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Abstract i.e., systems whose coefficients periodically vary withiguér

In this paper we consider 2D single-input/single- 2 both in the horizontal and in the vertical direction.
output behaviors described by linear partial difference I
equations with (2,2)-periodically varying coefficientsida
present a method to obtain 2Roesser state-space rep- We define a two—dimensional (2D) single input/single out-
resentations (or realizations) for such behaviors. Since put (SISO) periodic behavidB as a set of 2D input/output

these cannot be obtained by separately realizing each shift trajectories(u, y), defined ovelN? and taking values if x R
invariant system resulting from “freezing” the varying h . A . £ h ) ’
coefficients, we propose a method based on the realization that satisfy an equation of the type:

f an invariant in havior in itabl . .. .
ifing the najecones o e oninal perioac benan (76 (71720) (1 3)=(ap (.2 ) ). (6NN ()
where 01 and o2 represent the usual 2D shifts (i.e.,
(o1v) (i,4) = v (i+1,7) and (o2v) (4,5) = v (i,7+1)), and,
for (i,j) € N?, PG, (21, 22) €R[z1, 22]\{0}, q(i5) (21, 22) €
In spite of the difficulty in defining solid notions qfast, R [z1,22] are 2D polynomials. Moreovep,; ;) andq; ;) are
future and state for systems evolving over multidimensionaisuch that
domains (where the independent variable has often no hatura P(i,j) = P(i+Pj) = P(,j+Q) )
evolution direction), the construction of first order repre 4(i,5) = 4(i+Pj) = 4(i,5+Q)>
sentations for multidimensional systems has deserved le‘@Qpectively, and wher® andQ are the smallest integers for
attention over the years. In the 2D case, the Fornasifjmich all the equalities occur.
Marchesini, [1], and thdroesser state-space models, [2], are  Thys, equation (1) is a 2D linear partial difference equatio
the most well-known first-order descriptions of quarteaf® \yith periodically varying coefficients, of periofP, Q). We
causal input/output 2D systems. shall say thafs is a 2D (P, Q)—periodic behavior and calP
Here, we consider input/output 2D systems defined oVghd() the horizontal and the vertical period, respectively. Note
N?, which are periodic in the sense that they are describ@ght a period equal to 1 means invariance of the coefficients
by linear partial difference equations whose coefficierts/Vv iy the corresponding (vertical or horizontal) direction.
periodically in the two directions of the domain. Such sgse  The question to be studied is whether or not the behavior
may be of particular interest for the design of 2D digitaly can be alternatively represented by means of aRBBsser

to vary periodically gives an extra degree of freedom that

can be advantageous, [3]. The construction of periodically [xh (i+1,j)] _ A, ) [ﬂfh (i’j)}jLB(i Puli,j)

. PRELIMINARIES

I. INTRODUCTION

time-varying first order representations (realizatiors) 2D z¥ (i,j+1) z" (i, )
periodic input/output systems, clearly plays an importah 2" (i, ) ®3)
in this context. y(i,5)=C (4,§) { v (,"7,)]+D(z',j)u(z',j)

x? (i, j

The aim of the present paper is to give a preliminary
contribution to the solution of the aforementioned redima \wherez" (i,§) € R™ is the horizontal state vectar’ (i, j) €

problem. In particular, following the ideas of [4], we praqgoa R™ is the vertical state vector, and(i, j), y (i,j) are the
method to obtain a 2D periodRoesser model representation input and the output, respectively. Moreover, the matrides
which consists in first determining an invariant input/autp B, ¢ and D, suitably decomposed as follows
system associated with the original periodic one, then ngaki o . .
A (i, ) AP (i, ) | B, g)
, Bl )= . .
B"(i, j) (4)

(if possible) an invariantRoesser model realization, and, A(3,5)

finally, obtaining a 2D periodicRoesser model from the ’ A (i, ) A (i, §)
invariant one. For the sake of simplicity, we shall focus on

single-input/single-output (SISQY, 2)—periodic 2D systems, C(i,j)= {C’l(i,j) C”(z’,j)} ,
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vary periodically with period(P, @), meaning that, for all state). On the other hand;; = (A1, B1,C1, D), with the
possible values of the horizontal and vertical discretéabdes matrices partitioned as above,

