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Welcome Address

Mer~ba! We are honoured that you chose to join us for The Second Malta Confer-
ence in Graph Theory and Combinatorics. This conference is commemorating the
75th birthday of Professor Stanley Fiorini, who introduced graph theory and
combinatorics at the University of Malta.

Many of you may be asking when the previous Malta Conference was held? The
First Malta Conference on Graphs and Combinatorics was held during the period 28
May – 2 June, 1990, at the Suncrest Hotel, also in Qawra, St Paul’s Bay. It differed
from a number of similar conferences held in the central Mediterranean region at
that time in that it consisted of three types of lectures. László Lovász and Carsten
Thomassen delivered two instructional courses of five one-hour lectures each; the
former was A survey of independent sets in graphs and the latter was on Embeddings
of graphs. There were also four invited speakers, namely L.W. Beineke, N.L. Biggs,
R. Graham and D.J.A. Welsh, each of whom gave a one-hour lecture. The third
type of talks were the 20-minute contributed talks running in two parallel sessions
and given by 39 speakers. Volume 124 (1994) of the journal Discrete Mathematics
was a special edition dedicated to this conference; it was edited by Stanley Fiorini
and Josef Lauri, and it consisted of 22 selected papers.

Twenty-seven years later we are gathered here for the second such conference organ-
ised in the Island of Malta. Although the time-lapse is considerable, the purpose
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of this conference remains the same as that of the first one: to share and discuss
a whole spectrum of topics within the interrelated fields of graph theory and com-
binatorics. This conference is bringing together almost 200 researchers and mathe-
maticians from 46 different countries spread across all the continents, including 14
invited speakers and a special guest of honour. We have received 150 abstracts for
20-minute contributed talks which will run in four parallel sessions and cover a large
variety of areas within graph theory and combinatorics. A special issue of Discrete
Applied Mathematics dedicated to this conference and containing full-length papers
will be published.

This Conference was made possible by the support of the University of Malta and
through the financial support we received from our sponsors, whom we thank whole-
heartedly. We would also like to thank all those who have helped in some way or
another to make this Conference possible. Our final words of thanks go to all of you
who are gathered here with us on our tiny Island, and we wish you an enjoyable and
successful conference here in Qawra, St Paul’s Bay.

Finally, our gratitude goes to Professor Fiorini, without whose invaluable contribu-
tion we would not be here today. Ad multos annos!

Peter Borg

John Baptist Gauci

Josef Lauri

Irene Sciriha

18 June 2017
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Inverses of Graphs (Soňa Pavĺıková) . . . . . . . . . . . . . . . . . . . . . 102

Improving Upper Bounds for the Distinguishing Index (Monika Piĺsniak) . 103
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The Sierpiński product of graphs (Sara Sabrina Zemljič) . . . . . . . . . . 137
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Professor Stanley Fiorini

Short biography

Stanley Fiorini was born in November 1941, so he is now mid-way between his 75th

and 76th birthdays. In 1963 he started reading Philosophy at Heythrop College when
it was still near Oxford and he graduated in 1966. Then he read Mathematics at
Oxford starting in 1968 and graduating in 1971. It was here that he first met Robin
Wilson who encouraged him to do a PhD in graph theory under his supervision
after graduating from Oxford. So, in 1972 he registered as the first PhD student
of the Open University, and he submitted his thesis on The Chromatic Index of
Simple Graphs in 1975. That year he joined the Mathematics Department at the
University of Malta, and that was the first time that Graph Theory was introduced in
our courses: Josef Lauri was the first student in 1976 to do an MSc at the University
of Malta with one of the exam papers being the first one set by Stanley Fiorini on
Graph Theory.

In 1977 Stanley and Robin published with Pitman their book Edge-colourings of
Graphs. From 1979 to 1981 Stanley was again at the Open University, this time
as a Staff Tutor at the Bristol Regional Office. Josef Lauri joined him there as
a PhD student with the Open University under his supervision. While in Bristol,
Stanley also contributed to the writing of the course TM361: Graphs, Designs and
Networks, mainly in the writing of Units 4 and 6 of the course.
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Stanley came back to the University of Malta in 1981 where he remained until his
retirement in 2006. This was the time when Graph Theory started to flourish at
the University of Malta. In 1990 we held the First Malta Conference on Graph
Theory and Combinatorics. Stanley started off both Irene Sciriha and John Baptist
Gauci on their first steps in research in Graph Theory, and these went on to do
their PhD with Anthony Hilton (who therefore deserves some credit for paternity of
Graph Theory in Malta). Stanley also encouraged Peter Borg to do his PhD with
Fred Holroyd, also at the Open University. We seem to have an affinity with the
Open University because another colleague in our Department, Anton Buhagiar, also
obtained his PhD there but in Statistical Mechanics under Oliver Penrose, although
Stanley did teach Anton Mathematics when he was at secondary school so there is a
link somewhere there too. Stanley was also Head of the Department of Mathematics
from 1994 to 2002. Graph Theory is now one of the main streams which our BSc
Honours students can choose as a special area in the final two years of their degree.
We have had numerous MSc students specialising in Graph Theory, four PhDs and
we also have a current PhD student.

And we cannot fail to mention that Stanley Fiorini is one of Maltas foremost Me-
dieval historians, in which area he has published eighty papers and twenty-four
books. In November 2006, the University of Malta honoured this polymath by ap-
pointing him Senior Fellow “in view of his contribution to the University and
his ongoing research and scholarship on Maltese History”. He is one of only three
academics who have been bestowed this honour by the University of Malta.

List of Publications in Mathematics

THESIS
The Chromatic Index of Simple Graphs. Doctoral Thesis, The Open University
(U.K.) (1974).

BOOKS

1. Edge-colourings of Graphs, Research Notes in Mathematics, No. 16, Pitman,
London (1977) (with R.J. Wilson). [Mathematical Reviews (=MR)58#27599].

2. Selections and Distributions: Unit 4 in the Open University Course TM361:
‘Graphs, Designs and Networks’ (1980) (with Course Team).

3. Planarity and Colouring: Unit 6 of TM361 (with Course Team).

4. Graphs and Combinatorics. (Proceedings of the First Malta Conference) = Dis-
crete Mathematics, 124 (1994) (edited with J. Lauri).

PAPERS

1. On the chromatic index of a graph: I, Cahiers du Centre dEtudes de Recherches
Operationnelle, 15 (1973) 252-262; (with R.J. Wilson). [MR 50#6864a, ZFM
278/05106].
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2. On the chromatic index of a graph: II, in: T.P. McDonough and V.C. Mavron
(eds.), Combinatorics. Proceedings of the Fourth British Combinatorial Confer-
ence, 1973, (1974) 37-51; (with R.J. Wilson). [MR 50#6864b, ZFM 297/05110].

3. On the chromatic index of a graph, III: Uniquely edge-colourable graphs, Quar-
terly Journal of Mathematics (=QJM) (Oxford)(3), 26 (1975) 129-140. [MR51
#7925, ZFM 312/0514].

4. On the chromatic index of outerplanar graphs, Journal of Combinatorial The-
ory(B)(=JCT), 18 (1975) 35-388. [MR 71#2971, ZFM 273/05107].

5. Some remarks on a paper by Vizing on critical graphs, Mathematical Proceed-
ings of the Cambridge Philosophical Society (MPPS), 77 (1975) 475-483. [MR
51#10146, ZFM 306/05120].

6. On the girth of graphs critical with respect to edge-colourings, Bulletin of the
London Mathematical Society, 8 (1976) 81-86. [MR 53#13017, ZFM 317/05106].

7. Un grafo cubico, non-planare, unicamente tricolorabile, di vita 5, Calcolo, 13
(1976) 105-108. [MR 56#8408, ZFM 339/05104].

8. Edge-colourings of graphs: Some applications, Proceedings of the Fifth British
Combinatorial Conference, 1975, (1976) 193-202; (with R.J. Wilson). [MR 52
#13461].

9. On small graphs critical with respect to edge-colourings, Discrete Mathemat-
ics(=DM), 16 (1976) 109-121; (with L.W. Beineke). [MR 55#2631].

10. On the edge-reconstruction of planar graphs, MPPS Cambridge, 83 (1978) 31-35.
[MR 58#5313, ZFM 382/05044].

11. A bibliographic survey of edge-colorings, Journal of Graph Theory(=JGT), 2
(1978) 93-106. [MR 58#21754].

12. Counterexamples to two conjectures of Hilton, JGT, 2 (1978) 261-264.

13. A theorem on planar graphs with an application to the reconstruction problem:
I, QJM Oxford (2), 29 (1978) 353-361. [MR 82d#05083a, ZFM 392/05023].

14. Edge-colourings of graphs, in: L.W. Beineke and R.J. Wilson (eds.), Selected
Topics in Graph Theory, (1978) 103-126; (with R.J. Wilson).

15. A theorem on planar graphs with an application to the reconstruction problem:
II, Journal of Combinatorics, Information and Systems Sciences, 3 (1978) 103-
119; (with B. Manvel). [MR 82d#05083a].

16. The reconstruction of maximal planar graphs, I: Recognition, JCT(B), 30 (1981)
188-195; (with J. Lauri). [MR 82i#05055a].

17. Edge-reconstruction of 4-connected planar graphs, JGT, 6 (1982) 33-42; (with J.
Lauri). [MR 83g#05054].

18. On the edge-reconstruction of graphs which triangulate surfaces, QJM Oxford
(2), 33 (1982) 191-214; (with J. Lauri). [MR 83h#05065].
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19. Hypohamiltonian snarks, in: M. Fiedler (ed.), Proceedings of the Third Czechoslo-
vak Symposium in Graph Theory, Prague 1982, (1983) 70-75. [MR 85g#05095].

20. Edge-reconstruction of graphs with topological properties, Annals of Discrete
Mathematics (=ADM), 17 (1983) 285-288; (with J. Lauri). [MR 87d#05602].

21. On the crossing number of generalized Petersen graphs, ADM, 30 (1986) 225-242.
[MR 87k#05073].

22. On the density, chromatic number and chromatic index of a graph, in: F. Maz-
zocca (ed.), Atti del Convegno Internazionale di Geometrie Combinatorie, 1988,
(1991) 397-406; (with G. Lofaro and L. Puccio).

23. The chromatic index of graphs: A survey, in: R. Ellul-Micallef and S. Fiorini
(eds.), Collected Papers (Malta, 1992) 393-419.

24. Map colouring saga, in: J. Schir et al. (eds.), Liber Amicorum Dr. Albert Ganado,
(Malta, 1994) 121-125.

25. Minimal basis for a vector space with an application to singular graphs, Graph
Theory Notes of New York, xxxi (1996) 21-24; (with I Sciriha and J. Lauri).

26. On the characteristic polynomial of homeomorphic images of a graph, DM, 174
(1997) 293-308; (with I. Sciriha).

27. Necessary and Sufficient Conditions for the Zarankiewicz Conjecture on the Cross-
ing Number, Graph Theory Notes of New York, xli (2001) 17-21; (with J.B.
Gauci).

28. New results and problems on crossing numbers, in E.M. De Marzi (ed), Rendiconti
del Seminario Matematico di Messina, Ser. II n. 8 (2002) 29-47; (with J.B.
Gauci).

29. The Crossing Number of the Generalised Petersen Graph P [3k, k], Mathematica
Bohemica, 128/4 (2003) 337-347; (with J.B. Gauci).

30. Trees with greatest nullity, Linear Algebra and its Applications, 397 (2005) 245-
251; (with I. Gutman and I. Sciriha).

31. k-to-1 functions between complete graphs of even order, Discrete Mathematics,
310 (2010) 330-346; (with J.K. Dugdale, J.B. Gauci and A.J.W. Hilton).
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The Programme

Overview

Registration: Sunday 17.00–22.00 and Monday 07.30 onwards

Mon Tue Wed Thu Fri

08.55–09.00 Welcome

09.00–10.00
Plenary

Talk
Plenary

Talk
Plenary

Talk
Plenary

Talk
Plenary

Talk

10.00–11.00
Plenary

Talk
Plenary

Talk
Plenary

Talk
Plenary

Talk
Plenary

Talk
11.00–11.20 Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break
11.20–11.40 Contributed
11.40–12.00 Contributed Contributed Talks Contributed Contributed
12.00–12.20 Talks Talks Lunch Talks Talks
12.20–12.40 Break

12.40–14.00
Lunch
Break

Lunch
Break

Lunch
Break

Lunch
Break

14.00–15.00
Plenary

Talk
Plenary

Talk
Plenary

Talk
15.00–15.20 Coffee Break Coffee Break
15.20–15.40 Plenary
15.40–16.00 Talk
16.00–16.20 Coffee Break Optional
16.20–16.40 Contributed Conference Contributed Excursion 1
16.40–17.00 Talks Excursion Talks
17.00–17.20 Contributed
17.20–17.40 Talks
17.40–18.00
18.00–19.00

19.00–20.00
Opening

Ceremony Optional

20.00–
Welcome Conference Excursion 2
Reception Dinner
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Daily

Monday 26 June 2017

08.55–09.00 Welcome
09.00–10.00 Plenary Talk: Andrew G. Thomason
10.00–11.00 Plenary Talk: Sandi Klavžar
11.00–11.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: J. Przyby lo R. Kalinowski J. Muscat E. Năstase

11.20–11.40 M.C. Golumbic G. Kiss R. Fernandes I. Wanless
11.40–12.00 K. Varga G. Mazzuoccolo N. Bebiano B. De Bruyn
12.00–12.20 G.Y. Katona E. Kubicka A. Sali S. De Winter
12.20–12.40 M. Ellingham K. Pastuszak D. Crnkovic T. Vučičić
12.40–14.00 Lunch Break
14.00–15.00 Plenary Talk: Wilfried Imrich
15.00–15.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: G.Y. Katona Z. Tuza N. Bebiano G. Hurlbert

15.20–15.40 G. Simonyi C. Bujtás I. Sciriha J. Pulaj
15.40–16.00 G. Kubicki M. Piĺsniak S. Pavĺıková P. Borg

16.00–16.20
G. Boruzanlı

Ekinci
R. Kalinowski A. Abiad V.M. Kamat

16.20–16.40 J. Przyby lo T. Duy Doan A. Farrugia F. Ihringer
Venue: Rabat Fes Nador Tangier

Chair:
G. Boruzanlı

Ekinci
G. Gévay R. Fernandes P.L. Erdős

16.40–17.00 N.E. Clarke T.K. Samuel H.F. da Cruz D. Soltész

17.00–17.20 L. Montero T. Dzido
R.R.

Del-Vecchio
Z.L. Nagy

17.20–17.40 Y. Akhtar E. Năstase E. Kaya
S.H. Afzali
Borujeni

17.40–18.00 S. Stephen A. Roca Y. Manoussakis C. Hernando
18.00–19.00
19.00–20.00 Opening Ceremony

20.00– Welcome Reception
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Tuesday 27 June 2017

09.00–10.00 Plenary Talk: Imre Leader
10.00–11.00 Plenary Talk: Yair Caro
11.00–11.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: I. Sciriha S. De Winter I. Schiermeyer E. Kubicka

11.20–11.40 R. Wilson S. Rukavina M. Frick A. Nakamoto
11.40–12.00 B. Toft J. Kokkala J. de Wet Y. Asayama
12.00–12.20 J. Lauri A.H. Bilge I.A. Goldfeder J. Sedlar
12.20–12.40 H. Gropp B. Sahu A. Asratian D. Pinto
12.40–14.00 Lunch Break
14.00–15.00 Plenary Talk: Brendan McKay
15.00–16.00 Plenary Talk: Mikhail Klin
16.00–16.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: J.B. Gauci A. Malnič C. Bujtás A. Abiad

16.20–16.40 I. Schiermeyer T. Adachi H. Gropp J. Muscat
16.40–17.00 K.J. Asciak L.K. Jørgensen G. Gévay R. Bailey

17.00–17.20 K. Fenech
A. Ramos

Rivera
C. Deshpande S. Furtado

17.20–17.40 R. Lewis B.K. Sahoo C. Zarb
O. Çolakoǧlu

Havare
17.40–18.00 C. Brause J. Fraser J. Pavĺık M. Boccia

Wednesday 28 June 2017

09.00–10.00 Plenary Talk: Richard A. Brualdi
10.00–11.00 Plenary Talk: Patrick W. Fowler
11.00–11.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: S. Bonvicini A. Rǎdulescu P. Borg K.R. Sharaf

11.20–11.40 J.-G. Caputo A. Vince A.J.W. Hilton R. Simanjuntak
11.40–12.00 D.G. Wang K. Nishio A. Kupavskii G. Greaves
12.00–12.50 Lunch Break

12.50– Conference Excursion
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Thursday 29 June 2017

09.00–10.00 Plenary Talk: Chris Godsil
10.00–11.00 Plenary Talk: Gyula O.H. Katona
11.00–11.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: L.K. Jørgensen A. Farrugia C. Zarb A.J.W. Hilton

11.20–11.40 K.R. Sharaf P. Hansen P.L. Erdős Z. Tuza
11.40–12.00 K. Meslem M. Borg G. Rinaldi B. Patkós

12.00–12.20 P. Šparl A.D. Maden S. Bonvicini D.T. Nagy

12.20–12.40 S. Satake M. Šajna J. Barát

12.40–14.00 Lunch Break
14.00–15.00 Plenary Talk: Karen Meagher
15.00–15.20 Coffee Break

Venue: Rabat Fes Nador Tangier

Chair: J. Lauri Y. Zelenyuk G. Mazzuoccolo F.M. Bhatti

15.20–15.40 A. Malnič G. Hurlbert H. Furmańczyk F. Lazebnik

15.40–16.00 J. Šiagiová L.F. Papp P. Repolusk M. Isaev

16.00–16.20 P. Leopardi A. Rǎdulescu
R.M.

Casablanca
D. Knop

16.20–16.40 D. Merkle W.H.T. Wong S.S. Zemljič T. Toufar
Venue: Rabat Fes Nador Tangier

Chair: K. Asciak S. Rukavina G. Rinaldi V. Liskovets

16.40–17.00 N. Tratnik R.M. Falcón
L.A.

Dosal-Trujillo
J. Tuite

17.00–17.20 A. Behmaram T.G. Marbach
J.A. Fresán

Figueroa
C. Justel

17.20–17.40 A. Taranenko V.S. Nittoor K.L. Patra Y. Gu
17.40–18.00 S.W. Saputro E. Saygı D.A. Jaume
18.00–20.00

20.00– Conference Dinner
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Friday 30 June 2017

09.00–10.00 Plenary Talk: Peter Dankelmann
10.00–11.00 Plenary Talk: Raffaele Scapellato
11.00–11.20 Coffee Break

Venue: Rabat Fes Nador

Chair: M. Isaev A. Taranenko F. Lazebnik

11.20–11.40 V. Liskovets D. Miklós F.M. Bhatti
11.40–12.00 P. Codara W. Kubiak M. Vizer
12.00–12.20 H. Acan T. Masařk A. Angeleska
12.20–12.40 Y. Zelenyuk O. Hudry
12.40–14.00 Lunch Break
14.00–18.00 Optional Excursion 1
18.00–19.00

19.00– Optional Excursion 2
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Abstracts of Plenary Talks

Alternating Sign Matrices and Hypermatrices Wednesday
09.00-10.00

Richard A. Brualdi

University of Wisconsin-Madison, U.S.A.

brualdi@math.wisc.edu

(joint work with Geir Dahl and Michael Schroeder)

Alternating Sign Matrices (ASMs) are square (0,±1)-matrices such that, ignoring
0’s, the +1’s and −1’s in each row and column alternate beginning and ending with
a +1. Permutation matrices are the ASMs without any −1’s. We shall discuss the
origins and properties of ASMs. There is a partial order on permutation matrices,
the so-called Bruhat order, which extends in a very natural and surprising way to
ASMs. This partial order is ranked and has many interesting properties.

There are hypermatrix generalizations of permutation matrices which lead to hy-
permatrix generalizations of ASMs and latin squares.

Repetitions in the degree sequence of a graph Tuesday
10.00-11.00

Yair Caro

University of Haifa-Oranim, Israel

yacaro@kvgeva.org.il

A basic fact in graph theory is that every graph G on n ≥ 2 vertices has at least
two vertices of the same degree. In my lecture I will focus on two (the second and
the fourth)of the five areas listed below (for the completeness of the picture).

There are basically five areas of research that have been studied under the umbrella
“repetition of degrees”.

1. r-uniform hypergraphs — where this repetition property of having at least two
vertices of the same degree no longer holds.
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It is known that for r ≥ 3 and n ≥ r+ 3 there exist r-uniform hypergraphs on
n vertices with all vertex degrees distinct.

This result appears in [1] (for recent results see [2]).

2. The repetition number of a graph, rep(G) — this is the number of times the
most frequent value appears in the degree sequence of a graph. Two main
directions have been studied:

(a) The connection between rep(G) and the independence number of a graph
α(G) in Kr-free graphs for r ≥ 3 studied by Erdős and his co-authors [3]
and nearly completed by Bollobás and Scott [4,5].

Only one case remains open after nearly 20 years.

(b) The connection between rep(G) and the minimum degree , average degree
and maximum degree denoted respectively δ = δ(G), d = d(G), and
∆ = ∆(G) studied by Caro and West [6] .

I will exhibit extremal graphs belonging to natural families of graphs such
as trees, maximal outerplanar graphs, maximal planar graphs in which
the general lower bound rep(G) ≥ n

2d−2δ+1
is attained [6].

A disturbing open problem remains with regards the repetition number
of line graphs, which I shall discuss in the lecture.

3. Deleting vertices from a graph G to get an induced subgraph H with rep(H) ≥ k
— we denote by fk(G) the minimum number of vertices needed to be deleted
from a graph G to obtain a graph H with rep(H) ≥ k (providing G is not too
small) .

Clearly f2(G) = 0 is the basic fact stated above. While a priori it is not at all
clear that fk(G) is independent of the order of G, fk(G) has been proven to
be finite [7]. More precisely fk(G) ≤ (8k)k for |G| sufficiently large , yet many
questions remain open.

4. Deleting vertices from a graph G to get an induced subgraph H with at least k
vertices realizing ∆(H) — we denote by gk(G) the minimum number of vertices
needed to be deleted from G to obtain an induced subgraph H with at least
k vertices realizing ∆(H) (provided G is not too small) .

Unlike the situation in fk(G) which is finite, already g2(G) can be as large
as (1 + o(1))

√
2|G| and g3(G) ≤ 43

√
|G| is a non-trivial result of [8]. I shall

discuss the recent progress concerning g2(G).

However major problems remain widely open.

5. The notion of spread — for a sequence A = {a1, a2, . . . , an} the spread of A,
denoted sp(A) = max{aj : aj ∈ A} −min{ai : ai ∈ A}.

Clearly if G is a graph on n ≥ 2 vertices there are at least two vertices v1, v2
such that sp(A) = sp{deg(v1), deg(v2)} = 0 which is the basic fact we started
from.
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Generalizing this elementary fact it is proved in [9] that for every k, 0 ≤ k ≤
n − 2 a graph G on n vertices contains k + 2 vertices v1, . . . , vk+2 such that
sp{deg(v1), . . . , deg(vk+2)} ≤ k.

The proof is based upon the celebrated Erdős-Gallai theorem characterizing
degree sequences.

If time permits I will show a recently discovered charming elementary proof of
this results avoiding the Erdős-Gallai theorem, and discuss possible extensions
of problems stated under the notion of rep(G) to the setting of spread.

References:

[1] A. Gyarfas, M. S. Jacobson, L. Kinch, J. Lehel & R. H. Schelp, Irregularity
strength of uniform hypergraphs, J. Combin. Math. Combin. Comput. 11 (1992)
161–172.

[2] P. Balister, B. Bollobás, J. Lehel, & M. Morayne, Random Hypergraph Irregu-
larity, IAM J. Discrete Math. 30 (2016) 465–473.

[3] P.Erdős, R. Faudree, T.J. Reid, R. Schelp & W. Staton, Degree sequence and
independence in K(4)-free graphs, Discrete Mathematics 141 (1995) 285–290.

[4] B. Bollobás & A.D. Scott, Independent sets and repeated degrees, Discrete Math-
ematics 170 (1997) 41–49.

[5] B. Bollobás, Degree multiplicities and independent sets in K4-free graphs, Dis-
crete Mathematics 158 (1996) 27–35

[6] Y. Caro & D.B. West, Repetition number of graphs, Electronic Journal of
Combinatorics 16 (2009) #R7

[7] Y. Caro, A. Shapira & R. Yuster, Forcing k-repetitions in degree sequences,
Electronic Journal of Combinatorics 21 (2014) #R24

[8] Y. Caro & R. Yuster, Large induced subgraphs with equated maximum degree,
Discrete Mathematics 310 (2010) 742–747.

[9] P. Erdős, G. Chen, C.C. Rousseau & R.H. Schelp, Ramsey Problems Involving
Degrees in Edge-colored Complete Graphs of Vertices Belonging to Monochromatic
Subgraphs, European Journal of Combinatorics 14 (1993) 183–189.
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The Diameter of Graphs and DigraphsFriday
09.00-10.00

Peter Dankelmann

University of Johannesburg, South Africa

pdankelmann@uj.ac.za

Distance based graph invariants have been studied almost since the inception of
graph theory, and among those the diameter, defined as the largest of the distances
between all pairs of vertices in a connected graph or strong digraph, has received
much attention. In this talk we present some old but possibly not well-known results
on the diameter of graphs, as well as several recent results. A special focus will be on
results on the diameter of digraphs, a topic which has received much less attention
in the literature than the diameter of graphs.

The first part of our talk is on bounds relating the diameter to other graph invariants.
Most of these bounds have been shown to hold for undirected graphs, and we discuss
possible generalisations of these bounds to digraphs. We show that some bounds
that hold for connected graphs, but not for all strong digraphs, extend to Eulerian
digraphs, a large class of digraphs containing all graphs. In the second part of our
talk we present bounds on the diameter of strong orientations of graphs.

Graph theoretical models and molecular currentsWednesday
10.00-11.00

Patrick Fowler

University of Sheffield, UK

P.W.Fowler@sheffield.ac.uk

(joint work with Martha Borg, Joseph Clarke, Wendy Myrvold, Barry Pickup and
Irene Sciriha)

Currents within and through molecules are of interest in chemistry and physics for at
least two reasons: circulations induced by a magnetic field (ring currents) are related
to experimental NMR signatures of aromatic molecules and the question of how to
define aromaticity; ballistic currents induced by potential differences are related to
molecular electronics. In both areas, calculations with sophisticated techniques can
give valuable information on individual systems, but there is room for simpler models
that can describe behaviour of whole families of molecules and devices. Many of the
most appealing models are based on graph theory, making applications of graph
spectra to ballistic conduction and perfect matchings to ring current. This talk
describes some recent work in both areas.
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Quantum Walks on Graphs Thursday
09.00-10.00

Chris Godsil

University of Waterloo, Canada

cgodsil@uwaterloo.ca

Quantum walks are analogs of classical random walks defined by physicists. They
underly important algorithms in quantum computing (Grover search, for example)
and can also be used to provide an implementation of a quantum computer. Quan-
tum walks come in two flavours—continuous and discrete—and in both cases they
are usually defined in terms of an underlying graph. (In the discrete case extra struc-
ture may be needed, for example, it may be necessary to specify a 1-factorization
or an embedding of the underlying graph.)

The behaviour and properties of these walks can be successfully analysed using
standard tools from algebraic graph theory and number theory. In one direction,
our work has provided limits on what can be achieved using quantum walks. However
these walks also give rise to interesting new graph invariants. My talk will provide
an overview of our progress on this topic, and the questions that remain.

On the direct product of finite and infinite graphs Monday
14.00-15.00

Wilfried Imrich

Montanuniversität Leoben, Austria

wilfried.imrich@unileoben.ac.at

This talk presents recent results about direct products of finite and infinite directed
graphs. For finite graphs prime factorizations always exist, and often they are
unique. We present new classes of graphs with unique prime factorizations and
algorithms to compute them in polynomial time. On the way we also characterize
the structure of the automorphism group of such products and investigate various
properties, such as vertex- and edge-transitivity.

In the case of infinite graphs prime factorizations need not exist, but if they do,
they are unique under certain thinness and connectedness conditions and allow un-
expected conclusions about their groups.
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A general 2-part Erdős-Ko-Rado theoremThursday
10.00-11.00

Gyula O. H. Katona

MTA Rényi Institute, Hungary

ohkatona@renyi.hu

A two-part extension of the famous Erdős-Ko-Rado Theorem is proved. The under-
lying set is partitioned into X1 and X2. Some positive integers ki, `i(1 ≤ i ≤ m) are
given. We prove that if F is an intersecting family containing members F such that
|F ∩X1| = ki, |F ∩X2| = `i holds for one of the values i(1 ≤ i ≤ m) then |F| cannot
exceed the size of the largest subfamily containing one element. The statement was
known for the case m = 2 as a result of Frankl.

