q0 , Y q5 ∈ RRes(T). To complete the proof of (2.5), it suffices to show that

bY ∗bqi ∪ bY ∗Y qj ⊆ RRes(T) (2.6)

for i = 1, 2 and j = 1, 2, 3, because any word not containing such a factor has already been established
to be or not to be a right reset.

Indeed, in neither case the head of T can pass to the left of the first b, so (2.6) and therefore
(2.5) hold as claimed.

Similarly, we compute the left resets, in fact we obtain

LRes(T) = RRes(T). (2.7)

8

2.5.3 Semaphore codes

In view of (2.5), it is straightforward to check that

RSC(T) = (Ω \ {a, aq1 , aq3 , aq4})a+{b, Y }∗

∪ (Ω \ {a, b, Y, aq1 , aq3 , aq4 , bq1 , bq2 , Y q1 , Y q2 , Y q3}){b, Y }∗

∪ (
⋃
i=1,3,4 (Ω \ {a})a∗aqia∗{b, Y }∗) ∪ (

⋃
i=1,2 (Ω \ {a})a+Y ∗bqi{b, Y }∗)

∪ (
⋃
i=1,2 (Ω \ {a, Y })Y ∗bqi{b, Y }∗) ∪ (

⋃
i=1,2,3 (Ω \ {a})a+Y ∗Y qi{b, Y }∗)

∪ (
⋃
i=1,2,3 (Ω \ {a, Y })Y ∗Y qi{b, Y }∗).

To compute the intersection RSC(T) ∩ Leg(T), we replace the 5 last occurrences of Ω by Γ.
Similarly,

LSC(T) = a∗(Ω \ {a, b, Y, aq1 , aq3 , aq4 , bq1 , bq2 , Y q1 , Y q2 , Y q3})

∪ a∗Y +(Ω \ {b, Y, bq1 , bq2 , Y q1 , Y q2 , Y q3}) ∪ a∗Y ∗b{b, Y }∗(Ω \ {b, Y })

∪ (
⋃
i=1,3,4 a

∗aqia∗(Ω \ {a, b, Y })) ∪ (
⋃
i=1,3,4 a

∗aqia∗{b, Y }+(Ω \ {b, Y }))

∪ (
⋃
i=1,2 a

∗Y ∗bqi{b, Y }∗(Ω \ {b, Y })) ∪ (
⋃
i=1,2,3 a

∗Y ∗Y qi{b, Y }∗(Ω \ {b, Y })).

To compute the intersection LSC(T) ∩ Leg(T), we replace the 4 last occurrences of Ω by Γ.

2.5.4 Semaphore codes modulo `

In view of (2.3) and (2.4), we can easily compute easily RSC`(T) and LSC`(T) making use of the
computations performed in Sections 2.5.2 and 2.5.3.

3 Free pro-D semigroups

For general background on free pro-D semigroups, see [8, Sections 3.1 and 3.2].
Let A be a finite nonempty alphabet. We denote by A−ω the set of all left infinite words on A,

that is, infinite sequences of the form . . . a3a2a1 with ai ∈ A. If u ∈ A+, we denote the left infinite
word . . . uuu by u−ω.

The free semigroup A+ acts on the right of A−ω by concatenation: given x = . . . a3a2a1 ∈ A−ω
and u = a′1 . . . a

′
n ∈ A+, we define

xu = . . . a3a2a1a
′
1 . . . a

′
n ∈ A−ω.

Given x ∈ A+ ∪A−ω and y ∈ A−ω, we define also xy = y. Together with concatenation on A+, this
defines a semigroup structure for A+ ∪A−ω.

9

The suffix (ultra)metric on A+ ∪ A−ω is defined as follows. Given x, y ∈ A+ ∪ A−ω, let lcs(x, y)
be the longest common suffix of x and y, and define

d(x, y) =

{
2−|lcs(x,y)| if x 6= y,
0 otherwise.

Given x0 ∈ A+ ∪A−ω and δ > 0, we write

Bδ(x0) = {x ∈ A+ ∪A−ω | d(x, x0) < δ}

for the open ball of radius δ around x0.
If S ∈ D is endowed with the discrete topology and ϕ : A→ S is a mapping, then there exists a

unique continuous homomorphism Φ: A+ ∪A−ω → S such that the diagram

A
ϕ //

� _

��

S

A+ ∪A−ω
Φ

::

commutes. This characterizes (A+ ∪ A−ω, d) as the free pro-D semigroup on A. We shall denote it
by ΩA(D). It is well known that ΩA(D) is a complete and compact topological semigroup.

We remark that for a general pseudovariety V, the metric considered for free pro-V semigroups
is the profinite metric, but in the particular case of D we can use this alternative metric that equates
to the normal form.

4 (−ω)-reset graphs

We consider now A-graphs with possibly infinite vertex sets. For general concepts in automata
theory, the reader is referred to [1].

A left infinite path in an A-graph Γ = (Q,E) is an infinite sequence of the form

· · · a3−→q3
a2−→q2

a1−→q1

such that (qi+1, ai, qi) ∈ E and qi ∈ Q for every i ≥ 1. Its label is the left infinite word · · · a3a2a1 ∈
A−ω. We write

· · · x−→q

to denote a left infinite path with label x ending at q.
An A-graph Γ = (Q,E) is:

• deterministic if (p, a, q), (p, a, q′) ∈ E implies q = q′;

• complete if for all p ∈ Q and a ∈ A there exists some edge (p, a, q) ∈ E;

• strongly connected if, for all p, q ∈ Q, there exists a path p
u−→q in Γ for some u ∈ A∗;

• (−ω)-deterministic if
· · · x−→q, · · · x−→q′ paths in Γ⇒ q = q′

holds for all q, q′ ∈ Q and x ∈ A−ω;

10

• (−ω)-complete if every x ∈ A−ω labels some left infinite path in Γ;

• (−ω)-trim if every q ∈ Q occurs in some left infinite path in Γ;

• a (−ω)-reset graph if it is (−ω)-deterministic, (−ω)-complete and (−ω)-trim.

We denote by RG(A) the class of all (−ω)-reset A-graphs.
If Γ = (Q,E) ∈ RG(A), then Q induces a partition

A−ω =
⋃
q∈Q

A−ωq ,

where A−ωq denotes the set of all x ∈ A−ω labelling some path · · · x−→q in Γ. Moreover, A−ωq 6= ∅ for
every q ∈ Q.

Proposition 4.1 Let Γ ∈ RG(A). Then Γ is deterministic and complete.

Proof. Write Γ = (Q,E) and suppose that (p, a, q), (p, a, q′) ∈ E. Since Γ is (−ω)-trim, there exists
some left infinite path · · · x−→p for some x ∈ A−ω. Hence there exist left infinite paths · · · xa−→q and
· · · xa−→q′, and since Γ is (−ω)-deterministic, we get q = q′. Therefore Γ is deterministic.

Let p ∈ Q and a ∈ A. Since Γ is (−ω)-trim, there exists some left infinite path · · · x−→p for some
x ∈ A−ω. Now xa ∈ A−ω and Γ being (−ω)-complete implies that there exists some path · · · xa−→q
in Γ, which we may factor as

· · · x−→q′ a−→q.