() 01 1
A(i,j)=A(i+P,j)=A(i,j+Q) A’fh:lo 0] , Bl = L , Ct=[1 0], D; =0,
B(i.j)=B (i+P.j)=B(i.j+Q) -
C(i,§)=C (i+P,j)=C (i, j+Q) and where all the other matrices are void, is a 2D invariant
. _ Roesser model (with empty vertical state) 6.
D D P,j)=D
(i:3)=D (i+P.j) (i +Q)- Consider now the 22, 1)—periodicRoesser modelX (-, -)
This model will be denoted by defined by the matriced (¢, j) = Ao, B (i,5)=Bo, C (i,j)=
Co, D(i,j) = Do, if i = 2¢, £ € N, and A(i,5) = Ay,
E(,):(A(,),B(,),C(,),D(,)) B(’L,j) = Bl, C(’L,j) = Cl, D(l,]) = Dl, if 1 = 2€+1,

¢eN. Computing the output trajectories generatedsbyy, -)

We say thatX (-,-) represents (or is @epresentation or L "
Y () rep ( ep for the initial condition

a realization of) 9% if the set of all possible input/output
trajectories of% (-, -) coincides with®B. o 1 _
It is well-known that, in the invariant case, a 2D SISO 0.) = » JEN
input/output behavior described by:
and for the inputu (i,j) = 1, (i,7) € N2, one obtains, for
p(o1,02)y =q(o1,02)u instance:

is representablg by a 2[R0essef model if an(?z ozn)ly.if y(0,0) = Cah (0,0) = 1 o] { 1 ] 1
the corresponding transfer-function(z1,z2) = ﬁ is 2

guarter-plane causal, see [2]. However, as shown in the 0) = Cha (1.0) = CF (APR2h (0.0) + BPu (0.0
following example, the representation of a 2D periodic (1,0) = Cya" (1,0) = €7 (42" (0,0) + Bgu (0,0))

behavior by means of a 2D periodRoesser model cannot =[1 0] ([ 0 1 } [ 1 } + [ 0 ] .1)
be obtained by individually realizing each invariant bebav -1 -1 2 1
obtained by “freezing” the periodically varying coefficten 1 0 { 2 ] _
= =
Example 2.1: Consider the(2, 1)—periodic 2D input/output ok b { Ahh o h h
behavior® described by: y(2,0) = Cga" (2,0) = Cg (AT"z" (1,0) + Byu (1,0))
_ 1o 0 1 2 1, (1],
(pii.j) (01,02) ) (i, §) = (g0, (01, 02) u) (i, 4), (i,7)EN? 0 0 -2 1
. —1
with = = —
o [ ) ] .
_ 2 —
P (01,02)=01+01+1, g (01,02) =1 However, using the initial input/output description foetdD
P(1,0) (01,00) =07 , qa,0) (01,02)=01+1, (2, 1)—periodic behaviof8, one has:
and, fork = 0,1, denote byB,, the invariant input/output (P©.0) (71,02) ¥) (0,0)=(4(0.0) (71, 02) u) (0,0)
behavior described by which vyields:
(Pr0)(01,02)y) (4, 5) = (qei,0) (01, 02) w) (4,5), (i,§)EN?. [(o7+01+1)y] (0,0)=[1-u](0,0)