Packing Chromatic NumberMonday
10.00-11.00

Sandi Klavžar

University of Ljubljana & University of Maribor, Slovenia

sandi.klavzar@fmf.uni-lj.si

The packing chromatic number χρ(G) of a graph G is the smallest integer k such
that the vertex set of G can be partitioned into sets Π1, . . . ,Πk, where Πi, i ∈ [k],
is an i-packing. This concept was introduced in [7], given the present name in [2],
and extensively studied afterwards. The packing chromatic number is intrinsically
difficult, determining χρ is NP-complete even when restricted to trees [5].

In the first part of the talk a brief survey on the packing chromatic number will be
given including the very recent progress [8]. Afterwards the problem whether there
exists an absolute constant M , such that χρ(G) ≤M holds for any subcubic graph
G will be discussed in detail. The recent progress on this problem is enviable: [1, 3,
4, 6].
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Introduction to total graph coherent
configurations Tuesday

15.00-16.00

Mikhail Klin

Ben-Gurion University and Matej Bel University, Israel

klin@cs.bgu.ac.il

(joint work with Leif Jørgensen and Matan Ziv-Av)

Starting from a given connected regular undirected graph Γ, its total graph T (Γ) is
considered. The coherent closure (in the sense of Weisfeiler-Leman) is constructed.
Then we are looking for nice non-trivial mergings of this coherent closure, i.e. those
which have a small rank or an interesting automorphism group. In this way we
construct from the graph Γ a much larger combinatorial structure with symmetry,
which may be expressed in diverse terms.

The results by MZA for two classical infinite classes of rank 3 graphs (2009) showed
that just for two members of one of these classes, namely for triangular graphs T (5)
and T (7) really interesting mergings appear in our construction.

Using computer algebra packages GAP and COCO, we investigated two exceptional
Higmanian rank 5 association schemes on 40 points which appear from T (5), as well
as exceptional Zara graph on 126 vertices, stemming from T (7). Links with diverse
nice intermediate structures, like Witt desigh W24, hermitian unital on 28 points,
generalized hexagon H(2), Möbius-Kantor graph, etc. will be briefly mentioned.

The results for T (5) fit to another project, related to the complements of Moore
graphs, to be discussed by LJ.

21



Tiling in High DimensionsTuesday
09.00-10.00

Imre Leader

University of Cambridge, UK

leader@dpmms.cam.ac.uk

Suppose that we have a tile T , meaning a finite subset of the integer grid Zn for
some n. It may or may not tile Zn, in the sense that we can partition Zn into copies
of T . We show, however, that T does tile Zd for some d. This confirms a conjecture
of Chalcraft.

Graph generation and Ramsey numbersTuesday
14.00-15.00

Brendan McKay

Australian National University, Australia

Brendan.McKay@anu.edu.au

(joint work with Vigleik Angeltveit)

We will discuss some advances in the practice of graph generation. As examples, we
will show how several bounds on small Ramsey numbers can be improved, including
upper bounds on R(5, 5) and R(4, 6).

Cocliques in Derangement GraphsThursday
14.00-15.00

Karen Meagher

University of Regina, Canada

karen.meagher@uregina.ca

The derangement graph for a group is a Cayley graph for a group G with connection
set the set of all derangements in G (these are the elements with no fixed points).
The eigenvalues of the derangement graph can be calculated using the irreducible
characters of the group. The eigenvalues can give information about the graph, I
am particularly interested in applying Hoffman’s ratio bound to bound the size of
the cocliques in the derangement graph. This bound can also be used to obtain
information about the structure of the maximum cocliques. I will present a few
conjectures about the structure of the cocliques. This work is attempting to find a
version of the Erdős-Ko-Rado theorem for permutations.
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Symmetry in graphs and digraphs Friday
10.00-11.00

Raffaele Scapellato

Politecnico di Milano, Milano, Italy

raffaele.scapellato@polimi.it

We shall present a survey about various well known and less known results con-
cerning graph symmetry. Whenever possible, the corresponding facts and problems
in the directed case will be discussed, too. The standard way to introduce and
study symmetry in graphs is of course through the concept of an automorphism, so
that permutation groups (and sometimes abstract groups, like in the classic Frucht
theorem) will have a prominent role. In particular, vertex-transitive graphs (and
digraphs) can be obtained from the action of a permutation group. Important spe-
cial cases like Cayley graphs, arc-symmetric graphs, distance-transitive graphs and
so forth will also be discussed, together with their combinatorial counterparts (e.g.,
distance-regular graphs for the last names case). On the other hand, symmetry can
be studied from different standpoints, giving rise to larger permutation groups. A
typical instance is similarity of vertices: when two vertices give rise to isomorphic
graphs with their removal, this doesn’t imply per se that there is an automorphism
taking one into another. Several other examples will be illustrated.

List colourings of hypergraphs Monday
09.00-10.00

Andrew Thomason

University of Cambridge, UK

a.g.thomason@dpmms.cam.ac.uk

(joint work with Ares Meroueh)

Suppose we have a (large) palette of colours, and we assign to each vertex v of a
graph G some subset L(v) of these. A list colouring of G with lists L is then a choice
of colour c(v) for each vertex v such that c(v) is in L(v) and the colouring c is a
proper colouring — that is, no edge has both its vertices the same colour. Ordinary
graph colouring is a special case of this in which all the lists L(v) are the same.
Intuitively this seems like the hardest case but in fact it can be harder to colour
when the lists are different. Indeed Alon proved that, for any G, there are lists as
large as log d for which no colouring is possible, where d is the average degree (even
if G is bipartite).

An r-uniform hypergraph, or r-graph, has edges which are r-sets of the vertex set,
so a graph is just a 2-graph. The notion of list colouring extends immediately to
r-graphs: we just ask that for no edge does c assign the same colour to each of its
r vertices. Alon’s theorem was extended recently to r-graphs by Saxton and myself
via the method of containers. But it seems that containers do not tell the full story
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here. We describe how the notion of preference orders can provide both efficient
colouring algorithms and, complementarily, good lower bounds on list colourings of
hypergraphs. This gives complete information in the cases r = 2 and r = 3 but for
r ≥ 4 the situation becomes more interesting and remains unresolved.
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Abstracts of Contributed Talks

An application of Hoffman graphs for spectral
characterizations of graphs Monday

16.00-16.20

Aida Abiad

Maastricht University, Netherlands

A.AbiadMonge@maastrichtuniversity.nl

(joint work with Jack H. Koolen and Qianqian Yang)

In this paper, we present the first application of Hoffman graphs for spectral char-
acterizations of graphs. In particular, we show that the 2-clique extension of the
(t + 1) × (t + 1)-grid is determined by its spectrum when t is large enough. This
result will help to show that the Grassmann graph J2(2D,D) is determined by its
intersection numbers as a distance regular graph, if D is large enough.

Formation of a giant component in the
intersection graph of a random chord diagram Friday

12.00-12.20

Huseyin Acan

Rutgers University, USA

huseyin.acan@rutgers.edu

(joint work with Boris Pittel)

A chord diagram of size n is a pairing of 2n points. When the points are placed on
a circle, this gives n chords. The intersection graph of a chord diagram D is formed
by taking the chords of D as the vertices of the graph and creating an edge between
two vertices if and only if the corresponding chords cross each other.

Let Hn,m denote a uniformly random chord intersection graph with n vertices and m
edges. We study the largest component of Hn,m for m = O(n log n). In particular,
when m/(n log n) tends to a limit in (0, 2/π2), we show that the largest component
contains almost all the edges and a positive fraction of all the vertices of Hn,m. On
the other hand, when m ≤ n/14, the size of the largest component is O(log n).
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Thresholds for the appearance of giant components are well studied for various
random graph models, most famously for Erdős-Rényi graphs. In the case of a
random chord intersection graph, it is not known whether or not there is a threshold.
However, if there is such a threshold, our results imply that it must be of order Ω(n)
and O(n log n).

Reference:

[1] H. Acan and Boris Pittel, Formation of a giant component in the intersection
graph of a random chord diagram, J. Combin. Theory Ser. B 125 (2017) 33–79.

Vertex transitive Kähler graphs whose adjacency
operators are commutativeTuesday

16.20-16.40

Toshiaki Adachi

Nagoya Institute of Technology, Japan

adachi@nitech.ac.jp

(joint work with Guan-Yuan Chen)

In geometry, graphs are considered as discrete models of Riemannian manifolds.
When we study Riemannian manifolds we frequently consider some geometric struc-
ture on them, complex structures, contact structures and so on. The presenter is
hence interested in giving discrete models which inherit geometric structures. He
introduced the notion of Kähler graphs in [1]. A Kähler graph is a compound of two
graphs having common sets of vertices. More precisely, a simple graph G = (V,E) is
said to be Kähler if the set E of edges is divided into two disjoint subsets E(p), E(a)

and each of two graphs G(p) = (V,E(p)), G(a) = (V,E(a)) does not have hairs. Here,
a hair is an edge one of whose ends is of degree one.

Since some geometric structures induce closed 2-forms, which are also called mag-
netic fields, and they define trajectories corresponding to geodesics, his idea is to
give “curved” paths on graphs because paths on graphs correspond to geodesics.
For a pair (p, q) of relatively prime positive integers, we say that a (p+q)-step path
on G is a (p, q)-primitive bicolored path if it is a p-step path on G(p) followed by a
q-step path on G(a). A chain of such paths is said to be a (p, q)-bicolored path. We
consider paths on G(p) as correspondences of geodesics. Under the influence of a
magnetic filed we consider that they are bended and turn to bicolored paths whose
first p-step are given paths on G(p).

Among bicolored paths, the simplest one is a (1, 1)-bicolored path. If we denote
the adjacency operators of G(p), G(a) by A(p), A(a), respectively, we find that the
generating operator of the random walk by (1, 1)-bicolored paths is A(p)A(a). In this
talk, considering Laplacians of Kähler graphs, we explain a correspondence between
Kähler graphs and Kähler manifolds. We give a condition on the cardinality of
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the set of vertices and on the degrees of two kinds of graphs to construct vertex-
transitive Kähler graphs whose two kinds of adjacency operators are commutative.
Such graphs are considered to correspond to homogeneous manifolds.

References:

[1] T. Adachi, A discrete model for Kähler magnetic fields on a complex hyperbolic
space, in: K. Sekigawa et al. (eds.), Trends in Differential Geometry, Complex
Analysis and Mathematical Physics, World Scientific (2009) 1–9.

[2] T. Yaermaimaiti & T. Adachi, Isospectral Kähler graphs, Kodai Math. J. 38
(2015) 560–580.

Investigating posets via their maximal chains: a
Sperner type approach Monday

17.20-17.40

Seyed Hadi Afzali Borujeni

IPM, Iran

hadiafzali59@yahoo.com

(joint work with Nathan Bowler)

Any poset (partially ordered set) is determined by the set of subsets appearing as
maximal chains. Now imagine that we are not given the maximal chains but just
some information like the number of them in the poset, the number of them going
through each element of the poset, or the size of the intersection of a certain subset
with each maximal chain. What can we say about the poset in this case?

A classical result in extremal set theory known as Sperner’s theorem states that
the size of any antichain in the boolean lattice of all subsets of [n] = {1, . . . , n}
is at most

(
n
bn
2
c

)
=
(
n
dn
2
e

)
. Since then numerous extensions and applications of this

result have been found, so that modern extremal set theory is indebted for much of
its development to it. Assuming only combinatorial information about numbers of
maximal chains we can prove new results extending this theorem to more general
posets.

In this talk, after taking a quick tour on the history, we will review our results.
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Baranyai’s Theorem for Completeness of
Bipartite Induced SubhypergraphMonday

17.20-17.40

Yasmeen Akhtar

Institute of Statistical Science, Academia Sinica, Taiwan

yasmeen@stat.sinica.edu.tw

In this paper, we follow the footstep of the famous Baranyai’s theorem from forty
years ago. We investigate an approach to equitably and uniformly color hyperedges
in a 3-uniform complete tripartite hypergraph with multiple hyperedges, so that
each factor corresponding to such a coloring is connected and the sub-hypergraph
induced by two sides is in fact completely bipartite. We start by introducing a trans-
formation that maps an almost Vi-regular and almost (Vi, Vj)-co-regular 3-uniform
complete tripartite hypergraph to a 3-uniform tripartite balanced hypergraph with
a maximum degree. Then we prove that such a hypergraph admits an equitable and
uniform k-coloring, and that each corresponding factor hypergraph is a connected
hypergraph.

References:

[1] Z. Baranyai, The edge-coloring of complete hypergraphs I, Journal of Combina-
torial Theory, Series B 26 (1979) 276–294.
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Fournier, Las Vergnas, Sotteau), C.N.R.S., Paris (1978) 19–22.

[3] C. Berge, Hypergraphs-Combinatorics of finite sets (first edition) North-Holland
Mathematical Library 45, Elsevier Science Publishers B.V., The Netherlands (1989).

[4] M. A. Bahmanian, Connected Baranyais theorem, Combinatorica 34 (2014) 129–
138.

Coherent Graph PartitionsFriday
12.00-12.20

Angela Angeleska

The University of Tampa, USA

aangeleska@ut.edu

(joint work with Zoran Nikoloski)

The main motivation for our study of network partitions was the sequence clustering
problem in the next generation sequencing. We define a coherent partition of a graph
G as a vertex partition of G that results in a vertex partition in G (the complement of
G) that is composed of disconnected subgraphs only. Furthermore, we introduce the
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notion of coherent number of a graphG, defined as a cardinality of the minimum edge
cut over all coherent partitions of G. An optimal coherent partition is a coherent
partition that realizes the coherent number of G. Coherent partitions (coherent
numbers) are studied in connection to clique and biclique partitions (clique and
biclique cover numbers). We also investigate the complexity of the problem of finding
optimal coherent partitions, which is polynomial for trees, but NP in general.

Generating theorem of even triangulation on the
Klein bottle Tuesday

11.40-12.00

Yoshihiro Asayama

Yokohama National University, Japan

asayama-yoshihiro-yd@ynu.jp

(joint work with Naoki Matsumoto and Atsuhiro Nakamoto)

We define two reductions, a 4-contraction and a twin-contraction, for even triangu-
lations on a surface. It is well known that these reductions preserve some properties
of graphs. The complete lists of minimal even triangulations for the sphere, the pro-
jective plane and the torus with respect to these reductions have already determined
[1,2,3]. In this talk we present the complete list of minimal even triangulations of
the Klein bottle, and we discuss some applications.

References:

[1] V. Batagelj, Inductive definition of two restricted classes of triangulations, Dis-
crete Math. 52 (1984) 113–121.

[2] N. Matsumoto, A. Nakamoto and T. Yamaguchi, Generating even triangulation
on the torus, submitted.
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Graphs with large vertex and edge reconstruction
numberTuesday

16.40-17.00

Kevin Joseph Asciak

University of Malta, Malta

kevin.j.asciak@um.edu.mt

The reconstruction problem is considered to be one of the most important unsolved
problems in graph theory. Proposed in 1942, the Graph Reconstruction Conjecture
of a graph G states that every simple, finite and undirected graph with three or
more vertices can be reconstructed up to isomorphism to the original graph from
the collection of all unlabelled vertex-deleted subgraphs of G.

Related to this conjecture, Harary and Plantholt came up with the idea of the
reconstruction number - the minimum number of vertex-deleted subgraphs required
in order to identify a graph up to isomorphism. The edge-reconstruction number of
a graph is analogously defined.

Myrvold and independently Bollobás proved that almost all graphs have reconstruc-
tion numbers equal to 3. An analogous result for edges showed that almost every
graph has an edge-reconstruction number of 2.

We shall look into some results obtained in recent years which dealt with graphs
that have large vertex and edge reconstruction numbers.

Localization theorems on Hamilton cyclesTuesday
12.20-12.40

Armen Asratian

Linköping University, Sweden

armen.asratian@liu.se

The classical global criteria for the existence of Hamilton cycles and paths only
apply to the graphs with large edge density and small diameter.

In a series of papers (see, for example [1]-[6]) we have developed some local criteria
for the existence of Hamilton cycles in a connected graph, which are analogues of
the global criteria due to Dirac, Ore and others. The idea was to show that the
global concept of hamiltonicity can, under rather general conditions, be captured
by local phenomena, using the structure of balls of small radii. (For a vertex u of a
graph G and an integer r ≥ 1, the ball of of radius r centered at u is the subgraph
induced by the set of all vertices of G whose distance from u does not exceed r.)

This local approach gives the possibility to find new classes of graphs with Hamilton
cycles which, in particular, also contain infinite subclasses of graphs with small edge
density and large diameter.
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I shall give a review of this topic and present some new results.
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Orthogonal matrices with zero diagonal Tuesday
16.40-17.00

Robert Bailey

Grenfell Campus, Memorial University, Canada

rbailey@grenfell.mun.ca

(joint work with Robert Craigen)

A square real matrix M is orthogonal if and only if MMT = cI for some non-
zero scalar c (or, equivalently, its inverse is a scalar multiple of its transpose). In
this talk, we consider orthogonal matrices whose diagonal entries are zero and off-
diagonal entries are non-zero. We show how to construct such a matrix for any even
order, and obtain infinite families of such matrices of odd order, using techniques old
and new. Finally, we apply our results to determine the minimum number of distinct
eigenvalues of matrices associated with certain bipartite graphs, and consider the
related notion of orthogonal matrices with partially-zero diagonal.
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Extremal K5-minor-free graphs with fixed girthThursday
12.20-12.40

János Barát

MTA-ELTE Geometric and Algebraic Combinatorics Research Group
and

University of Pannonia, Hungary

barat@cs.elte.hu

(joint work with David R. Wood)

A typical question of extremal graph theory is the following. What is the maximum
number of edges in a graph that belongs to a certain class? We study the classes of
K5-minor-free graphs with fixed girth g. We show a general result for an infinite
number of values g = 4k. On the other hand, we give a detailed argument for the
most interesting case, when the girth is 5. There is an infinite class of extremal
graphs in this case. We indicate that the same principles should work for other
values of the girth, but what about K6-minor-free graphs?

Real spectra in non-Hermitian operatorsMonday
11.40-12.00

Natália Bebiano

University of Coimbra, Portugal

bebiano@mat.uc.pt

The spectral analysis of non-Hermitian unbounded operators appearing in quantum
physics is our main concern. We show that the so-called equation of motion method,
which is well known from the treatment of Hermitian operators, is also useful to
obtain the explicit form of the eigenfunctions and eigenvalues of these non-Hermitian
operators. We also demonstrate that the considered operators can be diagonalized
when they are expressed in terms of certain conveniently constructed operators. We
show that their eigenfunctions constitute complete systems, but do not form Riesz
bases.
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Counting Matchings in a class of Fullerene Graphs Thursday
17.00-17.20

Afshin Behmaram

University of Tabriz, I.R. Iran

behmaram@tabrizu.ac.ir

Classical fullerene graphs have been intensely researched since the discovery of buck-
minsterfullerene in the fundamental paper [5], which appeared in 1985. This paper
gave rise to the whole new area of fullerene science.

A fullerene graph is a cubic, planar, 3-connected graph with only pentagonal
and hexagonal faces. A connected 3-regular planar graph G = (V,E) is called an
m-generalized fullerene [1] if exactly two of its faces are m-gons and all other
faces are pentagons and/or hexagons. (We also count the outer (unbounded) face
of G.) In the rest of the paper we only consider m ≥ 3; note that for m = 5, 6
an m-generalized fullerene graph is a classical fullerene graph. As for the classical
fullerenes it is easy to show that the number of pentagons is fixed, while the number
of hexagons is not determined. The smallest m-generalized fullerene has 4m vertices
and no hexagonal faces. Such graphs are sometimes called m-barrels. They have
two m-gons and 2m pentagons and they can be elongated by inserting k ≥ 0 layers
of m hexagons between two half-barrels. The elongated barrels are one of the main
subjects of this paper, since their highly symmetric structure allows for obtaining
good bounds and even exact results on the number of perfect matchings in them.

A matching M in a graph G is a collection of edges of G such that no two edges
of M share a vertex. If every vertex of G is incident to an edge of M , the matching
M is called perfect. Perfect matchings have played an important role in chemical
graph theory, in particular for benzenoid graphs, where their number correlates with
the compound’s stability. Let Φ(G) be the number of perfect matchings in G.

Now, we describe a special family of m-generalized fullerene. An elongated barrel
F (m, k) is obtained from the corresponding barrel by inserting k ≥ 0 layers (or
rings) of m hexagons between two halves of the barrel. For m = 5 and m = 6
we obtain classical fullerene nanotubes. Most of the nanotube properties are also
preserved by elongated barrels. Note that F (m, k) has n = 2m(k + 2) vertices.

The problem of hamiltonicity of fullerene graphs had been open for a long time.
There were several partial results, until this special case of Barnette’s conjecture
was settled by Kardoš, who provided a computer-assisted proof [4].

Theorem 1. For all natural numbers m ≥ 3 and k, F (m, k) is Hamiltonian.

The existence of Hamiltonian cycles has several consequences important for matchings-
related properties of elongated barrell.

Theorem 2. F (m, k) has at least three different perfect matchings. Moreover, each
edge of F (m, k) is contained in some perfect matching of F (m, k).
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Theorem 3. The number of perfect matchings in F (m, k) is bounded from above
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Theorem 4. Φ(F (3, k)) = 3k+2 + 1.

Theorem 5.
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Minimum Spanning Tree of the Inner Dualist of
Honeycomb Graphs Friday

11.20-11.40

Faqir M. Bhatti

Riphah International University, Pakistan

fmbhatti@riphah.edu.pk

(joint work with Khawaja M. Fahd)

The family of honeycomb graphs is a well-known class of graphs. Its inner dual is
also an active area of research. The classical graph representations of such graphs
do not incorporate the angle at which any of the edges are present. There have been
several approaches to keep track of the rotations of the graph. For this purpose we
use the He-matrix method that assigns weights to the edges of the graph so that the
angle between the vertices and rotations can be preserved.

In the He-Matrix representation there can be six possible orientations of a graph,
after reflections and rotations through fixed orientations. In the He-Matrix, edges
parallel to the x-axis are given a weight of 1, edges having an angle of 60 degrees are
given a weight of 2, and edges with an angle of 120 degrees are assigned a weight of
3.

In this talk we discuss how we partition the edges into different classes according
to specific angles 0, 60◦, 120◦. Subsets from these classes of edges give the minimum
spanning tree. We present the results about cardinality of these subsets. Moreover
we derive a linear time algorithm for finding the orientation that gives the least of
all minimum spanning trees among all orientations.

An Equivalence Class Decomposition of Finite
Metric Spaces via Gromov Products Tuesday

12.00-12.20

Ayşe Hümeyra Bilge

Kadir Has University, Turkey

ayse.bilge@khas.edu.tr

(joint work with Şahin Koçak, Derya Çelik and Metehan İncegül )

Let (X, d) be a finite metric space with elements Pi, i = 1, . . . , n and with the
distance functions dij. The Gromov Product of the “triangle” (Pi, Pj, Pk) with
vertices Pi, Pj and Pk at the vertex Pi is defined by ∆ijk = 1/2(dij + dik − djk) [3].
We show that the collection of Gromov products determines the metric. We call a
metric space ∆-generic, if the set of all Gromov products at a fixed vertex Pi has
a unique smallest element (for i = 1, . . . , n). We consider the function assigning
to each vertex Pi the edge {Pj, Pk} of the triangle (Pi, Pj, Pk) realizing the minimal
Gromov product at Pi and we call this function the Gromov product structure of the
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metric space (X, d). We say that two ∆−generic metric spaces (X, d) and (X, d′)
are Gromov product equivalent, if the corresponding Gromov product structures are
the same up to a permutation of X. For n = 3, 4 there is one (∆−generic) Gromov
equivalence class and for n = 5 there are three (∆−generic) Gromov equivalence
classes [1]. For n = 6 we show by computer that there are 26 distinct (∆−generic)
Gromov equivalence classes [2].
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Simple Pattern Minimality Problem: two variants
and heuristic approachesTuesday

17.40-18.00

Maurizio Boccia

Università del Sannio, Italy
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(joint work with Claudio Sterle and Antonio Sforza)

Logical Analysis of Data [2] deals with the classification of huge data sets of binary
strings. By using a ternary string (over {0, 1,−}) called pattern, it is possible to
identify a group of binary strings covered by the pattern. We say that a pattern p
covers a binary string b if bk = pk for each k such that pk ∈ {0, 1}.

A data set can be explained by alternative sets of patterns, and many computational
problems arise related to the choice of a particular set of patterns for a given instance.
The Simple Pattern Minimality Problem [3] consists in determining the minimum
number of patterns covering exactly the input data set.

In the standard version of the problem no restriction on the generation of patterns
is imposed, each string can be covered by more than one pattern. This problem is
exactly the Minimum Disjunctive Normal Form [1] for which several set covering
heuristic approaches are proposed.

A partitioning version of the problem where each string of the input data set can
be covered by exactly one pattern is defined.

The two problems are solved by using two effective and fast heuristics, tested on
large size instances of the SeattleSNPs database [4]. For the covering version of the
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problem, the proposed heuristic outperforms the existing commercial and freeware
logic tools.
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Non-existence of indecomposable 1-factorizations
of the complete multigraph λK2n Thursday

12.00-12.20

Simona Bonvicini

University of Modena and Reggio Emilia, Italy

simona.bonvicini@unimore.it

(joint work with Gloria Rinaldi)

A 1-factorization of the complete multigraph λK2n is said to be indecomposable if
it cannot be represented as the union of 1-factorizations of λ0K2n and (λ− λ0)K2n,
where λ0 < λ. It is said to be simple if the 1-factors are pairwise distinct. An
indecomposable 1-factorization might be simple or not. If F is an indecomposable
1-factorization of λK2n, then λ < [n(2n−1)]n(2n−1)

(
2n3+n2−n+1

2n2−n

)
. If F is simple, then

λ < 1 · 3 · · · (2n − 3). The existence of an indecomposable 1-factorization of λK2n,
simple or not, for every admissible value of λ is an open problem. Partial results
about the existence of indecomposable 1-factorizations are known for some values of
2n and λ. Non-existence results are known for 2n = 4, 6. In [2] it is proved that for
every λ > 1 there is no indecomposable 1-factorization of λK4. It is also proved that
there is no indecomposable 1-factorization of 3K6. In [3] the authors show that there
are precisely three non-isomorphic 1-factorizations of 2K6, of which exactly one is
indecomposable. The non-existence of indecomposable 1-factorizations of λK6 for
every λ > 3 is established in [1].

For the next value of 2n, that is 2n = 8, only a few results are known. The existence
of indecomposable 1-factorizations of λK8 is proved for every λ ≤ 4 and for λ = 6, 12
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(see [1]). For λ = 6, 12 the known examples are not simple, for λ ≤ 4 they are simple.
Unfortunately, for 2n = 8 and λ > 4, no recursive construction that is known in
literature can be applied. In [1] it is conjectured that it is not possible to find an
indecomposable 1-factorization of λK8 for every admissible value of λ, that is, for
every λ < 2828 ·

(
141
28

)
. We give some existence and non-existence results for the case

2n = 8.
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Bipartite graphs in the SSP model of ballistic
conductionThursday

11.40-12.00

Martha Borg

University of Sheffield, UK

mborg1@sheffield.ac.uk

(joint work with Patrick W. Fowler, Irene Sciriha)

Bipartite graphs are characterized within the SSP (source-and-sink-potential) model
for conduction behaviour. The electron behaviour through the graph is predicted
by a generalized eigenvalue equation. The transmission through the graph, to which
two semi-infinite wires are attached, can be expressed as a function of the incoming
electron energy in terms of four characteristic polynomials, those of the graph and
the graphs formed by the deletion of one or both vertices in contact with the external
wires. We show that many results depend on counting the zero roots of the structural
polynomials. It turns out that what separates the world of omni-conduction and
omni-insulation, independent of the connection vertices, is the nullity. Bipartite
graphs are neither omni-conductors nor omni-insulators but may be defined as near
omni-conductors and omni-insulators. This is due to the restrictions imposed by
the spectral properties of bipartite graphs. The classification adopted in terms of a
three-letter acronym in combination with the nullity of the graph concentrates on
the behavior within and between partite sets, giving rise to 81 classes of possible
molecular bipartite devices. After testing all bipartite graphs on up to ten vertices,
only 13 were found to be realizable. The nature of bipartite graphs enables the
scheme to be classified more finely than for other graphs.
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Cross-intersecting families Monday
15.40-16.00

Peter Borg

University of Malta, Malta

peter.borg@um.edu.mt

Extremal set theory is the study of how small or how large a system of sets can
be under certain conditions. The Erdős–Ko-Rado Theorem [4] is a classical result
in this field. A variant of the Erdős–Ko-Rado problem is that of determining the
maximum sum or the maximum product of sizes of k cross-t-intersecting subfamilies
A1,A2, . . . ,Ak of a given family F of sets, where by ‘cross-t-intersecting’ we mean
that, for every i and j in {1, 2, . . . , k} with i 6= j, each set in Ai intersects each
set in Aj in at least t elements. This natural problem has recently attracted much
attention. Solutions have been obtained for various important families (as outlined
in [1]), such as power sets, levels of power sets, hereditary families, families of
permutations, and families of integer sequences. The talk will provide an outline of
some of these results. It will focus mostly on the product problem for the family
of subsets of {1, 2, . . . , n} that have at most r elements. This problem is solved for
t = 1 in [2]. The problem for the more general setting of weighted sets is addressed
for any t in [3]; the paper’s main result and its applications will be discussed.
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On the Super Connectivity of Kneser graphs and
Johnson graphsMonday

16.00-16.20

Gülnaz Boruzanlı Ekinci

Ege University, Turkey

gulnaz.boruzanli@ege.edu.tr

(joint work with John Baptist Gauci)

A vertex cut of a connected graph G is a set of vertices whose deletion disconnects
G. A connected graph G is super–connected if the deletion of every minimum vertex
cut of G isolates a vertex. The super–connectivity is the size of the smallest vertex
cut of G such that each resultant component does not have an isolated vertex. The
Kneser graph KG(n, k) is the graph whose vertices are the k-subsets of {1, 2, ..., n}
and two vertices are adjacent if the k-subsets are disjoint. The Johnson graph J(n, k)
is the graph whose vertices are also the k-subsets of {1, 2, ..., n}, but two vertices are
adjacent if the corresponding k-subsets have exactly k− 1 elements in common. We
use Baranyai’s Theorem on the decompositions of complete hypergraphs to show
that the Kneser graphs KG(n, 2) are super–connected when n ≥ 5 and that their
super–connectivity is

(
n
2

)
−6. We also show that the super–connectivity of J(n, 2) is

3(n−3) when n ≥ 6. These results are of interest especially in the study of reliability
and fault tolerance of interconnection networks, since these graph families are good
candidates for such networks.

