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Abstract

In this paper we consider 2D single-input/single-
output behaviors described by linear partial difference
equations with (2,2)-periodically varying coefficients, and
present a method to obtain 2DRoesser state-space rep-
resentations (or realizations) for such behaviors. Since
these cannot be obtained by separately realizing each shift-
invariant system resulting from “freezing” the varying
coefficients, we propose a method based on the realization
of an invariant input/output behavior obtained by suitably
“lifting” the trajectories of the original periodic behavior.

I. I NTRODUCTION

In spite of the difficulty in defining solid notions ofpast,
future and state for systems evolving over multidimensional
domains (where the independent variable has often no natural
evolution direction), the construction of first order repre-
sentations for multidimensional systems has deserved much
attention over the years. In the 2D case, the Fornasini–
Marchesini, [1], and theRoesser state-space models, [2], are
the most well-known first-order descriptions of quarter-plane
causal input/output 2D systems.

Here, we consider input/output 2D systems defined over
N

2, which are periodic in the sense that they are described
by linear partial difference equations whose coefficients vary
periodically in the two directions of the domain. Such systems
may be of particular interest for the design of 2D digital
filters, where the option of allowing the filter coefficients
to vary periodically gives an extra degree of freedom that
can be advantageous, [3]. The construction of periodically
time-varying first order representations (realizations) for 2D
periodic input/output systems, clearly plays an importantrole
in this context.

The aim of the present paper is to give a preliminary
contribution to the solution of the aforementioned realization
problem. In particular, following the ideas of [4], we propose a
method to obtain a 2D periodicRoesser model representation
which consists in first determining an invariant input/output
system associated with the original periodic one, then making
(if possible) an invariantRoesser model realization, and,
finally, obtaining a 2D periodicRoesser model from the
invariant one. For the sake of simplicity, we shall focus on
single-input/single-output (SISO)(2, 2)–periodic 2D systems,

i.e., systems whose coefficients periodically vary with period
2 both in the horizontal and in the vertical direction.

II. PRELIMINARIES

We define a two–dimensional (2D) single input/single out-
put (SISO) periodic behaviorB as a set of 2D input/output
trajectories(u, y), defined overN2 and taking values inR×R,
that satisfy an equation of the type:
(
p(i,j)(σ1,σ2)y

)
(i, j)=

(
q(i,j)(σ1,σ2)u

)
(i, j) , (i, j)∈N2, (1)

where σ1 and σ2 represent the usual 2D shifts (i.e.,
(σ1v) (i, j) = v (i+1, j) and (σ2v) (i, j) = v (i, j+1)), and,
for (i, j)∈N

2, p(i,j) (z1, z2)∈R [z1, z2]\{0}, q(i,j) (z1, z2)∈
R [z1, z2] are 2D polynomials. Moreover,p(i,j) and q(i,j) are
such that

p(i,j) = p(i+P,j) = p(i,j+Q)

q(i,j) = q(i+P,j) = q(i,j+Q),
(2)

respectively, and whereP andQ are the smallest integers for
which all the equalities occur.

Thus, equation (1) is a 2D linear partial difference equation
with periodically varying coefficients, of period(P,Q). We
shall say thatB is a 2D(P,Q)–periodic behavior and callP
andQ the horizontal and the vertical period, respectively. Note
that a period equal to 1 means invariance of the coefficients
in the corresponding (vertical or horizontal) direction.

The question to be studied is whether or not the behavior
B can be alternatively represented by means of a 2DRoesser
model with (P,Q)–periodically varying coefficients:

[
xh (i+1, j)

xv (i, j+1)

]
=A (i, j)

[
xh (i, j)

xv (i, j)

]
+B (i, j)u (i, j)

y (i, j)=C (i, j)

[
xh (i, j)

xv (i, j)

]
+D (i, j)u (i, j)

(3)

wherexh (i, j) ∈ R
nh is the horizontal state vector,xv (i, j) ∈

R
nv is the vertical state vector, andu (i, j), y (i, j) are the

input and the output, respectively. Moreover, the matricesA,
B, C andD, suitably decomposed as follows