Note that the 2D periodic behavi@ as well as the invariant or, equivalently:
behaviors®B, and B, only have dynamics in the horizontal
direction. Therefore each of them can be regarded as coupled y(2,0)4y (1,0)+y (0,0)=(0,0)
1D systems evolving along horizontal lines according to the

same laws, but possibly with different initial conditionis y(2,0)=—y(1,0)—y (0,0)+u(0,0).
not difficult to check that, = (Ao, By, Co, Do) with ) )
Using the previously calculated valug$0,0)=1, y (1,0) =
AR Al Bl and the given value for, u (0,0)=1, one obtains:
e S e RS ] 9 »00)
0" Ao By y(2,0)=—2—1+1=-2%#—1. o
hh 0 1 A 0
Ap" = 1 —1l” By = 1 , Gy = [1 0] Do =0, In this way, we conclude that a 2D periodRoesser

representation of a 2D periodic behavior cannot be deriyed b
and where all the other matrices are void, is a 2D invariatite naive procedure presented in the previous example.
Roesser model representation o3, (with empty vertical



Following the ideas of [4], an alternative procedure is tand

obtain an invariant formulation of the original 20P, Q)—

periodic behavior, determine (if possible) a 2D invariant
Roesser model representation of the obtained invariant behav-

ior, and finally try to obtain a 20 P, Q)—periodic Roesser
model representation from the invariant one.

I1l. | NVARIANT FORMULATIONS

y(2k, 20)
y(2k + 1,20)
y(2k, 20+ 1)

y(2k + 1,20+ 1)

Y (k, () = (10b)

are thelifted trajectories corresponding t@ and y, respec-
tively, (notice the replacement of the shifts (i=1,2) by

For the sake of simplicity we consider only the cas@: (i=1,2), due to the change of independent variable). This

P =2 = Q. In this case, letting; = 0,1, with i = 1,2,

defines an invariant 2D input/output behavi which is

the periodic input/output equations defining® 2)—periodic called theinvariant formulation, or the lifted version, of B.

input/output behaviof can be rewritten as

(P(t1,t) (01, 02) y) (2K + t1,20 + t5)
= (Q(tl,tz) (01,02)U) (2k +t1,20+t3), (6)

with &, /€N. This is equivalent to

P(0,0) (01,09)
P@,0) (01,02) 01
P(o,1) (01,02) 02

P, (01,02) 0102

y (2k, 20)

P(o1,02)
4(0,0) (01,02)
01,02)0
_ | o lonoz)on u (2K, 20),
4(0,1) (01,02) 02

4(1,1) (01,02) 0102

(7)

Q(o1,02)

Clearly, an input/output trajectorft:, y) belongs to% if and
only if the corresponding lifted trajector§/, Y") belongs to
BL.

Now, the equations of th€2, 2)—periodic Roesser model
can be rewritten as:

o (2k+t1+1,26+t2)
2V (2k+t1,20+ta+1)

[ (2k 411,20+ t5))]
_x” (2k/’+ﬁ1,2€+f2)_
+B(t1 ,t2) u(2kz+t1,2€+t2)

= A(ty,t2)

_ . (11
2l (2k+t1 ,2[—|—t2)

_.I}U(Qk—l—tl,Qf—f—tQ)_
+D(t1,t2) u(2k+t1,2€+t2)

wherek,feN, andt; = 0,1 (¢ = 1,2), and the matricest,
B, C and D are decomposed as in (4). Denote

A(0,0):Al X A(LO):AQ
A(0,1)=:45; A(1,1)=:A4

and likewise for all the other matrices.

y(2k/’+f1,2€+ﬁ2) = C(ﬁl,fg)

(12)

with k,/ € N. Decomposing the polynomials columns With the purpose of obtaining an invariant formulation of

P (2’1, 22) and Q (21, 2’2) as

Pam) =PH (S |

(8a)
L 2122 -

and

Q (Zla 22) = QL ('Z%a Z%) o )

zZ2

(8b)

| ?1%2 |
(7) can be written as:
(PE(o1,02)Y) (k, €)= (Q"(01,02)U) (k. €), k,LEN, (9)
where
u(2k, 20)
u(2k 4 1,20)

u(2k,20+1)
w(2k +1,20+ 1)

Uk, 0) = (10a)

(11), following the ideas of [5], we now define lifted versfon
of the horizontal and vertical states as:

B 2" (2k, 20)
Xh(k’ﬂ)_[ (2K, 20+ 1) ] (132)
and
. B x? (2K, 20)
X (k’g){ ¥ (2k + 1,20) ] ’ (13b)

respectively, and considérf (k,¢) andY (k,¢) as previously
defined in egs. (10a) and (10b). This yields the followingéin
2D shift-invariantRoesser model

Xhkr1,0] [ X" (k0
[X”(k,ul)]F{X”(k,e)]ww’@’ »
XP (k, 0) (14)
Y(k,ﬁ)H[ X (0 } LU (k,0)

where matricest’, G, H and J are constant and can be
decomposed as follows

th Fhv Gh
F: h s G:

FU FU'U G’U (15)
H= {H’L H”} ,



with the size of the blocks is determined by the sizesXdf
and X", and, moreover:

o A AR 0
- AZhAgLvAilzh+AZvA121hA}1Lh AZhAth ]
e Althgl Al
| AbrAbvAye 4 AlvAghAl AlAge |
th: Aé}vAvljh Agh
AhALAYh 4 AYASRATR AghALR |
s ASUAYY 0 |
| ASRARRAY 4 ARRASRALY AAYY |
o ALhBh Bh 0 0
A AL By A Ay BY AlvBY ARMBE Bl
o AYBY 0 By 0
AR AByrAASBY AYBY AY'BY Bj| (16)
ch 0 ]
o ChaAbh 0
C3AY" ch
CLRARAYh +CRASRAYY CRARM |
cy 0 ]
. Cpaby Cy
- C3AYY 0
CRALPATY +CASAY  CPAYY |
and
Dy 0 0 0
S ChBy Dy 0 0
CyBY 0 D3 0

CrAL'BY+CRAS"BY  CyBy CyBY D,

We shall denote this invariant lifted model bg> =
(F,G,H,J), and say that’ is induced by the original model

% (-, +), or equivalently, that (-, ) induces X%

IV. (2,2)—PERIODIC Roesser REPRESENTATIONS

In this section we investigate the questions of determining

whether a given 2D invariafRoesser model is or not induced

sizes2n;, and2n,, respectively) and define the,+n, + 1)—
square matrix

B Ry G
M:=| Fg! Fgy 5 (17)
Hy  Hy  Jn

where FLI, FRv Feh Fye, GBy, Gy, HYy, HY,, and Jy
are defined in the obvious way by the block—divisions in (16),
more concretely:

[ Y FYS }::F'* [ G, Gl Gis Gl -::G*

| F5T F5S G5 Gy Giz Giy |

[ HY, Hfy Ju Jiz Jiz Jia | (18)
H3,  Hj g Jor Jaz Jaz Jaa _.J
H3  H, J31 Ja2 Jiz Jsg

| Hi Hi Ju Ja2 Jaz Jua

where each of the symboks and x represents eithel or v.
Note thatM can be factored as

hv Avh hh Ahv ]
Alv Agh | Alh AR

by a SISO(2, 2)—periodic one, and of obtaining a correspond®f SiZ€ (21 +7,+2) X (15 +7n,+1)), and

ing inducing (2, 2)—periodic Roesser model in the case the
answer to the previous question is positive.

For this purpose, consider tli2, 2)—periodicRoesser model
(11), with horizontal and vertical states of sizes and n,,
respectively. Consider also the corresponding (induaeai-
ant representation (14) (with horizontal and vertical egadf

ARG
M= | A A5k | Ak ALY !
CyAgh | chabe | LAY AP ‘ By | )¢
np+n, columns
R, }nh rows
= |: L1 | LQ i|
A~ R }nv rows
np Ty -
columns columns
Ri1 | Ripo
= |: L1 | LQ i|
Roq1 | Rap
implying that
rank M < ny + n, .
Consider now matriced1; and M, defined as follows:
Py Py G
h v
M= | Haoo o I (19a)
LR,
Fy Ry GY
h v
M= | ot M (19b)
LoRy



(of size (2n,+np+2) x (np+n,+1)). It is not difficult to
see that these matrices can be factored as