On χ-binding functions for the classes of P5-, 2K2-,
and K1,3-free graphsTuesday

17.40-18.00

Christoph Brause

TU Bergakademie Freiberg, Germany

brause@math.tu-freiberg.de

A graph G is called k-colourable if its vertices can be coloured with k colours so that
adjacent vertices receive distinct colours. The smallest integer k such that a given
graph G is k-colourable is called the chromatic number of G, denoted by χ(G). It
is well-known that ω(G) ≤ χ(G) ≤ ∆(G) + 1 holds for any graph G, where ω(G)
denotes the clique number and ∆(G) the maximum degree of G.

By an old result of Erdős [4], there does not exist a χ-binding function f , which
is a function f : N → R+

0 such that χ(G) ≤ f(ω(G)) for any graph G. However,
Gyárfás asks in [5], whether or not there exists a χ-binding function for the class of
graphs having no induced subgraph isomorphic to some given graph F . It is known
by Erdős’ result that if there exists such a function for the class of F -free graphs,
then F must be a forrest. Unfortunately, only for a few forrests F , a χ-binding
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function for the class of F -free graphs is known and, for most of them, the right
order of magnitute is unknown.

In this talk, we will present χ-binding functions for the classes of P5-free graphs, of
2K2-free graphs, and of K1,3-free graphs. Furthermore, we will study the chromatic
number in subclasses defined in terms of a second forbidden subgraph. By analysing
these results, we will obtain lower bounds for χ-binding functions for our initial
classes defined by one forbidden subgraph.

This talk bases on results in [1,2,3].
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[4] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 34–38.
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Clique coverings and claw-free graphs Monday
15.20-15.40

Csilla Bujtás

University of Pannonia, Hungary

bujtas@dcs.uni-pannon.hu

(joint work with Akbar Davoodi, Ervin Győri and Zsolt Tuza)

Let C be a clique covering for E(G) and let v be a vertex of G. The valency of vertex
v (with respect to C), denoted by valC(v), is the number of cliques in C containing
v. The local clique cover number of G, denoted by lcc(G), is defined as the smallest
integer k, for which there exists a clique covering for E(G) such that valC(v) is at
most k, for every vertex v ∈ V (G). This parameter may be interpreted as a variety
of different invariants of the graph. For example, lcc(G) is the minimum integer k
for which G is the line graph of a k-uniform hypergraph.

We consider the following two conjectures:

(1) For every graph G of order n, lcc(G)+lcc(G) ≤ n holds.
(Proposed by R. Javadi, Z. Maleki, and B. Omoomi in 2012.)
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(2) For every graph G of order n, lcc(G) + χ(G) ≤ n+ 1 holds.
(Proposed by A. Davoodi, R. Javadi, and B. Omoomi as a weakening of (1).)

Among other results, we prove that (1) is true if α(G) = 2, and (2) holds if G is a
claw-free graph.

Exploring soft graphsWednesday
11.20-11.40

Jean-Guy Caputo

INSA de Rouen, France

caputo@insa-rouen.fr

(joint work with Arnaud Knippel)

In this presentation, we are interested in graphs whose graph Laplacian has an
eigenvector with a null component. The graph Laplacian is the matrix of node
degrees minus the adjacency matrix; we refer to [3] for definitions and results on
graph spectra. In a previous work [1] we called soft node a vertex corresponding
to such a component. In the case of a multiple eigenvalue, any component of an
eigenvector may be zero and we call absolute soft node a vertex with value zero for
all eigenvectors in the subspace.

Here we call soft graphs graphs with a soft node. We present a classification [2]
of λ-soft graphs, sorted by value of λ, with all soft graphs with up to 6 nodes, as
well as some particular classes of graphs. This shows a structure with some graph
mappings, and suggests that we can build soft graphs and find eigenvectors with
soft nodes combinatorially.

Acknowledgements. This work is part of project XTerM, funded with the support
from the European Union with the European Regional Development Fund (ERDF)
and from the Regional Council of Normandie.
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Generalized connectivity and strong product
graph Thursday

16.00-16.20

Roćıo M. Casablanca

University of Seville, Spain

rociomc@us.es

(joint work with Encarnación Abajo, Ana Diánez and Pedro Garćıa-Vázquez)

Let G be a connected graph with n vertices and let k be an integer such that
2 ≤ k ≤ n. The generalized connectivity κk(G) of G is the greatest positive integer `
for which G contains at least ` internally disjoint trees connecting S for any set
S ⊆ V (G) of k vertices. It represents a generalization of the concept of vertex
connectivity. Clearly, κ2(G) is just the connectivity κ(G), which is the reason why
one addresses κk(G) as the generalized connectivity of G. It measures the capability
to connect any set of k vertices in a network.

Products of graphs provide important methods to construct bigger graphs and play a
key role in design and analysis of networks. Our purpose is to study the 3-generalized
connectivity of the strong product of graphs. The strong product G1 � G2 of two
connected graphs G1 and G2 is the graph with vertex set V (G1)× V (G2) in which
two vertices (x1, x2) and (y1, y2) are adjacent if x1 = y1 and x2y2 ∈ E(G2), or
x1y1 ∈ E(G1) and x2 = y2, or x1y1 ∈ E(G1) and x2y2 ∈ E(G2).

We focus on the case when k = 3. We study the generalized 3-connectivity for the
strong product G1 � G2 of two connected graphs G1 and G2 with at least three
vertices and girth at least five, and we prove the sharp bound

κ3(G1 �G2) ≥ κ3(G1)κ3(G2) + κ3(G1) + κ3(G2)− 1.
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The Clustered and Bottleneck Clustered
Selected-Internal Steiner Tree Problems

Yen Hung Chen

University of Taipei, Taiwan

yhchen@utaipei.edu.tw

In the paper, we study two variants of the clustered Steiner tree problem [4],
namely the clustered selected-internal Steiner tree problem and the bottleneck clus-
tered selected-internal Steiner tree problem, respectively. Given a complete graph
G = (V,E), with nonnegative edge costs, two subsets R ⊂ V and R′ ⊂ R, a parti-
tion R = {R1, R2, . . . , Rk} of R, Ri∩Rj = φ, i 6= j and R′ = {R′1, R′2, . . . , R′k} of R′,
R′i ⊂ Ri, a clustered Steiner tree is a tree T of G spanning all vertices in R such that
T can be cut into k subtrees Ti by removing k − 1 edges and each subtree Ti spans
all vertices in Ri, 1 ≤ i ≤ k. The total cost of a tree is defined to be the sum of the
costs of all its edges. A clustered selected-internal Steiner tree of G is a clustered
Steiner tree for R if all vertices in R′i are internal vertices of Ti, 1 ≤ i ≤ k. The
clustered selected-internal Steiner tree problem (respectively, the bottleneck clus-
tered selected-internal Steiner tree problem) is concerned with finding a clustered
selected-internal Steiner tree T for R in G whose total cost (respectively, the cost of
the largest edge) of T is minimized. The clustered selected-internal Steiner tree prob-
lem and the bottleneck clustered selected-internal Steiner tree problem are NP-hard,
since the selected-internal Steiner tree and the bottleneck selected-internal Steiner
tree problems [2,3] are their special versions when k = 1, respectively. Applications
of two problems include the multicast routing and the facility location in telecom-
munications and wavelength-division multiplexing (WDM) optical networks. In this
paper, we present the first known approximation algorithms with performance ratio
ρ + 4 and 4 for the clustered selected-internal Steiner tree problem and the bottle-
neck clustered selected-internal Steiner tree problem if the cost function is metric
(i.e., the costs of edges satisfy the triangle inequality), respectively, where ρ is the
best-known performance ratio for the Steiner tree problem (currently ρ = ln 4 + ε
≈ 1.39 [1]).
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Skolem Labellings of Graphs with Large
Chordless Cycles Monday

16.40-17.00

Nancy E. Clarke

Acadia University, Canada

nancy.clarke@acadiau.ca

(joint work with Asiyeh Sanaei)

In this talk, we consider Skolem (vertex) labelling and present (hooked) Skolem la-
bellings for generalized Dutch windmills whenever such labellings exist. Specifically,
we show that generalized Dutch windmills with more than two cycles cannot be
Skolem labelled and that those composed of two cycles of lengths m and n, n ≥ m,
cannot be Skolem labelled if and only if n−m ≡ 3, 5 (mod 8) and m is odd. Show-
ing that a Skolem labelling does not exist is, in general, a complex problem and we
present a novel technique for doing so.

Independent Sets of Families of Graphs via Finite
State Automata Friday

11.40-12.00

Pietro Codara

Artificial Intelligence Research Institute (IIIA-CSIC), Spain

codara@di.unimi.it

(joint work with Ottavio M. D’Antona, Massimo Galasi and Giovanna Lavado)

An independent set of a graph is a set of pairwise non-adjacent vertices of the graph.
The main goal of this work is the enumeration of the independent sets of a wide
set of families of graphs that we call telescopic families of graphs, tfgs. What
is particularly interesting in our approach is that we obtain our results via finite
state automata. Given a tfg, {Gn}n≥0 say, we show how to build its independence
automaton, that is a deterministic finite automaton that accepts a language in which
the number of n-symbol words equals the number of independent sets of Gn, for any
n ≥ 0. Our work has been inspired by the paper [1] that deals, among other things,
with the enumeration of the independent sets of grid graphs, i.e. Cartesian products
of paths. Needless to say, grid graphs make a tfg.

Acknowledgements. Pietro Codara is supported by an INdAM-COFUND-2012
Marie Curie fellowship (project “LaVague”). Giovanna Lavado is supported by
Dipartimento di Informatica, Università degli Studi di Milano.
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The Forgotten Topological Index of some Carbon
Base NanomaterialsTuesday

17.20-17.40

Özge Çolakoǧlu Havare

Mersin University, Turkey

ozgecolakoglu@mersin.edu.tr

( joint work with Ali Kemal Havare)

Molecular topological indices are numerical descriptors of molecular structure ob-
tained via a molecular graph G [1]. Furthermore, computing the connectivity indices
of molecular graphs is a meaningful branch in chemical graph theory. It is of in-
terest to find topological indices which correlate well with chemical properties of
the chemical molecules. Lately, the most common index is the forgotten topological
index, which has been defined following the first and second Zagreb topological in-
dices. The F-index or the forgotten topological index F (G) is a vertex degree based
topological index and it can be expressed as,

F (G) =
∑

v∈V (G)

d (v)3 =
∑

uv∈E(G)

d (u)2 + d (v)2

where d (u) denotes the degree of u [2,4]. Recently, the forgotten index or the F-
index was shown to have an exceptional applicative potential. In addition, there are
many topological descriptors that are applicable in QSPR/QSAR. In this study, the
F-index of TUSC5C7, TUHAC5C7 and TUHAC5C6C7 nanotubes which is a family
of nanostructures are computed [3]. This analytic approach is given to compute the
F-index of linear phenylenes and cyclic phenylenes . The computing is correlated
with the chemical properties of nanostructures and it gives information about their
physical features.
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A construction of regular Hadamard matrices Monday
12.20-12.40

Dean Crnković

University of Rijeka, Croatia

deanc@math.uniri.hr

(joint work with Ronan Egan )

A Hadamard matrix of order m is a (m×m) matrix H = (hi,j), hi,j ∈ {−1, 1}, satis-
fying HHT = HTH = mIm, where Im is an (m×m) identity matrix. A Hadamard
matrix is called regular if the row and column sums are constant. The existence
of a regular Hadamard matrix is well known to be equivalent to the existence of a
symmetric (4m2, 2m2 − m,m2 − m) design, also known as a Menon design. It is
conjectured that a regular Hadamard matrix of order 4m2 exists for every positive
integer m. In this talk we give a method of constructing regular Hadamard matrices
using conference graphs and Hadamard designs with skew incidence matrices.

The number of P -vertices in a matrix with
maximum nullity Monday

16.40-17.00

Henrique F. da Cruz

Universidade da Beira Interior, Portugal.

hcruz@ubi.pt

(joint work with Rosário Fernandes)

Let T be a tree with n ≥ 2 vertices. Let S(T ) be the set of all real symmetric
matrices whose graph is T . Let A ∈ S(T ), and i ∈ {1, . . . , n}. We denote by A(i)
the principal submatrix of A obtained after deleting the row and column i. We
set mA(0) for the multiplicity of the eigenvalue zero in A (the nullity of A). When
mA(i)(0) = mA(0) + 1, we say that i is a P -vertex of A. As usual, M(T ) denotes
the maximum nullity occurring in matrices of S(T ). We determine an upper bound
and a lower bound for the number of P -vertices in a matrix A ∈ S(T ) with nullity
M(T ), and we prove that if z is an integer between these two bounds, then there is
a matrix A ∈ S(T ) with maximum nullity, and with z P -vertices.

Acknowledgements: Henrique F. da Cruz was partially supported for this work
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On the Mathon bound for regular near hexagonsMonday
11.40-12.00

Bart De Bruyn

Ghent University, Belgium

Bart.DeBruyn@UGent.be

A finite graph Γ of diameter d ≥ 2 is called distance-regular if there exist constants
ai, bi, ci (i ∈ {0, 1, . . . , d}) such that |Γ1(x) ∩ Γi(y)| = ai, |Γ1(x) ∩ Γi+1(y)| = bi and
|Γ1(x) ∩ Γi−1(y)| = ci for any two vertices x and y at distance i from each other.
A finite graph Γ is called a regular near hexagon with parameters (s, t, t2) if it is
a distance-regular graph with diameter 3, intersection array {b0, b1, b2; c1, c2, c3} =
{s(t + 1), st, s(t − t2); 1, t2 + 1, t + 1} and does not contain any K1,1,2’s as induced
subgraphs (i.e. no complete graphs on four vertices minus an edge). If s 6= 1,
then an inequality due to Rudi Mathon states that t ≤ s3 + t2(s

2 − s + 1). In
fact, in the special case that t = s3 + t2(s

2 − s + 1), it can be shown that any
distance-regular graph of diameter 3 and intersection array {b0, b1, b2; c1, c2, c3} =
{s(t + 1), st, s(t − t2); 1, t2 + 1, t + 1} cannot contain K1,1,2’s as induced subgraphs
and hence must be a regular near hexagon.

In my talk, I will discuss some new proofs of this Mathon inequality. These proofs
give additional structural information about the regular near hexagon in case t
attains the Mathon bound. This additional structural information can be (and has
already been) useful for showing the non-existence of distance-regular graphs with
certain parameters. Part of this work is joint with Frédéric Vanhove.
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The Hamilton Cycle Problem for locally traceable
and locally Hamiltonian graphs Tuesday

11.40-12.00

Johan de Wet

University of South Africa, South Africa

jpdewet314@gmail.com

(joint work with Marietjie Frick and Susan van Aardt)

We say a graph G is locally P if for each vertex v in G the open neighbourhood
of v induces a graph with property P . The Hamilton Cycle Problem (HCP) is
the problem of deciding whether a graph contains a Hamilton cycle. Gordon et al.
[1] showed that the HCP for locally connected graphs is NP-complete for graphs
with maximum degree 7, and they conjectured that 7 is the smallest value of the
maximum degree for which this is true. However, we show that the HCP is NP-
complete for locally traceable (LT) graphs with maximum degree 6. If R is a set of
nonnegative integers, we say a graph G is R-regular if the degrees of all the vertices
in V (G) are elements of R. We show that the HCP is NP-complete for {2, 6}-,
{3, 6}-, {5, 6}-, and r-regular LT graphs, where r ≥ 6.

Maximal planar graphs are locally hamiltonian (LH), and it is known that the HCP
for maximal planar graphs is NP-complete [2], but no attention has thus far been
given to the smallest value of the maximum degree of the graph for which this is
true. We show that the HCP is NP-complete for LH graphs with maximum degree
9 and for LH graphs that are {3, 9}-, {3, 10}, and r-regular, for r ≥ 11. Finally, we
show that the HCP for k-connected LH graphs is NP-complete for every k ≥ 3.
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Recent progress on partial difference sets in
Abelian groupsMonday

12.00-12.20

Stefaan De Winter

Michigan Technological University, U.S.A.

sgdewint@mtu.edu

(joint work with Zeying Wang)

Partial difference sets were introduced by Bose and Cameron, and a detailed study
was initiated by S.L. Ma in the 80’s. It is well known that these special subsets of a
finite group are equivalent to strongly regular Cayley graphs. The classical tools to
study partial difference sets are the use of characters and computations in the group
ring. Recently, jointly with Z. Wang, we have introduced an approach to partial
difference sets in Abelian groups based on linear algebra. This has allowed us to
obtain some rather strong results. We finalized the classification of parameters for
which there exists a strongly regular Cayley graph of valency at most 100 on an
Abelian group. This required proving non-existence for 18 parameter sets that had
been open for more than 20 years. We obtained a complete classification of partial
difference in Abelian groups of order 4p2, p an odd prime, and are currently finalizing
a similar classification for Abelian groups of order 9p2. The importance here lies in
the fact that few general classification results for partial difference sets are known.
We are also able to obtain some well-known multiplier results and exponent bounds
using our approach. In this talk I plan to explain the general ideas underlying our
approach, provide an overview of our results on partial difference sets in Abelian
groups, and explain how our technique can also be used to study related objects,
such as skew-Hadamard difference sets.

New results on distance spectrum of special
classes of treesMonday

17.00-17.20

Renata Del-Vecchio

Universidade Federal Fluminense, Brazil

renata@vm.uff.br

(joint work with M. A. de Freitas and J. S. Nascimento)

In this work we study the spectrum of the distance matrix of trees.

In [2], Merris has shown that, in the case of trees, −2 is an eigenvalue of the distance
matrix (here called a D-eigenvalue) with “high” multiplicity, presenting a lower
bound for the multiplicity of this eigenvalue. In the present work we obtain the
exact value of the multiplicity of −2 as a D-eigenvalue for caterpillars, brooms and
double brooms. Furthermore, we completely characterize the spectrum of these trees
when its diameter is three or four.
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A known fact about graphs is that the number of distinct eigenvalues of the adja-
cency, Laplacian and signless Laplacian matrices is at least the diameter plus one
unit. For the distance matrix, meanwhile, it generally does not happen. In [1] a
lower bound for the number of distinct eigenvalues of the distance matrix of any
tree, as a function of its diameter, is provided. We obtain here, for caterpillars,
brooms and double brooms, the exact number of distinct eigenvalues of the distance
matrix, as a function of the diameter of the graph.
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Degree Sequences of Hypergraphs,
Self-Complementary and Almost

Self-Complementary 3-uniform Hypergraphs Tuesday
17.00-17.20

Charusheela Deshpande

College of Engineering, SPPU, Pune, India

dcm.maths@coep.ac.in

(joint work with Lata Kamble and Bhagyashri Bam)

Characterizing the degree sequences of hypergraphs is a long standing open problem
and not much work has been done in this area. We have characterized the degree
sequences of linear hypergraphs by giving necessary and sufficient conditions very
similar to those given by Erdős and Gallai for graphical sequences.

We have studied factorization of 3-uniform hypergraphs into two isomorphic factors
and have constructed all such hypergraphs along with the properties of complement-
ing permutations.
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The Fibonacci numbers of the composition of
graphsThursday

16.40-17.00

Loiret A. Dosal-Trujillo

Universidad Nacional Autonoma de Mexico, Mexico

loiret@matem.unam.mx

(joint work with Hortensia Galeana-Sánchez)

A subset S of vertices of a graph G is said to be independent if for every two vertices
u, v ∈ S there is no edge between them. The Fibonacci number of a graph G is the
total number of independent vertex sets of G. This concept was introduced by
Prodinger and Tichy in [2]. They proved that the number of independent vertex
sets of Pn, the path of order n is precisely a Fibonacci number, and for Cn the cycle of
order n is the n-Lucas number. The problem to find the Fibonacci number of a graph
is an NP-complete problem. In [1] we proved that for every r ∈ Z+ and for all n ≥
r+1, the Fibonacci numbers of Cn[r], the circulant graphs of order n with consecutive
jumps (1, 2, . . . , r) and for several subgraphs of this family are characterized by some
sequences which generalize the Fibonacci and Lucas sequences.

Given a graph G and a family of graphs α = (αv)v∈V (G) without vertices in common,
the Zykov sum σ(G,α) is the graph with vertex set ∪v∈V (G)V (αv), and edge set
∪v∈V (G)E(αv) ∪ {xy : x ∈ V (αu), y ∈ V (αv) and uv ∈ E(G)}. The composition G
with H of two disjoint graphs G and H, is the graph σ(G,α), where αv is isomorphic
to the graph H, for every v ∈ V (G). In this talk, we will explain how to obtain the
Fibonacci number of the composition of graphs.
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2-proper connection of graphs Monday
16.20-16.40

Trung Duy Doan

TU Bergakademie Freiberg, Germany

trung.doanduy@gmail.com

(joint work with Christoph Brause and Ingo Schiermeyer)

A path in an edge-coloured graph is called a proper path if every two consecutive
edges receive distinct colours. An edge-coloured graph G is called k-properly con-
nected if every two vertices are connected by at least k internally pairwise vertex-
disjoint proper paths. The k-proper connection number of a connected graph G,
denoted by pck(G), is the smallest number of colours that are needed in order to
make G k-properly connected. In this paper, we study the 2-proper connection
number pc2(G) of 2-connected graphs. We prove a new upper bound of pc2(G), de-
termine pc2(G) = 2 for several classes of 2-connected graphs and pc2(G�H), where
G�H is the Cartesian product of two nontrivial connected graphs.
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Restricted size Ramsey numbers for some graphs Monday
17.00-17.20

Tomasz Dzido

University of Gdańsk, Poland

tdz@inf.ug.edu.pl

(joint work with Joanna Cyman )

Let F , G, and H be simple graphs. We say F → (G,H) if for every 2-coloring of
the edges of F there exists a monochromatic G or H in F . The Ramsey number
r(G,H) is defined as

r(G,H) = min{|V (F )| : F → (G,H)},
while the restricted size Ramsey number r∗(G,H) is defined as

r∗(G,H) = min{|E(F )| : F → (G,H), |V (F )| = r(G,H)}.

In this talk, we determine previously unknown restricted size Ramsey numbers and
give some new bounds for some graphs.
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Toughness and treewidthMonday
12.20-12.40

Mark Ellingham

Vanderbilt University, U.S.A.

mark.ellingham@vanderbilt.edu

(joint work with Songling Shan, Dong Ye and Xiaoya Zha)

We discuss two results involving toughness and treewidth. First, Jackson and
Wormald conjectured that for k ≥ 2 every 1

k−1 -tough graph has a spanning closed
walk using every vertex at most k times. We show that this is true for graphs of
treewidth at most 2, or equivalently for K4-minor-free graphs. In fact, we prove the
stronger result that for k ≥ 2 every 1

k−1 -tough graph of treewidth at most 2 has a
spanning tree of maximum degree at most k. Second, computing toughness is NP-
hard for general graphs. We show that toughness, or the truth of certain conditions
related to toughness, can be determined in polynomial time for graphs of bounded
treewidth.

Navigating Between Packings of Graphic
SequencesThursday

11.20-11.40

Péter L. Erdős

MTA, A. Rényi Institute of Mathematics, Hungary

erdos.peter@renyi.mta.hu

(joint work with Mike Ferrara and Stephen Hartke)

A nonnegative integer sequence π is graphic if it is the degree sequence of some
graph G. In this case we say that G realizes or is a realization of π. Graphic
sequences π1 = (d

(1)
1 , . . . , d

(1)
n ) and π2 = (d

(2)
1 , . . . , d

(2)
n ) pack if there exist edge

disjoint realizations G1 and G2 of π1 and π2, respectively, on vertex set {v1, . . . , vn}
such that for j ∈ {1, 2}, dGj

(vi) = d
(j)
i for all i ∈ {1, . . . , n}. In this case, we say

that (G1, G2) is a (π1, π2)-packing.

A clear necessary condition for graphic sequences π1 and π2 to pack is that π1 + π2,
their componentwise sum, is also graphic. It is known, however, that this condition
is not sufficient, and furthermore that the general problem of determining if two
sequence pack is NP -complete [1]. In 1973 S. Kundu [2] proved that if π2 is almost
regular, that is each element is from {k − 1, k}, then π1 and π2 pack if and only if
π1 + π2 is graphic. This result was originally conjectured in 1972 by Rao and Rao
[3]. For k = 1 it was conjectured by B. Grünbaum in 1970.

In this talk we will consider graphic sequences π with the property that π + 1 is
graphic. By Kundu, the sequences π and 1 pack, and there exist edge disjoint
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realizations G and I where I is a 1-factor. We call such a (π,1) packing a Kundu
realization of π + 1.

Given realizations G and G′ of a graphic sequence π, a classical result of Petersen
(which was rediscovered independently several times) states that it is possible to
transform G into G′ through a sequence of swap operations (also known as switch
or rewiring operations), wherein the edges and non-edges of an alternating 4-cycle
are interchanged.

Assume that π is a graphic sequence in which each term is at most c
√
n that packs

with 1. Furthermore let J be a given, particular 1-factor. Our main result is that
one can find realization GJ of π such that (GJ ,J ) is a (π,1)-packing.

As a byproduct we also solve the following problem: Let (G, I) and (G′,J ) be
two Kundu realizations of π + 1. We show that it is possible to transform (G, I)
into (G′J ) via a sequence of swap operations that naturally generalize the classical
notion of an alternating 4-cycle to the setting of graphic sequence packing. Each
intermediate realization of π + 1 is also a Kundu realization.

Acknowledgements: Péter L. Erdős was supported in part by the National Re-
search, Development and Innovation – NKFIH grant K 116769and SNN 116095.
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Autotopism stabilized colouring games on rook’s
graphs Thursday

16.40-17.00

Raúl M. Falcón

University of Seville, Spain

rafalgan@us.es

(joint work with Stephan Dominique Andres)

Based on the fact that every partial colouring of the rook’s graph Kr2Ks is uniquely
related to an r × s partial Latin rectangle, this work deals with the Θ-stabilized
colouring game on the graph Kr2Ks. This is a variant of the classical colouring
game on finite graphs [1,2,6,7] so that each move must respect a given autotopism Θ
of the resulting partial Latin rectangle. The complexity of this variant is examined

55



by means of its Θ-stabilized game chromatic number, which depends in turn on
the cycle structure of the autotopism under consideration. Based on the known
classification of such cycle structures [3,4,5,8], we determine in a constructive way
the game chromatic number associated to those rook’s graphs Kr2Ks, for which
r ≤ s ≤ 8.
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Edge Construction of Molecular NSSDsMonday
16.20-16.40

Alexander Farrugia

University of Malta, Malta

alex.farrugia@um.edu.mt

A nonsingular graph with a singular deck, or NSSD, is a graph with weighted edges
and no loops whose adjacency matrix is nonsingular and whose vertex–deleted sub-
graphs have singular adjacency matrices. A graph G is a NSSD if and only if the
inverse graph G−1 associated with the inverse of the adjacency matrix of G exists
and is a NSSD. The structure of a NSSD induces an ipso omni–insulating molecule,
in which, at the Fermi energy level, conduction between two atoms i and j does not
occur whenever i = j.