A(i, j)=

[
Ahh(i, j) Ahv(i, j)

Avh(i, j) Avv(i, j)

]
, B(i, j)=

[
Bh(i, j)

Bv(i, j)

]

C(i, j)=
[
Ch(i, j) Cv(i, j)

]
,

(4)
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vary periodically with period(P,Q), meaning that, for all
possible values of the horizontal and vertical discrete variables
(i, j),

A (i, j)=A (i+P, j)=A (i, j+Q)

B (i, j)=B (i+P, j)=B (i, j+Q)

C (i, j)=C (i+P, j)=C (i, j+Q)

D (i, j)=D (i+P, j)=D (i, j+Q) .

(5)

This model will be denoted by

Σ (·, ·)=(A (·, ·) , B (·, ·) , C (·, ·) , D (·, ·)) .

We say thatΣ (·, ·) represents (or is arepresentation or
a realization of) B if the set of all possible input/output
trajectories ofΣ (·, ·) coincides withB.

It is well-known that, in the invariant case, a 2D SISO
input/output behavior described by:

p (σ1, σ2) y = q (σ1, σ2)u

is representable by a 2DRoesser model if and only if
the corresponding transfer-functiong (z1, z2) = q(z1,z2)

p(z1,z2)
is

quarter-plane causal, see [2]. However, as shown in the
following example, the representation of a 2D periodic
behavior by means of a 2D periodicRoesser model cannot
be obtained by individually realizing each invariant behavior
obtained by “freezing” the periodically varying coefficients.

Example 2.1: Consider the(2, 1)–periodic 2D input/output
behaviorB described by:
(
p(i,j) (σ1, σ2) y

)
(i, j)=

(
q(i,j) (σ1, σ2)u

)
(i, j) , (i, j)∈N

2

with

p(0,0) (σ1, σ2)=σ2
1+σ1+1 , q(0,0) (σ1, σ2)=1

p(1,0) (σ1, σ2)=σ2
1 , q(1,0) (σ1, σ2)=σ1+1 ,

and, for k = 0, 1, denote byBk the invariant input/output
behavior described by
(
p(k,0)(σ1, σ2) y

)
(i, j)=

(
q(k,0)(σ1, σ2)u

)
(i, j) , (i, j)∈N

2 .

Note that the 2D periodic behaviorB as well as the invariant
behaviorsB0 andB1 only have dynamics in the horizontal
direction. Therefore each of them can be regarded as coupled
1D systems evolving along horizontal lines according to the
same laws, but possibly with different initial conditions.It is
not difficult to check thatΣ0=(A0, B0, C0, D0) with

A0=

[
Ahh

0 Ahv
0

Avh
0 Avv

0

]
, B0=

[
Bh

0

Bv
0

]
, C0=

[
Ch

0 Cv
0

]
,

Ahh
0 =

[
0 1

−1 −1

]
, Bh

0 =

[
0

1

]
, Ch

0 =
[
1 0

]
, D0 = 0,

and where all the other matrices are void, is a 2D invariant
Roesser model representation ofB0 (with empty vertical

state). On the other hand,Σ1 = (A1, B1, C1, D1), with the
matrices partitioned as above,

Ahh
1 =

[
0 1

0 0

]
, Bh

1 =

[
1

1

]
, Ch

1 =
[
1 0

]
, D1 = 0,

and where all the other matrices are void, is a 2D invariant
Roesser model (with empty vertical state) ofB1.

Consider now the 2D(2, 1)–periodicRoesser modelΣ (·, ·)
defined by the matricesA (i, j)=A0, B (i, j)=B0, C (i, j)=
C0, D (i, j) = D0, if i = 2ℓ, ℓ ∈ N, and A (i, j) = A1,
B (i, j) = B1, C (i, j) = C1, D (i, j) = D1, if i = 2ℓ+1,
ℓ∈N. Computing the output trajectories generated byΣ (·, ·)
for the initial condition

xh (0, j) =

[
1

2

]
, j ∈ N,

and for the inputu (i, j) ≡ 1, (i, j) ∈ N
2, one obtains, for

instance:

y (0, 0) = Ch
0 x

h (0, 0) =
[
1 0

] [ 1
2

]
= 1 ,

y (1, 0) = Ch
1 x

h (1, 0) = Ch
1

(
Ahh

0 xh (0, 0) +Bh
0u (0, 0)