Since Γ is (−ω)-deterministic, we get q′ = p, hence (p, a, q) ∈ E and Γ is complete. �

We recall now the preorder ≤ introduced in [9, Section 3]. Given A-graphs Γ,Γ′, we write Γ ≤ Γ′

if there exists a morphism Γ→ Γ′.

Lemma 4.2 Let A be a finite nonempty alphabet and let Γ,Γ′ ∈ RG(A) with Γ ≤ Γ′ ≤ Γ. Then
Γ ∼= Γ′.

Proof. Let ϕ : Γ → Γ′ and ψ : Γ′ → Γ be morphisms. Write Γ = (Q,E) and Γ′ = (Q′, E′). It is
easy to see that

A−ωq ⊆ A−ωqϕ , A−ωq′ ⊆ A
−ω
q′ψ

for all q ∈ Q and q′ ∈ Q′. Hence A−ωq ⊆ A−ωqϕψ. Since Γ is (−ω)-trim, we have A−ωq 6= ∅. Since Γ
is (−ω)-deterministic, we get q = qϕψ. Similarly, q′ = q′ψϕ, hence ϕ and ψ are mutually inverse
bijections and therefore mutually inverse A-graph isomorphisms. �

Let [Γ] denote the isomorphism class of Γ. Similarly to [9, Section 3],

[Γ] ≤ [Γ′] if Γ ≤ Γ′

defines a preorder on RG(A)/ ∼=. Moreover, Lemma 4.2 yields:

Corollary 4.3 Let A be a finite nonempty alphabet. Then ≤ is a partial order on RG(A)/ ∼=.

11

5 Right congruences on A−ω

Since xy = y for all x ∈ ΩA(D) and y ∈ A−ω, it follows that A−ω is the minimum ideal of ΩA(D).
Following the notation introduced in [9, Section 2.2], we denote by RC(A−ω) the lattice of right
congruences on A−ω (with respect to the right action of ΩA(D)).

We say that ρ ∈ RC(A−ω) is closed if ρ is a closed subset of A−ω ×A−ω for the product metric

d′((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)},

where d denotes the suffix metric on A−ω. Given x0, y0 ∈ A+ ∪A−ω and δ > 0, we write

Bδ((x0, y0)) = {(x, y) ∈ (A+ ∪A−ω)2 | d′((x, y), (x0, y0)) < δ}.

By [8, Exercise 3.1.7], this implies that xρ is a closed subset of A−ω for every x ∈ A−ω. The next
example shows that the converse fails.

Example 5.1 Let A = {a, b} and let

w = . . . a4ba3ba2bab. (5.1)

For all x, y ∈ A−ω, let

xρy if


x = wu, y = wv with |u| = |v|

or
x = y.

Then ρ ∈ RC(A−ω) and xρ is closed for every x ∈ A−ω, but ρ is not closed.

Indeed, it is easy to see that, given x ∈ A−ω, there is at most one word u ∈ A∗ such that
x = wu. We call this a w-factorization of x. Hence ρ is transitive and it follows immediately that
ρ ∈ RC(A−ω). The uniqueness of the w-factorization implies also that xρ is finite (hence closed) for
every x ∈ A−ω. However,

lim
n→∞

(wan, wbn) = (a−ω, b−ω) /∈ ρ.

Since (wan, wbn) ∈ ρ for every n ≥ 1, then ρ is not closed.

We denote by CRC(A−ω) (respectively ORC(A−ω)) the set of all closed (respectively open) right
congruences on A−ω.

We consider CRC(A−ω) (partially) ordered by inclusion. Similarly to [9, Section 5], we can relate
CRC(A−ω) with RG(A).

Given ρ ∈ RC(A−ω), the Cayley graph Cay(ρ) is the A-graph Cay(ρ) = (A−ω/ρ,E) defined by

E = {(uρ, a, (ua)ρ) | u ∈ A−ω, a ∈ A}.

Lemma 5.2 Let ρ ∈ RC(A−ω).

(i) For every x ∈ A−ω, there exists a left infinite path · · · x−→xρ in Cay(ρ).

(ii) Cay(ρ) is (−ω)-complete and (−ω)-trim.

Proof. (i) Write x = . . . a3a2a1 with ai ∈ A. For every n ≥ 1, write xn = . . . an+2an+1an. Then

· · · a3−→x3ρ
a2−→x2ρ

a1−→x1ρ = xρ

is a left infinite path in Cay(ρ) labeled by x.
(ii) By part (i). �

12

Lemma 5.3 Let ρ ∈ CRC(A−ω). Then:

(i) If · · · x−→q is a left infinite path in Cay(ρ), then q = xρ.

(ii) Cay(ρ) ∈ RG(A).

Proof. (i) Assume that q = yρ with y ∈ A−ω. Write x = . . . a3a2a1 with ai ∈ A. For every n ≥ 1,
let un = an . . . a1. Then there exists some path ynρ

un−→yρ in Cay(ρ) for some yn ∈ A−ω. Hence
ynun ∈ yρ. Since

x = lim
n→∞

un = lim
n→∞

ynun

and ρ closed implies yρ closed, we get x ∈ yρ, hence xρ = yρ = q.
(ii) By part (i), Cay(ρ) is (−ω)-deterministic. By Lemma 5.2(ii), Cay(ρ) is both (−ω)-complete

and (−ω)-trim, therefore Cay(ρ) ∈ RG(A). �

We discuss next open right congruences, relating them in particular with the right congruences
on Ak. Given x ∈ A−ω, let xξk denote the suffix of length k of x. For σ ∈ RC(Ak), let σ̂ be the
relation on A−ω defined by

xσ̂y if (xξk)σ(yξk).

It is immediate that σ̂ ∈ RC(A−ω).
On the other hand, given ρ ∈ RC(A−ω) and k ≥ 1, we define a relation ρ(k) on Ak by

uρ(k)v if (A−ωu×A−ωv) ∩ ρ 6= ∅.

We denote by ρ[k] the transitive closure of ρ(k).
The next example shows that ρ(k) needs not to be transitive, even in the closed case.

Example 5.4 Let A = {a, b} and let w be given by (5.1). For all x, y ∈ A−ω, let

xρy if


{x, y} = {wa2u,wbau} for some u ∈ A∗

or
{x, y} = {wb2av, wb3v} for some v ∈ A∗

or
x = y.

Then ρ ∈ CRC(A−ω) but ρ(2) is not transitive.

Indeed, by the uniqueness of the w-factorization remarked in Example 5.1, ρ turns out to be
transitive and therefore a right congruence.

We sketch the proof that ρ is closed. Let (x, y) ∈ (A−ω × A−ω) \ ρ. Then x 6= y. Write
u = lcs(x, y). We consider several cases:

Case I: {x, y} = {zb2au, z′b3u}.
Then either z 6= w or z′ 6= w. We may assume that z 6= w. Let k ≥ 1 be such that w /∈ B2−k(z). It
is easy to see that B2−k−3−|u|((x, y)) ∩ ρ = ∅.
Case II: {x, y} = {za2u, z′bau}.
Then either z 6= w or z′ 6= w. We may assume that z 6= w. Let k ≥ 1 be such that w /∈ B2−k(z). It
is easy to see that B2−k−2−|u|((x, y)) ∩ ρ = ∅.
Case III: all the remaining cases.