We discuss conditions for a NSSD G to remain a NSSD after increasing the weight
of one of its edges by w ∈ R \ {0}; this weight change may result in the addition
or removal of that edge to or from G. If the NSSD G has a pair of distinct vertices
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(u, v) such that G is a NSSD for any edge weight (including zero) assigned to the
edge {u, v} in G, then (u, v) is a pliable vertex pair of G. Necessary and sufficient
conditions for pliable vertex pairs (u, v) in G related to the existence of certain walks
between u and v in the inverse graph G−1 are presented. Moreover, we consider the
construction of NSSDs of a fixed even order whose adjacency matrices have the
same determinant. This is accomplished by systematically introducing edges of
appropriate weights to the NSSD whose components are complete graphs on two
vertices. Once again, the criteria ensuring that every graph in each stage of this
construction is a NSSD depend on specific walks on their inverse graphs.
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Irregular independence and irregular domination Tuesday
17.00-17.20

Kurt Fenech

University of Malta, Malta

kurt.fenech.10@um.edu.mt

(joint work with Peter Borg and Yair Caro)

A set A is said to be an irregular independent set of G if A is an independent set of G
such that any two distinct vertices in A have different degrees in G. A set D is said
to be an irregular dominating set of G if D is a dominating set of G such that any
two distinct vertices outside of D have a distinct number of neighbours in D. We
discuss mainly two parameters, firstly, the size of a largest irregular independent
set of G, αir(G), and secondly, the size of a smallest irregular dominating set of
G, γir(G). We present sharp bounds for both parameters in terms of other basic
graph parameters, such as the order n, the size m, the minimum degree δ and the
maximum degree ∆ of the graph. Nordhaus-Gaddum-type relationships are also
obtained for both parameters.
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Existence theorems for nonnegative integral
matrices with given line sumsMonday

11.20-11.40

Rosário Fernandes

Universidade Nova de Lisboa, Portugal

mrff@fct.unl.pt

(joint work with Henrique F. da Cruz)

Let p be a positive integer and let A(p)(R, S) be the class of nonnegative integral
matrices with entries less than or equal to p, with row sum partition R, and column
sum partition S. In this talk we present some necessary and sufficient conditions
for A(p)(R, S) 6= ∅. One of these conditions is the well known Gale-Ryser theorem.
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Elementary Derivation of the Hoffman-Singleton
Graph and its Automorphism GroupTuesday

17.40-18.00

Jay Fraser

The Open University, United Kingdom

jay.fraser@open.ac.uk

The Moore graphs are the graphs with diameter k and girth 2k + 1. Moore graphs
can be shown to be regular, thus inspiring the notation (d, k)-Moore graph for a
Moore graph of degree d and diameter k. Apart from the trivial cases of d = 2
and k = 1, there exist only three possible cases where non-trivial Moore graphs
may exist. These are the (2, 3)-Moore graph, which must be the Petersen graph,
the (2, 7)-Moore graph, which must be the Hoffman-Singleton graph, and the final
case of a potential (2, 57)-Moore graph remains open. In this talk, we present a
new derivation of the fact that a (2, 7)-Moore graph is isomporhic to the Hoffman-
Singleton graph, and further use the method to count the size of the automorphism
group of the Hoffman-Singleton graph and characterise its automorphisms.
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The fixed score tree graph Thursday
17.00-17.20

Julián Alberto Fresán-Figueroa

Universidad Autónoma Metropolitana, Mexico

jfresan@correo.cua.uam.mx

(joint work with Eduardo Rivera-Campo)

The tree graph of a connected graph G is the graph T (G) whose vertices are the
spanning trees of G, and two trees P and Q are adjacent if P can be obtained from
Q by deleting an edge p of P and adding an another edge q of Q. It is easy to prove
that T (G) is always connected and Cummins proved that if G has a cycle, then
T (G) is hamiltonian. Several variations of the tree graph have been studied, mainly
for the connectivity and hamiltonicity properties.

Let
←→
Dn be the complete symmetric digraph with vertices v1, v2, . . . , vn and let S =

((a1, b1), (a2, b2), . . . , (an, bn)) be a sequence of pairs of non-negative integers. We

define the fixed score tree graph of
←→
Dn with respect to S as the graph TS(

←→
Dn) whose

vertices are the directed spanning trees of
←→
Dn with score S; that is the directed

spanning trees
−→
P of

←→
Dn such that deg+

−→
P

(vi) = ai and deg−−→
P

(vi) = bi for i = 1, 2, . . . , n.

Two directed spanning trees
−→
P and

−→
Q of

←→
Dn are adjacent in TS(

←→
Dn) if there are

non-incident arcs p and r of
−→
P and non-incident arcs q and s of

−→
Q , such that

−→
Q can

be obtained from
−→
P by deleting p and r, adding q and s, and perhaps by flipping a

directed path between them.

In this talk I will show some structural properties of the graph TS(
←→
Dn), and the

construction of a hamiltonian cycle when S corresponds to anti-directed hamiltonian

paths in
←→
Dn.

Hypohamiltonian and Hypotraceable Oriented
Graphs Tuesday

11.20-11.40

Marietjie Frick

University of Pretoria, South Africa

marietjie.frick@gmail.com

(joint work with Susan van Aardt and Alewyn Burger)

A digraph is traceable if it has a path that visits every vertex, and hamiltonian if it
has a cycle that visits every vertex. A digraph G is hypotraceable (hypohamiltonian)
if it is nontraceable (nonhamiltonian) but G− v is traceable (hamiltonian) for every
vertex v in G. There is a substantial literature on hypohamiltonian and hypotrace-
able graphs, and searching for planar ones of small order is still a popular research
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topic. However, until recently, results on the oriented case were scarce. USR Murty
had asked in 1974 whether hypohamiltonian oriented graphs exist. Thomassen
[1] constructed an infinite family of hypohamiltonian oriented graphs and asked
whether planar ones exists. Grötschel, Thomassen and Wakabayashi [2] provided
techniques for constructing hypotraceable oriented graphs from hypohamiltonian
oriented graphs. We survey the known results on hypohamiltonian and hypotrace-
able oriented graphs and we present infinite families of planar hypohamiltonian and
planar hypotraceable oriented graphs.
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Equitable Colorings of l-Corona Products of
Cubic GraphsThursday

15.20-15.40

Hanna Furmańczyk

University of Gdańsk, Poland

hanna@inf.ug.edu.pl

(joint work with Marek Kubale)

A graph G is equitably k-colorable if its vertices can be partitioned into k indepen-
dent sets in such a way that the numbers of vertices in any two sets differ by at
most one. The smallest integer k for which such a coloring exists is known as the
equitable chromatic number of G and it is denoted by χ=(G).

In this paper the problem of determinig the equitable chromatic number for mul-
ticoronas of cubic graphs G ◦l H is studied. The problem of ordinary coloring of
multicoronas of cubic graphs is solvable in polynomial time. The complexity of the
equitable coloring problem is an open question for these graphs, except for the case
l = 1. We provide some polynomially solvable cases of cubical multicoronas and
give simple linear time algorithms for equitable coloring of such graphs which use
at most χ=(G ◦l H) + 1 colors in the remaining cases.
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Minimal Matrices in the Bruhat Order for
Symmetric (0,1)-Matrices Tuesday

17.00-17.20

Susana Furtado

Faculdade de Economia da Universidade do Porto and CEAFEL, Portugal

sbf@fep.up.pt

(joint work with Henrique F. da Cruz and Rosário Fernandes)

A Bruhat order for the class of m-by-n (0, 1)-matrices with prescribed row and
column sum vectors was defined by Brualdi and Hwang (2004), extending the Bruhat
order for permutation matrices. Minimal matrices for this Bruhat order were studied
in that paper and in a subsequent paper by Brualdi and Deaett (2007). When
restricted to the symmetric matrices, new minimal matrices may appear besides the
symmetric minimal matrices for the nonrestricted Bruhat order.

In this talk we give some results related with the description of the minimal matrices
for the Bruhat order on the class of symmetric (0, 1)-matrices with given row sum
vector. We start by giving some properties of these minimal matrices. We then
present minimal matrices for the Bruhat order on some particular classes. Namely,
we determine all the minimal matrices when the row sums are constant and equal
to 3. We also describe symmetric matrices that are minimal for the Bruhat order
on the class of 2k-by-2k (0, 1)-matrices (not necessarily symmetric) with constant
row sums equal to k + 1 and identify, in terms of the term rank of a matrix, a
class of symmetric matrices that are related in the Bruhat order with one of these
minimal matrices. It is known (Brualdi and Deaett, 2007) that there is a unique
minimal matrix (which is symmetric) for the Bruhat order on the class of 2k-by-2k
(0, 1)-matrices with constant row sums equal to k.

Resolvable configurations Tuesday
16.40-17.00

Gábor Gévay

University of Szeged, Hungary

gevay@math.u-szeged.hu

A combinatorial configuration of type (pq, nk) is an incidence structure with sets P
and B of objects, called points and blocks , such that the following conditions hold:
(i) |P| = p; (ii) |B| = n; (iii) each point is incident with q blocks; (iv) each block is
incident with k points. A geometric configuration is defined similarly, such that the
sets P and B consist of points and lines, respectively, usually in a Euclidean or a real
projective plane, and the incidences are the natural geometric incidences. (Instead
of lines, other geometric figures, such as circles, conics, etc. can also play the role of
blocks.) Let C be a configuration (either combinatorial or geometric). We say that
C is a resolvable configuration if the blocks of C can be coloured in such a way that
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within each colour class, the blocks partition the set of points of C. Note that this
is a generalization of the notion of a resolvable block design; e.g. Kirkman’s famous
schoolgirl problem leads to a resolvable configuration of type (157, 353). In our
talk we present examples of resolvable geometric configurations (whose blocks are
lines, as well as conics), discuss certain properties of them, and pose some problems;
in particular: can our example above (the “Kirkman configuration”) be realized
geometrically as a configuration of points and lines?

Sufficient conditions for the existence of
alternating Hamiltonian paths and cycles in

2-edge-coloured multigraphsTuesday
12.00-12.20

Ilan A. Goldfeder

Universidad Autónoma Metropolitana, Mexico

ilan.goldfeder@gmail.com

(joint work with Alejandro Contreras-Balbuena and Hortensia Galeana-Sánchez)

A 2-edge-coloured multigraph is a multigraph such that each edge has a colour,
namely red or blue, and no two parallel edges have the same colour. A path (cycle)
in a 2-edge-coloured multigraph is alternating if no two consecutive edges have
the same colour and a path (cycle) is Hamiltonian if it visits every vertex in the
multigraph. The problem of determining the existence of alternating Hamiltonian
paths and cycles in 2-edge-coloured multigraphs is NP -complete and it has been
studied by several authors. In this talk we will discuss some new conditions on
short paths which imply the existence of alternating Hamiltonian paths and cycles.

The Edge Intersection Graphs of Paths on a GridMonday
11.20-11.40

Martin Charles Golumbic

University of Haifa, Israel

golumbic@cs.haifa.ac.il

In this lecture, we will survey the mathematical and algorithmic results on the edge
intersection graphs of paths in a grid (EPG) together with several restrictions on
the representations. Two important restrictions that are motivated by network and
circuit design problems are (1) allowing just a single bend in any path, and (2)
limiting the paths within a rectangular grid with the endpoints of each path on the
boundary of the rectangle.

Golumbic, Lipshteyn and Stern introduced EPG graphs in 2005, proving that every
graph is an EPG graph, and then turning their attention to the subclass of graphs
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that admit an EPG representation in which every path has at most a single bend,
called B1-EPG graphs. They proved that any tree is a B1-EPG graph and gave a
structural property that enables generating non B1-EPG graphs. A characterization
of the representation of cliques and chordless 4-cycles in B1-EPG graphs was given,
and it was also proved that single bend paths on a grid have Strong Helly number 4,
and when the paths satisfy the usual Helly property, they have Strong Helly number
3. Subsequent results by our colleagues will be surveyed, as well as open problems
and future work.

We then present our new work on boundary generated B1-EPG graphs together with
Gila Morgenstern and Deepak Rajendraprasad. For two boundary vertices u and v
on two adjacent boundaries of a rectangular grid G, we call the unique single-bend
path connecting u and v in G using no other boundary vertex of G as the path
generated by (u, v). A path in G is called boundary-generated, if it is generated by
some pair of vertices on two adjacent boundaries of G. In this work, we study the
edge-intersection graphs of boundary-generated paths on a grid or B1-EPG graphs.

We show that B1-EPG graphs can be covered by two collections of vertex-disjoint
cobipartite chain graphs. This leads us to a linear-time testable characterization
of B1-EPG trees and also a tight upper bound on the equivalence covering num-
ber of general B1-EPG graphs. We also study the cases of two-sided B1-EPG and
three-sided B1-EPG graphs, which are respectively, the subclasses of B1-EPG graphs
obtained when all the boundary vertex pairs which generate the paths are restricted
to lie on at most two or three boundaries of the grid. For the former case, we give
a complete characterization.

We do not know yet whether one can efficiently recognize B1-EPG graphs. Though
the problem is linear-time solvable on trees, we suspect that it might be NP-hard in
general.

On the clique number of a strongly regular graph Wednesday
11.40-12.00

Gary Greaves

Nanyang Technological University, Singapore

gary@ntu.edu.sg

(joint work with Leonard H. Soicher)

In this talk I will present new upper bounds for the clique numbers of strongly
regular graphs in terms of their parameters. I will show how we improve on the
Delsarte bound for infinitely many feasible parameter tuples for strongly regular
graphs, including infinitely many parameter tuples that correspond to Paley graphs.
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Maltese mathematics in the 16th and 17th centuryTuesday
12.20-12.40

Harald Gropp

Universitaet Heidelberg, Germany

d12@ix.urz.uni-heidelberg.de

The discussion of Maltese mathematics in the early modern period will be, apart
from a short introduction into Maltese history, focused on two examples, the Mal-
tese contribution to the Gregorian calendar reform of 1584 and the stay of the
Jesuit Athanasius Kircher in Malta in 1637/38 and his activities concerning Arabic
manuscripts as a later professor of mathematics and oriental languages in Roma.

Orbital matrices and configurations with natural
indexTuesday

16.20-16.40

Harald Gropp

Universitaet Heidelberg, Germany

d12@ix.urz.uni-heidelberg.de

In the first Malta conference in 1990 I introduced and discussed configurations with
natural index. Configurations are linear regular uniform hypergraphs. The index of
a configuration is the proportion of the degrees of regularity and uniformity. The
second topic which will be discussed are orbital matrices. These are generalizations
of incidence matrices of symmetric designs where the entries may be also larger than
only 0 and 1.

Parent-identifying set systemsThursday
17.20-17.40

Yujie Gu

University of Tsukuba, Japan

s1530147@u.tsukuba.ac.jp

(joint work with Ying Miao)

Traitor tracing in broadcast encryption was introduced by Chor et al. in [1,2].
Stinson et al. [3] proposed the traceability scheme (TS), based on a threshold secret
sharing scheme, and studied it from a combinatorial viewpoint. Parent-identifying
set system was investigated in [4] with the advantage that can accommodate more
users than TS.
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A (w, v) t-parent-identifying set system (or t-IPPS(w, v), for short) is a pair (X ,B)
such that |X | = v, B ⊆

(X
w

)
, with the property that for any w-subset T ⊆ X , either

Pt(T ) is empty, or ⋂
P∈Pt(T )

P 6= ∅,

where
Pt(T ) = {P ⊆ B : |P| ≤ t, T ⊆

⋃
B∈P

B}.

Collins [4] showed that the upper bound for the number of blocks in a t-IPPS(w, v) is

O(v

⌈
w

bt2/4c+dt/2e

⌉
). In this talk, first, we give an improvement for this by showing that

the upper bound for t-IPPS(w, v) is O(v

⌈
w

bt2/4c+t

⌉
), which is realized by analyzing the

minimum size of own-subsets possessed by some blocks in a t-IPPS. Next, by using
the expurgation method, we prove that for fixed t, w and sufficiently large v, there

exists a t-IPPS(w, v) with size O(v
w

bt2/4c+t ), which has the same order with the new
upper bound when bt2/4c+ t is a divisor of w.
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The distance Laplacian matrix of graphs Thursday
11.20-11.40

Pierre Hansen

GERAD and HEC Montréal, Canada

pierre.hansen@gerad.ca

(joint work with Mustapha Aouchiche)

The distance Laplacian of a connected graph G is defined by DL = Diag(Tr) −
D, where D is the distance matrix of G, and Diag(Tr) is the diagonal matrix
whose main entries are the vertex transmissions in G. The spectrum of DL is
called the distance Laplacian spectrum of G [1]. In the present talk, we investigate
some properties of the distance Laplacian spectrum. We show, among other results,
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equivalence between the distance and the distance Laplacian spectra over the class of
transmission regular graphs, also between the Laplacian and the distance Laplacian
spectra over the class of graphs with diameter 2, and similarities with the algebraic
connectivity [1,2].

References:

[1] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph,
Linear Algebra Appl. 439 (2013) 21–33.

[2] M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigen-
values of a graph, Czechoslovak Math. Jour. 64 (139) (2014) 751–761.

Extremal values in graphs for
metric-locating-dominating partitionsMonday

17.40-18.00

Carmen Hernando

Universitat Politècnica de Catalunya, Spain

carmen.hernando@upc.edu

(joint work with Mercè Mora, Ignacio M. Pelayo)

Let G = (V,E) be a graph of order n. Let Π = {S1, . . . , Sk} be a partition of V . We
denote by r(u|Π) the vector of distances between a vertex v ∈ V and the elements
of Π, that is, r(v|Π) = (d(v, S1), . . . , d(v, Sk)).

The partition Π dominates G if, for every i ∈ {1, . . . , k} and for every vertex v ∈ Si,
d(v, Sj) = 1, for some j 6= i. The partition domination number γp(G) equals the
minimum cardinality of a dominating partition in G.

The partition Π is called a locating partition of G if, for any pair of distinct vertices
u, v ∈ V , r(u,Π) 6= r(v,Π). The partition dimension βp(G) of G is the minimum
cardinality of a locating partition of G.

The partition Π is called a metric-locating-dominating partition of G if it is both
dominating and locating. The partition metric-location-domination number ηp(G)
of G is the minimum cardinality of a metric-locating-dominating partition of G.

The partition Π is called a neighbor-locating-dominating partition of G if, for every
i ∈ {1, . . . , k} and for every pair of distinct vertices v, w ∈ Si, there exists j ∈
{1, 2, . . . , k} such that d(v, Sj) = 1 and d(w, Sj) > 1. The partition neighbor-
location-domination number λp(G) of G is the minimum cardinality of a neighbor-
locating-dominating partition of G.

Parameters ηp and λp have been introduced and studied in [3]. Among other results,
we have obtained tight bounds for these parameters in terms of the order of the
graph and we have characterized all graphs attaining them. Furthermore, we have
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generalized for these two parameters some well-known properties in other related
parameters, with the approach given in [1,2].

References:
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dominating codes: Bounds and extremal cardinalities, Applied Mathematics and
Computation 220 (2013) 38–45.
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domination, European Journal of Combinatorics 36 (2014) 1-6.

[3] C. Hernando, M. Mora and I. M. Pelayo, Extremal values for metric-locating-
dominating partition in graphs, preprint.

Several families with incomparability and
complementarity conditions Wednesday

11.20-11.40

Anthony J. W. Hilton

University of Reading, UK

a.j.w.hilton@reading.ac.uk

(joint work with John L. Goldwasser and Jie Zheng)

Two sets are weakly incomparable if neither properly contains the other; they are
strongly incomparable if they are unequal and neither properly contains the other.
Two families A and B of sets are weakly (or strongly) incomparable if no set in one
of A and B is weakly (or strongly) comparable to a set in the other. A family A
of sets is uncomplemented if A contains no subset and its complement. We show
that the following two statements are equivalent (as either can be deduced from the
other).

(1) If A1, . . . ,At are uncomplemented, mutually weakly incomparable families of
subsets of an n-set, then

|A1|+ . . .+ |At| ≤ max

(
2n−1, t

(
n⌊

n
2

⌋
+ 1

))
.

(2) If A1, . . . ,At are uncomplemented, mutually strongly incomparable families of
subsets of an n-set, then

|A1|+ . . .+ |At| ≤ 2n−1.

Both these relate to a conjecture of Hilton made in 1976, reported in a Math. Review
article by D.J. Kleitman.
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We also show that ifA1, . . . ,At are mutually weakly incomparable families of subsets
of an n-set, and if they are mutually uncomplemented (i.e. if A ∈ Aj then A /∈ Ai
if i 6= j) then

|A1|+ . . .+ |At| ≤ max

(
2n, t

(
n

bn
2
c+ 1

))
.

We also show that if A1, . . . ,A6 are t mutually uncomplemented Sperner families of
subsets of an n-set then:

(1) If n is odd, then

|A1|+ . . .+ |At| ≤ t

(
n
bn
2
c

)
.

(2) If n is even, then

|A1|+ . . .+ |At| ≤
(
n
n
2

)
+ (t− 1)

(
n

n
2

+ 1

)
.

Complexity results on dominating codesFriday
12.20-12.40

Olivier Hudry

Télécom ParisTech, France

olivier.hudry@telecom-paristech.fr

(joint work with Antoine Lobstein)

Given an undirected, connected, graph G = (V,E), a subset C of V is said to be a
dominating code of G if any vertex belongs to C or admits a neighbour belonging
to C. This can be extended, for any positive integer r, to r-dominating codes of G:
C is said to be an r-dominating code (or simply r-DC) of G if, for any vertex v of
G, there exists a vertex x (possibly v itself) belonging to C such that the distance
between v and x is at most r, where the considered distance is the usual distance
provided by a shortest path between v and x in G.

A usual problem, arising from combinatorial optimization in graphs, consists in min-
imizing the size of an r-DC. The decision problem associated with this optimization
problem is known to be NP -complete for r = 1. We investigate the complexity of
several problems linked with domination in graphs, for any positive r:

• the computation of the minimum size of an r-DC;

• the search of an optimal r-DC;

• the existence and the computation of an optimal r-DC containing a prescribed
subset of vertices (also known as “membership problems”).

We show that the computation of the minimum size of an r-DC belongs to the
complexity class called FLNP (or also FΘ2) and is LNP -hard (or also Θ2-hard;
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remember that this means, broadly speaking, that we can solve this problem thanks
to an algorithm which solves an NP -complete problem, by applying it a logarithmic
number of times, and that the considered problem is among the hardest ones with
such a property). Similarly, we show that the problem of the existence of an r-DC
containing a prescribed subset of vertices is LNP -complete (or Θ2-complete), while,
for the search of optimal solutions, we show that this problem belongs to FPNP

(also called F∆2; remember that this means, broadly speaking, that we can solve
this problem thanks to an algorithm which solves an NP -complete problem, by
applying it a polynomial number of times) and that it is LNP -hard (see [1] for more
details).
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[1] O. Hudry and A. Lobstein, More Results on the Complexity of Domination
Problems in Graphs, International Journal of Information and Coding Theory, to
appear.

Pebbling in Chordal Graphs Thursday
15.20-15.40

Glenn Hurlbert

Virginia Commonwealth University, U.S.A.

ghurlbert@vcu.edu

(joint work with Liliana Alcón and Marisa Gutierrez)

Graph pebbling is a network model for transporting discrete resources that are
consumed in transit. Deciding whether a given configuration on a particular graph
can reach a specified target is NP-complete, even for diameter two graphs, and
deciding whether the pebbling number has a prescribed upper bound is ΠP

2 -complete.
It has been conjectured that calculating the pebbling number of a chordal graph of
bounded diameter or pathwidth can be done in polynomial time. Recently we proved
this for split graphs, 2-paths, and semi-2-trees. We will discuss these results and the
important tools developed to attack such problems.
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The largest t-intersecting Erdős-Ko-Rado sets of
polar spacesMonday

16.20-16.40

Ferdinand Ihringer

University of Regina, Canada

Ferdinand.Ihringer@uregina.ca

(joint work with Klaus Metsch)

A t-intersecting Erdős-Ko-Rado set (EKR set) Y of {1, . . . , n} is a family of k-sets
which pairwise intersect non-trivially. A famous result due to Ahlswede and Khacha-
trian from 1997 showed that, besides a few special cases, the largest t-intersecting
families are of the form

{A : |A| = k and |A ∩ {1, . . . , 2r + t}| ≥ r + t}

for some r. These results were generalized to various structures such as various
permutation groups or vector spaces.

If we equip a vector space over a finite field of order q with a reflexive, non-degenerate
sesquilinear form, then the subspaces that vanish on this form constitute a highly
symmetric geometric structure, a polar space. We will discuss t-intersecting EKR
results for various finite classical polar spaces. In particular we will present a clas-
sification result for the largest t-intersecting EKR sets of maximal totally isotropic
subspaces for a polar space of rank d and d− t ∈ O(

√
d).

Bridging the gap between sparse and denseThursday
15.40-16.00

Mikhail Isaev

UNSW, Australia

isaev.m.i@gmail.com

(joint work with Brendan D. McKay)

The asymptotic number of d-regular graphs on n vertices is known for ranges
d = o(n1/2) and c logn

n
< d < n/2. These results (obtained by B.D. McKay and

N.C. Wormald in 1990 and 1991) are strongly distinguished by the type of mathe-
matics used to solve them, which is combinatorial in the sparse range and complex-
analytic in the dense range. Our new approach based on cumulant expansions
allowed us to significantly enlarge the range of complex-analytic methods to make
it overlap with the sparse range. It also applies to many other similar enumeration
problems in combinatorics.
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Number of maximum independent sets on trees Thursday
17.40-18.00

Daniel A. Jaume

Universidad Nacional de San Luis, Argentina

djaume@unsl.edu.ar

In 1986 Wilf proved that the largest number of maximal independent sets in a tree
is 1 + 2

n
2
−1 for n ≥ 2 and even, and 2

n−1
2 for n odd, see [3]. In 1988 Sagan, [2],

gave a short graph-theoretic proof of the Wilf result and characterized the extremal
trees. Later, Wilf posed the following question: Which is the greatest number of
maximum independent sets for a tree T of order n? In 1991 Zito, in her work [3],
proved that the greatest number of maximum independent sets for a tree T of order
n is {

2
n−3
2 for odd n > 1,

1 + 2
n−2
2 for even n.

In this work, by using the null decomposition of trees introduced by Jaume and
Molina in [1], we prove that for any tree T

ν(T ) = α(T )− null(T )

where ν(T ) is the matching number of T , α(T ) is the independence number of T , and
null(T ) is the dimension of the null space of the adjacency matrix of T . Furthermore
we prove that for any tree T

a(T ) =
∏

N∈FN (T )

a(N)

where a(T ) is the number of maximum independent sets of T , and FN(T ) is the
N -forest of T , see [1]. This last formula allows us to build parallelizable algorithms
in order to enumerate and find all the maximum independent sets on any tree.
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Total graph coherent configurations: new graphs
from large Moore graphsTuesday

16.40-17.00

Leif K. Jørgensen

Aalborg University, Denmark

leif@math.aau.dk

(joint work with Mikhail Klin and Matan Ziv-Av)

For a graph Γ, the total graph T (Γ) has vertex set V (Γ) ∪ E(Γ) and adjacency in
T (Γ) means adjacency/incidence in Γ. The automorphism groupG of T (Γ) is usually
isomorphic to the automorphism group of Γ. The edge set of the complete graph with
vertex set V (T (Γ)) is partitioned in orbits under the action of G. (Alternatively,
we may consider a coarser, combinatorially defined partition, called the coherent
configuration generated by T (Γ).) Our goal is to construct a new graph with vertex
set V (T (Γ)) and edge set a union of some of the orbits, and with automorphism group
larger than G. A purely combinatorial alternative is to get a coherent configuration
of small rank, generated in some sense by T (Γ).

In particular we consider the case when Γ is the complement of a Moore graph.
In this talk we will focus on the case where Γ is the complement of the Hoffman-
Singleton graph. We then get nice graphs (in fact a 4 class association scheme)
of order 1100 with the Higman-Sims group as a subgroup of index 2 in the full
automorphism group of order 88704000. We will explain a connection between the
Hoffman-Singleton graph, a strongly regular graph on 100 vertices and the graphs
on 1100 vertices.

We will also discuss the case when Γ is the complement of a putative Moore graph
of valency 57.
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Dynamic Graph Outerplanarity in linear worst
case time Thursday

17.00-17.20

Claudia Justel

Instituto Militar de Engenharia, Brazil

cjustel@ime.eb.br

(joint work with Geraldo Avelino)

There is a large variety of problems modeled by graphs, for which the associated
graph changes in time. For instance, dynamic algorithms for graphs which explore
properties such as connectivity, minimum spanning tree and planarity ([2],[3],[4])
are well known. In this work, we implement a C++ dynamic algorithm (insertion
and deletion of edges are supported) to maintain outerplanarity as in [1].

Consider an unweighted and undirected simple graph G. The fully dynamic outer-
planarity problem is defined as follows: Let G = (V,E) be an outerplanar graph,
where V is a fixed set of n vertices and an online sequence of updates (insertion or
deletion of edges e 6∈ E). We ask queries of the following form: Is the graph G + e
outerplanar? Is the graph G−e outerplanar? The algorithm in [1] maintains the em-
bedding of the outerplanar graph during insertions or deletions of edges. Two levels
of information on the graph are stored, one with data for the graph and the other
with data for the block-connection graph. The block-connection graph, BC(G), is
defined as follows: the vertices of BC(G) are the connections (maximal subgraphs
of G that are trees or articulations in G) and the blocks (maximal biconnected sub-
graphs of G); edges are links between vertices in BC(G) that have a common vertex
in G, and are not simultaneously blocks or connections; each edge in BC(G) has a
label given by the common vertex in G. With this information in hand it is possible
to maintain the embedding of the outerplanar graph after a sequence of updates.
The correctness is ensured by the results in [1] and the worst case complexity O(n) is
maintained. The algorithm was implemented in C++, using its Standard Template
Library (STL). Experiments performed with an Intel Core i5, 2.5GHz, 4GB RAM
computer show good performance.
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Symmetry Breaking in Graphs and the 1-2-3
ConjectureMonday

16.00-16.20

Rafa l Kalinowski

AGH University, Poland

kalinows@agh.edu.pl

(joint work with Monika Piĺsniak and Mariusz Woźniak)

This talk brings together two concepts in the theory of graph colourings: edge or
total colourings distinguishing adjacent vertices and those breaking symmetries of a
graph. Let

c : E(G)→ {1, . . . , k}

be an edge colouring, not necessarily proper, of a graph G.