)

=
[
1 0

]([ 0 1
−1 −1

][
1
2

]
+

[
0
1

]
· 1

)

=
[
1 0

] [ 2
−2

]
= 2 ,

y (2, 0) = Ch
0 x

h (2, 0) = Ch
0

(
Ahh

1 xh (1, 0) +Bh
1u (1, 0)

)

=
[
1 0

]([ 0 1
0 0

][
2
−2

]
+

[
1
1

]
· 1

)

=
[
1 0

] [ −1
1

]
= −1 .

However, using the initial input/output description for the 2D
(2, 1)–periodic behaviorB, one has:

(
p(0,0) (σ1, σ2) y

)
(0, 0)=

(
q(0,0) (σ1, σ2)u

)
(0, 0)

which yields:
[(
σ2
1+σ1+1

)
y
]
(0, 0)=[1 · u] (0, 0)

or, equivalently:

y (2, 0)+y (1, 0)+y (0, 0)=u (0, 0)

i.e.,
y (2, 0)=−y (1, 0)−y (0, 0)+u (0, 0) .

Using the previously calculated valuesy (0, 0)=1, y (1, 0)=2
and the given value foru, u (0, 0)=1, one obtains:

y (2, 0) = −2− 1 + 1 = −2 6= −1.
⋄

In this way, we conclude that a 2D periodicRoesser
representation of a 2D periodic behavior cannot be derived by
the naive procedure presented in the previous example.



Following the ideas of [4], an alternative procedure is to
obtain an invariant formulation of the original 2D(P,Q)–
periodic behavior, determine (if possible) a 2D invariant
Roesser model representation of the obtained invariant behav-
ior, and finally try to obtain a 2D(P,Q)–periodic Roesser
model representation from the invariant one.

III. I NVARIANT FORMULATIONS

For the sake of simplicity we consider only the case
P = 2 = Q. In this case, lettingti = 0, 1, with i = 1, 2,
the periodic input/output equations defining a(2, 2)–periodic
input/output behaviorB can be rewritten as

(
p(t1,t2) (σ1, σ2) y

)
(2k + t1, 2ℓ+ t2)

=
(
q(t1,t2) (σ1, σ2)u

)
(2k + t1, 2ℓ+ t2) , (6)

with k, ℓ∈N. This is equivalent to




p(0,0) (σ1, σ2)

p(1,0) (σ1, σ2)σ1

p(0,1) (σ1, σ2)σ2

p(1,1) (σ1, σ2)σ1σ2




︸ ︷︷ ︸
P(σ1,σ2)

y (2k, 2ℓ)

=




q(0,0) (σ1, σ2)

q(1,0) (σ1, σ2)σ1

q(0,1) (σ1, σ2)σ2

q(1,1) (σ1, σ2)σ1σ2




︸ ︷︷ ︸
Q(σ1,σ2)

u (2k, 2ℓ) , (7)

with k, ℓ ∈ N. Decomposing the polynomials columns
P (z1, z2) andQ (z1, z2) as

P (z1, z2) = PL
(
z21 , z

2
2

)




1

z1

z2

z1z2


 (8a)

and

Q (z1, z2) = QL
(
z21 , z

2
2

)




1

z1

z2

z1z2


 , (8b)

(7) can be written as:
(
PL(σ1, σ2)Y

)
(k, ℓ)=

(
QL(σ1, σ2)U

)
(k, ℓ) , k, ℓ∈N, (9)

where

U(k, ℓ) =




u(2k, 2ℓ)

u(2k + 1, 2ℓ)

u(2k, 2ℓ+ 1)

u(2k + 1, 2ℓ+ 1)


 (10a)

and

Y (k, ℓ) =




y(2k, 2ℓ)

y(2k + 1, 2ℓ)

y(2k, 2ℓ+ 1)

y(2k + 1, 2ℓ+ 1)