13

It is easy to see that B2−3−|u|((x, y)) ∩ ρ = ∅.
Therefore ρ is closed.
Now (wa2, wba) ∈ ρ yields (a2, ba) ∈ ρ(2), and (wb2a,wb3) ∈ ρ yields (ba, b2) ∈ ρ(2), However,

(a2, b2) /∈ ρ(2), hence ρ(2) is not transitive.

The following lemma compiles some elementary properties of ρ(k) and ρ[k]. The proof is left to
the reader.

Lemma 5.5 Let A be a finite nonempty alphabet, ρ ∈ RC(A−ω) and k ≥ 1. Then:

(i) ρ(k) ∈ RC(Ak) if and only if ρ(k) is transitive;

(ii) ρ[k] ∈ RC(Ak);

(iii) ρ ⊆
⋂
n≥1

ρ̂[n].

We discuss next some alternative characterizations for open right congruences. We recall the
definition of k-reset graph from [9, Section 3].

We say that u ∈ A∗ is a reset word for a deterministic and complete A-graph Γ = (Q,E) if
|Qu| = 1. This is equivalent to say that all paths labeled by u end at the same vertex. Let Res(Γ)
denote the set of all reset words for Γ.

We say that Γ is a k-reset graph if Ak ⊆ Res(Γ). We denote by RGk(A) the class of all strongly
connected deterministic complete k-reset A-graphs.

Proposition 5.6 Let A be a finite nonempty alphabet and ρ ∈ RC(A−ω). Then the following con-
ditions are equivalent:

(i) ρ is open;

(ii) xρ is an open subset of A−ω for every x ∈ A−ω;

(iii) ρ = σ̂ for some σ ∈ RC(Ak) and k ≥ 1;

(iv) there exists some k ≥ 1 such that ρ(k) is transitive and ρ = ρ̂(k);

(v) Cay(ρ) ∈ RGk(A) for some k ≥ 1;

(vi) ρ is closed and has finite index.

Proof. (i) ⇒ (ii). Let x ∈ A−ω. Since (x, x) ∈ ρ, there exists some δ > 0 such that Bδ((x, x)) ⊆ ρ.
Since Bδ((x, x)) = Bδ(x)×Bδ(x), we get Bδ(x) ⊆ xρ and so xρ is open.

(ii) ⇒ (vi). Let x, y ∈ A−ω be such that (x, y) /∈ ρ. Since xρ and yρ are open, there exists some
δ > 0 such that Bδ(x) ⊆ xρ and Bδ(y) ⊆ yρ. If x′ ∈ xρ and y′ ∈ yρ, then (x, y) /∈ ρ yields (x′, y′) /∈ ρ.
Hence

(Bδ(x)×Bδ(y)) ∩ ρ = ∅,

and so Bδ((x, y)) ∩ ρ = ∅. Thus the complement of ρ is open and so ρ is closed.
On the other hand, {xρ | x ∈ A−ω} is an open cover of A−ω and so admits a finite subcover since

A−ω is compact. Therefore ρ has finite index.
(vi) ⇒ (v). By Lemma 5.3(ii), we have Cay(ρ) ∈ RG(A). Hence Cay(ρ) is deterministic and

complete by Proposition 4.1.

14

Let x, y ∈ A−ω. Since Cay(ρ) is (−ω)-trim, there exists a left infinite path · · · z−→yρ in Cay(ρ).
Since ρ has finite index, we may factor this path as

· · · z′−→wρ u−→wρ v−→yρ

with u 6= ε. On the other hand, since Cay(ρ) is complete and ρ has finite index, there exist m ≥ 0
and p ≥ 1 such that there exists a path

xρ
um−→x′ρ up−→x′ρ

in Cay(ρ). It follows that there exist two paths

· · · u
−ω
−→wρ, · · · u

−ω
−→x′ρ

and so wρ = x′ρ since Cay(ρ) is (−ω)-deterministic. Thus there exists a path

xρ
um−→wρ v−→yρ

and so Cay(ρ) is strongly connected.
Suppose now that Cay(ρ) /∈ RGk(A) for every k ≥ 1. Let P denote the set of pairs of distinct

vertices in Cay(ρ). Then

∀k ≥ 1 ∃uk ∈ Ak ∃(p, q) ∈ P ∃ paths . . .
uk−→p, . . . uk−→q in Cay(ρ).

Since P is finite, one of the pairs (p, q) must repeat infinitely often. Hence there exists some (p, q) ∈ P
such that

∀k ≥ 1 ∃uk ∈ A≥k ∃ paths . . .
uk−→p, . . . uk−→q in Cay(ρ).

Since ΩA(D) is compact, we may replace (uk)k by some convergent subsequence. Let x = limk→∞ uk.
Since (|uk|)k is unbounded, we have x ∈ A−ω.

Write p = xpρ with xp ∈ A−ω. Since Cay(ρ) is (−ω)-trim, there exists some left infinite path
· · · ykuk−−−→xpρ for some yk ∈ A−ω. By Lemma 5.2(i), there exists a path · · · ykuk−−−→(ykuk)ρ in Cay(ρ).
Since Cay(ρ) is (−ω)-deterministic, we get (ykuk)ρ = xpρ, hence ykuk ∈ xpρ. Since ρ closed implies
xpρ closed and

x = lim
k→∞

uk = lim
k→∞

ykuk,

we get x ∈ xpρ. By Lemma 5.2(i), there exists a path · · · x−→xρ = xpρ = p in Cay(ρ). Similarly, there
exists some path · · · x−→q. Since p 6= q, this contradicts Cay(ρ) being (−ω)-deterministic. Therefore
Cay(ρ) ∈ RGk(A) for some k ≥ 1.

(v) ⇒ (iv). Assume that Cay(ρ) ∈ RGk(A) for some k ≥ 1. We show that

xξk = yξk ⇒ xρy (5.2)

holds for all x, y ∈ A−ω. Indeed, by Lemma 5.2(i), there exists left infinite paths

· · · x−→xρ, · · · y−→yρ

in Cay(ρ). Since xξk = yξk ∈ Ak ⊆ Res(Cay(ρ)), we get xρ = yρ and so (5.2) holds.

15

Suppose now that u, v, w ∈ Ak are such that uρ(k)vρ(k)w. Then there exist some x, y, y′, z ∈ A−ω
such that (xu)ρ(yv) and (y′v)ρ(zw). Then (yv)ξk = v = (y′v)ξk and (5.2) yields (yv)ρ(y′v). Thus
(xu)ρ(zw) by transitivity and so uρ(k)w. Therefore ρ(k) is transitive.

Now it follows from Lemma 5.5 that ρ̂(k) is well defined and ρ ⊆ ρ̂(k).