A colouring c breaks an automorphism ϕ of G if ϕ does not preserve c. The
smallest k for which there exists a c breaking all non-trivial automorphisms is called
the distinguishing index of a graph G, and is denoted by D′(G). For connected
graphs of order at least six, a sharp upper bound D′(G) ≤ ∆(G) was obtained by
Kalinowski and Piĺsniak.

We say that c is neighbour-distinguishing by sums if, for every pair u, v of adjacent
vertices ∑

e3u

c(e) 6=
∑
e3v

c(e).

Karoński,  Luczak and Thomason formulated the 1-2-3 Conjecture that every graph
admits such a colouring for k = 3. This conjecture has been confirmed for some
classes of graphs, but in general it remains open since 2004. Up to now, the best
result for k = 5 is due to Kalkowski, Karoński and Pfender.

In this talk, we introduce a class of automorphisms such that edge colourings break-
ing them are connected to edge colourings distinguishing neighbours by sums. We
call an automorphism ϕ of a graph G small if there exists a vertex of G that is
mapped by ϕ onto its neighbour. The small distinguishing index of G, denoted
D′s(G), is the least k such that there exists a c breaking all small automorphisms of
G. We prove that D′s(G) ≤ 3 for every graph G without K2 as a component, thus
supporting, in a sense, the 1-2-3 Conjecture.

We also consider an analogous problem for total colourings in connection with the
1-2 Conjecture of Przyby lo and Woźniak.
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On Chvátal’s conjecture and Erdős–Ko–Rado
Graphs Monday

16.00-16.20

Vikram Kamat

Virginia Commonwealth University, U.S.A.

vkamat@vcu.edu

(joint work with Peter Borg, Éva Czabarka and Glenn Hurlbert)

A fundamental theorem of Erdős, Ko and Rado states that the size of a family of
pairwise intersecting r-subsets of [n] = {1, . . . , n}, when r ≤ n/2, is at most

(
n−1
r−1

)
,

with equality holding in the case r < n/2 if and only if the family is a collection
of all r-subsets containing a fixed element. In this talk, we focus our attention on
a longstanding conjecture of Chvátal that aims to generalize the EKR theorem for
hereditary set systems and another closely-related conjecture of Holroyd and Talbot
pertaining to a graph-theoretic generalization of the EKR theorem for independent
sets in graphs. We present a result that verifies Chvátal’s conjecture for hereditary
families containing sets of size at most 3, and also multiple results that verify the
Holroyd-Talbot conjecture and its variants for certain graph classes.

Complexity questions for minimally t-tough
graphs Monday

12.00-12.20

Gyula Y. Katona

Budapest University of Technology and Economics, Hungary

kiskat@cs.bme.hu

(joint work with Kitti Varga, István Kovács)

A graph G is minimally t-tough if the toughness of G is t and the deletion of any
edge from G decreases the toughness. Kriesell conjectured that for every minimally
1-tough graph the minimum degree δ(G) = 2. In the present talk we investigate
different complexity questions related to this conjecture.

First we show that recognizing minimally t-tough graphs is a hard task for some t
values. It is a DP-complete problem (implying that is probably even harder than
being NP-hard). Does this change if the question is asked for some special graph
classes like chordal, split, claw-free and 2K2-free graphs and for special t values?
The answers vary. In some cases there are no such graphs at all, so it is really easy
to recognize them. In some other cases, we can characterize all the graphs. Yet in
some particular case we can at least recognize it in polynomial time. Many open
questions remain.
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On the transmission non-regularity of graphsMonday
17.20-17.40

Ezgi Kaya

Iğdır University, Turkey

ezgi.kaya@igdir.edu.tr

(joint work with A. Dilek Maden)

Let G be a graph. The distance between vi and vj in G is defined as the length of a
shortest path between them. The transmission of a vertex u, denoted by TG(u), is
the sum of distances from it to all the other vertices in the graph G, i.e., TG(u) =∑
v∈V (G)

dG(u, v). Therefore, the Wiener index of a graph G is equal to half the sum

of the transmissions of all vertices in the graph G. The definition of the Co-PI
index can be represented in the following way: Co − PIv(G) =

∑
|TG(u) − TG(v)|,

where the summation goes over all edges of G. G is said to be transmission-regular
if all its vertices have the same transmission. If not, G is said to be transmission-
non-regular. For a transmission-non-regular graph, how can we measure the extent
of its transmission-non-regularity? Because the Co-PI index only scans edges in
a graph, it will remain inadequate to measure the transmission-non-regularity of a
graph. So, in this study we define the transmission-non-regularity index as NT (G) =∑
|TG(u)−TG(v)|, where the summation goes over all vertices of G. Also, we present

some bounds for the transmission index NT (G) of graphs.

Edge-girth-regular graphsMonday
11.20-11.40

György Kiss

Eötvös Loránd University, Hungary
and

University of Primorska, Slovenia

kissgy@cs.elte.hu

(joint work with Robert Jajcay and Štefko Miklavič)

We consider a new type of regularity we call edge-girth-regularity. An edge-girth-
regular (v, k, g, λ)-graph Γ is a k-regular graph of order v and girth g in which
every edge is contained in λ distinct g-cycles. This concept is a generalization of
the well-known (v, k, λ)-edge-regular graphs (that count the number of triangles)
and appears in several related problems such as Moore graphs and Cage and De-
gree/Diameter Problems. All edge- and arc-transitive graphs are edge-girth-regular
as well. We derive a number of basic properties of edge-girth-regular graphs, system-
atically consider cubic and tetravalent graphs from this class, and introduce several
constructions that produce infinite families of edge-girth-regular graphs. We also
exhibit several surprising connections to regular embeddings of graphs in orientable
surfaces.
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Target Set Selection in Dense Graph Classes Thursday
16.00-16.20

Dušan Knop

Charles University, Prague, Czech Republic

knop@kam.mff.cuni.cz

(joint work with Pavel Dvořák and Tomáš Toufar)

We study the Target Set Selection problem (TSS for short), introduced by
Kempe et al. [1], from the area of computational social choice from a parameterized
complexity perspective and give a characterization of the target sets in some graph
classes.

Target Set Selection. Let G = (V,E) be a graph, S ⊆ V , and f : V → N
a threshold function. The activation process arising from the set S0 = S is an iterative
process with resulting sets S0, S1, . . . such that for i ≥ 0

Si+1 = Si ∪ {v ∈ V : |N(v) ∩ Si| ≥ f(v)},

where by N(v) we denote the set of vertices adjacent to v. We say that the set S
is a target set and the activation process S = S0, . . . , Sn is successful if Sn = V.
We speak about the Majority TSS problem (MajTSS for short) if the threshold
function f fulfils f(v) = dN(v)/2e.

Our Results.

• There is an fpt-algorithm for the MajTSS problem parameterized by the neigh-
borhood diversity of the input graph.

• The TSS problem is W[1]-hard parameterized by the neighborhood diversity
of the input graph.

• There is an fpt-algorithm for the MajTSS problem parameterized by the size
of the twin cover.

• The MajTSS problem is W[1]-hard parameterized by the modular-width of
the input graph.

References:

[1] D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of influence
through a social network, Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining (2003) 137–146.

[2] P. Dvořák, D. Knop, and T. Toufar, Target Set Selection in Dense Graph Classes,
CoRR abs/1610.07530 (2016), 1–19.
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On small strength two covering arraysTuesday
11.40-12.00

Janne I. Kokkala

Aalto University, Finland

janne.kokkala@aalto.fi

(joint work with Karen Meagher, Reza Naserasr, Kari J. Nurmela, Patric R. J.
Österg̊ard and Brett Stevens)

A covering array CA(N ; t, k, v) is an N × k array over a set of size v such that in
every N × t subarray, each t-tuple of symbols occurs as a row at least once. It is
said that a CA(N ; t, k, v) has size N , strength t, k factors, and v levels. A uniform
covering array, UCA(N ; t, k, v), is a covering array in which in every column, every
symbol occurs either dN/ve or bN/vc times. A covering array is said to be optimal
if the size N is the smallest possible for given t, k, v.

In this work, we study the structure of small covering arrays with strength two, that
is, t = 2. Theoretical considerations and previously known covering arrays suggest
that many small optimal covering arrays may be uniform. In particular, for all sets
of parameters N, k, v for which optimal strength two covering arrays are known, at
least one of them is uniform. In some cases, all known optimal covering arrays are
uniform. To gain more understanding, we also perform an exhaustive computational
classification of covering arrays with some parameter sets.

The complexity of minimum-length path
decompositionsFriday

11.40-12.00

Wieslaw Kubiak

Memorial University of Newfoundland, Canada

wkubiak@mun.ca

(joint work with Dariusz Dereniowski and Yori Zwols)

We consider a bicriterion generalization of the pathwidth problem: given integers
k, l and a graph G, does there exist a path decomposition of G of width at most
k and length (i.e., number of bags) at most l? We provide a complete complexity
classification of the problem in terms of k and l for general graphs. Contrary to the
original pathwidth problem, which is fixed-parameter tractable with respect to k, the
generalized problem is NP-complete for any fixed k ≥ 4, and also for any fixed l ≥ 2.
On the other hand, we give a polynomial-time algorithm that constructs a minimum-
length path decomposition of width at most k ≤ 3 for any disconnected input graph.
As a by-product, we obtain an almost complete classification for connected graphs:
the problem is NP-complete for any fixed k ≥ 5, and polynomial for any k ≤ 3.
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Chromatic Sum for Total Colorings of Graphs Monday
12.00-12.20

Ewa Kubicka

University of Louisville, USA

ewa@louisville.edu

(joint work with Grzegorz Kubicki and Maxfield Leidner)

Consider a proper coloring φ of vertices of a graph G using natural numbers; i.e.
φ : V (G)→ N and φ(u) 6= φ(v) whenever uv is an edge of G. The chromatic sum of
G, denoted Σ(G), is the minimum sum

∑
v∈V (G) φ(v) taken over all proper colorings

φ of G. A coloring is optimal if the sum of colors equals Σ(G). This idea was
introduced by Kubicka [2] in 1989. Erdös, Kubicka, and Schwenk [1] constructed
infinite families of graphs for which the minimum number of colors necessary to get
an optimal coloring of G was larger than χ(G). This graph parameter, the minimum
number of colors necessary for an optimal coloring, is called the strength of G and
is denoted by σ(G). In [1], it is shown that even trees can have arbitrarily high
strength, even though their chromatic number is 2. In fact, Erdös, Kubicka, and
Schwenk [1] found for every k ≥ 3 the smallest tree of strength k. We say that a
graph G is strong if χ(G) < σ(G). The smallest strong graph is the tree on eight
vertices and it was introduced in [2]. These color-sum concepts were applied to edge
coloring as well. In an analogous way, one can define the edge chromatic sum of
a graph, its edge strength σ′, and ask the question of whether or not χ′ = σ′. In
1997, Mitchem, Morris, and Schmeichel [3] proved that every graph has a proper
edge coloring with minimum sum that uses only ∆ or ∆+1 colors, where ∆ denotes
the largest degree of a graph. We say that a graph G with this property, namely
χ′(G) < σ′(G), is E-strong. In the same paper, Mitchem et al. [3] provide infinite
families of E-strong graphs. We define similar concepts for total colorings of graphs.
The total chromatic sum of a graph is the minimum sum of colors (natural numbers)
taken over all proper colorings of vertices and edges of a graph. We construct infinite
families of graphs for which the minimum number of colors to achieve the total
chromatic sum is larger than the total chromatic number.

References:

[1] P. Erdős, E. Kubicka and A. Schwenk, Graphs that require many colors to achieve
their chromatic sum, Congressus Numerantium 71 (1990) 17-28.

[2] E. Kubicka, The chromatic sum and efficient tree algorithms, Ph.D. Thesis,
Western Michigan University (1989) 149 pages.

[3] J. Mitchem, P. Morris, and E. Schmeichel, On the cost chromatic number of
outerplanar, planar, and line graphs, Discussiones Mathematicae Graph Theory 2
(1997) 229-241.
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Boundary-type sets in maximal outerplanar
graphsMonday

15.40-16.00

Grzegorz Kubicki

University of Louisville, U.S.A. and WSB University in Gdansk, Poland

gkubicki@louisville.edu

(joint work with Benjamin Allgeier)

Using the distance between vertices in a connected graph, different boundary-type
sets were defined and investigated for graphs; see [1], [2] and [3].
The periphery Per(G) of a graph G is the set of vertices of maximum eccentricity.
The extreme set Ext(G) of G is the set off all its extreme (also called simplicial)
vertices; an extreme vertex is such that its neighborhood induces a complete graph.
A contour vertex has the eccentricity larger than or equal to the eccentricities of
its neighbors. The contour Ct(G) of G is the set of all its contour vertices. The
eccentricity Ecc(G) of a graph G is the set of all its eccentric vertices, i.e. vertices
that are antipodal to some other vertex in G. A vertex v is a boundary vertex if
there is another vertex u in G such that no u-v geodesic can be extended at v to a
longer geodesic. The boundary ∂(G) of G is the set of all its boundary vertices.
Basic containments between these sets are depicted in the figure below.

Per(G)
Ext(G)

Ct(G)Ecc(G)

∂(G)

A graph G is outerplanar if there exists a plane graph G′ isomorphic to G such
that every vertex of G′ lies on the boundary of the exterior region. An outerplanar
graph is maximal outerplanar (or MOP for short) if adding any edge results in a
graph that is not outerplanar. A MOP is also a triangulation of a polygon. MOPs
can be viewed also as generalizations of trees. They form a subfamily of 2-trees,
because one can construct a MOP from another MOP G by adding a new vertex
and making it adjacent to both vertices of any outer edge of G.

The boundary-type sets are rather trivial for trees and are all subsets of the leaves.
We provide a characterization of ∂(G), Ct(G), and Ext(G) for the family of MOPs.
We show that, unlike for trees, all containments in the Venn diagram are proper for
MOPs, a subfamily of 2-trees.

References:

[1] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas and C. Seara,
Geodeticity of the contour of chordal graphs. Discrete Appl. Math. 156 (2008), no.
7, 1132–1142.
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[2] G. Chartrand, D. Ervin, G.L. Johns and P. Zhang, Boundary vertices in graphs.
Discrete Math. 263 (2003) 25–34.

[3] G. Chartrand, M. Schultz and S.J. Winters, On eccentric vertices in graphs.
Networks 28 (1996) 181–186.

Intersecting families Wednesday
11.40-12.00

Andrey Kupavskii

Ecole Polytechnique Fédérale de Lausanne, Switzerland

kupavskii@ya.ru

Put [n] := {1, 2, . . . , n} and let 2[n] denote the power set of [n]. A subset F ⊂ 2[n] is
called a family of subsets of [n], or simply a family. A family is called intersecting,
if any two of its sets intersect.

The starting point of the research on intersecting families is the Erdős-Ko-Rado
theorem, which states that any intersecting family of k-element subsets of [n] con-
tains at most

(
n−1
k−1

)
elements, provided n ≥ 2k ≥ 1. The obvious example of an

intersecting family attaining the bound is the family of all k-sets containing a fixed
element.

A well-known stability result due to Hilton and Milner states that the largest in-
tersecting family, which is not a subfamily of the Erdős-Ko-Rado family, consists
of a k-set A, and all k-sets containing a fixed element x ∈ [n] \ A and at least one
element of A. A very strong result in this direction was obtained by Frankl [2],
who gave a bound on the size of an intersecting family depending on the number of
sets not containing the most popular element of the ground set. In a recent paper
with D. Zakharov [4] we found a rather simple unified approach to such problems,
reproving and strengthening many existing results, including the results of [2]. The
proofs make use of perfect matchings in regular bipartite graphs.

The authors of [1] analyzed what is a typical intersecting family. They counted the
total number I(n, k) of intersecting families of k-subsets of [n], and found out that
for n > 3k + 8 log k and k → ∞ almost all intersecting families are trivial, that is,
families in which all sets contain a fixed element. In [3] together with P. Frankl we
improved their result. Roughly speaking, we proved that for n ≥ 2k+ 2 + 2

√
k log k

and k → ∞ almost all intersecting families are trivial, and almost all non-trivial
intersecting families are the subfamilies of the Hilton-Milner families.

References:

[1] J. Balogh, SA. Das, M. Delcourt, H. Liu, M. Sharifzadeh, Intersecting families of
dicrete structures are typically trivial, J. Comb. Theory Ser. A 132 (2015) 224–245.

[2] P. Frankl, Erdos-Ko-Rado theorem with conditions on the maximal degree, J.
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Probability and Computing (2017).

[4] A. Kupavskii, D. Zakharov, Regular bipartite graphs and intersecting families,
arXiv:1611.03129

Stanley Fiorini’s work after edge-colouringTuesday
12.00-12.20

Josef Lauri

University of Malta, Malta

josef.lauri@um.edu.mt

After edge-colourings Stanley Fiorini turned his attention to the Graph Reconstruc-
tion Problem. Since he mainly concentrated on the reconstruction of planar graphs,
this work had a distinctly topological flavour, with one of the main questions he
first tackled being to determine when this statement is true: “A graph G is planar
if and only if all its vertex-deleted subgraphs G − v are planar.” Reconstruction
of planar graphs also required careful study of the notion of uniquely embeddable
planar graphs. He and I showed that maximal planar graphs are reconstructible and
we also considered the edge-reconstruction of graphs which triangulate surfaces, in
particular the real projective plane.

Robin Wilson might have also influenced Stanley’s decision to consider another area
to which, some years later, he guided Irene Sciriha to turn her attention: spectral
graph theory. Their first joint paper was on the generating functions of characteristic
polynomials, focusing on the characterization of minimally non–outerplanar graphs,
therefore also combining topological graph theory and the idea from reconstruction
of a property which is or is not satisfied by any subgraph. Full attention soon
shifted to singular graphs and the polynomial reconstruction problem. Together
with Irene and Ivan Gutman, he studied trees with maximum nullity, contributing
here interesting techniques from edge colouring.

With John Baptist Gauci he turned again to topological graph theory, first with a
study of crossing numbers on generalised Petersen graphs. Then, Stanley and John,
together with Tony Hilton and Keith Dugdale studied continuous k-to-1 functions on
graphs, especially complete graphs. Here the idea is to look at graphs as topological
spaces and to study when it is possible to define a function from a graph G onto a
graph H in a continuous way such that each point of H has exactly k points of G
mapped to it.

In these twenty minutes I shall attempt to summarise some of these results trying to
point out some common themes running through them to give a flavour of Stanley’s
graph theoretic interests and achievements.
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Cycles in sparse graphs Thursday
15.20-15.40

Felix Lazebnik

University of Delaware, USA

fellaz@udel.edu

There are several sufficient conditions for a graph of order n to contain a cycle of
length k, and, in particular, to be hamiltonian. Often these conditions do not hold
in sparse graphs, i.e. in graphs of size o(n2), n→∞. In this talk we present several
recent results on the existence of cycles of certain lengths (including hamiltonian
cycles) in some families of sparse graphs.
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[1] J. Alexander, F. Lazebnik and A. Thomason, On the hamiltonicity of some sparse
bipartite graphs, in preparation.
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Classifying bent functions by their Cayley graphsThursday
16.00-16.20

Paul Leopardi

University of Melbourne, Australia
Australian Government - Bureau of Meteorology, Australia

paul.leopardi@gmail.com

Bent Boolean functions are fascinating and useful combinatorial objects, whose ap-
plications include coding theory and cryptography. The number of bent functions
explodes with dimension, and various concepts of equivalence are used to classify
them. In 1999 Bernasconi and Codenotti [1] noted that the Cayley graph of a bent
function is strongly regular. This talk describes the concept of extended Cayley
equivalence of bent functions, discusses some connections between bent functions,
designs, and codes, and explores the relationship between extended Cayley equiva-
lence and extended affine equivalence. SageMath scripts and SageMathCloud work-
sheets [2] are used to compute and display some of these relationships, for bent
functions up to dimension 8.

References:

[1] A. Bernasconi and B. Codenotti, Spectral analysis of Boolean functions as a graph
eigenvalue problem, IEEE Transactions on Computers 48(3) (1999) 345–351.

[2] SageMath, Inc. SageMathCloud Online Computational Mathematics, (2016).

A family of largest-known degree 15 circulant
graphs of arbitrary diameterTuesday

17.20-17.40

Robert Lewis

The Open University, UK

robert.lewis@open.ac.uk

The degree-diameter problem is the search for graphs with the largest possible num-
ber of vertices for a given degree and diameter. One of the simplest subcases is
the restriction to circulant graphs, which are Cayley graphs of cyclic groups, but
even this is a very difficult problem. Finding individual extremal graphs is a worthy
pursuit, but a more satisfying challenge is to discover infinite families of extremal
graphs where for a given degree the graphs are defined for every diameter.

In 1993 Chen and Jia [1] defined a simple construction for circulant graphs families
of any even degree, which established a useful lower bound. Since then improved
solutions have so far only been found up to degree 11. These families have generally
been established by first finding extremal graphs of low diameter by means of ex-
haustive search with appropriate computer algorithms, and then fitting polynomials
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in the diameter to their order and generating sets. However this method is limited
by the exponential complexity of the search space with increasing degree.

Using a new approach, families of largest-known circulant graphs of degrees 13, 14
and 15 have recently been discovered. Dougherty and Faber [2] proved the existence
of certain infinite families of circulant graph families by establishing a relation with
free Abelian groups and lattices, where the Cayley graph generators are mapped
to lattice generator vectors. In the new approach the converse of this relation is
used to determine the generating set of a circulant graph from a candidate matrix
of lattice generator vectors. In the first application of this method, lattice generator
matrices for largest-known degree 7 and 11 graphs were extrapolated to a degree
15 matrix which successfully generated a new family of largest-known degree 15
circulant graphs. In this talk I would like to describe the key steps in this new
approach.

References:

[1] S. Chen and X.-D. Jia, Undirected loop networks, Networks 23 (1993) 257–260.

[2] R. Dougherty and V. Faber, The degree-diameter problem for several varieties of
Cayley graphs, I: The Abelian case, SIAM Journal on Discrete Mathematics 17(3)
(2004) 478–519.

Enumeration of self-complementary circulant
graphs of prime-power orders: old and new results Friday

11.20-11.40

Valery Liskovets

National Academy of Sciences of Belarus, Belarus

liskov@im.bas-net.by

Let SC(δ;n) denote the number of self-complementary circulant graphs of order n,
where δ = u or δ = d stands, respectively, for (ordinary) undirected or directed
graphs. For n = pk (p ≥ 3 prime, k ≥ 1), the following formula is established:

SC(δ; pk) = A[δ; pk](−1),

where A[δ;n](x) =
∑

N A(δ;n,N)xN is the generating function for the numbers
A(δ;n,N) of undirected or directed circulant graphs of order n with N edges. This
formula goes back to [3], meets the general pattern proposed in [2] and solves com-
pletely the problem under consideration for k = 1, 2. Moreover, several formal
identities are valid for the functions SC(δ; p) and SC(δ; p2) including ones that
involve related quantities such as the number of circulant tournaments. These iden-
tities are surveyed briefly. Then we consider in more detail the enumeration of
self-complementary circulant graphs of orders 33 and 53 based on recent results [1].
In conclusion we discuss some relationships conjectured to be valid for SC(δ; p3) in
general.

85



References:

[1] V. Gatt, M. Klin, J. Lauri and V. Liskovets, Constructive and analytic enume-
ration of circulant graphs with p3 vertices; p=3, 5, Preprint arXiv:1512.07744.

[2] V. Liskovets, Some identities for enumerators of circulant graphs, J. Algebraic
Combin. 18 (2003) 189–209.
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On the Incidence and Laplacian-like Energies of
(bipartite) graphsThursday

12.00-12.20

A. Dilek Maden

Selçuk University, Turkey

aysedilekmaden@selcuk.edu.tr

For a simple graph G and a real number α (6= 0, 1) the graph invariants sα and
σα are equal to the sum of powers of the non-zero signless Laplacian and Laplacian
eigenvalues of G, respectively. Note that s1/2 and σ1/2 are equal to incidence and
Laplacian-like energies of G, respectively. It is worth noting that nσ−1 is also equal
to the Kirchhoff index of G which has extensive applications in the theory of electric
circuits, probabilistic theory and chemistry. Recently, the various properties and
the estimates of these graph invariants (sα and σα) have been well studied in the
literature.

In this study, we present some generalized new bounds on sα and σα of (bipartite)
graphs. As a result of these bounds, we also obtain some generalized results on
incidence and Laplacian-like energies of (bipartite) graphs.

Vertex and edge transitive graphs over doubled
cyclesThursday

15.20-15.40

Aleksander Malnič

University of Ljubljana and University of Primorska, Slovenia

aleksander.malnic@guest.arnes.si

(joint work with Boštjan Kuzman and Primož Potočnik)

We complete (and generalize) a result of A. Gardiner and C. Praeger on 4-valent
symmetric graphs (European J. Combin, 15 (1994), 375–381). To this end we apply
the lifting method in the context of elementary-abelian covering projections. In
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particular, for p 6= 2, vertex and edge transitive graphs whose quotient by some
p-elementary abelian group of automorphisms is a cycle, are described in terms of
cyclic codes.

Algorithmic and structural results on the
existence of tropical subgraphs in vertex-colored

graphs Monday
17.40-18.00

Yannis Manoussakis

LRI, Univerity Paris South, France

yannis@lri.fr

In this work, we deal with tropical subgraphs in vertex-colored graphs. Vertex-
colored graphs are useful in various situations. For instance, the Web graph may be
considered as a vertex-colored graph where the color of a vertex represents the con-
tent of the corresponding page (red for mathematics, yellow for physics, etc.). Appli-
cations can also be found in bioinformatics (Multiple Sequence Alignment Pipeline
or for multiple protein-protein Interaction networks).

Given a vertex-colored graph, a tropical subgraph (induced or otherwise) is defined
to be a subgraph where each color of the initial graph appears at least once. Poten-
tially, many graph invariants, such as the domination number, the vertex cover num-
ber, maximum matchings, independent sets, connected components, shortest paths,
etc. can be studied in their tropical version. This notion is close to, but somewhat
different from the colorful concept used for paths in vertex-colored graphs. It is also
related to the concepts of color patterns or colorful used in bio-informatics.

Here, we study maximum tropical subgraphs and minimum tropical subgraphs in
vertex-colored graphs. Some related work can be found in some other works, where
the authors are looking for the minimum number of edges to delete in a graph
such that all remaining connected components are colorful (i.e. do not contain two
vertices of the same color). Note that in a tropical subgraph, adjacent vertices can
receive the same color, thus a tropical subgraph may not be properly colored. Here
we explain some results on our ongoing work on tropical dominating sets, vertex
covers, connected subgraphs, maximum matchings and tropical homomorphisms.
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Intersection of transversals in the Latin square
Bn, with applications to Latin tradesThursday

17.00-17.20

Trent G. Marbach

Monash University, Australia

trent.marbach@monash.edu

A paper by Cavenagh and Wanless diagnosed the possible intersection of any two
transversals of Bn. We give a generalization of this problem for the intersection of
µ transversals, and provide constructions and computational results for the cases
where µ = 3, 4. This result is then applied to the problem of finding µ-way k-
homogeneous Latin trades, and along with a few new constructions, completes the
spectrum of the existence 3-way k-homogeneous Latin trades for all but a small list
of exceptions.

Parameterized complexity of metatheorems of fair
deletion problemsFriday

12.00-12.20

Tomáš Masař́ık

Charles University,Czech Republic

masarik@kam.mff.cuni.cz

(joint work with Dušan Knop and Tomáš Toufar)

Deletion problems are those where given a graph G and a graph property π, the
goal is to find a subset of vertices (or edges) such that after its removal the graph
G will satisfy the property π. Typically, we want to minimize the number of ele-
ments removed. In fair deletion problems we change the objective: we minimize the
maximum number of deletions in a neighborhood of a single vertex.

We study the parameterized complexity of metatheorems, where a graph property
is expressed in a graph logic, of deletion problems with respect to several structural
parameters of the graph.

The list of our results for the Vertex Deletion problem:

• The problem is W[1]-hard on tree-depth for any logic that can express the
edgeless graph.

• The problem has an FPT algorithm for MSO1 logic on graphs with bounded
neighborhood diversity, or cluster vertex deletions, or twin cover.