 (10b)

are thelifted trajectories corresponding tou and y, respec-
tively, (notice the replacement of the shiftsσ2

i (i=1,2) by
σi (i=1,2), due to the change of independent variable). This
defines an invariant 2D input/output behaviorB

L which is
called theinvariant formulation, or the lifted version, of B.
Clearly, an input/output trajectory(u, y) belongs toB if and
only if the corresponding lifted trajectory(U, Y ) belongs to
B

L.
Now, the equations of the(2, 2)–periodic Roesser model

can be rewritten as:
[
xh(2k+t1+1,2ℓ+t2)

xv(2k+t1,2ℓ+t2+1)

]
=A(t1,t2)

[
xh(2k+t1,2ℓ+t2)

xv(2k+t1,2ℓ+t2)

]

+B(t1,t2)u(2k+t1,2ℓ+t2)

y(2k+t1,2ℓ+t2)=C(t1,t2)

[
xh(2k+t1,2ℓ+t2)

xv(2k+t1,2ℓ+t2)

]

+D(t1,t2)u(2k+t1,2ℓ+t2)

(11)

wherek, ℓ∈N, and ti = 0, 1 (i = 1, 2), and the matricesA,
B, C andD are decomposed as in (4). Denote

A(0, 0)=:A1 ; A(1, 0)=:A2

A(0, 1)=:A3 ; A(1, 1)=:A4

(12)

and likewise for all the other matrices.
With the purpose of obtaining an invariant formulation of

(11), following the ideas of [5], we now define lifted versions
of the horizontal and vertical states as:

Xh(k, ℓ)=

[
xh(2k, 2ℓ)

xh(2k, 2ℓ+ 1)

]
(13a)

and

Xv(k, ℓ)=

[
xv(2k, 2ℓ)

xv(2k + 1, 2ℓ)

]
, (13b)

respectively, and considerU (k, ℓ) andY (k, ℓ) as previously
defined in eqs. (10a) and (10b). This yields the following linear
2D shift-invariantRoesser model

[
Xh (k + 1, ℓ)

Xv (k, ℓ+ 1)

]
= F

[
Xh (k, ℓ)

Xv (k, ℓ)

]
+GU (k, ℓ) ,

Y (k, ℓ) = H

[
Xh (k, ℓ)

Xv (k, ℓ)

]
+ JU (k, ℓ)

(14)

where matricesF , G, H and J are constant and can be
decomposed as follows

F =

[
Fhh Fhv

F vh F vv

]
, G=

[
Gh

Gv

]

H=
[
Hh Hv

]
,

(15)



with the size of the blocks is determined by the sizes ofXh

andXv, and, moreover:

Fhh=

[
Ahh

2 Ahh
1 0

Ahh
4 Ahv

3 Avh
1 +Ahv

4 Avh
2 Ahh

1 Ahh
4 Ahh

3

]

Fhv=

[
Ahh

2 Ahv
1 Ahv

2

Ahh
4 Ahv

3 Avv
1 +Ahv

4 Avh
2 Ahv

1 Ahv
4 Avv

2

]

F vh=

[
Avv

3 Avh
1 Avh

3

Avh
4 Ahv

3 Avh
1 +Avv

4 Avh
2 Ahh

1 Avh
4 Ahh

3

]

F vv=

[
Avv

3 Avv
1 0

Avh
4 Ahv

3 Avv
1 +Avv

4 Avh
2 Ahv

1 Avv
4 Avv

2

]

Gh=

[
Ahh

2 Bh
1 Bh

2 0 0

Ahh
4 Ahv

3 Bv
1+A

hv
4 Avh

2 Bh
1 Ahv

4 Bv
2 Ahh

4 Bh
3 Bh

4

]

Gv=

[
Avv

3 Bv
1 0 Bv

3 0

Avh
4 Ahv

3 Bv
1+A

vv
4 Avh

2 Bh
1 Avv

4 Bv
2 Avh

4 Bh
3 Bv

4

]