Conversely, let (x, y) ∈ ρ̂(k). Then (xξk, yξk) ∈ ρ(k) and so there exist x′, y′ ∈ A−ω such that
(x′(xξk), y

′(yξk)) ∈ ρ. Since (x′(xξk))ξk = xξk, it follows from (5.2) that (x′(xξk))ρx. Similarly,

(y′(yξk))ρy and we get xρy by transitivity. Therefore ρ̂(k) ⊆ ρ as required.
(iv) ⇒ (iii). In view of Lemma 5.5(i).
(iii) ⇒ (i). Let (x, y) ∈ ρ = σ̂ and let (x′, y′) ∈ B2−k((x, y)). Then x′ξk = xξk and y′ξk = yξk.

Hence
xρy ⇒ (xξk)σ(yξk)⇒ (x′ξk)σ(y′ξk)⇒ x′ρy′

and so B2−k((x, y)) ⊆ ρ. Therefore ρ is open. �

The following example shows that closed is required in condition (vi).

Example 5.7 Let A = {a, b} and let ρ be the relation on A−ω defined by xρy if b occurs in both x, y
or in none of them. Then ρ is a right congruence of index 2 on A−ω but it is not closed.

Indeed, it is immediate that ρ is a right congruence of index 2. Since a−ω = limn→∞ b
−ωan, ρ is

not closed.

We say that ρ ∈ RC(A−ω) is profinite if ρ is an intersection of open right congruences. Since
open right congruences are closed by Proposition 5.6, it follows that every profinite right congruence,
being the intersection of closed sets, is itself closed. We denote by PRC(A−ω) the set of all profinite
right congruences on A−ω.

Given a graph Γ = (Q,E) and k ≥ 1, we define a relation µ
(k)
Γ on Q by

pµ
(k)
Γ q if there exist paths . . .

u−→p, . . . u−→q in Γ for some u ∈ Ak.

Let µ
[k]
Γ denote the reflexive and transitive closure of µ

(k)
Γ . Then µ

[k]
Γ is an equivalence relation on Q.

Proposition 5.8 Let A be a finite nonempty alphabet and ρ ∈ RC(A−ω). Then the following con-
ditions are equivalent:

(i) ρ is profinite;

(ii) ρ is an intersection of countably many open congruences;

(iii) ρ =
⋂
k≥1

ρ̂[k];

(iv)
⋂
k≥1

µ
[k]
Cay(ρ) = id.

Proof. (i) ⇒ (iii). Assume that ρ = ∩i∈Iτi with τi ∈ ORC(A−ω) for every i ∈ I.

We have ρ ⊆ ∩k≥1ρ̂[k] by Lemma 5.5(iii). To prove the opposite inclusion, we show that

∀i ∈ I ∃k ≥ 1 ρ̂[k] ⊆ τi. (5.3)

16

Indeed, it follows from Proposition 5.6 that there exist some k ≥ 1 and σi ∈ RC(Ak) such that
τi = σ̂i. We claim that

τ
(k)
i ⊆ σi. (5.4)

Assume that (u, v) ∈ τ (k)
i . Then there exist x, y ∈ A−ω such that (xu, yv) ∈ τi = σ̂i. Hence

(u, v) = ((xu)ξk, (yv)ξk) ∈ σi

and (5.4) holds.

Since ρ ⊆ τi implies ρ(k) ⊆ τ
(k)
i , it follows that ρ(k) ⊆ σi and so ρ[k] ⊆ σi since σi is transitive.

Thus
ρ̂[k] ⊆ σ̂i = τi

and (5.3) holds.
Therefore ⋂

k≥1

ρ̂[k] ⊆ ∩i∈Iτi = ρ

as required.

(iii) ⇒ (ii). By Lemma 5.5(ii), ρ[k] ∈ RC(Ak) for every k ≥ 1, hence ρ̂[k] is open by Proposition
5.6 and we are done.

(ii) ⇒ (i). Trivial.

(iii) ⇒ (iv). Write µ(k) = µ
(k)
Cay(ρ) and µ[k] = µ

[k]
Cay(ρ). By Lemma 5.5(ii), ρ[k] ∈ RC(Ak) for every

k ≥ 1, hence ρ̂[k] is open (and therefore closed) by Proposition 5.6. Therefore ρ is closed and so
Cay(ρ) ∈ RG(A) by Lemma 5.3(ii).

Let x, y ∈ A−ω be such that xρ 6= yρ. Suppose that (xρ, yρ) ∈ µ[k]. Then there exist z0, . . . , zn ∈
A−ω such that z0 = x, zn = y and (zi−1ρ, ziρ) ∈ µ(k) for i = 1, . . . , n. For i = 1, . . . , n, there exist
paths

z′i−1ρ
ui−→zi−1ρ, z′′i ρ

ui−→ziρ

in Cay(ρ) for some ui ∈ Ak and z′i−1, z
′′
i ∈ A−ω.

Hence zi−1ρ = (z′i−1ui)ρ and ziρ = (z′′i ui)ρ, yielding

(zi−1ξk) ρ
(k) ui ρ

(k) (ziξk)

and so (zi−1ξk)ρ
[k](ziξk). Now (xξk)ρ

[k](yξk) follows by transitivity, hence (x, y) ∈ ρ̂[k]. Since xρ 6= yρ

implies (x, y) /∈ ρ̂[m] for some m ≥ 1 by condition (iii), it follows that (xρ, yρ) /∈ µ[m] and so (iv)
holds.

(iv) ⇒ (iii). By Lemma 5.5(iii), we have ρ ⊆ ∩k≥1ρ̂[k]. Conversely, let (x, y) ∈ ∩k≥1ρ̂[k]. For
each k, we have (xξk, yξk) ∈ ρ[k], hence there exist u0, . . . , un ∈ Ak such that u0 = xξk, un =
yξk and (ui−1, ui) ∈ ρ(k) for i = 1, . . . , n. For i = 1, . . . , n, there exist zi−1, z

′
i ∈ A−ω such that

(zi−1ui−1, z
′
iui) ∈ ρ. Write also x = z′0u0 and y = znun.

By Lemma 5.2(i), there exist paths

· · ·
z′iui−−→(z′iui)ρ, · · · ziui−−→(ziui)ρ

in Cay(ρ) for i = 0, . . . , n, hence

((zi−1ui−1)ρ, (ziui)ρ) = ((z′iui)ρ, (ziui)ρ) ∈ µ(k).

17

Thus
((z0u0)ρ, (znun)ρ) ∈ µ[k].

Since ((z′0u0)ρ, (z0u0)ρ) ∈ µ(k), we get

(xρ, yρ) = ((z′0u0)ρ, (znun)ρ) ∈ µ[k].

Since k is arbitrary, it follows from condition (iv) that xρ = yρ, hence ∩k≥1ρ̂[k] ⊆ ρ as required. �

Every open right congruence on A−ω is trivially profinite and we remarked before that every
profinite right congruence is necessarily closed. Hence

ORC(A−ω) ⊆ PRC(A−ω) ⊆ CRC(A−ω).

We show next that these inclusions are strict if |A| > 1.
For every k ≥ 1, let ρk be the relation on A−ω defined by

xρky if xξk = yξk.

It is easy to check that ρk ∈ ORC(A−ω) for every k ≥ 1. Since ∩k≥1ρk = id, it follows that the
identity congruence is profinite, while it is clearly not open.