Alh
Ch
Ml = 2 |: Rl,l | Rl,g :| (203)
Ly
N——
nyp columns
and
AV
_| C3
My = Ry 4 | Ryo |, (20b)
Lo
n, columns
allowing us to conclude that
rank M1 <np and rank My < n, .
Finally, consider thén;, 4+ n, + 1)—square matrices
[ By GYy
M3 = F21/2h L4 53 (Zla)
| Hi Jus
and
[ By Gh
My:= Lo 5y 59 (21b)
L HYy  Jao
These matrices can be factored as
Abh
Ms = At [ Abh Abv | Bb } s
Cy
np columns
and
Al
AU’U 3
M — 4 Avh Avv BY :| i
L A e o
Cy
N——
n, columns

respectively, implying that
rank M3 <n; and rank My < n, .

Conversely, let nows be a(2,2)—periodic SISO 2D be-

havior, let®” be the corresponding lifted invariant behaviofnd

and assume that’ = (F,G, H, J) is a 2D invariantRoesser

model representation 8%, where the horizontal state vector
X" and the vertical state vectdf” have both an even number

of components, sagn; and 2n,, respectively, and where
the input U and the outputY” have both 4 components.

Furthermore, decompose matricés G, H and.J as in (18).
Define the matrixM as in equation (17), and assume that

rank/T/lJ < np + ny.
Decompose this matrix as
Ry

M= Ly | Lo | |— (23)
Ry

where the block-matrices; and L, haven;, andn,, columns,
respectively, while block-matriceR, and R, haven, andn,
rows, respectively. .

Now, define matriced{; and M, similarly to what is done
for M; and M, in equations egs. (19a) and (19b), but using
the matricesly, Ly, R; and R, obtained in (23) instead of
Ly, Lo, Ry and R, respectively. Assume that

rankﬂl <np and rankﬂg < Ny
and decompose
- ?1 :
]\}l“l —. M§,2

| M My, | @

V14
| Mis |
N————
np columns

and
T
M3,

M=t | Mo |[ R, | s, | (2ab)

IV
| M3z |
n, columns
where M ; is a (ny)-square matrixM3 ; is a (n,)-square
matrix while M{ , and M{ , are row matrices and7 , and

5 o are column matrices.

Finally, define matricegqg and M, similarly to what is
done for M3 and M, in equations egs. (21a) and (21b) but
using the matrices/\/l‘{,3 and /\/lg”g instead of L; and Lo,
respectively. Assume that

rank M3 <np and rank My < n,
and decompose
-~y
Ms 4

M; =: [ Mg, | M, } (25a)

V14
| Mz, |
———
np, columns
T
M4
M4 =:

{ My | M, } (25b)

M

L 4,2 |
N————
n, columns



Where//\/lvé2 and/i/lvfi,2 are row matrices Whilei/lvg,2 and//\/lvél2 When the conditions of Theorem 4.1 are satisfied, a 2D
are column matrices. (2,2)—periodicRoesser model (-, -) that inducesa” can be

Now, assume that, in decomposition (18), the blockdetermined as explained in the considerations precediag th
FPh, FY, Gh, GY, GY., GY,, HPY, HLY, HY,, HY,, theorem. Now, ifB is a 2D (2, 2)—periodic behavior whose
Ji2, J13, J14, Jos, Joa, J32 and Jz4 are null, and define a lifted version B’ is represented byl it is clear that the
(2, 2)—periodic SISORoesser model of dimensior{n;, +n,) set of input/output trajectories generated By-, -) coincides
XC¢,)=(A(,),B(,-),C(,),D(,-)), where the matri- with the (2,2)-periodic behavior. In other wordg, (-, -) is a
ces in egs. (3) and (4) are given by: (2,2)—periodic Roesser model representation dB, and our
goal of realizing® has been achieved.