Hh=




Ch
1 0

Ch
2A

hh
1 0

Cv
3A

vh
1 Ch

3

Ch
4A

hv
3 Avh

1 +Cv
4A

vh
2 Ahh

1 Ch
4A

hh
3




Hv=




Cv
1 0

Ch
2A

hv
1 Cv

2

Cv
3A

vv
1 0

Ch
4A

hv
3 Avv

1 +Cv
4A

vh
2 Ahv

1 Cv
4A

vv
2




and

J=




D1 0 0 0

Ch
2B

h
1 D2 0 0

Cv
3B

v
1 0 D3 0

Ch
4A

hv
3 Bv

1+C
v
4A

vh
2 Bh

1 Cv
4B

v
2 Ch

4B
h
3 D4




(16)

We shall denote this invariant lifted model byΣL =
(F,G,H, J), and say thatΣL is induced by the original model
Σ (·, ·), or equivalently, thatΣ (·, ·) induces ΣL.

IV. (2, 2)–PERIODIC Roesser REPRESENTATIONS

In this section we investigate the questions of determining
whether a given 2D invariantRoesser model is or not induced
by a SISO(2, 2)–periodic one, and of obtaining a correspond-
ing inducing (2, 2)–periodic Roesser model in the case the
answer to the previous question is positive.

For this purpose, consider the(2, 2)–periodicRoesser model
(11), with horizontal and vertical states of sizesnh andnv,
respectively. Consider also the corresponding (induced) invari-
ant representation (14) (with horizontal and vertical states of

sizes2nh and2nv, respectively) and define the(nh+nv + 1)–
square matrix

M :=




Fhh
21 Fhv

21 Gh
21

F vh
21 F vv

21 Gv
21

Hh
41 Hv

41 J41


 , (17)

whereFhh
21 , Fhv

21 , F vh
21 , F vv

21 , Gh
21, Gv

21, Hh
41, Hv

41, and J41
are defined in the obvious way by the block–divisions in (16),
more concretely:

[
F •⋆
11 F •⋆

12

F •⋆
21 F •⋆

22

]
=:F •⋆

[
G⋆

11 G⋆
12 G⋆

13 G⋆
14

G⋆
21 G⋆

22 G⋆
23 G⋆

24

]
=:G⋆




H⋆
11 H⋆

12

H⋆
21 H⋆

22

H⋆
31 H⋆

32

H⋆
41 H⋆

42


=:H⋆




J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44


=:J

(18)

where each of the symbols• and ⋆ represents eitherh or v.
Note thatM can be factored as

M=




Ahv
4 Avh

2 Ahh
4 Ahv

3

Avv
4 Avh

2 Avh
4 Ahv

3

Cv
4A

vh
2 Ch

4A
hv
3




︸ ︷︷ ︸
nh+nv columns




Ahh
1 Ahv

1 Bh
1

Avh
1 Avv

1 Bv
1








n
h
+
n
v

row
s

=:
[
L1 L2

]



R1

R2




}
nh rows

}
nv rows︸ ︷︷ ︸

nh

columns

︸ ︷︷ ︸
nv

columns

=:
[
L1 L2

]



R1,1 R1,2

R2,1 R2,2




implying that

rankM 6 nh + nv .

Consider now matricesM1 andM2 defined as follows:

M1 :=




Fhh
11 Fhv

11 Gh
11

Hh
21 Hv

21 J21

L1R1


 (19a)

(of size (2nh+nv+2)× (nh+nv+1)), and

M2 :=




F vh
11 F vv

11 Gv
11

Hh
31 Hv

31 J31

L2R2


 (19b)



(of size (2nv+nh+2) × (nh+nv+1)). It is not difficult to
see that these matrices can be factored as

M1 =




Ahh
2

Ch
2

L1




︸ ︷︷ ︸
nh columns

[
R1,1 R1,2

]
(20a)

and

M2 =




Avv
3

Cv
3

L2




︸ ︷︷ ︸
nv columns

[
R2,1 R2,2

]
, (20b)

allowing us to conclude that

rankM1 6 nh and rankM2 6 nv .