To construct a closed non profinite right congruence is much harder. We do it through the
following example.

Example 5.9 Let A = {a, b}. Given u, v ∈ Ak, write u < v if u = u′aw and v = v′bw for some

w ∈ A∗. Let u
(k)
1 < · · · < u

(k)

2k
be the elements of Ak, totally ordered by <. Let p1 < p2 < · · · be the

prime natural numbers. For every n ∈ N, let

wn = . . . ap
n
3 bap

n
2 bap

n
1 b.

Let ρ ∈ RC(A−ω) be generated by the relation

R = {(wpiku
(k)
i , wpik

u
(k)
i+1) | k ≥ 1, 1 ≤ i < 2k} ∪ {(b−ωa, a−ωb)}.

Then ρ is closed but not profinite.

We start by showing that

wpik
A∗ ∩ w

pi
′
k′
A∗ 6= ∅ implies (k = k′ and i = i′) (5.5)

for all k, k′, i, i′ ≥ 1. Indeed, suppose that wpik
u = w

pi
′
k′
v for some u, v ∈ A∗. By definition of

wn, wpik
u has only finitely many factors of the form ba2mb, and the leftmost must be ba2p

i
k b. Since

wpik
u = w

pi
′
k′
v, we get ba2p

i
k b = ba2

pi
′
k′ b and so pik = pi

′
k′ . Therefore k = k′ and i = i′, and (5.5) holds.

Write
R′ = {(xu, yu) | (x, y) ∈ R ∪R−1, u ∈ A∗}.

Let x ∈ A−ω. We show that

there exists at most one y ∈ A−ω such that (x, y) ∈ R′. (5.6)

18

This is obvious if x ∈ b−ωaA∗ ∪ a−ωbA∗, hence we may assume that x ∈ wpikA
∗ for some k ≥ 1 and

1 ≤ i < 2k. In view of (5.5), we must have

{x, y} = {wpiku
(k)
i v, wpik

u
(k)
i+1v}

for some v ∈ A∗, and k, i are uniquely determined. Since wpik
/∈ wpikA

+, also u
(k)
i , u

(k)
i+1 and v are

uniquely determined. Thus (5.6) holds.
Suppose that xR′ y R′ z with x 6= y 6= z. Since R′ is symmetric, (5.6) yields x′ = z′. It follows

that R′ ∪ id is an equivalence relation, indeed the smallest right congruence containing R. It follows
that

R′ ∪ id = ρ.

Moreover, each ρ-class contains at most two elements.
We prove now that ρ is closed. Let (x, y) ∈ (A−ω ×A−ω) \ ρ. Then x 6= y, hence we may assume

without loss of generality that x = x′av and y = y′bv with v ∈ A∗. Let

m = max{i ≥ 0 | bi <s x′, ai <s y′}.

Note that the above set is bounded, otherwise x′ = b−ω and y′ = a−ω, yielding

(x, y) = (b−ωav, a−ωbv) ∈ ρ,

a contradiction. Write x′ = x′′bm and y′ = y′′am.
For j = 0, . . . , |v|, write v = vjv

′
j with |vj | = j. Then ambvj is the successor of bmavj in the

ordering of Am+1+j , hence we may write

bmavj = u
(m+1+j)
ij

, ambvj = u
(m+1+j)
ij+1

for some 1 ≤ ij < 2m+1+j . It follows that

x = x′′u
(m+1+j)
ij

v′j , y = y′′u
(m+1+j)
ij+1 v′j (5.7)

Let
mj = min{|lcs(x′′, w

p
ij
m+1+j

)|, |lcs(y′′, w
p
ij
m+1+j

)|}.

Note that mj is a well-defined natural number, otherwise x′′ = w
p
ij
m+1+j

= y′′ and

(x, y) = (w
p
ij
m+1+j

u
(m+1+j)
ij

v′j , wp
ij
m+1+j

u
(m+1+j)
ij+1 v′j) ∈ ρ,

a contradiction.
Let

p = max{m0, . . . ,m|v|}+m+ 1 + |v|.

We show that
B2−p((x, y)) ∩ ρ = ∅. (5.8)

19

Suppose that (z1, z2) ∈ B2−p((x, y)) ∩ ρ. Since p > 1 + |v|, we have av <s z1 and bv <s z2. By
maximality of m, and since p > m+ 1 + |v|, we have either abmav <s z1 or bambv <s z2. Hence we
must have

z1 = wpik
u

(k)
i v′, z2 = wpik

u
(k)
i+1v

′ (5.9)

for some v′, k ≥ 1 and 1 ≤ i < 2k. Clearly, |v′| ≤ |v|, hence we must have v′ = v′j for j = |v| − |v′|.
We have x = x′′bmavjv

′
j , hence bmavjv

′
j <s z1. Similarly, y = y′′ambvjv

′
j yields ambvjv

′
j <s z2.

Suppose that k < m + 1 + j. Since |lcs(x, z1)| > m + 1 + |v|, it follows from (5.9) that wpik
ends

with a b. Similarly, |lcs(y, z2)| > m+ 1 + |v| implies that wpik
ends with an a, a contradiction. Hence

k ≥ m+ 1 + j.
Suppose now that k > m+ 1 + j. By maximality of m, we must have one of the following cases:

• abmavj ≤s u(k)
i and ambvj ≤s u(k)

i+1;

• bmavj ≤s u(k)
i and bambvj ≤s u(k)

i+1.

Any of these cases contradicts u
(k)
i+1 being the successor of u

(k)
i for the ordering of Ak, hence k =

m+ 1 + j and we may write

z1 = wpim+1+j
u

(m+1+j)
i v′j , z2 = wpim+1+j

u
(m+1+j)
i+1 v′j .

Since d(z1, x) < 2−mj−m−1−|v′| = 2−mj−m−1−j−|v′j |, it follows from (5.7) that i = ij and

|lcs(x′′, w
p
ij
m+1+j

)| > mj .

Similarly,
|lcs(y′′, w

p
ij
m+1+j

)| > mj ,

contradicting the definition of mj .
Thus (5.8) holds and so (A−ω ×A−ω) \ ρ is open. Therefore ρ is closed.

Let k ≥ 1. Since (wpik
u

(k)
i , wpik

u
(k)
i+1) ∈ ρ, we have (u

(k)
i , u

(k)
i+1) ∈ ρ(k) for every 1 ≤ i < 2k. Since

u
(k)
1 = ak and u

(k)

2k
= bk, it follows that (ak, bk) ∈ ρ[k] and so (a−ω, b−ω) ∈ ρ̂[k]. Since k is arbitrary,

we get

(a−ω, b−ω) ∈
⋂
k≥1

ρ̂[k].

However,
(a−ω, b−ω) /∈ R′ ∪ id = ρ,

hence ρ 6= ∩k≥1ρ̂[k] and so ρ is not profinite by Proposition 5.8.

6 Special right congruences on A−ω

To avoid trivial cases, we assume throughout this section that A is a finite alphabet containing at
least two elements.

Given P ⊆ A∗, we define a relation τP on A−ω by:

xτP y if x = y or x, y ∈ A−ωu for some u ∈ P.