The list of our results for the Edge Deletion problem:

• The problem is W[1]-hard on tree-depth for First order logic.
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• The problem has an FPT algorithm for MSO2 logic on graphs with bounded
vertex cover.

References:

[1] D. Knop, T. Masař́ık, T. Toufar, Parameterized complexity of fair deletion prob-
lems II, in preparation (2017+).
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Colourings of cubic graphs inducing isomorphic
monochromatic subgraphs Monday

11.40-12.00

Giuseppe Mazzuoccolo

University of Verona, Italy

giuseppe.mazzuoccolo@univr.it

(joint work with Marien Abreu, Jan Goedgebuer and Domenico Labbate)

At the beginning of the nineties, Ando conjectured that every cubic graph admits
a (not necessarily proper) 2-colouring of the vertices such that the two induced
monochromatic subgraphs are isomorphic. Similarly, Wormald conjectured, few
years before, that every cubic graph of order a multiple of four admits a (not proper)
2-edge-colouring such that the two induced monochromatic subgraphs are isomor-
phic. Both conjectures are still largely open. Here, we present some new results
on these conjectures. Moreover, we discuss the relation between them and another
conjecture of Ban and Linial about the existence of a bisection of the vertices of
a bridgeless cubic graph such that the two parts have all connected components of
order at most two. In particular, we furnish some evidence to support these and
some related conjectures. Moreover, we prove the Ban-Linial conjecture for all per-
mutation snarks. Finally, we give a negative answer to a related question of Jackson
and Wormald about certain decompositions of cubic graphs into linear forests.
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Analytic Combinatorics, Graph Transformations,
and StereochemistryThursday

16.20-16.40

Daniel Merkle

University of Southern Denmark, Denmark

daniel@imada.sdu.dk

(joint work with Jakob L. Andersen, Christoph Flamm, Markus Nebel and Peter
F. Stadler)

Counting chemical structures modelled as graphs dates back to the nineteenth cen-
tury and since then this research field has been providing a fertile ground for inter-
disciplinary research in mathematics, computer science, and chemistry [1,2]. Graph
transformation systems [3], where undirected graphs model molecules and double
pushout (DPO) graph transformation rules model chemical reactions, are gaining
importance, as large-scale chemical network analysis is becoming a prerequisite in
understanding the possibilities in the universe of chemical compounds and reactions
connecting them [4]. Analytic combinatorics [5] is a theory heavily used in many
scientific disciplines, e.g. in computer science for the analysis of algorithms. In this
contribution we will focus on combining the before-mentioned approaches, with the
addition of modelling stereochemistry, i.e., the relative placement of atoms and their
neighbours in space. Using analytic combinatorics we will analyze the combinatorial
classes of alkanes and hydrocarbons, including stereochemical features. Multivariate
generating functions will be presented that allow the inference of chemical proper-
ties. An extension to the DPO approach will allow for graph transformation systems
for graphs with attributes that encode information about local geometry. The mod-
elling approach is based on the “ordered list method”, where an order is imposed on
the set of incident edges of each vertex, and permutation groups determine equiva-
lence classes of orderings that correspond to the same local spatial embedding. The
DPO approach can be used to guide the combinatorial specifications used.
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[1] J.J. Sylvester, Chemistry and algebra, Nature 17 (1878) 284.
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On the Distinguishing Number of Cyclic
Tournaments: Towards the Albertson-Collins

Conjecture Thursday
11.40-12.00

Kahina Meslem

USTHB University, Algeria

kmeslem@usthb.dz

(joint work with Eric Sopena)

A distinguishing r-labeling of a digraph G is a mapping λ from the set of vertices of
G to the set of labels {1, ..., r} such that no nontrivial automorphism of G preserves
all the labels. The distinguishing number D(G) of G is then the smallest r for
which G admits a distinguishing r-labeling. Albertson and Collins [1] conjectured
in 1999 that D(T ) = 2 for every cyclic tournament T of (odd) order 2p + 1 ≥ 3,
with V (T ) = {0, ..., 2p}, and, more precisely, that the canonical 2-labeling λ∗ given
by λ∗(i) = 1 if and only if i ≤ p is distinguishing.

We prove that whenever one of the subtournaments of T induced by the vertices
{0, ..., p} or {p + 1, ..., 2p} is rigid, T satisfies the Albertson-Collins Conjecture.
Using this property, we prove that several classes of cyclic tournaments satisfy the
Albertson-Collins Conjecture. Moreover, we also prove that every Paley tournament
satisfies the Albertson-Collins Conjecture.

The full version of this paper is available at https://arxiv.org/pdf/1608.04866.pdf.

References:

[1] Michael O. Albertson and Karen L. Collins. A Note on Breaking the Symmetries
of Tournaments, Proc. 13th Southeastern Int. Conf. on Combinatorics, Graph
Theory, and Computing. Congr. Numer. 136 (1999) 129–131.

The Vertex Sign Balance of (Hyper)graphs Friday
11.20-11.40

Dezső Miklós

Rényi Institute, Hungary

miklos.dezso@renyi.mta.hu

(joint work with Justin Ahmann, Elizabeth Collins-Wildman, John Wallace, Shun
Yang, Yicong Guo and Gyula Y. Katona)

Pokrovskiy and, independently, Alon, Huang and Sudakov introduced the MMS
(Manickam-Miklos-Singhi) property of hypergraphs: “for every assignment of weights
to its vertices with nonnegative overall sum, the number of edges whose total weight
is nonnegative is at least the minimum degree of H”. This immediately leads to the
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definition of the following hypergraph parameter: The vertex sign balance of a hy-
pergraph is the minimum number of edges whose total weight is nonnegative, where
the minimum is taken over all assigments of weights to the vertices with nonnegative
overall sum. The vertex sign balance is always between 0 and the minimum degree
of the graph or hypergraph, both bounds being sharp. General and special proper-
ties (for graphs or three uniform hypergraphs) of this parameter will be presented.
In particular, the characterization of the vertex sign balance of the graphs leads
to the result that the question if a graph or hypergraph has the MMS property is
NP-complete.

Distances between bicliques and structural
properties of bicliques in graphsMonday

17.00-17.20

Leandro Montero

Université de Luxembourg, Luxembourg

leandro.montero@uni.lu

(joint work with Marina Groshaus)

Let G be a simple graph. A biclique is a maximal bipartite complete induced sub-
graph of G. The biclique graph of a graph G, denoted by KB(G), is the intersection
graph of all bicliques of G. It was defined and characterized in [2]. However, no
polynomial time algorithm is known for recognizing biclique graphs. Bicliques have
applications in various fields, for example, biology [1], social networks [3], etc.

In this work, we first define the distance between bicliques as follows.
Definition. Let G be a graph and let B,B′ be bicliques of G. The distance between
B and B′ is defined as: d(B,B′) = min{d(b, b′) / b ∈ B, b′ ∈ B′}.

We give the following formula that relates the distance between bicliques in a graph
G and the distance between their respectives vertices in KB(G).
Lemma. Let G be a graph and let B,B′ be bicliques of G. Then
dKB(G)(B,B

′) =
⌊
dG(B,B′)+1

2

⌋
+ 1.

This is an important tool for proving some structural results on bicliques in graphs.
Using this formula, we give a different (and easier) proof of the following necessity
theorem for a graph to be a biclique graph.
Theorem ([2]) Let G = KB(H) for some graph H, then every induced P3 of G is
contained in an induced diamond or an induced gem of G.

Moreover, using the distance formula we also prove that the condition of this theorem
is not sufficient. Finally, we propose some conjectures about biclique graphs, for
example the next one.
Conjecture. Let G = KB(H) for some graph H. Then G is Hamiltonian.
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On the Perron-Frobenius Theorem for reducible
non-negative matrices Tuesday

16.20-16.40

Joseph Muscat

University of Malta, Malta

joseph.muscat@um.edu.mt

The Perron-Frobenius theory is studied in the context of reducible non-negative
matrices. It is shown that the support of a non-negative eigenvector of a non-
negative matrix is a lower set of strong components of the digraph associated with
the matrix. The Perron vector of a strong component has a unique positive extension
downstream of it if, and only if, the other strong components in the downstream have
strictly smaller Perron roots. As an application, these results allow for a simplified
proof of Kirchhoff’s theorem for the directed Laplacian of graphs.

Forbidden subposet problems with size
restrictions Thursday

12.00-12.20

Dániel T. Nagy

Eötvös Loránd University, Hungary

dani.t.nagy@gmail.com

Upper bounds to the size of a family of subsets of an n-element set that avoids
certain configurations are proved. These forbidden configurations can be described
by inclusion patterns and some sets having the same size. Our results are closely
related to the forbidden subposet problems, where the avoided configurations are
described solely by inclusions.
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New bound on the size of saturating sets of
projective planesMonday

17.00-17.20

Zoltán Lóránt Nagy

Eötvös University, Hungary

nagyzoli@cs.elte.hu

Let Πq be an arbitrary finite projective plane of order q. A subset S of its points
is called saturating if any point outside S is collinear with a pair of points from S.
The importance of such sets relies on connections to covering codes, algebraic curves
over finite fields, sumset theory and complete arcs.

It is well known that |S| >
√

2q+1 for any saturating set S in Πq. If q is a square and
the plane is Desarguesian, then the existence of saturating sets with the same order
of magnitude up to a constant factor is known due to Boros, Szőnyi and Tichler. [2]

However, in the general case when the plane is not necessarily Desarguesian or the
order is arbitrary, we only have much weaker results. Following the footprints of
Boros, Szőnyi and Tichler, Bartoli, Davydov, Giulietti, Marcugini and Pambianco
obtained an estimate on the minimal size of a saturating set in Πq.

Proposition [1] min |S| ≤ (2 + o(1))
√
q ln q, if S is a saturating set in Πq.

Our main theorem improves the constant term to
√

3.

Theorem [3] min |S| ≤ (
√

3 + o(1))
√
q ln q, if S is a saturating set in Πq.

We present two proofs for this theorem. In the first one, we apply the probabilistic
method. In the second one we proceed by showing that an advanced greedy-type
algorithm also provides a saturating set of this size. Finally, we analyze the above
approaches and point out their connection to hypergraph cover problems.
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Rhombus tilings of an even-sided polygon and
projective quadrangulations Tuesday

11.20-11.40

Atsuhiro Nakamoto

Yokohama National University, Japan

nakamoto@ynu.ac.jp

(joint work with Yuta Omizo and Yusuke Suzuki)

It is known that for any k ≥ 2, the regular 2k-gon P2k with each segment of unit
length admits a tiling by unit rhombi [1], for which the number of rhombi for tiling
P2k is

(
k
2

)
, and the number of congruence classes of the unit rhombi is bk

2
c.

A projective quadrangulation Q is a map on the projective plane P with each
face quadrilateral, and Q is k-minimal if every edge of Q is contained in a non-
contractible cycle of length at least k, but for any face f of Q, the map obtained
from Q by eliminating f by identifying two diagonal vertices of f no longer has a
non-contractible cycle of length less than k. It is known that any two k-minimal
projective quadrangulations can be transformed into each other by some local op-
eration, called the Y-rotation [2].

In our talk, we first prove that the set of rhombus tilings of P2k has a one-to-one cor-
respondence with the set (Q,C), where Q is a k-minimal projective quadrangulation
and C is a non-contractible k-cycle of Q.

Secondly, we apply this fact to find a new Y∆ equivalence class for maps on P, in
addition to the Y∆ equivalence class of minor-minimal k-representative maps on P
found by Randby [3].
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The maximum size of a partial spread in a finite
vector spaceMonday

17.20-17.40

Esmeralda Năstase

Xavier University, U.S.A.

nastasee@xavier.edu

(joint work with Papa Sissokho)

Let V (n, q) denote the vector space of dimension n over the finite field with q
elements. A partial t-spread of V (n, q) is a set of t-dimensional subspaces of V (n, q)
such that any two of them have trivial intersection. Let r ≡ n (mod t). We prove
that if t > (qr − 1)/(q − 1), then the maximum size, i.e., cardinality, of a partial
t-spread of V (n, q) is (qn− qt+r)/(qt− 1) + 1. This essentially settles a longstanding
open problem in this area. Prior to this result, this maximum size was only known
for r = 1 and for r = q = 2. In particular, this result also determines the clique
number of the q-Kneser graph.
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How to represent polyhedra, polyhedral tilings,
and polytopes Wednesday

11.40-12.00

Kengo Nishio

National Institute of Advanced Industrial Science & Technology (AIST),
Japan

k-nishio@aist.go.jp

(joint work with Takehide Miyazaki)

Except for highly symmetric polytopes, there is no method for representing poly-
topes in general. This causes difficulty in understanding and describing complicated
structures. For example, in materials science, the arrangements of atoms in liquids
and glasses are often represented as polyhedral tilings. However, there has been no
method for describing briefly what polyhedra are tiled in what way. To overcome
this problem, we have created a theory for representing polytopes [1-3]. In this
presentation, we will present the general outline of our theory.

Figure 1: Overview of our theory.
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A new approach to catalog small graphs of high
girthThursday

17.20-17.40

Vivek S. Nittoor

Independent Consultant & Researcher, India
(formerly with the University of Tokyo, Japan)

vivek@nittoor.com

A catalog of a class of (3, g) graphs for even girth g is introduced in this talk. A
(k, g) graph is a graph with regular degree k and girth g. This catalog of (3, g)
graphs for even girth g satisfying 6 ≤ g ≤ 16, has the following properties. Firstly,
this catalog contains the smallest known (3, g) graphs. An appropriate class of
trivalent graphs for this catalog has been identified, such that the (3, g) graph of
minimum order within the class is also the smallest known (3, g) graph. Secondly,
this catalog contains (3, g) graphs for more orders than other listings. Thirdly, the
class of graphs have been defined so that a practical algorithm to generate graphs
can be created. Fourthly, this catalog is infinite, since the results are extended into
knowledge about infinitely many graphs.

The findings are as follows. Hamiltonian bipartite graphs have been identified as
a promising class of trivalent graphs that can lead to a catalog of (3, g) graphs for
even girth g with graphs for more orders than other listings, that is also expected to
contain a (3, g) graph with minimum order. This catalog of (3, g) graphs has many
graphs outside of the vertex-transitive class. In order to make the computation more
tractable, and at the same time, to enable deeper analysis on the results, symmetry
factor has been introduced as a parameter that reflects the extent of rotational
symmetry. The D3 chord index notation is introduced as a concise notation for
trivalent Hamiltonian bipartite graphs. The D3 chord index notation is twice as
compact as the LCF notation, which is known as a concise notation for trivalent
Hamiltonian graphs. The D3 chord index notation can specify an infinte family of
graphs. Results on the minimum order for existence of a (3, g) Hamiltonian bipartite
graph, and minimum value of symmetry factor for existence of a (3, g) Hamiltonian
bipartite graph are of wider interest from an extremal graph theory perspective.
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Optimal Pebbling and Rubbling of Graphs with
Given Diameter Thursday

15.40-16.00

László F. Papp

Budapest University of Technology and Economics, Hungary

lazsa@cs.bme.hu

(joint work with Ervin Győri and Gyula Y. Katona)

A pebbling distribution P on graph G is a function mapping the vertex set to
nonnegative integers. We can imagine that each vertex v has P (v) pebbles. A
pebbling move removes two pebbles from a vertex and places one at an adjacent
one. A pebbling move is allowed if and only if the vertex loosing pebbles has at
least two pebbles.

A vertex v is reachable under a distribution P , if there is a sequence of pebbling
moves, such that each move is allowed under the distribution obtained by the appli-
cation of the previous moves and after the last move v has at least one pebble. The
optimal pebbling number, denoted by πopt, is the smallest number m needed to guar-
antee a pebbling distribution of m pebbles from which any vertex is reachable. For
a comprehensive list of references for the extensive literature see the book chapter
[1].

Rubbling is a version of pebbling where an additional move is allowed. In this new
move, one pebble each is removed at vertices v and w adjacent to a vertex u, and an
extra pebble is added at vertex u. The optimal rubbling number, denoted by ρopt, is
defined analogously to the optimal pebbling number.

It is known that if G is a connected graph, then πopt(G) ≤ 2diam(G) and this bound
is sharp. We give a new short proof of this result. Besides, it proves that the same
upper bound is sharp for the optimal rubbling number. A distance-k domination
set S of a graph is a subset of the vertex set such that for each vertex v there is
an element of S whose distance from v is at most k. The distance-k domination
number of a graph, denoted by γk, is the size of the smallest distance-k domination
set.

We prove that both πopt(G) and ρopt(G) are at least min
(
2k, γk−1(G)

)
for any pos-

itive integer k. Finally, we show that πopt(G) ≥ min(2k, γk−1(G) + 2k−2, γk−2(G))

and ρopt(G) ≥ min
(

2k,max
(
γk−1(G)

2
+ 2k−2, γk−1(G)

)
, γk−2(G)

)
where k ≥ 2.
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Interval edge colorings of (k∗, 2∗)-bipartite graphs
with bounded degreeMonday

12.20-12.40

Krzysztof Pastuszak

Gdańsk University of Technology, Poland

krzysztof pastuszak@yahoo.com

(joint work with Anna Ma lafiejska, Micha l Ma lafiejski and Krzysztof Ocetkiewicz)

An edge coloring of a graph G is an interval edge coloring if the set of colors on
edges incident to every vertex of G forms an interval of integers. A bipartite graph
G is called (α, β)-biregular if all vertices in one part of G have degree α and all
vertices in the other part have degree β. A graph G is called a (α∗, β∗)-bipartite
graph if G is a subgraph of a (α, β)-biregular graph and the maximum degree in one
part is α and the maximum degree in the other part is β. The following problems
of interval edge coloring are NP-complete: 6-coloring of (6, 3)-biregular graphs [1]
and 5-coloring of (5∗, 5∗)-bipartite graphs [2]. In [3] the author showed that any
(3∗, 3∗)-bipartite graph has an interval edge 4-coloring, which can be constructed
in O(n)-time. In [2] the author proved that an interval edge k-coloring of every
(k∗, k∗)-bipartite graph can be found in O(n3/2)-time (if it exists), for k = 3, 4. By
results of [4], every (2k, 2)-biregular graph admits an interval edge 2k-coloring, and
every (2k + 1, 2)-biregular graph admits a (2k + 2)-coloring, for every k ≥ 1.

In the paper we study the problem of interval edge colorings of (k∗, 2∗)-bipartite
graphs, for k = 3, 4 and 5. We proved that every (5∗, 2∗)-bipartite graph admits an
interval edge 6-coloring, which can be found in O(n3/2)-time, and we proved that an
interval edge 5-coloring of a (5∗, 2∗)-bipartite graph can be found in O(n3/2)-time
(if it exists). For k = 4, we showed that every (4∗, 2∗)-bipartite graph admits an
interval edge 4-coloring, which can be found in O(n)-time. Moreover, we give the
full characterisation of (3∗, 2∗)-bipartite graphs admitting interval edge 3-colorings.
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Generalized forbidden subposet problems Thursday
11.40-12.00

Balázs Patkós

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Hungary

patkos@renyi.hu

(joint work with Dániel Gerbner and Balázs Keszegh)

A subfamily {F1, F2, . . . , F|P |} ⊆ F of sets is a copy of a poset P in F if there exists
a bijection φ : P → {F1, F2, . . . , F|P |} such that whenever x ≤P x′ holds, then so
does φ(x) ⊆ φ(x′). For a family F of sets, let c(P,F) denote the number of copies
of P in F , and we say that F is P -free if c(P,F) = 0 holds. For any two posets P,Q
let us denote by La(n, P,Q) the maximum number of copies of Q over all P -free
families F ⊆ 2[n], i.e. max{c(Q,F) : F ⊆ 2[n], c(P,F) = 0}. This generalizes the
well-studied parameter La(n, P ) = La(n, P, P1) where P1 is the one-element poset.
In this talk we consider the problem of determining La(n, P,Q) when P and Q
are small posets, like chains, forks, the N poset, etc. Our main result determines
La(n, Ph(Q), Q) up to some polynomial factor where Q is any complete multi-level
poset, Pj is the chain of length j and h(Q) is the height of Q (the length of the
longest chain in Q). To obtain this, we solve (up to a polynomial factor) a problem
on r-wise intersections in antichains.

Center, centroid and subtree core of trees Thursday
17.20-17.40

Kamal Lochan Patra

National Institute of Science Education and Research, India

klpatra@niser.ac.in

(joint work with Dheer Noal Sunil Desai )

Let T = (V,E) be a tree with vertex set V and edge set E. A vertex v ∈ V is called
a central vertex if the eccentricity e(v) of v defined by e(v) = max{d(u, v) : u ∈ V }
coincides with the radius r(T ) of T defined by r(T ) = min{e(v) : v ∈ V }. The
center of T is the set of all central vertices of T . For v ∈ V , a branch (rooted) at v
is a maximal subtree containing v as a pendant vertex. The weight ω(v) of v is the
maximal number of edges in any branch at v. We say that v is a centroid vertex of
T if ω(v) = min

u∈V
ω(u). The centroid of T is the set of all centroid vertices of T . Let f

be the function from V to the set of natural numbers N defined by v 7→ f(v), where
f(v) is the number of subtrees of T containing v. The subtree core of T is defined
as the set of all vertices v for which f(v) is maximum. It is known that each of the
center, the centroid and the subtree core of T consists of either a single vertex or
two adjacent vertices.
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For n ≥ 5 and 2 ≤ g ≤ n−3, consider the tree Pn−g,g on n vertices which is obtained
by adding g pendant vertices to one of the end vertices of the path Pn−g. We call
the trees Pn−g,g as path-star trees. We prove that, among all trees on n ≥ 5 vertices,
the distance between the center and the subtree core, and the distance between the
centroid and the subtree core both are maximized by some path-star trees. We then
prove that the tree Pn−g0,g0 maximizes both the distances among all path-star trees
on n vertices, where g0 is the smallest positive integer satisfying 2g0 + g0 > n− 1.

Unified treatment of graphs and metric spacesTuesday
17.40-18.00

Jan Pavĺık

Brno University of Technology, Czech Republic

pavlik@fme.vutbr.cz

We introduce a general approach to undirected graphs and metric spaces via general-
ization of metrics whose target set is a certain kind of an ordered monoid. Connected
undirected graphs form one of several instances of an obtained structure. We will
show how we can describe even disconnected graphs within this concept. Moreover,
certain systems of neighborhoods on these spaces enable a definition of continuity.
Depending on its choice, we define paths within the generalized metric spaces. Fur-
thermore, we establish a concept of path-accessibility and use it for a description
of classes of undirected graphs. Possibility of description of directed graphs will be
discussed.

Inverses of GraphsMonday
15.40-16.00

Soňa Pavĺıková

Slovak University of Technology in Bratislava, Slovakia

sona.pavlikova@stuba.sk

(joint work with Daniel Ševčovič)

In this talk we study integrally invertible graphs. We investigate a class of the so-
called positively and negatively invertible graphs. The positively invertible graphs
are invertible graphs in the usual Godsil sense. Less attention has been given to
the study of invertibility of non-bipartite graphs and their spectral properties. In
the recent paper [4] we introduced a novel concept of negatively invertible graphs
which can be considered as a natural extension to the concept of (positively) in-
vertible graphs proposed by Godsil in [1] (see also [2,3]). The class of negatively
invertible graphs, for which the inverse graph can be also constructed, contains
important graphs arising from chemistry and other applications. We also propose
a construction of integrally invertible graphs based on bridging two integrally in-
vertible graphs over the set of their vertices. We derive sufficient conditions for
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invertibility of bridged graphs. We furthermore analyze the spectral properties of
these graphs and derive lower bounds for the least positive eigenvalue of the bridged
graph. Finally, we present a complete list of graphs with a unique 1-factor on m ≤ 6
vertices and determine their positive and negative invertibility.
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Improving Upper Bounds for the Distinguishing
Index Monday

15.40-16.00

Monika Piĺsniak

AGH University, Poland

pilsniak@agh.edu.pl

The distinguishing index of a graph G, denoted by D′(G), is the least number
of colours in an edge colouring of G not preserved by any non-trivial automorphism.
We characterize all connected graphs G with D′(G) ≥ ∆(G).

The definition of D′(G) was introduced by Kalinowski and Piĺsniak in [2]. They
proved that if T is a tree of order at least 3, then D′(T ) ≤ ∆(T ). Moreover,
equality is achieved if and only if T is either a symmetric or a bisymmetric tree.
We say that a tree is symmetric (or bisymmetric) if it has a central vertex v0 (or
a central edge e0, respectively), all leaves are at the same distance from v0 (or e0)
and all vertices that are not leaves have the same degree.

For finite connected graphs in general it was shown in [2] that D′(G) ≤ ∆(G) unless
G is C3, C4 or C5. It follows for connected graphs that D′(G) > ∆(G) if and only
if D′(G) = ∆(G) + 1 and G is a cycle of length at most 5.

The equality D′(G) = ∆(G) holds for cycles of length at least 6, for K4, K3,3 and
for all symmetric and bisymmetric trees. We show that D′(G) < ∆(G) for all other
connected graphs.

This concept was also investigated for infinite graphs by Broere and Piĺsniak in [1].
They proved that if G is a connected infinite graph such that the degree of every
vertex is not greater than ∆, then D′(G) ≤ ∆. We present a quite recent improve-
ment from [4]: if G is a connected infinite graph with maximum degree ∆, then
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D′(G) ≤ ∆ − 1 unless G is a double ray. Moreover we show that the bound given
in this theorem is best possible for every finite ∆ ≥ 3.
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Nonorientable Hypermaps of a given Type and
GenusTuesday

12.20-12.40

Daniel Pinto

University of Coimbra, Portugal

dpinto@mat.uc.pt

Topologically, a hypermap is a cellular embedding of a connected hypergraph into
a closed connected surface. If that underlying surface is orientable, we say that
the hypermap is orientable. Otherwise, the hypermap is called nonorientable. We
prove that given positive integers m, n with 2m−1 + n−1 < 1 and an integer g ≥ 1,
there are infinitely many nonisomorphic compact nonorientable hypermaps of genus
g and type (m,m, n), where m is the least common multiple of the valencies of the
hypervertices and the least common multiple of the valencies of the hyperedges, and
n is the least common multiple of the valencies of the hyperfaces. The technique
we apply for the proof is based on the constructions used to demonstrate the same
result for orientable hypermaps, making the suitable adjustments.
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Asymptotically optimal adjacent vertex
distinguishing edge choice number Monday

16.20-16.40

Jakub Przyby lo

AGH University of Science and Technology, Poland

jakubprz@agh.edu.pl

(joint work with Jakub Kwaśny)

Let G = (V,E) be a graph. Consider an edge colouring c : E → C. For a given
vertex v ∈ V , by E(v) we denote the set of all edges incident with v in G, while the
set of colours associated to these under c is denoted as:

Sc(v) = {c(e) : e ∈ E(v)}. (1)

The colouring c is called adjacent vertex distinguishing if it is proper and Sc(u) 6=
Sc(v) for every edge uv ∈ E. It exists if and only if G contains no isolated edges. The
least number of colours in C necessary to provide such a colouring is then denoted
by χ′a(G) and called the adjacent vertex distinguishing edge chromatic number of
G. Obviously, χ′a(G) ≥ χ′(G) ≥ ∆, where ∆ is the maximum degree of G, while
it was conjectured [3] that χ′a(G) ≤ ∆ + 2 for every connected graph G of order at
least three and different from the cycle C5. Hatami [1] proved the postulated upper
bound up to an additive constant by showing that χ′a(G) ≤ ∆ + 300 for every graph
G with no isolated edges and with maximum degree ∆ > 1020.

Suppose now that every edge e ∈ E is endowed with a list of available colours
Le. The adjacent vertex distinguishing edge choice number of a graph G (without
isolated edges) is defined as the least k so that for every set of lists of size k associated
to the edges of G we are able to choose colours from the respective lists to obtain
an adjacent vertex distinguishing edge colouring of G. We denote it by ch′a(G).
Analogously as above, ch′a(G) ≥ ch′(G), while the best general result on the classical
edge choosability implies that ch′(G) = (1 + o(1))∆, see [2]. Generalizing this, a
multistage probabilistic argument granting ch′a(G) = (1 + o(1))∆ for the class of all
graphs without isolated edges shall be presented during my talk.
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Cutting Planes for Union-Closed FamiliesMonday
15.20-15.40

Jonad Pulaj

Zuse Institute Berlin, Germany

pulaj@zib.de

Frankl’s conjecture states that for any non-empty union-closed (UC) family there
exists an element in at least half the sets of the family. We find previously unknown
families A which contain an element that is frequent enough to satisfy Frankl’s
conjecture for all UC families F ⊇ A using an algorithmic framework. Poonen’s
Theorem [2] characterizes the existence of weights which determine whether a given
UC familyA contains an element that satisfies Frankl’s conjecture for all UC families
F ⊇ A. We call such families A as above Frankl-Complete (FC). An UC family A
is Non–Frankl-Complete (Non–FC), if and only if there exists an UC family F ⊇ A
such that each of the elements in A is in less than half the sets of F . We design
a cutting-plane method that computes the explicit weights which imply the exis-
tence conditions of Poonen’s Theorem via exact rational integer programming. This
method allows us to construct a counterexample to an eleven-year-old conjecture of
Morris [1] about the structure of generators for Non–FC-families. Furthermore we
answer in the negative two related questions of Vaughan [3] and Morris [1] regarding
a simplified method for proving the existence of weights that yield FC-families.
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Nonlinear network dynamics under perturbations
of the underlying graph Thursday

16.00-16.20

Anca Rǎdulescu

State University of New York at New Paltz, U.S.A.

radulesa@newpaltz.edu

(joint work with Sergio Verduzco-Flores and Ariel Pignatelli)

Recent studies have been using graph theoretical approaches to model complex net-
works, and how hardwired circuitry relates to the ensemble’s dynamic evolution in
time. Understanding how configuration reflects on the coupled behavior in a system
of dynamic nodes can be of great importance when investigating networks from the
natural sciences. However, the effect of connectivity patterns on network dynamics
is far from being fully understood.