Finally, consider the(nh + nv + 1)–square matrices

M3 :=




Fhh
22

F vh
22

Hh
42

L1

Gh
23

Gv
23

J43


 (21a)

and

M4 :=


 L2

Fhv
22 Gh

22

F vv
22 Gv

22

Hv
42 J42


 . (21b)

These matrices can be factored as

M3 =




Ahh
4

Avh
4

Ch
4




︸ ︷︷ ︸
nh columns

[
Ahh

3 Ahv
3 Bh

3

]} n
h

row
s (22a)

and

M4 =




Ahv
4

Avv
4

Cv
4




︸ ︷︷ ︸
nv columns

[
Avh

2 Avv
2 Bv

2

]} n
v

row
s , (22b)

respectively, implying that

rankM3 6 nh and rankM4 6 nv .

Conversely, let nowB be a (2, 2)–periodic SISO 2D be-
havior, letBL be the corresponding lifted invariant behavior
and assume thatΣL=(F,G,H, J) is a 2D invariantRoesser
model representation ofBL, where the horizontal state vector
Xh and the vertical state vectorXv have both an even number
of components, say2nh and 2nv, respectively, and where
the input U and the outputY have both 4 components.

Furthermore, decompose matricesF , G, H andJ as in (18).
Define the matrixM̃ as in equation (17), and assume that

rankM̃ 6 nh + nv.

Decompose this matrix as

M̃=:
[
L̃1 L̃2

]



R̃1

R̃2


 , (23)

where the block–matrices̃L1 andL̃2 havenh andnv columns,
respectively, while block-matrices̃R1 andR̃2 havenh andnv

rows, respectively.
Now, define matrices̃M1 andM̃2 similarly to what is done

for M1 andM2 in equations eqs. (19a) and (19b), but using
the matrices̃L1, L̃2, R̃1 and R̃2 obtained in (23) instead of
L1, L2, R1 andR2, respectively. Assume that

rankM̃1 6 nh and rankM̃2 6 nv

and decompose

M̃1 =:




M̃ℓ
1,1

M̃ℓ
1,2

M̃ℓ
1,3




︸ ︷︷ ︸
nh columns

[
M̃r

1,1 M̃r
1,2

]
(24a)

and

M̃2 =:




M̃ℓ
2,1

M̃ℓ
2,2

M̃ℓ
2,3




︸ ︷︷ ︸
nv columns

[
M̃r

2,1 M̃r
2,2

]
, (24b)

whereM̃ℓ
1,1 is a (nh)–square matrix,̃Mℓ

2,1 is a (nv)–square
matrix whileM̃ℓ

1,2 andM̃ℓ
1,2 are row matrices and̃Mr

1,2 and

M̃r
2,2 are column matrices.
Finally, define matrices̃M3 andM̃4 similarly to what is

done forM3 andM4 in equations eqs. (21a) and (21b) but
using the matricesM̃ℓ

1,3 and M̃ℓ
2,3 instead ofL1 and L2,

respectively. Assume that

rankM̃3 6 nh and rankM̃4 6 nv

and decompose

M̃3 =:




M̃ℓ
3,1

M̃ℓ
3,2




︸ ︷︷ ︸
nh columns

[
M̃r

3,1 M̃r
3,2

]
(25a)

and

M̃4 =:




M̃ℓ
4,1

M̃ℓ
4,2




︸ ︷︷ ︸
nv columns

[
M̃r

4,1 M̃r
4,2

]
, (25b)



whereM̃ℓ
3,2 andM̃ℓ

4,2 are row matrices whilẽMr
3,2 andM̃r

4,2

are column matrices.
Now, assume that, in decomposition (18), the blocks

Fhh
12 , F vv

12 , Gh
13, Gh

14, Gv
12, Gv

14, Hh
12, Hh

22, Hv
12, Hv

32,
J12, J13, J14, J23, J24, J32 and J34 are null, and define a
(2, 2)–periodic SISORoesser model of dimension(nh + nv)
Σ (·, ·) = (A (·, ·) , B (·, ·) , C (·, ·) , D (·, ·)), where the matri-
ces in eqs. (3) and (4) are given by:

[
A (0, 0) B (0, 0)