Lemma 6.1 Let P ⊆ A∗. Then τP is an equivalence relation on A−ω.

20

Proof. It is immediate that τP is reflexive and symmetric. For transitivity, we may assume that
x, y, z ∈ A−ω are distinct and x τP y τP z. Then there exist u, v ∈ P such that u <s x, y and v <s y, z.
Since u and v are both suffixes of y, one of them is a suffix of the other. Hence either u <s x, z or
v <s x, z. Therefore τP is transitive. �

If we consider left ideals, being a right congruence turns out to be a special case:

Proposition 6.2 Let LE` A∗. Then the following conditions are equivalent:

(i) τL ∈ RC(A−ω);

(ii) τL ∈ PRC(A−ω);

(iii) LEA∗;

(iv) (Lβ`)A ⊆ A∗(Lβ`).

(v) Lβ` is a semaphore code.

Proof. (i) ⇒ (iv). We may assume that |A| > 1. Let u ∈ L and a ∈ A. Take b ∈ A \ {a}. Then
(a−ωu, b−ωu) ∈ τL and by (i) we get (a−ωua, b−ωua) ∈ τL. It follows that ua has some suffix in L,
hence LA ⊆ A∗L = L and so

(Lβ`)A ⊆ LA ⊆ L = A∗(Lβ`).

(iv) ⇒ (iii). We have
LA = A∗(Lβ`)A ⊆ A∗(Lβ`) = L.

It follows that LA∗ ⊆ L. Since LE` A∗, we get LEA∗.
(iii) ⇒ (ii). By Lemma 6.1, τL is an equivalence relation. Let x, y ∈ A−ω be such that xτLy. We

may assume that there exists some u ∈ L such that u <s x, y. Since L E A∗, we have ua ∈ L and
ua <s xa, ya yields (xa, ya) ∈ τL. Therefore τL ∈ RC(A−ω).

Let (x, y) ∈ (A−ω ×A−ω) \ τL. Then x 6= y. Let u = lcs(x, y) and let m = |u|+ 1. We claim that

(xξm)τ
[m]
L = {xξm}. (6.1)

Indeed, suppose that (xξm, v) ∈ τ
(m)
L and v 6= xξm. Then there exist z, z′ ∈ A−ω such that

(z(xξm), z′v) ∈ τL. Since v 6= xξm, then z(xξm) and z′v must have a common suffix w ∈ L,

and |w| < m. But then w ≤s u, yielding u ∈ L and xτLy, a contradiction. Thus (xξm, v) ∈ τ (m)
L

implies v = xξm, and so (6.1) holds.

Suppose that (x, y) ∈ τ̂ [m]
L . Then (xξm, yξm) ∈ τ [m]

L , hence xξm = yξm by (6.1), contradicting

m > |u|. Thus (x, y) /∈ τ̂ [m]
L and so ∩k≥1τ̂

[m]
L ⊆ τL. Hence τL = ∩k≥1τ̂

[m]
L by Lemma 5.5(iii), and so

τL is profinite by Proposition 5.8.
(ii) ⇒ (i). Trivial.
(iv) ⇔ (v). By Lemma [9, Lemma 4.1], since Lβ` is always a suffix code. �

21

We say that ρ ∈ RC(A−ω) is a special right congruence on A−ω if ρ = τI for some I E A∗. In
view of Proposition 6.2, this is equivalent to say that ρ = τS for some semaphore code S on A. We
denote by SRC(A−ω) the set of all special right congruences on A−ω.

The next result characterizes the open special right congruences. Recall that a suffix code S ⊂ A∗
is said to be maximal if S ∪ {u} fails to be a suffix code for every u ∈ A∗ \ S.

Proposition 6.3 Let I EA∗. Then the following conditions are equivalent:

(i) τI ∈ ORC(A−ω);

(ii) Iβ` is a finite maximal suffix code;

(iii) A∗ \ I is finite.

Proof. (i) ⇒ (ii). Let u, v ∈ Iβ` be distinct. Then

((A−ωu)× (A−ωv)) ∩ τI = ∅.

Since τI has finite index by Proposition 5.6, it follows that the suffix code Iβ` is finite.
Suppose now that Iβ` ∪ {u} is a suffix code for some u ∈ A∗ \ (Iβ`). It is easy to see that no

two elements of A−ωu are τI equivalent, a contradiction since τI has finite index. Therefore Iβ` is a
maximal suffix code.

(ii) ⇒ (iii). Let m denote the maximum length of the words in Iβ`. Suppose that v ∈ A∗ \ I
has length > m. It is straightforward to check that Iβ` ∪ {v} is a suffix code, contradicting the
maximality of Iβ`. Thus A∗ \ I ⊆ A≤m and is therefore finite.

(iii) ⇒ (i). We have τI ∈ RC(A−ω) by Proposition 6.2.
Let m ≥ 1 be such that A∗ \ I ⊆ A≤m. Then

xξm+1 = yξm+1 ⇒ xτIy

holds for all x, y ∈ A−ω and so τI has finite index. Since τI is profinite (and therefore closed) by
Proposition 6.2, it follows from Proposition 5.6 that τI is open. �

The proof of [9, Lemma 7.4] can be adapted to show that inclusion among left ideals determines
inclusion for the equivalence relations τL:

Lemma 6.4 Let |A| > 1 and L,L′ E` A∗. Then

τL ⊆ τL′ ⇔ L ⊆ L′.

Note that Lemma 6.4 does not hold for |A| = 1, since |A−ω| = 1.
Similarly, we adapt [9, Proposition 7.6]:

Proposition 6.5 Let |A| > 1. Then:

(i) τI∩J = τI ∩ τJ and τI∪J = τI ∪ τJ for all I, J EA∗;

(ii) SRC(A−ω) is a full sublattice of RC(A−ω);

(iii) the mapping
I(A)→ SRC(A−ω)

I 7→ τI

is a lattice isomorphism.

22

Given ρ ∈ RC(A−ω) and C ∈ A−ω/ρ, we say that C is nonsingular if |C| > 1. If C is nonsingular,
we denote by lcs(C) the longest common suffix of all words in C. We define

• Λρ = {lcs(C) | C ∈ A−ω/ρ is nonsingular},

• Λ′ρ = {lcs(x, y) | (x, y) ∈ ρ, x 6= y}.

Lemma 6.6 Let ρ ∈ RC(A−ω). Then:

(i) A∗Λρ = A∗Λ′ρ;

(ii) Λ′ρ Er A
∗;

(iii) A∗Λ′ρ EA
∗.

Proof. (i) Let C ∈ A−ω/ρ be nonsingular and let w = lcs(C). By maximality of w there exist
a, b ∈ A distinct and x, y ∈ A−ω such that xaw, ybw ∈ C. Thus w = lcs(xaw, ybw) and so

Λρ ⊆ Λ′ρ. (6.2)

Therefore A∗Λρ ⊆ A∗Λ′ρ.
Conversely, let (x, y) ∈ ρ with x 6= y. Then xρ is nonsingular and lcs(xρ) is a suffix of lcs(x, y),

hence Λ′ρ ⊆ A∗Λρ and so A∗Λρ = A∗Λ′ρ.
(ii) Let u ∈ Λ′ρ and a ∈ A. Then u = lcs(x, y) for some (x, y) ∈ ρ with x 6= y. Then (xa, ya) ∈ ρ.