We investigate the connections between edge configuration and dynamics in simple
oriented networks with nonlinear nodes which update in both discrete and con-
tinuous time. In discrete time, we use complex quadratic nodes [1]. We define
extensions of the traditional Julia and Mandelbrot sets, and we study the changes
in their topology and fractal behavior in response to changes in the network’s ad-
jacencies. In continuous time, we illustrate coupled Wilson-Cowan equations [1,3].
We use configuration dependent phase spaces and a probabilistic extension of bi-
furcation diagrams in the parameter space, to investigate the relationship between
classes of system architectures and classes of their possible dynamics.

In both cases, we differentiate between the effects on dynamics of altering edge
weights, density, and configuration. We show that increasing the number of con-
nections between nodes is not equivalent to strengthening a few connections, and
that certain dynamic aspects are robust to the network configuration when the edge
density is fixed. Finally, we interpret some of our results in the context of brain
networks, synaptic restructuring and neural dynamics in learning networks.
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Arc-Transitive Maps with underlying Rose
Window GraphsTuesday

17.00-17.20

Alejandra Ramos Rivera

University of Primorska, Andrej Marušič Institute, Slovenia

alejandra.rivera@iam.upr.si

(joint work with Isabel Hubard, Primož Šparl)

A mapM is an embedding of a connected graph Γ on a compact surface S without
boundary, in such a way that S \ Γ is a disjoint union of simply connected regions.
A flag of a mapM is defined as an incident triple {v, e, f} of a vertex, an edge and
a face of M. The group of all automorphisms of a map M has a natural action on
the set of its flags, F(M). The maps with most symmetries are maps having one
orbit on F(M) (reflexible maps).

In this talk we focus on arc-transitive maps, that is maps for which their automor-
phism group is arc-transitive on the underlying graph. Of course, reflexible maps
are examples of arc-transitive maps. As for maps M, for which Aut(M) has two
orbits on F(M), there are seven classes of such maps and only four of them result
in arc-transitive maps; the corresponding classes are denoted by 2, 20, 21 and 2{0,1}.

The reflexible maps and maps in class 2 (chiral maps) have been extensively studied
in the literature. Moreover, the maps in class 20 are related to the chiral ones via
the Petrie operator (and their graphs and groups are the same). This leaves us with
the maps of classes 21 and 2{0,1} which are also related via the Petrie operator. It
is known that the smallest admissible valency of the underlying graph of a map in
class 2{0,1} is four. It thus seems natural to first study maps of class 2{0,1} with
tetravalent underlying graphs.

In 2008 S. Wilson [2] introduced a family of tetravalent graphs now known as the
Rose Window graphs and identified four families of arc-transitive members. The
reflexible maps and maps in class 2 (and so in class 21) underlying these graphs
were classified by I. Kovács, K. Kutnar and J. Ruff in [1]. In this talk we classify
all maps in class 2{0,1} (and so in class 20) underlying a Rose Window graph.
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Toll number of the Cartesian and lexicographic
product of graphs Thursday

15.40-16.00

Polona Repolusk

University of Maribor, Slovenia

polona.repolusk@um.si

(joint work with Tanja Gologranc)

Toll convexity is a variation of the so-called interval convexity. A tolled walk T
between u and v in G is a walk of the form T : u,w1, . . . , wk, v, where k ≥ 1, in
which w1 is the only neighbor of u in T and wk is the only neighbor of v in T .
As in geodesic or monophonic convexity, toll interval between u, v ∈ V (G) is a set
TG(u, v) = {x ∈ V (G) : x lies on a tolled walk between u and v}. A set of vertices
S is toll convex, if TG(u, v) ⊆ S for all u, v ∈ S. The toll closure TG[S] of a subset
S ⊆ V (G) is the union of toll intervals between all pairs of vertices from S, i.e.
TG[S] = ∪u,v∈STG(u, v). If TG[S] = V (G), we call S a toll set of a graph G. The
order of a minimum toll set in G is called the toll number of G and is denoted by
tn(G).

First, the characterization of convex sets with respect to toll convexity in the
Cartesian product of graphs will be reinvestigated. We will show that the toll
number of the Cartesian product of two arbitrary graphs is 2. For the lexico-
graphic product of graphs we will show that if H is not isomorphic to a com-
plete graph, tn(G ◦ H) ≤ 3 · tn(G). Some necessary and sufficient conditions for
tn(G ◦ H) = 3 · tn(G) will be presented. Moreover, if G has at least two extreme
vertices, a complete characterization will be presented. We also characterize graphs
with tn(G ◦H) = 2 - this is the case iff G has an universal vertex and tn(H) = 2.
Finally, the focus will be on the formula for tn(G◦H) - it can be described in terms
of the so-called toll-dominating triples.

Indecomposable 1−factorizations of complete
multigraphs Thursday

11.40-12.00

Gloria Rinaldi

University of Modena and Reggio Emilia, Italy

gloria.rinaldi@unimore.it

(joint work with Simona Bonvicini)

A 1−factor of the complete multigraph λK2n, λ > 1, is a spanning subgraph con-
sisting of n edges that are pairwise independent. A 1−factorization of λK2n is a
partition of the edge set of λK2n into 1−factors. The 1-factorization is said to be
indecomposable if it cannot be represented as the union of 1-factorizations of λ0K2n

and (λ− λ0)K2n, where λ0 < λ. It is said to be simple if no 1-factor is repeated.
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Despite the fact that 1−factorizations of λK2n always exist (it is sufficient to take
λ copies of a 1−factorization of K2n, for example the classical 1−factorization of
Lucas), the spectrum of values λ and n for which (simple or not simple) indecompos-
able 1−factorizations exist is still unknown. The problem of determining it seems
hard in both cases (simple and not simple). Un upper bound for λ depending on n
is presented in [1] and non existence results for few sporadic values of λ and n are
given in [2]. Moreover, some existence results can be found in the literature, see for
example [1], [2], [3].

We prove the existence for classes of parameters λ and n which were not previously
considered. Precisely: we show that for every n ≥ 9 and for every (n−2)/3 ≤ λ ≤ 2n
there exists an indecomposable and not simple 1-factorization of λK2n. We can
also exhibit some examples of indecomposable and not simple 1-factorizations for
n ∈ {7, 8}, (n − 2)/3 ≤ λ ≤ n, and for n ∈ {5, 6}, (n − 2)/3 ≤ λ ≤ n − 2.
We use these constructions to prove the existence of simple and indecomposable
1-factorizations of λK2n for every n ≥ 18 and for every 2 ≤ λ ≤ 2bn/2c − 1. In
[2] a simple and indecomposable 1−factorization of λKp+1, with p an odd prime,
and λ = p−1

2
is presented. Using structural properties of finite Galois Fields, we

generalize this result to λKpm+1 with λ = pm−1
2

and m ≥ 1.
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The cardinality of the lattice of characteristic
subspacesMonday

17.40-18.00

Alicia Roca

Universitat Politècnica de València, Spain

aroca@mat.upv.es

(joint work with David Mingueza and M. Eulàlia Montoro)

Given J ∈ Mn(F) a nilpotent Jordan matrix and F a field, a J-invariant subspace
is called characteristic (respectively hyperinvariant) if it is also T -invariant for all
of the nonsingular matrices T (respectively, matrices T ) commuting with J . We
denote by Chinv(J) and Hinv(J) the lattices of characteristic and hyperinvariant
subspaces, respectively. Obviously:

Hinv(J) ⊆ Chinv(J).
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It is known that Chinv(J) = Hinv(J) if F 6= GF (2). We understand

Chinv(J) = Hinv(J) ∪ (Chinv(J) \Hinv(J)).

The cardinality of Hinv(J) is known. For F = GF (2), the subspaces in Chinv(J) \
Hinv(J) are characterized as direct sums Z ⊕ Y , where Y, Z are certain types of
subspaces associated to a so-called char-tuple.

We compute the number of characteristic non-hyperinvariant subspaces over the field
GF (2). Results are highly combinatorial. We give a recurrent formula to compute
the cardinality of subspaces of the type Z, and give an algorithm to calculate the
number of subspaces of the type Y . This algorithm leads to the construction of a
matrix which generalizes the Pascal matrix.

Quasi-symmetric 2-(64, 24, 46) designs derived from
AG(3, 4) Tuesday

11.20-11.40

Sanja Rukavina

University of Rijeka, Croatia

sanjar@math.uniri.hr

(joint work with Dean Crnković, B. G. Rodrigues and Vladimir D. Tonchev)

In this talk we present the enumeration of quasi-symmetric 2-(64, 24, 46) designs
supported by the dual code C⊥ of the binary linear code C spanned by the lines
of AG(3, 4). It is shown that C⊥ supports exactly 30,264 nonisomorphic quasi-
symmetric 2-(64, 24, 46) designs.

The block graph of a quasi-symmetric 2-(64, 24, 46) design with block intersection
numbers 8 and 12, where two blocks are adjacent if they share 12 points, is a strongly
regular graph with parameters (336, 80, 28, 16). The block graphs of the 2699 noniso-
morphic quasi-symmetric 2-(64, 24, 46) designs admitting an automorphism of order
128, split into 2371 isomorphism classes of strongly regular graphs with parame-
ters (336, 80, 28, 16). The automorphism groups of those strongly regular graphs are
computed.
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Vertex connectivity of the power graph of a finite
cyclic groupTuesday

17.20-17.40

Binod Kumar Sahoo

National Institute of Science Education and Research, India

bksahoo@niser.ac.in

(joint work with Sriparna Chattopadhyay and Kamal Lochan Patra)

The power graph P(G) of a group G is the simple undirected graph with vertex set G,
in which two distinct vertices are adjacent if and only if one of them can be obtained
as an integral power of the other. Here we consider the finite cyclic group Cn of
order n and study the vertex connectivity κ(P(Cn)) of P(Cn). Recall that κ(P(Cn))
is the minimum number of vertices which need to be removed from Cn so that the
induced subgraph of P(Cn) on the remaining vertices is disconnected or has only
one vertex. If n = 1, then κ(P(C1)) = 0. If n = pm for some prime p and positive
integer m, then P (Cpm) is a complete graph and so κ (P (Cpm)) = pm−1. Therefore,
we assume that n is divisible by at least two distinct primes. Let n = pn1

1 p
n2
2 · · · pnr

r ,
where r ≥ 2, n1, n2, · · · , nr are positive integers and p1, p2, · · · , pr are distinct primes
with p1 < p2 < · · · < pr. Let φ : N −→ N denote the Euler’s totient function. For
a given subset X of Cn, we define X = Cn \ X and denote by P(X) the induced
subgraph of P(Cn) with vertex set X. We prove the following hold:

(i) If 2φ(p1 · · · pr−1) > p1 · · · pr−1, then

κ(P(Cn)) = φ(n) + pn1−1
1 · · · pnr−1−1

r−1 pnr−1
r [p1p2 · · · pr−1 − φ(p1p2 · · · pr−1)] .

There is only one subsetX of Cn with |X| = κ(P(Cn)) and P(X) disconnected.

(ii) If 2φ(p1 · · · pr−1) < p1 · · · pr−1, then

κ(P(Cn)) ≤ φ(n) + pn1−1
1 · · · pnr−1−1

r−1
[
p1 · · · pr−1 + φ(p1 · · · pr−1)(pnr−1

r − 2)
]
.

(iii) If 2φ(p1 · · · pr−1) = p1 · · · pr−1, then r = 2, p1 = 2 (so that n = 2n1pn2
2 ) and

κ(P(Cn)) = φ(n) + 2n1−1pn2−1
2 .

There are n2 subsets X of Cn with |X| = κ(P(Cn)) and P(X) disconnected.

In order to show that the bound in (ii) is sharp for certain values of n, we prove
that if r = 3 and 2φ(p1p2) < p1p2, then p1 = 2 and

κ(P(Cn)) = φ(n) + 2n1−1pn2−1
2

[
(p2 − 1)pn3−1

3 + 2
]
.

Further, there is only one subset X of Cn with |X| = κ(P(Cn)) such that P(X) is
disconnected.
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Blocking sets of certain line sets to a hyperbolic
quadric in PG(3, q), q even Tuesday

12.20-12.40

Bikramaditya Sahu

National Institute of Science Education and Research, India

bikram.sahu@niser.ac.in

Let q = 2t, t ≥ 1, and PG(3, q) be the 3-dimensional projective space over a finite
field of order q. We denote by P and L the point set and the line set of PG(3, q),
respectively. For a subset L of L, an L-blocking set of PG(3, q) is a subset B of P
such that every line in L contains at least one point of B. Let H be a hyperbolic
quadric in PG(3, q), that is, a non-degenerate quadric of Witt index two. Let
E (respectively; T, S) denote the set of all lines of PG(3, q) which are external
(respectively; tangent, secant) to H. If L = E ∪ T ∪ S and B is an L-blocking

set of PG(3, q), then |B| ≥ q3−1
q−1 and equality holds if and only if B is a plane of

PG(3, q) [2]. In this talk, we shall address the following combinatorial question:
For L ∈ {E, T, S, E ∪ T,E ∪ S, T ∪ S}, find the minimum size of an L-blocking set
and describe all L-blocking sets of that cardinality. We note that this question was
answered in [1] for L = E and in [4] for L = E ∪ S.

The point-line geometry W (q) with point set P and line set consisting of the totally
isotropic lines of PG(3, q) with respect to a symplectic polarity is a generalized
quadrangle of order q [3]. An ovoid of W (q) is a set O of points with the property
that each line of W (q) meets O in one point. The known ovoids of PG(3, q) are
of two types: (i) the elliptic quadrics which exist for all t ≥ 1, (ii) the Tits ovoids
which exist for odd t ≥ 3. However, classifying all ovoids of W (q) is still an open
problem. Let Γ be the graph whose vertices are the ovoids of W (q), in which two
distinct vertices are adjacent if they intersect at one point. Though all vertices of
Γ are not known, the authors in [4] gave a bound on the clique number of Γ as an
application of their result on (E ∪ S)-blocking sets connecting combinatorics and
graph theory. We shall discuss this bound as well.
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On the Spouse-Loving Variant of the Oberwolfach
ProblemThursday

12.20-12.40

Mateja Šajna

University of Ottawa, Canada

msajna@uottawa.ca

(joint work with Noah Bolohan, Iona Buchanan and Andrea Burgess)

The well-known Oberwolfach Problem asks the following: Given t round tables of
sizes m1, . . . ,mt such that m1+. . .+mt = n, is it possible to seat n people around the
t tables for an appropriate number of meals so that every person sits next to every
other person exactly once? In graph-theoretic terms, the question is asking whether
Kn can be decomposed into 2-factors, each a vertex-disjoint union of cycles of lengths
m1, . . . ,mt, whenever m1 + . . . + mt = n. Since a graph with odd-degree vertices
cannot admit a 2-factorization, Huang et al. proposed the analogous problem for
Kn−I, the complete graph of even order with a 1-factor removed. They called it the
spouse-avoiding variant since it models a sitting arrangement of n

2
couples, where

each person gets to sit next to each other person, except their spouse, exactly once.

For both of these two basic variants of the Oberwolfach Problem, the cases with
uniform cycle length were completely solved decades ago [Alspach and Häggkvist,
Alspach et al., Hoffman and Schellenberg]. In addition, many solutions are now
known for variable cycle lengths; most notably, the problem is solved for m1, . . . ,mt

all even [Bryant and Danziger]; for t = 2 [Traetta]; and for n ≤ 40 [Deza et al.].
However, in general, it is still wide open.

The spouse-avoiding variant of the Oberwolfach Problem can also be viewed as the
maximum packing variant. This talk, however, pertains to the minimum covering
version of the problem; in other words, we are interested in decomposing Kn + I
(the complete graph of even order with a 1-factor duplicated) into 2-factors, each a
vertex-disjoint union of cycles of lengths m1, . . . ,mt, where m1 + . . .+mt = n. We
denote this problem by OP+(m1, . . . ,mt), or OP+(n;m) when m1 = . . . = mt = m.
This variant, nicknamed the spouse-loving variant, models a situation where it is
preferable for each person to sit next to exactly one other person twice (instead of
never), and next to every other person exactly once.

Under the disguise of resolvable minimum coverings by triples, OP+(n; 3) has been
shown to have a solution whenever 3|n and n ≥ 18 [Assaf et al., Lamken and Mills],
and from existing solutions to the spouse-avoiding variant, it follows easily that
OP+(m1, . . . ,mt) has a solution whenever m1, . . . ,mt are all even. In this talk, we
show that for odd m ≥ 5, OP+(n;m) has a solution whenever m|n, except possibly
for n = 4m.
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Forbidden Pairs of Minimal Quadratic and Cubic
Configurations Monday

12.00-12.20

Attila Sali

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Hungary

sali.attila@renyi.mta.hu

(joint work with Sam Spiro)

A matrix is simple if it is a (0,1)-matrix and there are no repeated columns.
Given a (0,1)-matrix F , we say a matrix A has F as a configuration, denoted
F ≺ A, if there is a submatrix of A which is a row and column permutation
of F . Let |A| denote the number of columns of A. A simple (0,1)-matrix A
can be considered as vertex-edge incidence matrix of a hypergraph without re-
peated edges. A configuration is a trace of a subhypergraph of this hypergraph.
Let F be a family of matrices. We define the extremal function forb(m,F) =
max{|A| : A is an m − rowed simple matrix and has no configuration F ∈ F}. We
consider pairs F = {F1, F2} such that F1 and F2 have no common extremal construc-
tion and derive that individually each forb(m,Fi) has greater asymptotic growth
than forb(m,F), extending research started by Anstee and Koch. They determined
forb(m, {F,G}) for all pairs {F,G}, where both members are minimal quadratics,
that is both forb(m,F ) = Θ(m2) and forb(m,G) = Θ(m2), but no proper subconfig-
uration of F or G is quadratic. We take this one step further. That is, we consider
cases when one of F or G is a simple minimal cubic configuration and the other
one is a minimal quadratic or minimal simple cubic. We solve all cases when the
minimal simple cubic configuration has four rows. If a conjecture of Anstee is true,
then there is no minimal simple cubic configuration on 5 rows. About the six-rowed
ones we observe that forb(m, {F,G}) is quadratic if F is minimal quadratic and G is
a 6-rowed minimal cubic in all, but one cases. In the remaining case we believe that
non-existence of common quadratic product construction indicates that the order of
magnitude is o(m2).

Dominating sets in Circulant graphs Monday
16.40-17.00

Tamene K. Samuel

University of Ngaoundere, Cameroon

samueltken@gmail.com

A Cayley graph on a group Γ is a graph G with the elements of Γ forming the vertex–
set and edge–set defined by a generating set S ⊂ Γ such that vertex g is adjacent to
vertex h if and only if h = gs for some s ∈ S. A circulant graph is a Cayley graph
on a finite cyclic group Zn denoted by Circ(n, S) = Cay(Zn, S). In this paper, we
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address the Dominating Set and Independent Dominating Set problems in circulant
graphs. We focus our attention to special generating sets consisting of consecutive
integers, S = {a, a + 1, ...a + k − 1, n − a, ..., n − (a + k − 1)} where a, k and n
are integers such that 1 ≤ a ≤ k + 2 and a + k ≤ n+1

2
. We give the domination

number and the independent domination number, and describe some of these sets
for such circulant graphs. We also give a general condition for a subgroup to be an
independent dominating set of a circulant graph.

On the fractional metric dimension of Mycielski
graphsThursday

17.40-18.00

Suhadi Wido Saputro

Bandung Institute of Technology, Indonesia

suhadi@math.itb.ac.id

(joint work with Tia Qibtiatul Munawaroh)

Let G be a simple connected graph. A vertex z in G resolves two vertices u and
v in G if the distance from u to z is not equal to the distance from v to z. A set
of vertices RG{u, v} is a set of all resolving vertices of u and v in G. For every
two distinct vertices u and v in G, a resolving function f of G is a real function
f : V (G) → [0, 1] such that f(RG{u, v}) =

∑
z∈RG{u,v} f(z) is at least 1. The

minimum value of |f | =
∑

z∈V (G) f(z) from all resolving functions f of G is called
the fractional metric dimension of G. In this paper, we consider Mycielski graphs.
For a connected graph G of order n with V (G) = {v1, v2, . . . , vn}, a Mycielski graph
of G, denoted by µ(G), is a graph with V (µ(G)) = {xi, yi | 1 ≤ i ≤ n} ∪ {z} and
E(µ(G)) = {xixj, xiyj | vivj ∈ E(G)} ∪ {yiz | 1 ≤ i ≤ n}. We give sharp lower
and upper bounds for the fractional metric dimension of Mycielski graphs. We also
determine an exact value of the fractional metric dimension of µ(G) where G is a
complete graph, a star graph, or a cycle graph.

Explicit constructions of Ramanujan graphsThursday
12.20-12.40

Shohei Satake

Kobe University, Japan

sheq3141@gmail.com

Ramanujan graphs were introduced by Lubotzky-Phillips-Sarnak [3]. Let G be a
k-regular graph and λ(G) = max{|λ| | λ ∈ Spec(G), |λ| 6= k}. Here, Spec(G) is
the set of all eigenvalues of the adjacency matrix of G. A k-regular graph G is a
Ramanujan graph if λ(G) ≤ 2

√
k − 1. Ramanujan graphs connect to various areas of

mathematics, such as number theory and group theory, and have wide applications
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in coding theory, computer science and so on. To give explicit constructions of
Ramanujan graphs is a very interesting and meaningful problem. In these two
decades, many explicit constructions of families of Ramanujan graphs were given.
Our main purpose is to give explicit constructions of infinite families of Ramanujan
graphs (with unbounded degree). In particular, we focus on Cayley graphs and
Cayley sum graphs. As remarked by Chung [1] and Li et.al. [2], the eigenvalues of
such graphs can be expressed by character sums. In this talk, we construct Cayley
graphs and Cayley sum graphs which are Ramanujan over finite fields Fq, residue
rings Zpe with prime power order and Galois rings Rp2,r.
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Boundary Enumerator Polynomial of Hypercubes
in Fibonacci Cubes Thursday

17.40-18.00

Elif Saygı

Hacettepe University, Turkey

esaygi@hacettepe.edu.tr

(joint work with Ömer Eğecioğlu)

Let Dn,k(d) be the polynomial that enumerates the boundary of the k-dimensional
hypercubes Qk in the Fibonacci cube Γn of dimension n, where the degree of any
monomial in Dn,k(d) is the number of edges in the boundary of the corresponding Qk

and the coefficient of that monomial shows the number of such hypercubes. In this
work, we obtain recursive relations for Dn,k(d) and its generating function by using
the fundamental decomposition of Γn. Our motivation is the wealth of known results
on the degree distribution of the vertices in Γn, which corresponds to the special
case k = 0 in our formulation. In [2] it is shown that the degrees of the vertices
in Γn are between

⌊
n+2
3

⌋
and n. Furthermore, in [1] depending on the recursive

structure of Γn, a recursive formula for computing the degree of any vertex is given.
In [4] vertices of degrees n, n− 1, n− 2 and n− 3 are explicitly described and the
degrees of vertices are used to investigate the domination number Γn. Finally in [3],
by deriving and solving a corresponding system of linear recurrences, the number of
vertices of any degree in Γn is presented and a direct approach to this problem by
considering degrees via the partition of V (Γn) into strings of any weight is given. In
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the last section of [3] a method using generating functions is also presented. In this
work we extend this approach to find Dn,k(d). As noted in [3] this method is more
involved and complicated as we are considering arbitrary k-dimensional hypercubes
instead of vertices. The recursive relation obtained for the number of vertices in Γn
of degree m in [3, Section 6] turns out to be contained in the specialization of our
formulation as Dn,0(d) = d (Dn−1,0(d) + Dn−2,0(d) + Dn−3,0(d))− d2Dn−3,0(d).
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Maximum independent sets near the upper boundTuesday
16.20-16.40

Ingo Schiermeyer

Technische Universität Bergakademie Freiberg, Germany

Ingo.Schiermeyer@tu-freiberg.de

The size of a largest independent set of vertices in a given graph G is denoted by
α(G) and is called its independence number (or stability number). Given a graph G
and an integer K, it is NP-complete to decide whether α(G) ≥ K. An upper bound
for the independence number α(G) of a given graph G with n vertices and m edges
is given by

α(G) ≤ p := b1
2

+
√

1
4

+ n2 − n− 2mc ([1]).

In this talk we will present the following results.

Theorem There exists an algorithm with time complexity O(n2) that, given as an

input a graph G with n vertices, m edges, p := b1
2

+
√

1
4

+ n2 − n− 2mc, and an

integer k ≥ 0, returns an induced subgraph G0 of G such that α(G) ≤ p− k if and
only if α(G0) ≤ p− k.

Theorem There exists an O(33k+1kn) fpt-algorithm (fixed parameter tractable) to
decide whether α(G0) ≤ p− k.
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Corollary Given as an input a graph G with n vertices, m edges, p := b1
2

+√
1
4

+ n2 − n− 2mc, and an integer k ≥ 0, it can be decided in time O(33k+1kn)

whether α(G) ≤ p− k.
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Fixed Parameter Tractable Algebraic Algorithm
for a Hamiltonian Graph Monday

15.20-15.40

Irene Sciriha

University of Malta, Malta

irene.sciriha-aquilina@um.edu.mt

To determine if a connected graph is Hamiltonian is NP–complete. We present
a fixed parameter tractable algorithm that, given the cyclomatic number of the
graph, we conclude whether the graph is Hamiltonian or not. The test depends on
the presence of a discriminating vector in the nullspace of the adjacency matrix of
the subdivision of the graph, derived from its walk matrix. The complexity of the
algorithm on an n-vertex graph with m edges is O(m− n)4.

On types of topological indices with respect to
their edge contribution function Tuesday

12.00-12.20

Jelena Sedlar

University of Split, Croatia

jsedlar@gradst.hr

(joint work with Damir Vukičević)

We introduce the ordering of tree graphs so that the star Sn is minimal, while the
path Pn is maximal. Topological indices are defined to be of Wiener or anti-Wiener
type, if they are increasing or decreasing functions with respect to the introduced
ordering. Obviously, this leads to the simple corollary that the minimal graph for
indices of Wiener type is Sn and the maximal graph is Pn. For indices of anti-Wiener
type the reverse holds. Then we introduce a simple criterion on an edge contribution
function of a topological index which enables us to establish if a topological index is
of Wiener or anti-Wiener type. Finally, we apply our result to several generalizations
of the Wiener index, such as modified Wiener indices, variable Wiener indices and
Steiner k−Wiener index.
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Nullity of Zero Divisor Graph of a Polynomial
RingThursday

11.20-11.40

Khidir R. Sharaf

University of Zakho, Iraq

khidirsharaf@yahoo.com

(joint work with Nihad T. Sarhan)

The zero divisor graph Γ(Rn(Zk[x])) of a polynomial quotient ring Rn(Zk[x]) =
Zk[x]/(M), where M is the principal ideal generated by the polynomial f(x) = xn+1

and Zk the ring of integers modulo k, is introduced.

Euler’s phi function φ(x) is used to determine the above mentioned zero divisor
graph. Also an infinite class of pairs of non-isomorphic rings with the same order
having isomorphic zero divisor graphs are created.

Loop zero divisor graphs Γo(R) for a commutative ring R are found, and some known
results for graphs are generalized to loop zero divisor graphs such as: cluster lemma,
end vertex corollary, and high zero sum weighting. These new generalized results
are applied to evaluate the nullity of the looped zero divisor graph and some of its
invariants.

Finally, if Γ(R) is a complete graph, then (Z(R))2 = 0 or R = Z2 × Z2. While, if
R 6= Z2 × Z2 with 2 /∈ Z∗(R), then Γo(R) is a totally looped complete graph if and
only if (Z(R))2 = 0.

A unifying approach to constructions of Cayley
graphs asymptotically approaching the Moore

bound for diameters 2 and 3Thursday
15.40-16.00

Jana Šiagiová

Slovak University of Technology, Slovakia

siagiova@math.sk

(joint work with Martin Bachratý and Jozef Širáň)

The degree-diameter problem is to determine the largest order of a graph of a given
maximum degree d and a given diameter k. The order of such a graph cannot
exceed the Moore bound M(d, k) that has the form dk + O(dk−1) for fixed k and
d→∞. It is well known (cf. [4]) that for d ≥ 3 and k ≥ 2 there are graphs of order
M(d, k) only if k = 2 and d is 3, 7 and possibly 57. On the other hand, quotients of
incidence graphs of generalized triangles, quadrangles, and hexagons by polarity [3]
yield graphs of maximum degree d and order d2 − O(d) for diameter 2 if d− 1 is a
prime power, order d3 − O(d2) for diameter 3 whenever d − 1 is a power of 2, and
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order d5 −O(d4) for diameter 5 if d− 1 is a power of 3. In all these cases, however,
the graphs are not even regular, and for diameter 2 they have been proved to be far
from vertex-transitive even after regularization [1].