Nr Mr
[ A(0,0) | B(0,0) ] = l Nj_’l ‘ /T/T:"Q 1
21 2,2 V. CONCLUSION
[ C(0,0)| D(0,0) | =[ HYy H}y | Jin | This paper is a first step for the development of a realization
N procedure of periodic 2D behaviors by means of periodic 2D
Mfl Fly G, Roesser models. Although we have considered the simpler
[ A(L,0) | B(L,0) |=|-------~ - SISO (2, 2)—periodic case, the presented procedure can be
i T easily generalized for MIMO systems. The generalization to
4,1 4,2

arbitrary periodg P, Q) is also possible, although much more
involved.
Even in the simple considered case, several questions were
(26) left open. The first one is to determine conditions on the

M3 3,2 periodic input/output behavio®3 under which the invariant
[ A(0,1) | B(0O,1) |=|-------- I formulationB” is a quarter-plane causal input/output system
FYb M§,1 GY, with inputs «* and outputgy™ (and hence admits Roesser

model realization with such inputs and outputs). Anothersju
tion has to do with what happens when the invarido¢sser
realizationX” of the lifted version® turns out not to be
induced by any periodiRoesser realization. This problem has
been solved in [4] for the 1D case, but, although we conjectur
that a similar procedure can be used here, its implementatio
in the 2D case will certainly be far more complicated. An
. . equally interesting open problem is related to the quesiion
[C(,1) | D11 ] = [ Mfm /\/lfl_,2 ‘ Jaa } ; minimality: will minimal invariant realizations= originate
(where the matrices are suitably partitioned accordinche® ¢minimal periodic realizations (-, )? Due to the difficulty

sizes of the horizontal statew(), the vertical stater(,), the in characterizing minimality for gener&oesser models, this

input (1) and the output (1)). It is not difficult to check thaguestionL ;hould be easier to answer in the particular. case
the obtained(2, 2)—periodic Roesser model S (-,-) induces where X% is a Roesser model of separable type (for which

the invariantRoesser representatiorc’ of B~. minimality is easier u_nderstood). ) , )
These open questions are currently being studied and will

This leads to the following result. be reported in future work.

[ A(Ll) | B(lal) ] = [ '//Vlvg,l Mi,l

and

Theorem 4.1: Let ©X = (F,G, H,J) be a 2D invariant
Roesser model. Thenx” is induced by a 202, 2)—periodic
SISO Roesser model if and only if the following conditions [1] E. Fornasini and G. Marchesini, “Doubly-indexed dyneati systems:

REFERENCES

are satisfied: tShtate—spalcelzmodeli; andsstrggtulrggspropertiemathemalicaJ systems
I . . eory, vol. 12, no. 1, pp. 59-72, .
1) In X%, the horizontal state has sizn, (for some [2] R. Roesser, “A discrete state-space model for lineargenprocessing,”

ny €N), the vertical state has si2e., (for somen,, €N); IEEE Transactions on Automatic Control, vol. 20, no. 1, pp. 1-10, Feb

moreover the number of inputs and the number ofoutputss é97c5-M . i 3 two-dimensional st I
are equal to 4. [3] D. C. McLernon, “Time-varying two-dimensional statpege structures,

IEE Proceedings - Circuits, Devices and Systems, vol. 142, no. 2, pp.

2) Considering the previously defined notations: 120-124, Apr 1995.

2.1) rank M < ny+n [4] J. C. Aleixo, P. Rocha, and J. C. Willems, “State spaceeasgntation
) = Bt _ of siso periodic behaviors,” ifProceedings of the 50th IEEE Conference

2.2) rank M; < np andrank Mo < n, on Decision & Control, and the European Control Conference - CDC-

—~ — ECC'11, Orlando, FL, USA, 2011, pp. 1545-1550.
2.3) rank M3 < nj andrank My < ny, [5] S.Rajan, K. S. Joo, and T. Bose, “Analysis of 2-d stataespperiodically
hh h h h h shift-variant discrete systemsCircuits, ems and Sgnal Processing,
2.4) Fl, Py, Gly, Gy, Gy, Gy, Hiy, Hip, Hi, Vs, 006 T ¢ ?

vol. 15, no. 3, pp. 395-413, 1996.
H%,, Ji2, J13, Jia, J23, Jos, J32 and Ja4 are null

matrices. <&