Since lcs(xa, ya) = ua, we get ua ∈ Λ′ρ. Therefore Λ′ρ Er A
∗.

(iii) Clearly, A∗Λ′ρ E` A
∗. Now we use part (ii). �

Given ρ ∈ RC(A−ω), we write
Res(ρ) = Res(Cay(ρ)).

We refer to the elements of Res(ρ) as the resets of ρ.

Lemma 6.7 Let ρ ∈ RC(A−ω). Then:

(i) Res(ρ)EA∗;

(ii) if ρ is closed, then

Res(ρ) = {w ∈ A∗ | (xw, yw) ∈ ρ for all x, y ∈ A−ω}.

Proof. (i) Immediate.
(ii) Let w ∈ Res(ρ) and x, y ∈ A−ω. By Lemma 5.2(i), there exist paths

· · · xw−→(xw)ρ, · · · yw−→(yw)ρ

in Cay(ρ). Now w ∈ Res(ρ) yields (xw)ρ = (yw)ρ.
Now let w ∈ A∗ \Res(ρ). Then there exist paths p

w−→q and p′
w−→q′ in Cay(ρ) with q 6= q′. Since

Cay(ρ) is (−ω)-trim by Lemma 5.2(ii), there exist left infinite paths

· · · x−→p, · · · y−→p′

in Cay(ρ), hence paths
· · · xw−→q, · · · yw−→q′.

Since ρ is closed, it follows from Lemma 5.3(i) that (xw)ρ = q 6= q′ = (yw)ρ and we are done. �

23

Adapting the proof of [9, Proposition 7.9], we obtain:

Proposition 6.8 Let |A| > 1, ρ ∈ RC(A−ω) and I EA∗. Then:

(i) ρ ⊆ τI ⇔ Λρ ⊆ I ⇔ Λ′ρ ⊆ I;

(ii) if ρ is closed, then τI ⊆ ρ⇔ I ⊆ Res(ρ).

Given R ⊆ A−ω × A−ω, we denote by R] the right congruence on A−ω generated by R, i.e. the
intersection of all right congruences on A−ω containing R.

Given ρ ∈ RC(A−ω), we denote by NS(ρ) the set of all nonsingular ρ-classes.
We can now prove several equivalent characterizations of special right congruences.

Proposition 6.9 Let |A| > 1 and ρ ∈ RC(A−ω). Then the following conditions are equivalent:

(i) ρ ∈ SRC(A−ω);

(ii) lcs : NS(ρ)→ A∗ is injective, Λρ is a suffix code and

∀x ∈ A−ω ∀w ∈ Λρ (xw)ρ ∈ NS(ρ); (6.3)

(iii) ρ = τA∗Λρ;

(iv) ρ = τA∗Λ′ρ;

(v) ρ = τ]L for some LE` A∗.

Proof. (i)⇒ (ii). By a straightforward adaptation of the proof of (i)⇒ (ii) in [9, Proposition 7.10],
we check that lcs : NS(ρ)→ A∗ is injective and Λρ is a suffix code.

Now let x ∈ A−ω and w ∈ Λρ. Then w = lcs(yρ) for some yρ ∈ NS(ρ). By (6.2), we may
write w = lcs(y′, y′′) for some y′, y′′ ∈ yρ distinct. Since ρ = τI , it follows that w ∈ I, hence
(xw, y), (xw, y′) ∈ τI = ρ. Since y′ 6= y′′, it follows that either xw 6= y′ or xw 6= y′′, so in any case
(xw)ρ ∈ NS(ρ) as required.

(ii) ⇒ (iii). Write I = A∗Λρ. If (x, y) ∈ ρ and x 6= y, then lcs(xρ) ∈ Λρ ⊆ I is a suffix of both x
and y, hence (x, y) ∈ τI . Thus ρ ⊆ τI .

Conversely, let (x, y) ∈ τI . We may assume that x 6= y, hence there exists some w ∈ Λρ such that
w <s x, y. Hence (6.3) yields xρ, yρ ∈ NS(ρ).

Suppose that lcs(xρ) 6= w. Then lcs(xρ) <s w or w <s lcs(xρ), contradicting Λρ being a suffix
code. Hence lcs(xρ) = w. Similarly, lcs(yρ) = w. Since lcs : NS(ρ)→ A∗ is injective, we get xρ = yρ.
Thus ρ = τI .

(iii) ⇔ (iv). By Lemma 6.6(i).

(iii) ⇒ (v). Write L = A∗Λρ. By (iii), we have τ]L = ρ] = ρ. Since L E A∗ by Lemma 6.6, (iv)
holds.

(v) ⇒ (i). Let I = LA∗ EA∗. Since L ⊆ I, it follows from Lemma 6.4 that τL ⊆ τI , hence

ρ = τ]L ⊆ τ
]
I = τI

by Proposition 6.2.
Conversely, let (x, y) ∈ τI . We may assume that x 6= y. Then there exist factorizations x = x′w

and y = y′w with w ∈ I. Write w = zw′ with z ∈ L. Then (x′z, y′z) ∈ τL and so

(x, y) = (x′w, z′w) = (x′zw′, y′zw′) ∈ τ]L = ρ.

Thus τI ⊆ ρ as required. �

24

Proposition 6.10 Let |A| > 1 and ρ ∈ CRC(A−ω). Then the following conditions are equivalent:

(i) ρ ∈ SRC(A−ω);

(ii) lcs : NS(ρ)→ A∗ is injective, Λρ is a suffix code and

∀x ∈ A−ω ∀w ∈ Λρ (xw)ρ ∈ NS(ρ);

(iii) ρ = τA∗Λρ;

(iv) ρ = τA∗Λ′ρ;

(v) ρ = τ]L for some LE` A∗;

(vi) ρ = τRes(ρ);

(vii) Λρ ⊆ Res(ρ);

(viii) Λ′ρ ⊆ Res(ρ);

(ix) whenever
p
aw−→q, p′

bw−→q, p′′
w−→r (6.4)

are paths in Cay(ρ) with a, b ∈ A distinct, then q = r.

Proof. (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v). By Proposition 6.9.
(i) ⇒ (vi). If ρ = τI for some I EA∗, then I ⊆ Res(ρ) by Proposition 6.8(ii). Since Res(ρ)EA∗

by Lemma 6.7(i), then Proposition 6.8(ii) also yields

τRes(ρ) ⊆ ρ = τI ,

hence Res(ρ) ⊆ I by Lemma 6.4. Therefore I = Res(ρ).
(vi) ⇒ (vii) ⇔ (viii). By Lemma 6.7(i), Res(ρ)EA∗. Now we apply Proposition 6.8(i).
(viii)⇒ (i). We have A∗Λ′ρ,Res(ρ)EA∗ by Lemmas 6.6(iii) and 6.7(i). It follows from Proposition

6.8 that
τRes(ρ) ⊆ ρ ⊆ τA∗Λ′ρ .