This raised the question of whether or not there are vertex-transitive or Cayley
graphs of diameter k ∈ {2, 3, 5} for infinite sets of degrees d whose order divided by
M(d, k) tends to 1 as d→∞. Constructions of such families of Cayley graphs were
discovered recently in [5] for diameter 2 (with a geometric approach leading to the
same family developed in [1]), and in [2] for diameter 3; the case of diameter 5 is
still open.

In this contribution we outline a unifying approach to both constructions, based on
identification of suitable orbits of groups acting on graphs.
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Distance Magic Labelings of Distance Regular
Graphs Wednesday

11.20-11.40

Rinovia Simanjuntak

Institut Teknologi Bandung, Indonesia

rino@math.itb.ac.id

(joint work with I. Wayan Palton Anuwiksa)

For an arbitrary set of distances D ⊆ {0, 1, . . . , diam(G)}, a graph G is said to be D-
magic if there exists a bijection f : V (G)→ {1, 2, . . . , |V (G)|} and a constant k such
that for any vertex x,

∑
y∈ND(x)(y) = k, where ND(x) = {y ∈ V (G)|d(x, y) ∈ D}.

We define a D-distance graph of a graph G, denoted by ∆D(G), as the graph with
vertex set V (G) and edge set {{x, y}|dG(x, y) ∈ D}.

We shall search for D-magic distance regular graphs for various D by using several
methods, which include the spectrum of G and ∆D(G).
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Orientations in several rounds making k-cycles
cyclic at least onceMonday

15.20-15.40

Gábor Simonyi

Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary

simonyi.gabor@renyi.mta.hu

(joint work with Zita Helle)

Vera Sós asked in 1991 how many 3-edge-colorings of the complete graph Kn on
n vertices are needed if every triangle is made 3-colored in at least one of them.
Denoting this number with h(n) it is proven in [2], that

dlog3(n− 1)e ≤ h(n) ≤ dlog2 ne − 1

holds. The exact value is still unknown.

Here we consider an analogous question for orientations that we can fully answer.
Let t(n) denote the minimum number of orientations of the edges of Kn needed
to make every triangle cyclically oriented in at least one of them. A simple local
argument gives that t(n) ≥ dlog2(n−1)e. Unlike in the above case (where the lower
bound is obtained by a similar argument), here this simple lower bound turns out
to be sharp, that is, the following holds.

Theorem [1].
t(n) = dlog2(n− 1)e.

In fact, we prove the following more general statement.

Let t(n, k) denote the minimum number of orientations of the edges of Kn on vertex
set {v1, . . . , vn} such that for any k-subset {vi1 , . . . , vik} of the vertices with i1 <
i2 < · · · < ik, the cycle vi1 − vi2 − · · · − vik − vi1 is cyclically oriented in at least one
of them. Then the following generalization of the above theorem is true.

Theorem [1]. For every n ≥ k ≥ 3 we have

t(n, k) =

⌈
log2

n− 1

k − 2

⌉
.

References:

[1] Z. Helle, G. Simonyi, Orientations making k-cycles cyclic, Graphs and Combina-
torics 32 (2016) 2415–2423.

[2] J. Körner, G. Simonyi, Trifference, Studia Sci. Math. Hungar. 30 (1995) 95–103;
also in: W. A. Deuber and V. T. Sós (eds.), Combinatorics and its Applications to
the Regularity and Irregularity of Structures, Akadémiai Kiadó, Budapest (1995).
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Extremal questions for permutations Monday
16.40-17.00

Dániel Soltész

MTA Rényi Institute, Hungary

soltesz.daniel@renyi.mta.hu

(joint work with István Kovács)

This talk will be about questions of the following type. Suppose that there is a given
compatibility relation between two permutations.

What is the maximal number of pairwise compatible permutations?

For different compatibility relations we can get quite different questions. We will
mention a few examples like intersecting, t-intersecting, reversing and colliding per-
mutations. Even the maximal number of Hamiltonian paths in tournaments can be
regarded as a question of this type. By the natural correspondence between per-
mutations and Hamiltonian paths some of these questions can be formulated using
purely graph theoretic terms. In this talk we are interested in ones that can be
formulated using undirected Hamiltonian paths as follows.

What is the maximal number of pairwise compatible Hamiltonian paths of Kn?

Körner, Messuti and Simonyi observed that it is easy to determine the maximal
number of Hamiltonian paths of Kn where each pairwise union must contain an odd
cycle. They asked whether this is the same as the maximal number of Hamiltonian
paths of Kn where each pairwise union must contain a triangle. Their question
was motivated by examples for small n and several other questions in combinatorics
where asking something for odd cycles and triangles produces the same outcome.
We managed to answer the question affirmatively. In this talk we present the upper
bound (that is quite simple) and the main ideas of the construction. Our method
can be used to obtain similar but only asymptotic results for other odd cycles instead
of triangles. We conclude the talk with several open questions. Most of the results
mentioned can be found in [1].
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On the radius and the attachment number of
tetravalent half-arc-transitive graphsThursday

12.00-12.20

Primož Šparl

University of Ljubljana and University of Primorska, Slovenia

primoz.sparl@pef.uni-lj.si

It is well known that the action of a half-arc-transitive (sub)group of automorphisms
(that is vertex- and edge- but not arc-transitive) on a given graph Γ induces two
paired natural orientations of the edge-set of Γ. In the case that Γ is tetravalent this
gives rise to alternating cycles all of which have the same even length 2r. Moreover,
any two nonadjacent alternating cycles meet in the same number a of vertices. The
parameters r and a, known as the radius and the attachment number, respectively,
were introduced by Marušič [1] and play an important role in the investigation of
tetravalent graphs admitting a half-arc-transitive (sub)group of automorphisms. For
instance, the situation when a = r is very well understood and all tetravalent half-
arc-transitive graphs (the ones where the whole automorphism group of the graph
is half-arc-transitive) with this property have been classified [1,3].

In this talk we present some new results regarding the relationship between the pa-
rameters r and a. For instance, it is well known that a always divides 2r. However,
the census of all tetravalent half-arc-transitive graphs up to order 1000, recently
constructed by Potočnik, Spiga and Verret [2], shows that for all such graphs up
to order 1000, the attachment number a in fact divides r (while in the case of arc-
transitive graphs admitting a half-arc-transitive subgroup of automorphisms this is
not true in general). We show that this phenomenon occurs at least in all tetravalent
half-arc-transitive graphs (regardless of the order) for which a is twice an odd num-
ber. In addition, we completely characterize the (arc-transitive) tetravalent graphs
admitting a half-arc-transitive subgroup of automorphisms with r = 3 and a = 2,
and show that they in fact arise as certain non-sectional split covers, providing an
interesting way of constructing these otherwise rather elusive covers.
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On the zero forcing number of graphs with given
girth and minimum degree Monday

17.40-18.00

Sudeep Stephen

The University of Newcastle, Australia

sudeep.stephen@uon.edu.au

(joint work with Thomas Kalinowski and Randy Davila)

For a two-coloring of the vertex set of a simple graph G = (V,E), consider the
following color-change rule: a red vertex is converted to blue if it is the only red
neighbour of some blue vertex. A vertex set S ⊆ V is called zero-forcing if, starting
with the vertices in S blue and the vertices in the complement V \ S red, all the
vertices can be converted to blue by repeatedly applying the color-change rule. The
minimum cardinality of a zero-forcing set for the graph G is called the zero-forcing
number of G, denoted by Z(G). The main contribution of this paper is to prove
the following conjecture originally posed by Davila and Kenter in [2], and partially
resolved in [1, 2, 3, 4]; namely, if G is a graph with minimum degree δ ≥ 2 and girth
g ≥ 3, then Z(G) ≥ δ + (δ − 2)(g − 3).
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Mixed metric dimension of graphsThursday
17.20-17.40

Andrej Taranenko

University of Maribor, Slovenia

andrej.taranenko@um.si

(joint work with Aleksander Kelenc, Dorota Kuziak and Ismael G. Yero)

Let G = (V,E) be a connected graph. A vertex w ∈ V distinguishes two elements
(vertices or edges) x, y ∈ E ∪ V if dG(w, x) 6= dG(w, y). A set S of vertices in a
connected graph G is a mixed metric generator for G if every two elements (vertices
or edges) of G are distinguished by some vertex of S. The smallest cardinality of a
mixed metric generator for G is called the mixed metric dimension and is denoted
by mdim(G). In this talk we consider the structure of mixed metric generators and
characterize graphs for which the mixed metric dimension equals the trivial lower
and upper bounds. We also present results about the mixed metric dimension of
some families of graphs and provide an upper bound with respect to the girth of
a graph. Finally, we present some results about the complexity of the problem of
determining the mixed metric dimension of a graph, which is NP-hard in the general
case.

Edge-colourings of graphs - a personal viewTuesday
11.40-12.00

Bjarne Toft

University of Southern Denmark, Denmark

btoft@imada.sdu.dk

In 1977 Stanley Fiorini and Robin Wilson published a book Edge-colourings of
graphs (Pitman Research Notes in Mathematics 16) containing the first compre-
hensive exposition of edge-colouring theory. The book is stimulating and useful,
containing a wealth of information, including a complete bibliography of more than
200 works related to edge-colouring up to 1977. In 2012 a second book devoted
to edge-colouring appeared (Stiebitz et al., Graph Edge Coloring, Wiley 2012), and
there is also a more recent interesting survey by Jessica McDonald in (Topics in
Chromatic Graph Theory, ed. L.W. Beineke and R.J. Wilson, Cambridge Univ.
Press 2015).

Starting from the Fiorini-Wilson book the further development, leading to the Stieb-
itz et al. book, will be highlighted, in particular the (somewhat neglected) work of
Ram Prakash Gupta and the very important results and conjectures of Paul Sey-
mour. The conjecture of Mark Goldberg (also called the Goldberg-Seymour Conjec-
ture) (1970s) is still the most important unsolved problem in the area. Other famous
problems are the Berge-Fulkerson Conjecture (late 1970s) and the List-Chromatic-
Index Conjecture (1980s).
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Expanding expressive power of MSO logic:
algorithms for dense graph classes Thursday

16.20-16.40

Tomáš Toufar

Charles University, Czech Republic

toufi@iuuk.mff.cuni.cz

(joint work with Dušan Knop, Martin Koutecký and Tomáš Masař́ık)

A celebrated theorem of Courcelle [1] states that every property definable in monadic
second order logic (MSO) sentence can be decided in linear time on classes of graphs
of bounded treewidth. Inspired by this result, efficient model checking algorithms for
different classes of graphs (e.g. of bounded neighborhood diversity) have emerged [3].

An interesting question is whether we can expand the expressive power of MSO logic
while still retaining efficient algorithms. Different extensions have been studied
before. One such example is CardMSO logic introduced by Ganian [2]. In this
extension, we are allowed to place linear restrictions on the cardinalities of certain
sets. Another important example are local cardinality constraints introduced by
Szeider [4]. Here we are allowed to restrict the size of X ∩N(v) at each vertex.

We provide a unified approach to those extensions and we allow to use both kinds
of constraints at once. Furthermore, we study complexity of the kind of constraints
used by Ganian when we drop the linearity requirement.

We give an FPT algorithm with respect to neighborhood diversity for the case
where both global and local constraints are linear. To complement this, we show
that model checking for nonlinear CardMSO constraints is W[1]-hard with respect to
neighborhood diversity. Finally, we give an XP algorithm (running time nO(nd(G)))
for model checking for formula with both global and local constraints in their general
form.
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[2] R. Ganian, J. Obdržálek, Expanding the Expressive Power of Monadic Second-
Order Logic on Restricted Graph Classes, In Proc. of IWOCA 2013, LNCS 8288
(2013) 164–177.

[3] M. Lampis, Algorithmic Meta-theorems for Restrictions of Treewidth, Algorith-
mica 64 (1) 19–37

[4] S. Szeider, Monadic Second Order Logic on Graphs with Local Cardinality Con-
straints, In Proc. of MFCS 2008, LNCS 5162 (2008) 601–612.

127



Structural Properties of Resonance GraphsThursday
16.40-17.00

Niko Tratnik

University of Maribor, Slovenia

niko.tratnik@um.si, niko.tratnik@gmail.com

(joint work with Martina Berlič, Tomislav Došlić, Dong Ye and Petra Žigert
Pleteršek)

Let G be a molecular graph. The resonance graph R(G) is the graph whose vertices
are the perfect matchings of G, and two perfect matchings are adjacent whenever
their symmetric difference forms a hexagon of G. The concept of the resonance graph
appears quite naturally in the study of perfect matchings of molecular graphs of hy-
drocabons that represent Kekulé structures of corresponding hydrocarbon molecules.
The resonance graph of a molecular graph carries many important information on
Kekulé structures.

The concept of the resonance graph has been introduced for different families of
molecular graphs, for example benzenoid systems, carbon nanotubes, and fullerenes.

In the talk, some properties of resonance graphs will be considered, such as bipar-
titeness, connectedness, distributive lattice structure, equality of the Zhang-Zhang
polynomial and the cube polynomial, etc. Moreover, the differences according to
the specific family of molecular graphs will be presented.

Searching for digraphs with small excessThursday
16.40-17.00

James Tuite

Open University, UK

james.tuite@open.ac.uk

(joint work with Grahame Erskine)

The directed degree/diameter problem concerns the optimisation of the order of a
digraph G with maximum out-degree d and diameter k. This problem has appli-
cations in the design of efficient interconnection networks. A natural upper bound
on such a digraph is the Moore bound M(d, k) = 1 + d + d2 + ... + dk. A digraph
will meet this upper bound if and only if it is out-regular with degree d and for any
pair of vertices u, v there is exactly one directed path of length ≤ k from u to v.
Unfortunately, this is possible only in trivial cases [1]. It is therefore of interest to
investigate digraphs that in some sense approximate Moore digraphs.

Many authors have studied large digraphs with degree d and diameter k in which
paths of length ≤ k between two vertices are not necessarily unique. An alternative
approach which is receiving increasing attention is to ask for digraphs with minimum
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degree d which are k-geodetic (i.e. between any pair of vertices there is at most one
≤ k-path) and have order M(d, k) + ε for some small excess ε > 0 [2]; this can be
viewed as an analogue of the undirected degree/girth problem. In this talk I will
review existing results and present new lower bounds on such digraphs and some
methods of constructing small k-geodetic digraphs.
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[1] W. G. Bridges, S. Toueg, On the impossibility of directed Moore graphs, J.
Combinatorial Theory B 29 (1980) 339–341.
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Minimal alliances in graphs Thursday
11.20-11.40

Zsolt Tuza

MTA Rényi Institute and University of Pannonia, Hungary

tuza@dcs.uni-pannon.hu

(joint work with Cristina Bazgan and Henning Fernau)

As introduced in [1], a nonempty set S of vertices in a graph G = (V,E) is a
defensive alliance if every vertex v ∈ S satisfies the condition

|N [v] ∩ S| ≥ |N [v] ∩ (V \ S)|

where N [v] denotes the closed neighborhood of v. The notion of strong defensive
alliance is obtained by replacing N [v] with N(v), the open neighborhood of v. We
study the maximum of |S| for alliances S which are locally minimal (S \ {v} is not
an alliance for any v ∈ S), or globally minimal (no proper subset of S is an alliance).

Reference:
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On the minimum degree of minimally 1-tough
graphsMonday

11.40-12.00

Kitti Varga

Budapest University of Technology and Economics, Hungary

vkitti@cs.bme.hu

(joint work with Gyula Y. Katona and Dániel Soltész)

Let ω(G) denote the number of components of a graph G. A graph G is called
t-tough for a positive real number t, if ω(G− S) ≤ |S|/t for any cutset S of G. A
graph G is said to be minimally t-tough, if it is t-tough, but removing any of its
edges the resulting graph is no longer t-tough. Mader proved that every minimally
k-connected graph has a vertex of degree k. Kriesell conjectured an analogue of
Mader’s theorem: every minimally 1-tough graph has a vertex of degree two. First,
we show that the family of minimally t-tough graphs is rich, i.e. any graph can
be embedded as an induced subgraph into a minimally t-tough graph. Our main
result is that every minimally 1-tough graph of order n has a vertex of degree at
most n/3 + 1. We also examine the conjecture in a special case. Matthews and
Sumner proved that a noncomplete claw-free graph is 2t-connected if and only if it
is t-tough. Using this theorem we show that minimally 1-tough claw-free graphs are
cycles, which implies that in this graph family the conjecture is trivially true.

Self-Similar Polygonal TilingWednesday
11.20-11.40

Andrew Vince

University of Florida, USA

avince@ufl.edu

(joint work with Michael Barnsley)

The goal of the talk is to explain the combinatorics underlying tilings like those in
the figures below. In each tiling, the individual polygonal tiles are pairwise similar,
and there are only finitely many up to congruence. Each tiling is self-similar. None
of the tilings are periodic, yet each is quasiperiodic. Our method, based on rooted
labeled trees, is used to construct such tilings. It is a scheme that extends and
simplifies previous tiling constructions.

In the left figure, there are two similar tile shapes; in the right figure there are 6.
In the tiling of the entire plane, the part shown in the figure appears “everywhere,”
the phenomenon known as quasiperiodicity or repetitivity. Quasiperiodicity, less
stringent than periodicity, has gained considerable attention since the 1984 Nobel
Prize winning discovery of quasicrystals by Shechtman, Blech, Gratias, and Cahn.
Define a patch of a tiling T as a subset of T whose union is a topological disk. A
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tiling of the plane is quasiperiodic if, for any patch U , there is a number R > 0 such
that any disk of radius R contains, up to congruence, a copy of U . The tiling T
in the figure is self-similar in that there exists a similarity transformation φ of the
plane such that, for each tile t ∈ T , the “blown up” tile φ(t) = {φ(x) : x ∈ t} is
the disjoint union of the original tiles in T . In each of the two examples, there are
uncountably many such tilings using the same set of tiles.

There is a cornucopia of tilings of the plane possessing some sort of regularity. The
mathematical literature is replete with papers on the subject, for example the tilings
by regular polygons dating back at least to J. Kepler, tilings with large symmetry
group as studied by Grünbaum and Shephard and many others, and the aperiodic
Penrose tilings and their relatives. Self-similarity, in one form or another, has been
intensely studied over the past few decades — arising in the areas of fractal geometry,
Markov partitions, symbolic dynamics, radix representation, and wavelets. In this
talk, a novel method for the construction of self-similar polygonal tilings based on
labeled rooted trees will be discussed.

Non-adaptive versions of combinatorial group
testing and majority problems Friday

11.40-12.00

Mate Vizer

Alfréd Rényi Mathematical Institute, Hungary

vizermate@gmail.com

(joint work with Dániel Gerbner)

In the most basic model of combinatorial group testing Questioner needs to find a
special element (called defective) x ∈ [n] by asking a minimal number of queries of
type “is x ∈ F ⊂ [n]?”. The model is non-adaptive, if Questioner has to pose all the
queries at the beginning. The authors of [4] posed a new non-adaptive model, namely
they assume that any element knows the answer for those queries that contain it,
and require different goals to achieve by the elements. We investigate this kind
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of models and prove asymptotically sharp results on the cardinality of the optimal
query sets using results from [2] and [5].

A related search problem is the so called majority problem, where we are given [n]
(we call them indexed balls), each i ∈ [n] colored in some way unknown to us, and
we would like to find a majority ball or to show that there is no majority ball by
asking queries about subsets of [n] (i ∈ [n] is called majority ball if there are more
than n

2
balls in the input set that have the same color as i). Again, a model is

non-adaptive, if we have to pose all the queries at the beginning. For an intoductory
survey on majority problems see [1] and for more recent results see [3]. We provide
upper and lower bounds on the cardinality of optimal query sets for non-adaptive
models, where the cardinality of the queries is greater than 2.
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Flag-transitive block designs with automorphism
group Sn wr S2Monday

12.20-12.40

Tanja Vučičić

University of Split, Croatia

vucicic@pmfst.hr

(joint work with Snježana Braić and Joško Mandić)

Flag-transitive designs are designs that have an automorphism group acting transi-
tively on the set of ordered pairs of incident points and blocks. They are interesting
from the geometrical point of view for admitting a comparatively large automor-
phism group. In their construction different methods involving finite permutation
groups are applicable.

132



Theoretically, each nontrivial flag-transitive block design can be observed as the
substructure of a flag-transitive design whose full automorphism group is a maximal
subgroup of a symmetric or an alternating group. Accordingly, starting from that
design and its full automorphism group (of a rather large size), one can obtain flag-
transitive designs by descending down the lattice of subgroups of the full group,
considering ever smaller automorphism groups and then peeling back the arising
corresponding substructures by an appropriately established procedure. An example
of a group standing on the top of this procedure is the wreath product Sn wr S2 in
product action, which is a maximal subgroup for n ≥ 5.

In this talk we describe a construction of flag-transitive block designs with prod-
uct action of the automorphism group Sn wr S2, n ≤ 36. With n becoming too
large to admit direct calculations with all combinatorial possibilities in software
package MAGMA, we developed a specific approach to the construction by using
flag-transitive or weakly flag-transitive incidence structures in obtaining base blocks.
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On the minimum vertex cover of generalized
Petersen graphs Wednesday

11.40-12.00

David Wang

Beijing Institute of Technology, China

glw@bit.edu.cn

(joint work with Dannielle Jin)

Suppose that k ≥ 4 and n/ gcd(n, k) is odd. By using elementary number theory,
we show that the minimum vertex cover number of the generalized Petersen graph
P (n, k) equals to n+ 2 if and only if n ∈ {9, 2k + 2, 3k − 1, 3k + 1}.
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Congruences for the Number of Transversals and
Rainbow MatchingsMonday

11.20-11.40

Ian Wanless

Monash University, Australia

ian.wanless@monash.edu

(joint work with Darcy Best)

Consider a Latin square L, or equivalently a proper edge colouring CL of Kn,n using
n-colours. Let Ei be the number of perfect matchings that include exactly i different
colours in CL. Of greatest interest is En, the number of transversals of L, and the
number of rainbow matchings in CL.

We are interested in congruences involving the Ei and related quantities. In 1990,
Balasubramanian proved that En ≡ 0 mod 2 when n ≡ 0 mod 2. We have a
number of new results along the same lines; for example,

• En ≡ 0 mod 4 when n ≡ 2 mod 4, and

• E2k ≡ E2k−1 mod 2 for 1 6 k 6 n/2 when n ≡ 0 mod 2.

We also have a number of conjectures of similar flavour. In the course of our investi-
gations we discovered that the number of perfect matchings in a k-regular bipartite
graph on 2n vertices is divisible by 4 when n is odd and k ≡ 0 mod 4 (was this
previously known?).

Early milestones in the edge-colouring of graphsTuesday
11.20-11.40

Robin Wilson

Open University and the London School of Economics, UK

r.j.wilson@open.ac.uk

In this talk I present five ‘milestone’ papers in the edge-colouring of graphs that
preceded the work of Stanley Fiorini and others in the 1970s. These papers were
written by Peter Guthrie Tait (1880), Dénes König (1916), Claude Shannon (1949),
and V. G. Vizing (1964, 1965).
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Games of vertex coloring Thursday
16.20-16.40

Wing Hong Tony Wong

Kutztown University of Pennsylvania, USA

wong@kutztown.edu

(joint work with Diego Manzano-Ruiz)

There are many variations of graph coloring games. In this project, we discuss a
scenario where Alice and Barbara take turns to color the vertices of a given graph,
with Alice starting first, so that no adjacent vertices share the same color. The first
player who is unable to color a vertex loses the game. We consider the following
two versions: 1. Alice uses color A and Barbara uses color B; 2. both of them use a
common color C. Under both versions, we examine various families of graphs and
determine which player has a winning strategy. Examples of such families include
paths, cycles, rectangular grids, triangular grids, and Cayley graphs, etc. We also
prove some general assertions about all graphs. These games are closely related to
the Game of Col and Dawson’s Chess Game studied by Berlekamp, Conway, and
Guy.
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Colouring Σ-Hypergraphs Tuesday
17.20-17.40

Christina Zarb

University of Malta, Malta

christina.zarb@um.edu.mt

(joint work with Yair Caro and Josef Lauri)

Let V = {v1, v2, ..., vn} be a finite set, and let E = {E1, E2, ..., Em} be a family of
subsets of V . The pair H = (V,E) is called a hypergraph with vertex-set V (H) = V ,
and with edge-set E(H) = E. When all the subsets are of the same size r, we say
that H is an r-uniform hypergraph. Hypergraphs are generally viewed as a gener-
alisation of graphs, which are essentially 2-uniform hypergraphs. Several important
properties and results related to graphs have been generalised within the context of
hypergraphs, with interesting and sometimes unexpected outcomes. In this talk we
focus on hypergraph colouring. We look at different types of hypergraph colouring,
in particular Voloshin colourings, NMNR-colourings and (α, β)-colourings. Perhaps
one of the most interesting aspect of these types of colourings is that the chromatic
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spectrum can be broken, or have a gap, that is there can exist k1 < k2 < k3 such
that a hypergraph H is k1- and k3-colourable, but not k2-colourable.

We introduce a family of r-uniform hypergraphs — the σ-hypergraphs, and we
use these hypergraphs to investigate gaps in the chromatic spectrum, presenting
interesting results about the existence or non-existence of gaps in the chromatic
spectrum of σ-hypergraphs.

We then investigate the phenomenon of gaps further by introducing the notion of
Q-colourings, which can be used to describe various different types of colourings
of hypergraphs. We look at the necessary conditions required for the existence,
or not, of gaps in the chromatic spectrum of a particular type of colouring. For
this investigation, we extend the construction of σ-hypergraphs to the more general
Σ-hypergraphs.

Counting Symmetric BraceletsFriday
12.20-12.40

Yuliya Zelenyuk

University of the Witwatersrand, South Africa

yuliya.zelenyuk@wits.ac.za

An r-ary bracelet of length n is an equivalence class of r-colorings of vertices of
a regular n-gon, taking all rotations and reflections as equivalent. A bracelet is
symmetric if a corresponding coloring is invariant under some reflection. We show
that the number of symmetric r-ary bracelets of length n is 1

2
(r + 1)r

n
2 if n is even,

and r
n+1
2 if n is odd [1,2].
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The Sierpiński product of graphs Thursday
16.20-16.40

Sara Sabrina Zemljič

University of Iceland, Iceland

sara.zemljic@gmail.com

(joint work with Jurij Kovič, Tomaž Pisanski, Arjana Žitnik)

The family of Sierpiński graphs has been studied very often in the past few decades
for different reasons. One of them is definitely their relation to the famous Sierpiński
triangle fractal and their fractal-like structure. The main building blocks of Sierpiński
graphs are complete graphs and each next iteration is built in the fractal-like manner
of a complete graph. This idea was recently generalized to generalized Sierpiński
graphs, where instead of initially taking a complete graph, we start with an arbi-
trary graph G. Next iterations are then build in the same manner as graph G is
constructed.

We generalized this idea even further by defining a Sierpiński product of two ar-
bitrary graphs G and H, where we take |G| copies of graph H and connect these
according to edges in graph G. So intuitively we get a graph with local structure
like H, but global structure like G. That is if we contract all copies of H, we get
a copy of graph G. As most graph products this can be applied on any number of
factors and if all (say n) factors are complete graph Kp, then the resulting graph is
the Sierpiński graph Snp .

In the talk I will describe the Sierpiński product and related constructions, list some
of their basic properties and examples.
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Figure 2: The Sierpiński product of C3 and K4.
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Snježana 132
Brause

Christoph 40, 53
Brualdi

Richard A. 15
Buchanan

Iona 114
Bujtás

Csilla 41
Burger

Alewyn 59
Burgess

Andrea 114

C
Caputo

Jean Guy 42
Caro

Yair 15, 57, 135
Casablanca
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Éva 75

D
D’Antona

Ottavio M. 45
D. Tonchev

Vladimir 111
da Cruz

Henrique F. 47, 58, 61
Dahl

Geir 15
Dankelmann

Peter 18
Davila

Randy 125
Davoodi

Akbar 41
De Bruyn

Bart 48
de Freitas

M. A. 50
de Wet

Johan 49
De Winter

Stefaan 50
Del-Vecchio

Renata 50
Dereniowski

Dariusz 78
Desai

Dheer Noal Sunil 101
Deshpande

Charusheela 51
Diánez
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Péter 54

Erskine
Grahame 128

F
Fahd

Khawaja M. 35
Falcón
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Kovács
István 75, 123

Kovič
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Österg̊ard

Patric R. J. 78

P
Papp

143



László F. 99
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Soňa 102
Pavĺık
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Šiagiová
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