]
=

[
M̃r

1,1 M̃r
1,2

M̃r
2,1 M̃r

2,2

]

[
C (0, 0) D (0, 0)

]
=

[
Hh

11 Hv
11 J11

]

[
A (1, 0) B (1, 0)

]
=




M̃ℓ
1,1 Fhv

12 Gh
12

M̃r
4,1 M̃r

4,2




[
C (1, 0) D (1, 0)

]
=

[
M̃ℓ

1,2 Hv
22 J22

]

[
A (0, 1) B (0, 1)

]
=




M̃r
3,1 M̃r

3,2

F vh
12 M̃ℓ

2,1 Gv
13




[
C (0, 1) D (0, 1)

]
=

[
Hh

32 M̃ℓ
2,2 J33

]

[
A (1, 1) B (1, 1)

]
=

[
M̃ℓ

3,1 M̃ℓ
4,1

Gh
24

Gv
24

]

and[
C (1, 1) D (1, 1)

]
=

[
M̃ℓ

3,2 M̃ℓ
4,2 J44

]
,

(26)

(where the matrices are suitably partitioned according to the
sizes of the horizontal state (nh), the vertical state (nv), the
input (1) and the output (1)). It is not difficult to check that
the obtained(2, 2)–periodic Roesser model Σ (·, ·) induces
the invariantRoesser representationΣL of BL.

This leads to the following result.

Theorem 4.1: Let ΣL = (F,G,H, J) be a 2D invariant
Roesser model. ThenΣL is induced by a 2D(2, 2)–periodic
SISO Roesser model if and only if the following conditions
are satisfied:

1) In ΣL, the horizontal state has size2nh (for some
nh∈N), the vertical state has size2nv (for somenv∈N);
moreover the number of inputs and the number of outputs
are equal to 4.

2) Considering the previously defined notations:
2.1) rankM̃ 6 nh+nv

2.2) rankM̃1 6 nh and rankM̃2 6 nv

2.3) rankM̃3 6 nh and rankM̃4 6 nv

2.4) Fhh
12 , F vv

12 , Gh
13, Gh

14, Gv
12, Gv

14, Hh
12, Hh

22, Hv
12,

Hv
32, J12, J13, J14, J23, J24, J32 and J34 are null

matrices. ⋄

When the conditions of Theorem 4.1 are satisfied, a 2D
(2, 2)–periodicRoesser modelΣ (·, ·) that inducesΣL can be
determined as explained in the considerations preceding the
theorem. Now, ifB is a 2D (2, 2)–periodic behavior whose
lifted versionB

L is represented byΣL, it is clear that the
set of input/output trajectories generated byΣ (·, ·) coincides
with the (2, 2)–periodic behavior. In other words,Σ (·, ·) is a
(2, 2)–periodicRoesser model representation ofB, and our
goal of realizingB has been achieved.

V. CONCLUSION

This paper is a first step for the development of a realization
procedure of periodic 2D behaviors by means of periodic 2D
Roesser models. Although we have considered the simpler
SISO (2, 2)–periodic case, the presented procedure can be
easily generalized for MIMO systems. The generalization to
arbitrary periods(P,Q) is also possible, although much more
involved.

Even in the simple considered case, several questions were
left open. The first one is to determine conditions on the
periodic input/output behaviorB under which the invariant
formulationBL is a quarter-plane causal input/output system
with inputsuL and outputsyL (and hence admits aRoesser
model realization with such inputs and outputs). Another ques-
tion has to do with what happens when the invariantRoesser
realizationΣL of the lifted versionBL turns out not to be
induced by any periodicRoesser realization. This problem has
been solved in [4] for the 1D case, but, although we conjecture
that a similar procedure can be used here, its implementation
in the 2D case will certainly be far more complicated. An
equally interesting open problem is related to the questionof
minimality: will minimal invariant realizationsΣL originate
minimal periodic realizationsΣ (·, ·)? Due to the difficulty
in characterizing minimality for generalRoesser models, this
question should be easier to answer in the particular case
whereΣL is a Roesser model of separable type (for which
minimality is easier understood).

These open questions are currently being studied and will
be reported in future work.
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