Since Λ′ρ ⊆ Res(ρ) yields A∗Λ′ρ ⊆ Res(ρ) and therefore τA∗Λ′ρ ⊆ τRes(ρ) by Lemma 6.4, we get

ρ = τRes(ρ) ∈ SRC(A−ω).
(viii) ⇒ (ix). Consider the paths in (6.4). By Lemma 5.2(ii), there exist left infinite paths

· · · x−→p, · · · x′−→p′

in Cay(ρ), hence (xaw, x′bw) ∈ ρ by Lemma 5.3(i) and so

w = lcs(xaw, x′bw) ∈ Λ′ρ ⊆ Res(ρ).

Thus q = r as required.
(ix) ⇒ (viii). Let w ∈ Λ′ρ. Then w = lcs(x, y) for some (x, y) ∈ ρ such that x 6= y. We may write

x = x′aw and y = y′bw with a, b ∈ A distinct. By Lemma 5.2(i), there exist in Cay(ρ) paths of the
form

· · · x′−→p aw−→xρ, · · · y′−→p′ bw−→yρ = xρ.

Now (ix) implies that w ∈ Res(ρ). �

25

We can now prove that not all open right congruences are special, even for |A| = 2:

Example 6.11 Let A = {a, b} and let σ be the equivalence relation on A3 defined by the following
partition:

{a3, aba, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {b2a} ∪ {b3}.

Then σ̂ ∈ ORC(A3) \ SRC(A3).

Indeed, it is routine to check that σ ∈ RC(A3), hence ρ = σ̂ ∈ ORC(A−ω) by Proposition 5.6.
Since lcs(a−ωρ) = a and lcs((b−ωa)ρ) = b2a, then Λρ is not a suffix code and so ρ /∈ SRC(A−ω) by
Proposition 6.9.

Let ρ ∈ RC(A−ω) and let
ρ = ∨{τ ∈ SRC(A−ω) | τ ⊆ ρ},

ρ = ∧{τ ∈ SRC(A−ω) | τ ⊇ ρ}.

By Proposition 6.5(ii), we have ρ, ρ ∈ SRC(A−ω).

Proposition 6.12 Let |A| > 1 and ρ ∈ CRC(A−ω). Then:

(i) ρ = τRes(ρ);

(ii) ρ = τA∗Λρ = τA∗Λ′ρ.

Proof. (i) By Lemma 6.7(i), we have Res(ρ)EA∗. Now the claim follows from Proposition 6.8(ii).
(ii) Similarly, we have A∗Λρ = A∗Λ′ρ EA

∗ by Lemma 6.6(iii), and the claim follows from Propo-
sition 6.8(i). �

The straightforward adaptation of [9, Example 7.14] shows that the pair (ρ, ρ) does not univocally
determine ρ ∈ RC(A−ω), even in the open case:

Example 6.13 Let A = {a, b} and let σ, σ′ be the equivalence relations on A3 defined by the following
partitions:

{a3, aba, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {b2a} ∪ {b3},

{a3, b2a, ba2} ∪ {bab, a2b} ∪ {ab2} ∪ {aba} ∪ {b3}.

Let ρ = σ̂ and ρ′ = σ̂′. Then ρ, ρ′ ∈ ORC(A−ω), ρ = ρ′ and ρ = ρ′.

This same example shows also that ρ does not necessarily equal or cover ρ in SRC(A−ω). Indeed,
in this case we have

Res(ρ) = A∗A3 ∪ {a2, ab} ⊂ I ⊂ A+ \ {b, b2} = A∗Λρ

for I = A∗A3 ∪ {a2, ab, ba}EA∗. By Lemma 6.4, we get

ρ ⊂ τI ⊂ ρ.

26

7 Conclusion and future work

We enter now into random walks on infinite semigroups. The most sophisticated approach is described
in [3]. We use profinite limits (see [8]) as an alternative approach, as developed in Sections 3-6.

Indeed, if I1, I2, . . . is a sequence of ideals in A∗ with I = ∩k≥1Ik, let Jkβ` the semaphore
code determined by the ideal Jk = I1 ∩ . . . ∩ Ik. Whenever k ≥ m, we may define a mapping
ϕkm : Jkβ` → Jmβ` by setting uϕkm to be the unique suffix of u in Jmβ`. It is routine to check that:

• ϕkm is onto;

• ϕkm preserves the action of A∗ on the right;

• (ϕkm) constitutes a projective system of surjective morphisms with respect to this action;

• Iβ` is the projective limit of this system.

In view of (2.2), each Turing machine T provides an instance of this setting when Ik = RResk(T)
and I = RRes(T). Moreover, each ideal RResk(T) is cofinite and τRRes(T) is a profinite congruence

on A−ω, indeed the intersection of the open congruences τRResk(T).

Using the left-right duals of Sections 3-6, we have similar results for LRes(T) and the sequence
(LResk(T)).

In a subsequent paper, we intend to characterize polynomial time Turing machines in this frame-
work. The approach will constitute a variation of [10]: we will need to consider certain metrics that
will give the same topology as in Sections 3-6, but conditions involving the metrics will take us from
the realm of topology into that of geometry.

References

[1] J. Berstel, Transductions and context-free languages, Teubner, Stuttgart, 1979. 10

[2] J. Berstel, D. Perrin and C. Reutenauer, Codes and automata, Encyclopedia of Mathematics
and its Applications 129, Cambridge University Press, Cambridge, 2010. 1

[3] G. Hognas and A. Mukherjea, Probability measures on semigroups, Springer Series in Probability
and its Applications, Springer, 2011. 27

[4] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and computation,
Addison-Wesley, 1979. 2

[5] K. Krohn and J. Rhodes, Algebraic theory of machines. I. Prime decomposition theorem for
finite semigroups and machines, Trans. Amer. Math. Soc. 116 (1965) 450–464. 1

[6] J. Rhodes, Applications of automata theory and algebra. Via the mathematical theory of com-
plexity to biology, physics, psychology, philosophy, and games, With an editorial preface by
Chrystopher L. Nehaniv and a foreword by Morris W. Hirsch. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2010. xviii+274 pp. 1

[7] J. Rhodes and P. V. Silva, Turing machines and bimachines, Theoret. Comput. Sci. 400 (2008),
no. 1-3, 182–224. 2

27

[8] J. Rhodes and B. Steinberg, The q-theory of finite semigroups, Springer Monographs in Math-
ematics, Springer, 2009. 1, 9, 12, 27

[9] J.Rhodes, A. Schilling and P. V. Silva, Random walks on semaphore codes and delay de Bruijn
semigroups, preprint arXiv:150903383. 1, 2, 5, 11, 12, 14, 21, 22, 24, 26

[10] J. Rhodes and P. Weil, Algebraic and topological theory of languages, RAIRO Theoret. Infor-
matics Appl. 29 (1995), 1–44. 27

28

	Introduction
	Resets and Turing machines
	Turing machines
	Resets
	Semaphore codes and the output function
	Length restrictions
	A context-free example
	Description
	Resets
	Semaphore codes
	Semaphore codes modulo

	Free pro-D semigroups
	(-)-reset graphs
	Right congruences on A-
	Special right congruences on A-
	Conclusion and future work

